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LINEAR ELASTICITY AND HOMOGENIZATION IN THE
ABSENCE OF VERY STRONG ELLIPTICITY

MARC BRIANE AND GILLES A. FRANCFORT

AssTrACT. Homogenization in linear elliptic problems usually assumes
coercivity of the accompanying Dirichlet form. In linear elasticity, coer-
civity is not ensured through mere (strong) ellipticity so that the usual
estimates that render homogenization meaningful break down unless
stronger assumptions, like very strong ellipticity, are put into place.
Here, we demonstrate that a L?-type homogenization process can still
be performed, very strong ellipticity notwithstanding, for a specific two-
phase two dimensional problem whose significance derives from prior
work establishing that one can lose strong ellipticity in such a setting,
provided that homogenization turns out to be meaningful.

Mathematics Subject Classification: 35B27, 74B05, 74Q15

1. INTRODUCTION

This paper may be viewed as a sequel to both [2] and [6]. Those, in turn, were a
two-dimensional revisiting of [7] in the light of [8]. The issue at stake was whether
one could lose strict strong ellipticity when performing a homogenization process
on a periodic mixture of two isotropic elastic materials, one being (strictly) very
strongly elliptic while the other is only (strictly) strongly elliptic. We start this
introduction with a brief overview of the problem that had been addressed in those
papers, restricting all considerations to the two-dimensional case.

We consider throughout an elasticity tensor (Hooke’s law) of the form

L € L™ (Js; Z,(R2*?)),

where .7 is the 2-dimensional torus R?/Z? and .%,(R2*?) denotes the set of sym-
metric mappings from the set of 2 x 2 symmetric matrices onto itself. Note that

there is a canonical identification Z between 7 and the unit cell Yy := [0,1)?;
for simplicity, we will denote by y both an element of 9 and its image under the
mapping Z.

The tensor-valued function L defined in 7 is extended by Ya-periodicity to R?
as

L(y +x) =L(y), ae. in R Ve Z?

so that the rescaled function L(z/¢) is eYa-periodic.

Date: 16 janvier 2014.
Key words and phrases. Linear elasticity, ellipticity, I'-convergence, homogenization,
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We then consider the Dirichlet boundary value problem on a bounded open
domain  C R?

—div (L(x/e)Vu®) = in
(1) { ( 1(f/€) ) = gon o0

with f € H=1(;R?). We could impose a very strong ellipticity condition on L,
namely
(1.2) e (IL) = ess-inf (min {L(y)M - M : M € R?** |[M| =1}) > 0.
yeET>
In such a setting, homogenization is straightforward; see e.g. the remarks in [11,
Ch. 6, Sec. 11].
Instead, we will merely impose (strict) strong ellipticity, that is

(1.3) (L) := ess—ignf (min {L(y)(a®b) - (a®b) : a,b € R? |a| = [b] = 1}) >0,
yeT2
and this throughout.

Remark 1.1 (Ellipticity and isotropy). Whenever L is isotropic, that is
L(y)M = Xy) tr (M) I> + 2u(y) M, fory € F, M € RZ*?,
then (1.2) reads as
ess-inf (min {u(y), A(y) + u(y)}) > 0
while (1.3) reads as

esz—Liqnf (min {x(y), My) + 2u(y) }) > 0. 9
ycs2

The strong ellipticity condition (1.3) is the starting point of the study of homoge-
nization performed in [7] from a variational standpoint, that of I'-convergence. Un-
der that condition, the authors investigate the I'-convergence, for the weak topology
of H}(€2;R?) on bounded sets (a metrizable topology), of the Dirichlet integral

/ L(z/e)Vv - Vv daz.
Q

Then, under certain conditions that will be recalled in Section 2, the I'-limit is
given through the expected homogenization formula

(1.4) LM - M := min {/ L(y)(M + Vv) - (M + Vv)dy : v € Hl(%;RQ)}
Y>
in spite of the lack of very strong ellipticity.

In [8, 9], the viewpoint is somewhat different. The author, S. GUTIERREZ, looks
at a two-phase layering of a very strongly elliptic isotropic material with a strongly
elliptic isotropic material. Assuming that the homogenization process makes sense,
he shows that strict strong ellipticity can be lost through that process for a very
specific combination of Lamé coefficients (see (2.6) below) and for a volume fraction
1/2 of each phase.

Our goal in the previous study [2] was to reconcile those two sets of results, or
more precisely, to demonstrate that Gutiérrez’ viewpoint expounded in [8, 9] fit
within the variational framework set forth in [7] and that the example produced in
those papers is the only possible one within the class of laminate-like microstruc-
tures. Then, it is shown in [6] that the Gutiérrez pathology is in essence canonical,
that is that inclusion-type microstructures never give rise to such a pathology.
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The concatenation of those results may be seen as an indictment of linear elas-
ticity, especially when confronted with its scalar analogue where ellipticity cannot
be weakened through a homogenization process. However, our results, hence those
of Gutiérrez, had to be tempered by the realization that I'-convergence a priori
assumes convergence of the relevant sequences in the ad hoc topology (here the
weak-topology on bounded sets of Hg). The derivation of a bound that allows for
such an assumption not to be vacuous is not part of the I'-convergence process, yet
it is essential lest that process become a gratuitous mathematical exercise.

This is the task that we propose to undertake in this study. To this end we
add to the Dirichlet integral a zeroth-order term of the form [, [v]? dz which will
immediately provide compactness in the weak topology of L?(2;R?). We are then
led to an investigation, for the weak topology on bounded sets of L*(£;R?), of the
I’-limit of the Dirichlet integral

/ L(z/e)Vv - Vudaz.
Q

Our results, detailed in Theorems 3.3, 3.4, essentially state that, at least for
periodic mixtures of two isotropic materials that satisfy the constraints imposed in
[8], the ensuing I'-limit is identical to that which had been previously obtained for
the weak topology on bounded sets of Hi(£2;R?). An immediate consequence is that
Gutiérrez’ example does provide a bona fide loss of strict strong ellipticity in two-
phase two-dimensional periodic homogenization, and not only one that would be
conditioned upon some otherwordly bound on minimizing sequences; see Remark
4.1.

In Section 2, we provide a quick review of the results that are relevant to our
investigation. Then Section 3 details the precise assumptions under which we obtain
Theorems 3.3, 3.4 and present the proofs of those theorems. Finally, Section 4
briefly details the impact of our results on those previously obtained in [2, 6, 8].

Throughout the paper, the following remark will play a decisive role. Since, for
v € H}(2;R?), the mapping v +— det (Vv) is a null Lagrangian, we are at liberty
to replace the Dirichlet integral under investigation by

/ {L(z/e)Vv - Vv + cdet (Vo) } du,
Q

for any ¢ € R, thereby replacing
M L(y)M, M € R**2,
by
M — L(y)M + g cof (M), M € R2*2.

Notationwise,

- I is the unit matrix of R?*?; R is the 7/2-rotation matrix (§ = );

- A B is the Frobenius inner product between two elements of A, B € R?*2,
that is A - B := tr (AT B);

- If A= (¢ §) € R?*2, the cofactor matrix of A is cof (A) := (_¢ 7);

- If K: RP — RP is a linear mapping, the pseudo-inverse of K, denoted
by K~1, is defined on its range Im(K) as follows: for any ¢ € RP, K~1(K¢)
is the orthogonal projection of ¢ onto the orthogonal space [Ker (K)]*, so

that K(K'(K¢)) = K¢&;
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- If u is a distribution (an element of 2'(R?;R?)), then

curl v := % - %

T 8.132 81‘1
while ( )

oup 1 (0w oy

E u) = ( udml B 2 8'1:2u dxq >;
W) B
- HJ . (Ya;RP) (resp. L2, (Y;RP),CP, (Y2;RP)) is the space of the functions

in H} (R%*RP) (resp. LE (R RP),CP(R?* RP)) which are Ys-periodic;

- For any subset 2 € %, we agree to denote by Z its representative in Ys
through the canonical representation Z introduced earlier, and by Z# its
representative in R2, that is the open “periodic” set

7#* = |J (k+2).
kez?

- Throughout, the variable x will refer to a running point in a bounded open
domain Q C R2?, while the variable y will refer to a running point in Ys
(or T, or k+ Ya, k € Z2);

- If .#¢ is an e-indexed sequence of functionals with

J°: X =R,
(X reflexive Banach space), we will write that .#¢ ' 0 with
I X 5 R,

if .#¢ I-converges to .#° for the weak topology on bounded sets of X (see
e.g. |4] for the appropriate definition); and

o v = u® where v € L?(;R?) and u® € L*(Q x J2;R?) iff u® two-scale
converges to u? in the sense of Nguetseng; see e.g. [10, 1].

2. KNOWN RESULTS

As previously announced, this short section recalls the relevant results obtained
in [7], [3]. For vector-valued (linear) problems, a successful application of Lax-
Milgram’s lemma to a Dirichlet problem of the type (1.1) hinges on the positivity
of the following functional coercivity constant:

(2.1)  A(L) :=inf {/]R2 L(y)Vv - Vudy : v € C (4 R?), /R2 |Vol? dy = 1} .

As long as A(L) > 0, existence and uniqueness of the solution to (1.1) is guar-
anteed by Lax-Milgram’s lemma.

Further, according to classical results in the theory of homogenization, under
condition (1.2) the solution u® € H{(€;R?) of (1.1) satisfies

u® — u, weakly in H}(Q;R?)
(2.2) L(z/e)Vu® — LVu, weakly in L?(Q;R?*?2)
—div (]LOVu) =f,

with LO given by (1.4). The same result holds true when (1.2) is replaced by the
condition that A(L) > 0; see [5].
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When A(L) = 0, the situation is more intricate. A first result was obtained in
[7, Theorem 3.4(i)], namely

Theorem 2.1. If A(L) > 0 and
(2.3)

Aper (L) := inf {/ L(y)Vv-Vu dy : v € H} (Ya;R?), / |Vo|?dy = 1} >0,
Y- Yo

1
then, #¢ R IO with LY given by (1.4).

This was very recently improved by A. BRAIDES & M. BRIANE as reported in
[3, Theorem 2.4]. The result is as follows:

1
Theorem 2.2. If A(L) >0, then, .#° M) S0 with LV given by

(2.4) L°M - M :=inf {/ L(y)(M + Vv) - (M + Vv)dy :v € H;er(Y2;R2)} .
Y>
Note that dropping the restriction that A, (IL) (which is always above A(L)) be
positive changes the minimum in (1.4) into an infimum in (2.4).

As announced in the introduction, we are only interested in the kind of two-phase
mixture that can lead, in the layering case, to the degeneracy first observed in [8].
Specifically, we assume the existence of 2 isotropic phases %7, 2% of % — and of
the associated subsets Z; and Z5 of Y3, or still Zf’k and Zf of R? (see notation) —
such that

4, %5 are open, C? subsets of Z5;

NZ=0 and 23U2 = T;
(2.5)

Z¥ is connected;

2 has a finite number of connected components in 7.

FIGURE 1. Typical allowed micro-geometries: inclusion of the good
material or layering.
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We then define
L(y)M = Ay) tr (M) I + 2u(y)M, y€ Fo, M € R**?
(2.6) Ay) = Ny ply) = pa in 25, i=1,2
0< =Xy —po=py < pg, Ay +pp >0,
which implies in particular that
X+ 22 > 0,

that is that phase 2 is only strongly elliptic (A2 + uo < 0) while phase 1 is very
strongly elliptic (A1 + p1 > 0).

Then the following result, which brings together [2, Theorem 2.2] and [6, Theo-
rem 2.1], holds true:

Theorem 2.3. Under assumptions, (2.5), (2.6), A(L) > 0 and A,.. (L) > 0.

Consequently, Theorem 2.1 can be applied to the setting at hand and we obtain
the following

Corollary 2.4. Set, under assumptions (2.5), (2.6),

F(v) ZZ/QL(I‘/E)VU-VUCZJ}

with IL° given by (1.4) and

OUZ: Ov~vx.
7Ow) /QILV Vod

[(H;
Then g€ (Ho) 7.
Our goal in the next section is to prove that the Corollary remains true when
adding to # ¢ a zeroth order term of the form

/’1}2dl‘
Q

and replacing the weak topology on bounded sets of H}(€2;R?) by that on bounded
sets of L?(Q;R?).

3. THE MAIN RESULTS

Consider L(y) given by (2.6) and L° given by (2.4). Set, for v € L?(Q; R?),

) e /{L(x/s)Vu~Vo+v2}dx,, v € HY (S R?)
= Q

00 else.

FE(v

Also define the following two functionals:

/ {LOVv Vo +v*}dx, ve H)(Q;R?)
Q

%) else;

(3.1) IO(v) =

and, under the additional assumption that

(32) L(2)222 =0,
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/{LOVU Vu+o?hde, veZ

00 else,

(3.3) I12(v)

where, if v is the exterior normal on 9%,

(34) 2 :={veL*(R?) v € Hy(Q), v € L*(Q),

%2 ¢ [2(0) and vovy = 0 on 99},
8131

Remark 3.1. In (3.3) the cross terms
8u1 8U2
81'1 8962

must be replaced by

8u1 8u2

———dz

8332 6]}1
so that, provided that L9505 = 0, Wthh is the case in the specific setting at hand,
the expression fQ LOVu - Vu dx has a meaning for u € 2  and boils down to the

classical one when u € H}(Q;R?).

Remark 3.2. It is immediately checked that 2" is a Hilbert space when endowed
with the following inner product:
8“2 81)2

<u,v>gg::/ﬂu~vda§+/QVu1~Vv1 dz + Oy 01

Furthermore, C2°(2;R?) is a dense subspace of 27, provided that Q is C'.
Indeed, take u € 2 . The first component wu; is in Hg(£2;R?). Defining

ug, x €S
’122 =

0, else

we have, thanks to the boundary condition in the definition (3.4) of 2,

/uz Ld d:rJr/ %god =0.
6301 R2

for any p € C2°(R?), that is

s, Oty € L3(R?) with iy ) By
(9 axl
0, else.

Because  has a C'-boundary, we can always assume, thanks to the implicit
function theorem, that, at each point 2° € 92, there exists a ball B(2?,r,,) and a
C'-function f : R — R such that

QN B2 ry,) = {(x1,72) € B(a®,7rp,) : 12 > f(z1)}
or

Q ﬂB((tO,TzO) ={(z1,22) € B(xo,rzo) cxp > faa)}
In the first case, we translate @ in the direction o, thereby setting wh(z1,z2) =
to (21,29 — ), t > 0, while, in the second case, we translate s in the direction xq,

thereby setting 45 (x1, x2) := t2(x1 — t,x2), t > 0. This has the effect of creating a
new function iy which is identically null near Q N B(2°,7,,). We then mollify this
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function with a mollifier !, with support depending on ¢, thereby creating yet a
new function ab = ¢t x a4 € C°(Q N B(x°,r,,) which will be such that

out,  Ou
. ot 2 2 o
h%n {HUZ - u||L2(QﬁB(x0,rzO)) + ||8731‘1 - 873?1||L2(QOB($0’”0))} =0.

A partition of unity of the boundary and a diagonalization argument then allow
one to construct a sequence of C2°(2)-functions such that the same convergences
take place over L?(2). 9

We propose to investigate the (sequential) T'-convergence properties of .#¢ to
I or #1/? for the weak topology of L?(Q; R?).

We will prove the following theorems which address both the case of a laminate
and that of a matrix-inclusion type mixture. The first theorem does not completely
characterize the I'-limit to the extent that it is assumed a priori that the target field
u lies in H3(€; R?). By contrast, the second theorem is a complete characterization
of the I'-limit but it does restrict the geometry of laminate-like mixtures to be that
made of bona fide layers, i.e., straight strips of material.

Theorem 3.3 (“Smooth targets”). Under assumptions (2.5), (2.6), there exists a
subsequence of {e} (not relabeled) such that

7T 4
where, for u € HE(Q;R?), S(u) = £9%u) given by (3.1) and L° given by (2.4)
(and, even better, by (1.4)).
Theorem 3.4 (“General targets"). Under assumptions (2.5), (2.6), then the fol-
lowing holds true:
(1) If Z1 C Ya (the inclusion case) and if Q) is a bounded open Lipschitz domain
in R?, then
g< F(_L\Q) fO
given by (3.1) and LO given by (2.4) (and, even better, by (1.4));
(ii) If Z1 = (0,0) x (0,1) (or (0,1) x (0,0)) for some § € (0,1) (the straight
layer case) and if Q is a bounded open C domain in R?, then

70 if 0 #£1/2
IV if0=1/2 (the Gutiérrez case)

e TED

which are given by (3.1), (3.3), respectively, and with 1O given by (2.4)
(and, even better, by (1.4)).

Remark 3.5. In strict parallel with Remark 2.6 in [2], we do not know whether the
result of those Theorems still hold true when H{(2;R?) is replaced by H*(£;R?)
in the I'-convergence statement. q

Remark 3.6. Our geometric assumptions are designed to comprise two cases, that
of one, or several inclusions of the good material (phase 1), and that of a layer-
like microstructure where phase 1 reaches two parallel sides of the unit cell Y5, or
maybe a combination of both. We made no effort to check that our assumptions
are optimal although we conjecture that the statement of Theorem 3.4 will remain
true for all two-phase geometries, the degeneracy occurring only in the Gutiérrez
case. q
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The rest of this section is devoted to the proofs of Theorem 3.3, 3.4.
3.1. Proof of Theorem 3.3. First, because of the compactness of the injection
mapping from H}(Q;R?) into L?(Q;R?) and in view of Corollary 2.4,

j& F(i{\é) jO

with LY actually given by (1.4) (a min in lieu of an inf). We want to prove that the
same result holds for the weak L2-topology, at least for a subsequence of {¢}. By
a classical compactness result we can assert the existence of a subsequence of {e}
such that the T-1lim exists. Our goal is to show that that limit, denoted by .#(u),
is precisely .#°(u) when u € H}(Q;R?). Clearly, the I'-limsup will a fortiori hold
in that topology, provided that the target field u € Hg(2;R?). Tt thus remains to
address the proof of the I'-lim inf which is what the rest of this subsection is about.

To that end and in the spirit of [8], we add an integrated null Lagrangian to the
energy so as to render the energy density pointwise nonnegative. Thus we set, for
any M € R?*2)

K;M :=1L;M + 2uycof (M) = \jtr (M) Iz + p;(M + MT) 4+ 2pycof (M), j=1,2
(thereby taking ¢ at the end of the introduction to be 2u1) so that
KjM - M =1L;M - M+ 4y det (M) >0, j=1,2

and define
Ky =K,in%;, j=1,2

Because the determinant is a null Lagrangian, for v € H}(Q;R?),
FE () = / {K(x/e)Vv - Vv + U2} dx
Q

Consider a sequence {uf}. converging weakly in L?(Q;R?) to u € L?(2;R?). Then,
for a subsequence (still indexed by €), we are at liberty to assume that lim inf . (u®)
is actually a limit. The I'-liminf inequality is trivial if that limit is oo so that we
can assume henceforth that, for some co > C' > 0,

(3.5) I () < C.

Further, according to e.g. [1, Theorem 1.2], a subsequence (still indexed by ¢) of
that sequence two-scale converges to some u’(z,y) € L?(Q x Z3;R?). In other
words,

(3.6) ut =l
Also, in view of (3.5) and because it is easily shown that
(3.7 K(y) is a nonnegative as a quadratic form

while clearly all its components are bounded, for yet another subsequence (not
relabeled),

(3.8) K(z/e)Vu® = H(x,y) with H € L?(Q x Ya; R**?),
and also, for future use,

(3.9) K2 (2/e)Vu® = S(z,y) with § € L*(Q x Yy; R?*?),
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In particular,
(3.10) eK(z/e)Vu® = 0.

Take ®(z,y) € C(Q x Z»; R?*2) with compact support in Q x Z7. From (3.10)
we get, with obvious notation, that

0=—lim [ eK(z/e)Vu® - O(x,x/c)dx =

e—0 /o
oD,
lim /Ki- z/e)us, —2L(x,x/e)dr =
tiy 37 J, (o) /2
0 OPij 0
> (K1)ijkn ug(,y) 5, Yy = - (KiVyu'(2,y)) - @(2,y) dz dy,
ijkh Y X2 Yn Qx 7y
so that
(3.11) K,V,u’(z,y) =0 inQx Z¥,
and similarly
(3.12) KoV, ul(z,y) =0 in Qx ZF.

In view of the explicit expressions for K; (3.11), (3.12) imply that

)\i(gf—kgf)—Fngf—Fngf:O
/\i<glyt(f—|—gzg)+2mgz;2]+2mgqf—0
Hz'(gz(j+gqf>—2u1gz§=0
Mi(gif+€(?;by22))_2 1(;7;22):0.

So, in phase 1, that is on Zf&, using (2.6) we get

. ol o, o8 o
Oy1 ~ Oyz dy1 Oyz

while in phase 2, that is on Z;#, still using (2.6) we get

(3.14) ouf _ Ouy  Ouy _ 0ud _

dyp Oya’ Oy Oyr
From (3.13) we conclude that, in phase 1,

(3.15) Ayud = Ayud = 0.

Step 1 — u® does not oscillate. We now exploit the two previous set of relations

under the micro-geometric assumptions of Theorem 3.3 to demonstrate that

(3.16) u’(z,y) = u(x) is independent of y,

where, thanks to (3.6),

(3.17) u® — u, weakly in L*(;R?).
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We first notice that, in view of (3.14) and of the connectedness of phase 2,

u?:a(z)y1+ﬂ(x), ug:a(x)ngr’y(a:), yGZQ#,

for some functions a(z),8(z),v(z). By Ya-periodicity of u?, a(r) = 0. Thus
V,u® = 0, or equivalently,

(3'18) uo('r’y) = U(Z‘), y e Zj:

for some u € L?(;R?).
Consider ® € C}, (Yo; R?*?) with

per

(3.19) D Ky —Ka)ijun®ij (y)valy) =0 on 0.2,
ijh
that condition being necessary for div, (K? (y)®(y)) to be an admissible test func-
tion for two-scale convergence. In (3.19) v(y) denotes the exterior normal to Z,
at y.
In view of (3.10), (3.18), (3.19), we get that, for any ¢ € C°(2; C,.(Y2)),

per

0=—lim | eK(z/e)Vu. - p(x,z/c)P(x/c) dx

e—=0 /o
) 0
= lim [a—%{<ﬂ<(y>)z~jw<x,y>% )} | (2,2/e) () e =
Z/ 8 Kl zjkh(p( zg(y)}ug(xay) d:)']dy +
ijkh /X2 yh
Z/ K2 Ukhgp }Uk dl’ dy -
Z]kh QXZQ
{(K1)ijrne(z,y)® ul (x,y) de dy +
”zk;l/QXZl 8yh 1) ( } k )
Z/ (K1)ijrnur(@)va(y)o(z, y)@ij(y) de do)
G ax(02:10Y2)
Set v9(z,y) := u(x,y) — u(x). Then,
(Ky)ijrenp(x,y)® vp(x,y)drdy =0,
z/ay ignsp 2, ) 245 (0) o, )

while, thanks to (3.11), K;V,v° = 0. This implies that S, (K1)ijknv?(z, y)vs(y)
— which is meaningful as an element of L?(Q; H~/2(0Z;)) — is such that, for any
p € CX(Q;C2.(Y2)) and any P satisfying (3.19),

per

(3.20) Z/ Kl )iiknvl(z, y)l/h(y),w(x,y)<1’ij(y)> dz = 0

H—1/2(8Z1)7H1/2(621)

Now simple algebra using the explicit expression for Ky, Ko as well as (2.6) would
show that, for any ¢ € R? and any v € S, one can choose a matrix ® such that

(3.21) Z(Kl)ijkhq)ijl/h = Z(KQ)ijkhq)ith =&, k=12,
ijh ijh
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so that, in particular, (3.19) can always be met, provided that each connected
component of 2] has a C? boundary because the normal v(y) is then a C'-function
of y € .27 so that one can define ®(y) satisfying (3.21) as a C* function on 9.2,
hence by e.g. Whitney’s extension theorem as a C' function on .

Consider a connected component Z# of phase 1 in R%. Then, for almost every
x €,

v°(z,y) has a well defined trace in H~/2(92%;R?).

In view of (3.20), (3.21), of the arbitrariness of ¢ and of that of £, we conclude that
that trace satisfies

(3.22) v0(x,-) =0 on OZ7.

Fix 2. According to (3.13), there exists a potential ¢, € H'(Z N (=R, R)?) for
any R > 0, such that

v'(@,y) = RTVa(y)
and
NyCp =0 in Z%.
Further, in view of (3.22),
RV, -v=V( v =0o0ndz*

so that (, is constant on each connected component of 9Z#. Thus, by elliptic
regularity ¢, € H?(Z N (=R, R)?) for any R > 0, hence v° € H'(Z N (—R, R)?) for
any R > 0. In view of (3.15), (3.22), we conclude that v = 0, hence (3.16).

Step 2 — Identification of the I-liminf. Consider ® € L2_ (Y2;R?**?) such that

per
(3.23) div (K2 (y)®(y)) =0 in R?,
or equivalently,
| KE)O) - V() dy =0 VY € Hpu (Yo R?),
2

and also consider ¢ € C°°().
Then, since u® € H{(€;R?) and in view of (3.23),

/Q () K (2/e) Ve B(wfe) do = — 3 / K /)00 (2/2) 52 0 d

ijkh

Recalling (3.6), (3.9), we can pass to the two-scale limit in the previous expression
and obtain, thanks to (3.16),
(3.24)

_ } 2%
o P10 B drdy == 5 [ @) Kt 5 ) drdy

Assuming henceforth that u € H'(2;R?), we obtain from (3.24) that

/ S(a.y) - B(y) p(x) dr dy = / K} (1) Vau(z) - (y) () da dy.
QxYs QxXYsy

By density, the result still holds with the test functions p(z)®(y) replaced by
the set of U(z,y) € L%(Q; L2, (Ya; R?*?)) such that

per

divy (K% (»)¥(z,y)) =0 in R?,
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or equivalently, due to the symmetry of K(y),
/ U(z,y) K2 (y)Vyo(z,y)dy =0 Yo e L2(Q; HL,, (Ya; R?)).
QXYQ

Hence the L?(Q; L2, (Y2; R?*2))-orthogonal to that set is the L2-closure of

per

Hy = {K2 (y)Vyo(z,y) : v € L2(Q Hpor(Ya; R?))}
Thus,
S(e.y) = K= (y)Vou(e) +E(z,)
for some £ in the closure of J#y. Thus, there exists a sequence
vp € L3(Q; H!, (Yo; R?))

per

such that Kz (y)V,v, — € strongly in L2(Q; L2, (Ya; R?*?)).

per

We now appeal to [1, Proposition 1.6] which yields
o 1
(3.25) hfsg%lf HK2(x/a)VuEHiz(Q;szz)) = ||SH%2(Q><Y2;R2><2) =
. 1 1
lim K2 () Vou(z) + K2 (1) Vyvali2 v w2 -
But recall that
liie: (z/e)Vus |22 (qupaxay) = / K(z/e)Vu® - Vu® dz = / L(z/e)Vu® - Vu© dx
Q Q
because the determinant is a null Lagrangian.
Thus, from (3.25) and by weak L2-lower semi-continuity of [[u®||12(q.r2) we con-
clude that
. 3 3 € € >
(3.26) hgn_%lff (u®) >
lim K(y)(Vau(z) + Vyvu(z,y)) - (Veu(z) + Vyou(z,y)) de dy + / lu|? da >
n o JaxYs Q

i { [ K@) (Veule) + Vy0(0) - (Vou(e) + V(o) dedy v € H (7R
QXYZ
+ / lu|? da.
Q
In the light of the definition (2.4) for L°, we finally get
liminf .#°(u®) > / {LV,u - Vou+ |ul*} do
e—0 Q

provided that u € H'(Q;R?), hence, a fortiori provided that u € H{(£;R?).
The proof of Theorem 3.3 is complete.
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3.2. Proof of Theorem 3.4. Recall that, in the proof of Theorem 3.3 we were at
liberty to assume that
F(uf) < C < o0,
otherwise the I'—lim inf inequality is trivially verified. Consequently, if we can show
that, under that condition, the target function w is in Hg(Q;R?), then we will be
done as remarked at the onset of Subsection 3.1. Such will be the case except when
dealing with straight layers (case (ii)) under the condition that § = 1/2. In that
case we will have to show that, for those target fields u that are not in Hg (2; R?)
a recovery sequence for the I'-limsup (in)equality can be obtained by density.
Returning to (3.24), setting

(3.27) N = /Y K2 (1) P35 () dy
ig Y2

and varying ¢ in C$°(Q2), we conclude that
(3.28) N - Vu e L*(Q).

We now remark that K(y), a symmetric mapping on R?>*2_ has for eigenvalues
2(M(y) + u(y) + p1), —2p1 and 2(p(y) — p1) with eigenspaces respectively generated
by

I,, R*:
and, for the last eigenvalue, by
Gi=(b%), H=(33),
Consequently, its kernel for y € Zs is

(3.29) Ker (K(y)) = Ker (Kg) := {7l2, 7 arbitrary in R},
while its kernel for y € Z; is
(3.30) Ker (K(y)) = Ker (K;) := {(g fa) : a, 8 arbitrary in R} .

Step 1 — Case(i). First assume that Z; C Y and that M € R2*2. We then define
1
V() =5 {My -y —ply—r)M(y —r) - (y —r)} forany y €Vs+r, r €2

with ¢ € C2(Y2), ¢ = 1 in Z;. Then clearly, V¥ — My € H] . (Y2;R?). Further,
VU = Mk in Z; + £ hence V20 = 0 in Z; + £ while V2URL € Kert (Kg) thus
belongs to the range of Ky in Zs + k.

It is thus meaningful to define ®(y) := K2 (y) (V2 (y) R*) where K~2 is the

pseudo-inverse of K2 (see the notation at the close of the introduction).
We get
K2 (y)®(y)dy = | V*W(y) R*dy = MR",
Yo Y>
while ® satisfies (3.23) since for any v € H}

loc

div(VoRY) =0 in R?

(R; R?) with periodic gradient,

or equivalently,

Vu(y) RY-V(y)dy =0 Vo € H) (Yy; R?).
Ys
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We finally obtain that MR+ -Vu € L%(Q). Since, when M spans R2*2 N := M R+
spans the set of all 2 x 2 matrices with 0-trace, we infer from (3.28) that

8U1 8uz 6u1 3u2 2

— — - L7 ().

8x2’ 8901 61'1 8332 are in ( )
This is equivalent to stating that E(Rtu) € L2(Q; R2*2). Since 2 is C! — Lipschitz
would suffice here — Korn’s inequality allows us to conclude that Rtu € H'(Q;R?),
hence that

(3.31) u € H'Y(;R?)

in that case.
Since, for an arbitrary trace-free matrix N, we can choose ® constrained by
(3.23) so that (3.27) is satisfied, then actually

(3.32) u € Hi (Q;R?).

Indeed, take z¢ € 92 to be a Lebesgue point for |0 — which lies in particular in
L%, (0 R?) — as well as for v(x), the exterior normal to © at zo. Then take an
arbitrary trace-free N and the associated ®.

By (3.31) we already know that u € H(€2;R?), so that (3.24) reads as

/ o(@)S (2, ) - By () dz dy =
QAxYs

/N Vu(z)p(z)de — [ Nv(z)-u(z) e(x)d".
o0

But, taking first ¢ € C°(Q) and remarking that, in such a case, the first two
mtegrals are equal and bounded by a constant times [|¢||z2(q), we immediately
conclude that, for any ¢ € C=(Q),
Nv(z) - u(z) o(x) ds#* = 0.
a0

Thus, Nv(z) - u(z) = 0 H#'-a.e. on 99, hence, since x( is a Lebesgue point,
Nv(zg)-u(xg) = 0 from which it is immediately concluded that u;(z¢) =0, i = 1, 2,
hence (3.32).

But, in such a case we can apply Theorem 3.3 which thus delivers the I'-limit.
Step 2 — Case (ii). Assume now that Z; is a straight layer, that is that there exists
0 < 0 < 1 such that (0,0) x (0,1) =Z,NY.

For an arbitrary matrix M € R?*? define v(y) as

o) i= bty + ([ (0 - olde) . € € v

where x(y) is the characteristic function of phase 1 with volume fraction

/ x(y) dy == 6.
Yo
Then, v(y) — My is Ys-periodic and

Vo(y) = x(y) (M + (1 =) @ er) + (1 = x(y1))(M — 0 @ eq).

According to (3.30), (3.29), for Vu(y)R* to be in the image of K(y) we must have
both
(M+(1—-0)f@e)RH-G=M+(1-0)¢®e))RT-H=0
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i.e., (1 =0)& = May — My, (1 —0)§ = —Miz — My, and
(M -6 @e)R -1, =0,

i.e., 0 = —Miz + Mo.
Since ¢ can be arbitrary, this imposes as sole condition on M that

(20 — 1) My + My = 0.

Then,
M —M
v Rld:MRL:( 12 11 >:N
Ya U(y) Yy M22 (20 o 1) ‘2\412 [
where
a c a, b, ¢ arbitrary, if 6 # 1/2
Ny = , with
b (20 -1)a d=0, if0=1/2.

In view of (3.28), we obtain that
Bul 8u2 8u1

3u2 . 2
873327 87‘];'27 87‘]:1—'_(1 29)7 are lnL (Q),

81‘2

or equivalently,

E(Pyu) € L*(Q;R?*?) with Py := (0 1= 29) .

1 0

Using Korn’s inequality once again, we thus conclude that v € H'(Q;R?), except
Ouz might not be in L?(Q).
81'2

In view of (3.28), we thus conclude that all partial derivatives of u are in L?()
except when # = 1/2 in which case a—zz might not be.

2

Remark 3.7. Actually, when 6 = 1/2, then all ®’s that are such that (3.23)
is satisfied produce, through (3.27), a matrix M with My, = 0, hence a matrix
N := MR* such that Nay = 0.

Indeed, the existence of ® is equivalent to that of v(y) = My + w(y) with
w € H!, (Yo;R?) such that

per

when 6 = 1/2 in which case

Vou(y)RY = K2 (1) ®(y)

which implies that, for a.e. y; € (0,1),

N

1 1
K (yl)/ O(y,,t) dt = / Vou(y,t)R* dt.
0 0
In view of (3.30), (3.29), the last relation yield in particular that
! 8112
v1(y1,1) —v1(y1,0) = - @(yl,yz) dys, 0 <yp <1/2
0 1

1
v
Ul(yhl) _Ul(yho) = +/ Tyi(yhy?) dy27 1/2 S Y1 S 17
0
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or still, since v(y) = My + w(y) with w Ya-periodic,

1
ov
My = —/ 872(‘%"1/2) dyz, 0 < g1 < 1/2
o 9y1
1
ov
Mip = +/ 672(1/1,1/2) dyz, 1/2 <y <1,
0o o1

But then

ov
Mo = 872(‘%73/2) dy1dys = 0.
Y, OY1

9

Then, through an argument identical to that used in case (i), we find that, for
xo Lebesgue point for ui|9Q (and for ugy |0 as well if 0 # 1/2), ui(zo) = 0 (and
uz(xo) = 0 if § # 1/2) while, if 6 = 1/2, ugr, which is well defined as an element
of H=2 (), satisfies upry = 0.

So, here again, we can apply Theorem 3.3 provided that 6 # 1/2. It thus remains
to compute the I-limit in case (ii) when § = 1/2. This is the object of the last step
below.

Step 3 — Identification of the I'-limit — case (ii) — 8 = 1/2; the Gutiérrez case. As far as
the I'- lim sup is concerned there is nothing to prove once again, because, as already
stated at the onset of Subsection 3.1 we know the existence of a recovery sequence
for any target field u € H}(Q;R?). But, according to Remark 3.2, H} (2;R?) is a
fortiori dense in £". So any element u € 4 can be in turn viewed as the limit
in the topology induced by the inner product {, )4 of a sequence u? € H}(Q;R?).
Since, as noted in Remark 3.1, dub/dxs does not enter the expression

/]LOVup -Vu? dx,

Q

we immediately get that
lim/ LOVu? - VuP dr = / L'Vu - Vu dz.
P Ja Q

A diagonalization process concludes the argument.

Consider now, for u € 2, a sequence u® € H}(Q;R?) such that u® — u weakly
in L2(;R?). We revisit Step 2 in the proof of Theorem 3.3 in Subsection 3.1,
taking into account Remark 3.7. Since, because of that remark Nos = 0, (3.24)
now reads as
(3.33)
| ewswyewid-- Y |
QXYQ .. Q
ijkh
{(kﬁ h) #(2,2)

1 0
(@) K3y, ()04 (y) 5 (@) da dy.
><Y2 .’I;h
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The rest of the argument goes through exactly as in Step 2, yielding, in lieu of (3.26),

(3.34) liminf .#°(u®) >
e—0

i { [ K()(Vpu(e) + Vy0() - (Vou(e) + Vyo(y) dudy - v € H (7R

QxYs
+ / |u|2 dxz
Q

= inf {/ L(y)(Viu(z) + Vyou(y)) - (Viou(z) + Vyo(y))dedy : v € Hl(%;Rz)}
QAxYs

+4u1/ det Viu dx+/ lu|? dz

Q Q

:/LUV;U'V;U dx+4,u1/detV;u d:L'Jr/ lu|? da
Q Q Q

)
with Viu = Vyu — 8—1;%2 ® e3.
2

It now suffices to remark that, in this specific setting and because —As — uo = p1,
the precise expression for LV in the basis (e1, e3) is as follows (see [8]):

(3.35)

A1 n Ao
2 AL+ 2 Ao+ 2
Liin = 1 1 , Ll =Ly == 1 g 2 1 22— o,
+ +
A+ 201 Ao + 210 A+ 201 Ao + 210
(3.36)
2p 2
L?212 = ]L(1)221 = Lgnz = Lngl = ) L?112 = ]L(l)121 = ]L’glll = IL’(1)211 =0,
M1+ e
(3.37) ]L?222 = L(2Jl22 = L(2)212 = I[48221 =0 and ngzz =0.

Consequently, recalling Remark 3.1,

Ouy Ou,

Q

:/Lov;u~v;u da:+4m/detv;u de.
Q Q

which, in view of (3.34), proves the I-liminf inequality in the Gutiérrez case.

4. CONCLUDING REMARKS

Remark 4.1. Thanks to Theorem 3.4, we can now consider the Gutiérrez case.
Take e.g. f € L?(Q;R?), and consider an almost minimizing sequence {u® €
H}(Q;R?)}. for the functionals

ﬂg(v)f2/gf~vdz
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It is clearly bounded in L?(Q;R?) and we conclude in particular to the L%-weak
convergence of (a subsequence of) this sequence of almost minimizers to a minimizer
u® € 2 of the I'-limit functional

IO(v) —2/ frude
which, in view of the precise values of L.? in (3.35), can be easily checked to satisfy
—div(L°Vu®) +u® = f in Q,
where LOVu° is a priori a distribution since u® € 2. 9
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