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LINEAR ELASTICITY AND HOMOGENIZATION IN THE

ABSENCE OF VERY STRONG ELLIPTICITY

MARC BRIANE AND GILLES A. FRANCFORT

Abstract. Homogenization in linear elliptic problems usually assumes
coercivity of the accompanying Dirichlet form. In linear elasticity, coer-
civity is not ensured through mere (strong) ellipticity so that the usual
estimates that render homogenization meaningful break down unless
stronger assumptions, like very strong ellipticity, are put into place.
Here, we demonstrate that a L2-type homogenization process can still
be performed, very strong ellipticity notwithstanding, for a specific two-
phase two dimensional problem whose significance derives from prior
work establishing that one can lose strong ellipticity in such a setting,
provided that homogenization turns out to be meaningful.

Mathematics Subject Classification: 35B27, 74B05, 74Q15

1. Introduction

This paper may be viewed as a sequel to both [2] and [6]. Those, in turn, were a
two-dimensional revisiting of [7] in the light of [8]. The issue at stake was whether
one could lose strict strong ellipticity when performing a homogenization process
on a periodic mixture of two isotropic elastic materials, one being (strictly) very
strongly elliptic while the other is only (strictly) strongly elliptic. We start this
introduction with a brief overview of the problem that had been addressed in those
papers, restricting all considerations to the two-dimensional case.

We consider throughout an elasticity tensor (Hooke’s law) of the form

L ∈ L∞
(
T2; Ls(R2×2

s )
)
,

where T2 is the 2-dimensional torus R2/Z2 and Ls(R2×2
s ) denotes the set of sym-

metric mappings from the set of 2×2 symmetric matrices onto itself. Note that
there is a canonical identification I between T2 and the unit cell Y2 := [0, 1)2;
for simplicity, we will denote by y both an element of T2 and its image under the
mapping I.

The tensor-valued function L defined in T2 is extended by Y2-periodicity to R2

as

L(y + κ) = L(y), a.e. in R2, ∀κ ∈ Z2,

so that the rescaled function L(x/ε) is εY2-periodic.
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We then consider the Dirichlet boundary value problem on a bounded open
domain Ω ⊂ R2

(1.1)

® −div
(
L(x/ε)∇uε

)
= f in Ω

uε = 0 on ∂Ω,

with f ∈ H−1(Ω;R2). We could impose a very strong ellipticity condition on L,
namely

(1.2) αvse(L) := ess-inf
y∈T2

(
min

{
L(y)M ·M : M ∈ R2×2

s , |M | = 1
})

> 0.

In such a setting, homogenization is straightforward; see e.g. the remarks in [11,
Ch. 6, Sec. 11].

Instead, we will merely impose (strict) strong ellipticity, that is

(1.3) αse(L) := ess-inf
y∈T2

(
min

{
L(y)(a⊗ b) · (a⊗ b) : a, b ∈ R2, |a| = |b| = 1

})
> 0,

and this throughout.

Remark 1.1 (Ellipticity and isotropy). Whenever L is isotropic, that is

L(y)M = λ(y) tr (M) I2 + 2µ(y)M, for y ∈ T2, M ∈ R2×2
s ,

then (1.2) reads as

ess-inf
y∈T2

(
min

{
µ(y), λ(y) + µ(y)

})
> 0

while (1.3) reads as

ess-inf
y∈T2

(
min

{
µ(y), λ(y) + 2µ(y)

})
> 0. ¶

The strong ellipticity condition (1.3) is the starting point of the study of homoge-
nization performed in [7] from a variational standpoint, that of Γ-convergence. Un-
der that condition, the authors investigate the Γ-convergence, for the weak topology
of H1

0 (Ω;R2) on bounded sets (a metrizable topology), of the Dirichlet integralˆ
Ω

L(x/ε)∇v · ∇v dx.

Then, under certain conditions that will be recalled in Section 2, the Γ-limit is
given through the expected homogenization formula

(1.4) L0M ·M := min

ßˆ
Y2

L(y)(M +∇v) · (M +∇v) dy : v ∈ H1(T2;R2)

™
in spite of the lack of very strong ellipticity.

In [8, 9], the viewpoint is somewhat different. The author, S. Gutiérrez, looks
at a two-phase layering of a very strongly elliptic isotropic material with a strongly
elliptic isotropic material. Assuming that the homogenization process makes sense,
he shows that strict strong ellipticity can be lost through that process for a very
specific combination of Lamé coefficients (see (2.6) below) and for a volume fraction
1/2 of each phase.

Our goal in the previous study [2] was to reconcile those two sets of results, or
more precisely, to demonstrate that Gutiérrez’ viewpoint expounded in [8, 9] fit
within the variational framework set forth in [7] and that the example produced in
those papers is the only possible one within the class of laminate-like microstruc-
tures. Then, it is shown in [6] that the Gutiérrez pathology is in essence canonical,
that is that inclusion-type microstructures never give rise to such a pathology.
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The concatenation of those results may be seen as an indictment of linear elas-
ticity, especially when confronted with its scalar analogue where ellipticity cannot
be weakened through a homogenization process. However, our results, hence those
of Gutiérrez, had to be tempered by the realization that Γ-convergence a priori
assumes convergence of the relevant sequences in the ad hoc topology (here the
weak-topology on bounded sets of H1

0 ). The derivation of a bound that allows for
such an assumption not to be vacuous is not part of the Γ-convergence process, yet
it is essential lest that process become a gratuitous mathematical exercise.

This is the task that we propose to undertake in this study. To this end we
add to the Dirichlet integral a zeroth-order term of the form

´
Ω
|v|2 dx which will

immediately provide compactness in the weak topology of L2(Ω;R2). We are then
led to an investigation, for the weak topology on bounded sets of L2(Ω;R2), of the
Γ-limit of the Dirichlet integralˆ

Ω

L(x/ε)∇v · ∇v dx.

Our results, detailed in Theorems 3.3, 3.4, essentially state that, at least for
periodic mixtures of two isotropic materials that satisfy the constraints imposed in
[8], the ensuing Γ-limit is identical to that which had been previously obtained for
the weak topology on bounded sets of H1

0 (Ω;R2). An immediate consequence is that
Gutiérrez’ example does provide a bona fide loss of strict strong ellipticity in two-
phase two-dimensional periodic homogenization, and not only one that would be
conditioned upon some otherwordly bound on minimizing sequences; see Remark
4.1.

In Section 2, we provide a quick review of the results that are relevant to our
investigation. Then Section 3 details the precise assumptions under which we obtain
Theorems 3.3, 3.4 and present the proofs of those theorems. Finally, Section 4
briefly details the impact of our results on those previously obtained in [2, 6, 8].

Throughout the paper, the following remark will play a decisive role. Since, for
v ∈ H1

0 (Ω;R2), the mapping v 7→ det (∇v) is a null Lagrangian, we are at liberty
to replace the Dirichlet integral under investigation byˆ

Ω

{
L(x/ε)∇v · ∇v + cdet (∇v)

}
dx,

for any c ∈ R, thereby replacing

M 7→ L(y)M, M ∈ R2×2,

by

M 7→ L(y)M +
c

2
cof (M) , M ∈ R2×2.

Notationwise,

- I2 is the unit matrix of R2×2; R⊥ is the π/2-rotation matrix
(

0 −1
1 0

)
;

- A ·B is the Frobenius inner product between two elements of A,B ∈ R2×2,
that is A ·B := tr (ATB);

- If A := ( a c
b d ) ∈ R2×2, the cofactor matrix of A is cof (A) :=

(
d −b
−c a

)
;

- If K : Rp → Rp is a linear mapping, the pseudo-inverse of K, denoted
by K−1, is defined on its range Im(K) as follows: for any ξ ∈ Rp, K−1(K ξ)
is the orthogonal projection of ξ onto the orthogonal space [Ker (K)]⊥, so
that K

(
K−1(K ξ)

)
= K ξ;
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- If u is a distribution (an element of D ′(R2;R2)), then

curl u :=
∂u1

∂x2
− ∂u2

∂x1

while

E(u) =

Å ∂u1
∂x1

1
2

(
∂u1
∂x2

+
∂u2
∂x1

)
1
2

(
∂u1
∂x2

+
∂u2
∂x1

)
∂u2
∂x2

ã
;

- H1
per(Y2;Rp) (resp. L2

per(Y2;Rp), Cpper(Y2;Rp)) is the space of the functions

in H1
loc(R2;Rp) (resp. L2

loc(R2;Rp), Cp(R2;Rp)) which are Y2-periodic;
- For any subset Z ∈ T2, we agree to denote by Z its representative in Y2

through the canonical representation I introduced earlier, and by Z# its
representative in R2, that is the open “periodic” set

Z# :=
˚̌ �⋃

k∈Z2

(k + Z).

- Throughout, the variable x will refer to a running point in a bounded open
domain Ω ⊂ R2, while the variable y will refer to a running point in Y2

(or T2, or k + Y2, k ∈ Z2);
- If I ε is an ε-indexed sequence of functionals with

I ε : X → R,

(X reflexive Banach space), we will write that I ε Γ(X)
⇀ I 0, with

I 0 : X → R,

if I ε Γ-converges to I 0 for the weak topology on bounded sets of X (see
e.g. [4] for the appropriate definition); and

• uε ⇀⇀ u0 where uε ∈ L2(Ω;R2) and u0 ∈ L2(Ω × T2;R2) iff uε two-scale

converges to u0 in the sense of Nguetseng; see e.g. [10, 1].

2. Known results

As previously announced, this short section recalls the relevant results obtained
in [7], [3]. For vector-valued (linear) problems, a successful application of Lax-
Milgram’s lemma to a Dirichlet problem of the type (1.1) hinges on the positivity
of the following functional coercivity constant:

(2.1) Λ(L) := inf

ßˆ
R2

L(y)∇v · ∇v dy : v ∈ C∞c (Ω;R2),

ˆ
R2

|∇v|2 dy = 1

™
.

As long as Λ(L) > 0, existence and uniqueness of the solution to (1.1) is guar-
anteed by Lax-Milgram’s lemma.

Further, according to classical results in the theory of homogenization, under
condition (1.2) the solution uε ∈ H1

0 (Ω;R2) of (1.1) satisfies

(2.2)


uε ⇀ u, weakly in H1

0 (Ω;R2)

L(x/ε)∇uε ⇀ L0∇u, weakly in L2(Ω;R2×2)

−div
(
L0∇u

)
= f,

with L0 given by (1.4). The same result holds true when (1.2) is replaced by the
condition that Λ(L) > 0; see [5].
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When Λ(L) = 0, the situation is more intricate. A first result was obtained in
[7, Theorem 3.4(i)], namely

Theorem 2.1. If Λ(L) ≥ 0 and
(2.3)

Λper(L) := inf

ßˆ
Y2

L(y)∇v · ∇v dy : v ∈ H1
per(Y2;R2),

ˆ
Y2

|∇v|2dy = 1

™
> 0,

then, I ε Γ(H1
0 )

⇀ I 0, with L0 given by (1.4).

This was very recently improved by A. Braides & M. Briane as reported in
[3, Theorem 2.4]. The result is as follows:

Theorem 2.2. If Λ(L) ≥ 0, then, I ε Γ(H1
0 )

⇀ I 0, with L0 given by

(2.4) L0M ·M := inf

ßˆ
Y2

L(y)(M +∇v) · (M +∇v) dy : v ∈ H1
per(Y2;R2)

™
.

Note that dropping the restriction that Λper(L) (which is always above Λ(L)) be
positive changes the minimum in (1.4) into an infimum in (2.4).

As announced in the introduction, we are only interested in the kind of two-phase
mixture that can lead, in the layering case, to the degeneracy first observed in [8].
Specifically, we assume the existence of 2 isotropic phases Z1,Z2 of T2 – and of

the associated subsets Z1 and Z2 of Y2, or still Z#
1 and Z#

2 of R2 (see notation) –
such that

(2.5)



Z1,Z2 are open, C2 subsets of T2;

Z1 ∩Z2 = Ø and Z̄1 ∪ Z̄2 = T2;

Z#
2 is connected;

Z1 has a finite number of connected components in T2.

Figure 1. Typical allowed micro-geometries: inclusion of the good
material or layering.



6 M. BRIANE AND G. FRANCFORT

We then define

(2.6)


L(y)M = λ(y) tr (M) I2 + 2µ(y)M, y ∈ T2, M ∈ R2×2

λ(y) = λi, µ(y) = µi, in Zi, i = 1, 2

0 < −λ2 − µ2 = µ1 < µ2, λ1 + µ1 > 0.

which implies in particular that

λ2 + 2µ2 > 0,

that is that phase 2 is only strongly elliptic (λ2 + µ2 < 0) while phase 1 is very
strongly elliptic (λ1 + µ1 > 0).

Then the following result, which brings together [2, Theorem 2.2] and [6, Theo-
rem 2.1], holds true:

Theorem 2.3. Under assumptions, (2.5), (2.6), Λ(L) ≥ 0 and Λper(L) > 0.

Consequently, Theorem 2.1 can be applied to the setting at hand and we obtain
the following

Corollary 2.4. Set, under assumptions (2.5), (2.6),

J ε(v) :=

ˆ
Ω

L(x/ε)∇v · ∇v dx

with L0 given by (1.4) and

J 0(v) :=

ˆ
Ω

L0∇v · ∇v dx.

Then J ε Γ(H1
0 )

⇀ J 0.

Our goal in the next section is to prove that the Corollary remains true when
adding to J ε a zeroth order term of the formˆ

Ω

v2 dx

and replacing the weak topology on bounded sets of H1
0 (Ω;R2) by that on bounded

sets of L2(Ω;R2).

3. The main results

Consider L(y) given by (2.6) and L0 given by (2.4). Set, for v ∈ L2(Ω;R2),

I ε(v) :=


ˆ

Ω

{
L(x/ε)∇v · ∇v + v2

}
dx, , v ∈ H1

0 (Ω;R2)

∞ else.

Also define the following two functionals:

(3.1) I 0(v) :=


ˆ

Ω

{
L0∇v · ∇v + v2

}
dx, v ∈ H1

0 (Ω;R2)

∞ else;

and, under the additional assumption that

(3.2) L0
2222 = 0,
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(3.3) I 1/2(v) :=


ˆ

Ω

{
L0∇v · ∇v + v2

}
dx, v ∈X

∞ else,

where, if ν is the exterior normal on ∂Ω,

(3.4) X :=
{
v ∈ L2(Ω;R2) : v1 ∈ H1

0 (Ω), v2 ∈ L2(Ω),

∂v2

∂x1
∈ L2(Ω) and v2ν1 = 0 on ∂Ω}.

Remark 3.1. In (3.3) the cross termsˆ
Ω

∂u1

∂x1

∂u2

∂x2
dx

must be replaced by ˆ
Ω

∂u1

∂x2

∂u2

∂x1
dx

so that, provided that L0
2222 = 0, which is the case in the specific setting at hand,

the expression
´

Ω
L0∇u · ∇u dx has a meaning for u ∈ X and boils down to the

classical one when u ∈ H1
0 (Ω;R2).

Remark 3.2. It is immediately checked that X is a Hilbert space when endowed
with the following inner product:

〈u, v〉X :=

ˆ
Ω

u · v dx+

ˆ
Ω

∇u1 · ∇v1 dx+

ˆ
Ω

∂u2

∂x1

∂v2

∂x1
dx.

Furthermore, C∞c (Ω;R2) is a dense subspace of X , provided that Ω is C1.
Indeed, take u ∈X . The first component u1 is in H1

0 (Ω;R2). Defining

ǔ2 :=

{
u2, x ∈ Ω

0, else

we have, thanks to the boundary condition in the definition (3.4) of X ,ˆ
R2

ǔ2
∂ϕ

∂x1
dx+

ˆ
R2

∂u2

∂x1
ϕ dx = 0.

for any ϕ ∈ C∞c (R2), that is

ǔ2,
∂ǔ2

∂x1
∈ L2(R2) with

∂ǔ2

∂x1
=


∂u2

∂x1
, x ∈ Ω

0, else.

Because Ω has a C1-boundary, we can always assume, thanks to the implicit
function theorem, that, at each point x0 ∈ ∂Ω, there exists a ball B(x0, rx0

) and a
C1-function f : R→ R such that

Ω ∩B(x0, rx0) = {(x1, x2) ∈ B(x0, rx0) : x2 > f(x1)}
or

Ω ∩B(x0, rx0
) = {(x1, x2) ∈ B(x0, rx0

) : x1 > f(x2)}.
In the first case, we translate ǔ in the direction x2, thereby setting ǔt2(x1, x2) :=
ǔ2(x1, x2 − t), t > 0, while, in the second case, we translate ǔ2 in the direction x1,
thereby setting ǔt2(x1, x2) := ǔ2(x1 − t, x2), t > 0. This has the effect of creating a
new function ǔ2 which is identically null near Ω ∩B(x0, rx0

). We then mollify this
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function with a mollifier ϕt, with support depending on t, thereby creating yet a
new function ūt2 = ϕt ∗ ǔt2 ∈ C∞c (Ω ∩B(x0, rx0) which will be such that

lim
t

ß
‖ǔt2 − u‖L2(Ω∩B(x0,rx0

)) +
∥∥∂ǔt2
∂x1
− ∂u2

∂x1

∥∥
L2(Ω∩B(x0,rx0

))

™
= 0.

A partition of unity of the boundary and a diagonalization argument then allow
one to construct a sequence of C∞c (Ω)-functions such that the same convergences
take place over L2(Ω). ¶

We propose to investigate the (sequential) Γ-convergence properties of I ε to
I 0 or I 1/2 for the weak topology of L2(Ω;R2).

We will prove the following theorems which address both the case of a laminate
and that of a matrix-inclusion type mixture. The first theorem does not completely
characterize the Γ-limit to the extent that it is assumed a priori that the target field
u lies in H1

0 (Ω;R2). By contrast, the second theorem is a complete characterization
of the Γ-limit but it does restrict the geometry of laminate-like mixtures to be that
made of bona fide layers, i.e., straight strips of material.

Theorem 3.3 (“Smooth targets”). Under assumptions (2.5), (2.6), there exists a
subsequence of {ε} (not relabeled) such that

I ε Γ(L2)
⇀ I ,

where, for u ∈ H1
0 (Ω;R2), I (u) = I 0(u) given by (3.1) and L0 given by (2.4)

(and, even better, by (1.4)).

Theorem 3.4 (“General targets”). Under assumptions (2.5), (2.6), then the fol-
lowing holds true:

(i) If Z̄1 ⊂ Y2 (the inclusion case) and if Ω is a bounded open Lipschitz domain
in R2, then

I ε Γ(L2)
⇀ I 0

given by (3.1) and L0 given by (2.4) (and, even better, by (1.4));
(ii) If Z1 = (0, θ) × (0, 1) (or (0, 1) × (0, θ)) for some θ ∈ (0, 1) (the straight

layer case) and if Ω is a bounded open C1 domain in R2, then

I ε Γ(L2)
⇀

I 0 if θ 6= 1/2

I 1/2 if θ = 1/2 (the Gutiérrez case)

which are given by (3.1), (3.3), respectively, and with L0 given by (2.4)
(and, even better, by (1.4)).

Remark 3.5. In strict parallel with Remark 2.6 in [2], we do not know whether the
result of those Theorems still hold true when H1

0 (Ω;R2) is replaced by H1(Ω;R2)
in the Γ-convergence statement. ¶

Remark 3.6. Our geometric assumptions are designed to comprise two cases, that
of one, or several inclusions of the good material (phase 1), and that of a layer-
like microstructure where phase 1 reaches two parallel sides of the unit cell Y2, or
maybe a combination of both. We made no effort to check that our assumptions
are optimal although we conjecture that the statement of Theorem 3.4 will remain
true for all two-phase geometries, the degeneracy occurring only in the Gutiérrez
case. ¶
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The rest of this section is devoted to the proofs of Theorem 3.3, 3.4.

3.1. Proof of Theorem 3.3. First, because of the compactness of the injection
mapping from H1

0 (Ω;R2) into L2(Ω;R2) and in view of Corollary 2.4,

I ε Γ(H1
0 )

⇀ I 0

with L0 actually given by (1.4) (a min in lieu of an inf). We want to prove that the
same result holds for the weak L2-topology, at least for a subsequence of {ε}. By
a classical compactness result we can assert the existence of a subsequence of {ε}
such that the Γ- lim exists. Our goal is to show that that limit, denoted by I (u),
is precisely I 0(u) when u ∈ H1

0 (Ω;R2). Clearly, the Γ- lim sup will a fortiori hold
in that topology, provided that the target field u ∈ H1

0 (Ω;R2). It thus remains to
address the proof of the Γ- lim inf which is what the rest of this subsection is about.

To that end and in the spirit of [8], we add an integrated null Lagrangian to the
energy so as to render the energy density pointwise nonnegative. Thus we set, for
any M ∈ R2×2,

KjM := LjM + 2µ1cof (M) = λjtr (M)I2 + µj(M +MT ) + 2µ1cof (M) , j = 1, 2

(thereby taking c at the end of the introduction to be 2µ1) so that

KjM ·M = LjM ·M + 4µ1 det (M) ≥ 0, j = 1, 2

and define

K(y) ≡ Kj in Zj , j = 1, 2.

Because the determinant is a null Lagrangian, for v ∈ H1
0 (Ω;R2),

I ε(v) =

ˆ
Ω

{
K(x/ε)∇v · ∇v + v2

}
dx

Consider a sequence {uε}ε converging weakly in L2(Ω;R2) to u ∈ L2(Ω;R2). Then,
for a subsequence (still indexed by ε), we are at liberty to assume that lim inf I ε(uε)
is actually a limit. The Γ- lim inf inequality is trivial if that limit is ∞ so that we
can assume henceforth that, for some ∞ > C > 0,

(3.5) I ε(uε) ≤ C.

Further, according to e.g. [1, Theorem 1.2], a subsequence (still indexed by ε) of
that sequence two-scale converges to some u0(x, y) ∈ L2(Ω × T2;R2). In other
words,

(3.6) uε ⇀⇀ u0.

Also, in view of (3.5) and because it is easily shown that

(3.7) K(y) is a nonnegative as a quadratic form

while clearly all its components are bounded, for yet another subsequence (not
relabeled),

(3.8) K(x/ε)∇uε ⇀⇀ H(x, y) with H ∈ L2(Ω× Y2;R2×2),

and also, for future use,

(3.9) K
1
2 (x/ε)∇uε ⇀⇀ S(x, y) with S ∈ L2(Ω× Y2;R2×2).
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In particular,

(3.10) εK(x/ε)∇uε ⇀⇀ 0.

Take Φ(x, y) ∈ C∞c (Ω × T2;R2×2) with compact support in Ω ×Z1. From (3.10)
we get, with obvious notation, that

0 = − lim
ε→0

ˆ
Ω

εK(x/ε)∇uε · Φ(x, x/ε) dx =

lim
ε→0

∑
ijkh

ˆ
Ω

(K)ijkh(x/ε)uεk
∂Φij
∂yh

(x, x/ε) dx =

∑
ijkh

ˆ
Ω×Z1

(K1)ijkh u
0
k(x, y)

∂Φij
∂yh

dx dy = −
ˆ

Ω×Z1

(
K1∇yu0(x, y)

)
·Φ(x, y) dx dy,

so that

(3.11) K1∇yu0(x, y) ≡ 0 in Ω× Z#
1 ,

and similarly

(3.12) K2∇yu0(x, y) ≡ 0 in Ω× Z#
2 .

In view of the explicit expressions for Ki (3.11), (3.12) imply that

λi

Å
∂u0

1

∂y1
+
∂u0

2

∂y2

ã
+ 2µi

∂u0
1

∂y1
+ 2µ1

∂u0
2

∂y2
= 0

λi

Å
∂u0

1

∂y1
+
∂u0

2

∂y2

ã
+ 2µi

∂u0
2

∂y2
+ 2µ1

∂u0
1

∂y1
= 0

µi

Å
∂u0

1

∂y2
+
∂u0

2

∂y1

ã
− 2µ1

∂u0
1

∂y2
= 0

µi

Å
∂u0

1

∂y2
+
∂u0

2

∂y1

ã
− 2µ1

∂u0
2

∂y1
= 0.

So, in phase 1, that is on Z#
1 , using (2.6) we get

(3.13)
∂u0

1

∂y1
+
∂u0

2

∂y2
= 0,

∂u0
2

∂y1
− ∂u0

1

∂y2
= 0

while in phase 2, that is on Z#
2 , still using (2.6) we get

(3.14)
∂u0

1

∂y1
=
∂u0

2

∂y2
,

∂u0
2

∂y1
=
∂u0

1

∂y2
= 0.

From (3.13) we conclude that, in phase 1,

(3.15) 4yu0
1 = 4yu0

2 = 0.

Step 1 – u0 does not oscillate. We now exploit the two previous set of relations
under the micro-geometric assumptions of Theorem 3.3 to demonstrate that

(3.16) u0(x, y) = u(x) is independent of y,

where, thanks to (3.6),

(3.17) uε ⇀ u, weakly in L2(Ω;R2).
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We first notice that, in view of (3.14) and of the connectedness of phase 2,

u0
1 = α(x) y1 + β(x), u0

2 = α(x) y2 + γ(x), y ∈ Z#
2 ,

for some functions α(x), β(x), γ(x). By Y2-periodicity of u0
i , α(x) ≡ 0. Thus

∇yu0 = 0, or equivalently,

(3.18) u0(x, y) = u(x), y ∈ Z#
2 ,

for some u ∈ L2(Ω;R2).
Consider Φ ∈ C1

per(Y2;R2×2) with

(3.19)
∑
ijh

(K1 −K2)ijkhΦij(y)νh(y) = 0 on ∂Z1,

that condition being necessary for divy(KT (y)Φ(y)) to be an admissible test func-
tion for two-scale convergence. In (3.19) ν(y) denotes the exterior normal to Z2

at y.
In view of (3.10), (3.18), (3.19), we get that, for any ϕ ∈ C∞c (Ω;C∞per(Y2)),

0 = − lim
ε→0

ˆ
Ω

εK(x/ε)∇uε · ϕ(x, x/ε)Φ(x/ε) dx

= lim
ε→0

ˆ
Ω

ï
∂

∂yh

{
(K(y))ijkhϕ(x, y)Φij(y)

}ò
(x, x/ε) (uε)k dx =∑

ijkh

ˆ
Ω×Z1

∂

∂yh

{
(K1)ijkhϕ(x, y)Φij(y)

}
u0
k(x, y) dx dy +

∑
ijkh

ˆ
Ω×Z2

∂

∂yh

{
(K2)ijkhϕ(x, y)Φij(y)

}
uk(x) dx dy =

∑
ijkh

ˆ
Ω×Z1

∂

∂yh

{
(K1)ijkhϕ(x, y)Φij(y)

}
u0
k(x, y) dx dy +

∑
ijkh

ˆ
Ω×(∂Z1∩Y2)

(K1)ijkhuk(x)νh(y)ϕ(x, y)Φij(y) dx dH 1
y .

Set v0(x, y) := u0(x, y)− u(x). Then,∑
ijkh

ˆ
Ω×Z1

∂

∂yh

{
(K1)ijkhϕ(x, y)Φij(y)

}
v0
k(x, y) dx dy = 0,

while, thanks to (3.11), K1∇yv0 = 0. This implies that
∑
kh(K1)ijkhv

0
k(x, y)νh(y)

– which is meaningful as an element of L2(Ω;H−1/2(∂Z1)) – is such that, for any
ϕ ∈ C∞c (Ω;C∞per(Y2)) and any Φ satisfying (3.19),

(3.20)
∑
ij

ˆ
Ω

〈∑
kh

(K1)ijkhv
0
k(x, y)νh(y), ϕ(x, y)Φij(y)

〉
H−1/2(∂Z1),H1/2(∂Z1)

dx = 0.

Now simple algebra using the explicit expression for K1,K2 as well as (2.6) would
show that, for any ξ ∈ R2 and any ν ∈ S1, one can choose a matrix Φ such that

(3.21)
∑
ijh

(K1)ijkhΦijνh =
∑
ijh

(K2)ijkhΦijνh = ξk, k = 1, 2,
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so that, in particular, (3.19) can always be met, provided that each connected
component of Z1 has a C2 boundary because the normal ν(y) is then a C1-function
of y ∈ ∂Z1 so that one can define Φ(y) satisfying (3.21) as a C1 function on ∂Z1,
hence by e.g. Whitney’s extension theorem as a C1 function on T2.

Consider a connected component Z# of phase 1 in R2. Then, for almost every
x ∈ Ω,

v0(x, y) has a well defined trace in H−1/2(∂Z#;R2).

In view of (3.20), (3.21), of the arbitrariness of ϕ and of that of ξ, we conclude that
that trace satisfies

(3.22) v0(x, ·) = 0 on ∂Z#.

Fix x. According to (3.13), there exists a potential ζx ∈ H1(Z ∩ (−R,R)2) for
any R > 0, such that

v0(x, y) = R⊥∇ζx(y)

and

4yζx = 0 in Z#.

Further, in view of (3.22),

R⊥∇ζx · ν = ∇ζx · ν⊥ = 0 on ∂Z#

so that ζx is constant on each connected component of ∂Z#. Thus, by elliptic
regularity ζx ∈ H2(Z ∩ (−R,R)2) for any R > 0, hence v0 ∈ H1(Z ∩ (−R,R)2) for
any R > 0. In view of (3.15), (3.22), we conclude that v0 ≡ 0, hence (3.16).

Step 2 – Identification of the Γ- lim inf. Consider Φ ∈ L2
per(Y2;R2×2) such that

(3.23) div
(
K

1
2 (y)Φ(y)

)
= 0 in R2,

or equivalently, ˆ
Y2

K
1
2 (y)Φ(y) · ∇ψ(y) dy = 0 ∀ψ ∈ H1

per(Y2;R2),

and also consider ϕ ∈ C∞(Ω̄).
Then, since uε ∈ H1

0 (Ω;R2) and in view of (3.23),
ˆ

Ω

ϕ(x)K
1
2 (x/ε)∇uε·Φ(x/ε) dx = −

∑
ijkh

ˆ
Ω

uεk ·K
1
2

ijkh(x/ε)Φij(x/ε)
∂ϕ

∂xh
(x) dx.

Recalling (3.6), (3.9), we can pass to the two-scale limit in the previous expression
and obtain, thanks to (3.16),
(3.24)ˆ

Ω×Y2

ϕ(x)S(x, y) · Φ(y) dx dy = −
∑
ijkh

ˆ
Ω×Y2

uk(x) ·K
1
2

ijkh(y)Φij(y)
∂ϕ

∂xh
(x) dx dy.

Assuming henceforth that u ∈ H1(Ω;R2), we obtain from (3.24) thatˆ
Ω×Y2

S(x, y) · Φ(y)ϕ(x) dx dy =

ˆ
Ω×Y2

K
1
2 (y)∇xu(x) · Φ(y)ϕ(x) dx dy.

By density, the result still holds with the test functions ϕ(x)Φ(y) replaced by
the set of Ψ(x, y) ∈ L2(Ω;L2

per(Y2;R2×2)) such that

divy
(
K

1
2 (y)Ψ(x, y)

)
= 0 in R2,
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or equivalently, due to the symmetry of K(y),

ˆ
Ω×Y2

Ψ(x, y) ·K 1
2 (y)∇yv(x, y) dy = 0 ∀ v ∈ L2(Ω;H1

per(Y2;R2)).

Hence the L2(Ω;L2
per(Y2;R2×2))-orthogonal to that set is the L2-closure of

K∇ :=
¶
K

1
2 (y)∇yv(x, y) : v ∈ L2(Ω;H1

per(Y2;R2))
©
.

Thus,

S(x, y) = K
1
2 (y)∇xu(x) + ξ(x, y)

for some ξ in the closure of K∇. Thus, there exists a sequence

vn ∈ L2(Ω;H1
per(Y2;R2))

such that K 1
2 (y)∇yvn → ξ strongly in L2(Ω;L2

per(Y2;R2×2)).
We now appeal to [1, Proposition 1.6] which yields

(3.25) lim inf
ε→0

‖K 1
2 (x/ε)∇uε‖2L2(Ω;R2×2)) ≥ ‖S‖

2
L2(Ω×Y2;R2×2) =

lim
n
‖K 1

2 (y)∇xu(x) + K
1
2 (y)∇yvn‖2L2(Ω×Y2;R2).

But recall that

‖K 1
2 (x/ε)∇uε‖2L2(Ω;R2×2)) =

ˆ
Ω

K(x/ε)∇uε · ∇uε dx =

ˆ
Ω

L(x/ε)∇uε · ∇uε dx

because the determinant is a null Lagrangian.
Thus, from (3.25) and by weak L2-lower semi-continuity of ‖uε‖L2(Ω;R2) we con-

clude that

(3.26) lim inf
ε→0

I ε(uε) ≥

lim
n

ˆ
Ω×Y2

K(y)(∇xu(x) +∇yvn(x, y)) · (∇xu(x) +∇yvn(x, y)) dx dy +

ˆ
Ω

|u|2 dx ≥

inf

ßˆ
Ω×Y2

K(y)(∇xu(x) +∇yv(y)) · (∇xu(x) +∇yv(y)) dx dy : v ∈ H1(T2;R2)

™
+

ˆ
Ω

|u|2 dx.

In the light of the definition (2.4) for L0, we finally get

lim inf
ε→0

I ε(uε) ≥
ˆ

Ω

{
L0∇xu · ∇xu+ |u|2

}
dx

provided that u ∈ H1(Ω;R2), hence, a fortiori provided that u ∈ H1
0 (Ω;R2).

The proof of Theorem 3.3 is complete.
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3.2. Proof of Theorem 3.4. Recall that, in the proof of Theorem 3.3 we were at
liberty to assume that

I ε(uε) ≤ C <∞,
otherwise the Γ−lim inf inequality is trivially verified. Consequently, if we can show
that, under that condition, the target function u is in H1

0 (Ω;R2), then we will be
done as remarked at the onset of Subsection 3.1. Such will be the case except when
dealing with straight layers (case (ii)) under the condition that θ = 1/2. In that
case we will have to show that, for those target fields u that are not in H1

0 (Ω;R2)
a recovery sequence for the Γ- lim sup (in)equality can be obtained by density.

Returning to (3.24), setting

(3.27) Nkh :=
∑
ij

ˆ
Y2

K
1
2

ijkh(y)Φij(y) dy

and varying ϕ in C∞c (Ω), we conclude that

(3.28) N · ∇u ∈ L2(Ω).

We now remark that K(y), a symmetric mapping on R2×2, has for eigenvalues
2(λ(y) +µ(y) +µ1),−2µ1 and 2(µ(y)−µ1) with eigenspaces respectively generated
by

I2, R⊥

and, for the last eigenvalue, by
G :=

(
1 0
0 −1

)
, H := ( 0 1

1 0 ).
Consequently, its kernel for y ∈ Z2 is

(3.29) Ker
(
K(y)

)
= Ker (K2) := {γI2, γ arbitrary in R} ,

while its kernel for y ∈ Z1 is

(3.30) Ker
(
K(y)

)
= Ker (K1) :=

¶Ä
α β
β −α

ä
: α, β arbitrary in R

©
.

Step 1 – Case(i). First assume that Z̄1 ⊂ Y2 and that M ∈ R2×2
s . We then define

Ψ(y) :=
1

2
{My · y − ϕ(y − κ)M(y − κ) · (y − κ)} for any y ∈ Y2 + κ, κ ∈ Z2,

with ϕ ∈ C2
c (Y2), ϕ ≡ 1 in Z1. Then clearly, ∇Ψ −My ∈ H1

per(Y2;R2). Further,

∇Ψ = Mκ in Z1 + κ hence ∇2Ψ ≡ 0 in Z1 + κ while ∇2ΨR⊥ ∈ Ker⊥ (K2) thus
belongs to the range of K2 in Z2 + κ.

It is thus meaningful to define Φ(y) := K− 1
2 (y)

(
∇2Ψ(y)R⊥

)
where K− 1

2 is the

pseudo-inverse of K 1
2 (see the notation at the close of the introduction).

We get ˆ
Y2

K
1
2 (y)Φ(y) dy =

ˆ
Y2

∇2Ψ(y)R⊥ dy = MR⊥,

while Φ satisfies (3.23) since for any v ∈ H1
loc(R;R2) with periodic gradient,

div (∇v R⊥) = 0 in R2,

or equivalently, ˆ
Y2

∇v(y)R⊥ · ∇ψ(y) dy = 0 ∀ψ ∈ H1
per(Y2;R2).
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We finally obtain that MR⊥ ·∇u ∈ L2(Ω). Since, when M spans R2×2
s , N := MR⊥

spans the set of all 2× 2 matrices with 0-trace, we infer from (3.28) that

∂u1

∂x2
,
∂u2

∂x1
,
∂u1

∂x1
− ∂u2

∂x2
are in L2(Ω).

This is equivalent to stating that E(R⊥u) ∈ L2(Ω;R2×2
s ). Since Ω is C1 – Lipschitz

would suffice here – Korn’s inequality allows us to conclude that R⊥u ∈ H1(Ω;R2),
hence that

(3.31) u ∈ H1(Ω;R2)

in that case.
Since, for an arbitrary trace-free matrix N , we can choose Φ constrained by

(3.23) so that (3.27) is satisfied, then actually

(3.32) u ∈ H1
0 (Ω;R2).

Indeed, take x0 ∈ ∂Ω to be a Lebesgue point for ub∂Ω – which lies in particular in
L2

H 1(∂Ω;R2) – as well as for ν(x0), the exterior normal to Ω at x0. Then take an
arbitrary trace-free N and the associated Φ.

By (3.31) we already know that u ∈ H1(Ω;R2), so that (3.24) reads asˆ
Ω×Y2

ϕ(x)S(x, y) · Φx0
(y) dx dy =

ˆ
Ω

N · ∇u(x)ϕ(x) dx−
ˆ
∂Ω

Nν(x) · u(x)ϕ(x) dH 1.

But, taking first ϕ ∈ C∞c (Ω) and remarking that, in such a case, the first two
integrals are equal and bounded by a constant times ‖ϕ‖L2(Ω), we immediately

conclude that, for any ϕ ∈ C∞(Ω̄),ˆ
∂Ω

Nν(x) · u(x)ϕ(x) dH 1 = 0.

Thus, Nν(x) · u(x) = 0 H 1-a.e. on ∂Ω, hence, since x0 is a Lebesgue point,
Nν(x0)·u(x0) = 0 from which it is immediately concluded that ui(x0) = 0, i = 1, 2,
hence (3.32).

But, in such a case we can apply Theorem 3.3 which thus delivers the Γ-limit.

Step 2 – Case (ii). Assume now that Z1 is a straight layer, that is that there exists

0 < θ < 1 such that (0, θ)× (0, 1) = Z1 ∩ Y̊ .
For an arbitrary matrix M ∈ R2×2 define v(y) as

v(y) := My +

Åˆ y1

0

[χ(t)− θ] dt
ã
ξ, ξ ∈ R2,

where χ(y) is the characteristic function of phase 1 with volume fractionˆ
Y2

χ(y) dy := θ.

Then, v(y)−My is Y2-periodic and

∇v(y) = χ(y1)(M + (1− θ)ξ ⊗ e1) + (1− χ(y1))(M − θξ ⊗ e1).

According to (3.30), (3.29), for ∇v(y)R⊥ to be in the image of K(y) we must have
both

(M + (1− θ)ξ ⊗ e1)R⊥ ·G = (M + (1− θ)ξ ⊗ e1)R⊥ ·H = 0
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i.e., (1− θ)ξ1 = M22 −M11, (1− θ)ξ2 = −M12 −M21 and

(M − θξ ⊗ e1)R⊥ · I2 = 0,

i.e., θξ2 = −M12 +M21.
Since ξ can be arbitrary, this imposes as sole condition on M that

(2θ − 1)M12 +M21 = 0.

Then, ˆ
Y2

∇v(y)R⊥ dy = MR⊥ =

Å
M12 −M11

M22 (2θ − 1)M12

ã
= Nθ

where

Nθ =

Ç
a c

b (2θ − 1)a

å
, with

a, b, c arbitrary, if θ 6= 1/2

d = 0, if θ = 1/2.

In view of (3.28), we obtain that

∂u1

∂x2
,
∂u2

∂x2
,
∂u1

∂x1
+ (1− 2θ)

∂u2

∂x2
are in L2(Ω),

or equivalently,

E(Pθu) ∈ L2(Ω;R2×2) with Pθ :=

Å
0 1− 2θ
1 0

ã
.

Using Korn’s inequality once again, we thus conclude that u ∈ H1(Ω;R2), except

when θ = 1/2 in which case
∂u2

∂x2
might not be in L2(Ω).

In view of (3.28), we thus conclude that all partial derivatives of u are in L2(Ω)

except when θ = 1/2 in which case
∂u2

∂x2
might not be.

Remark 3.7. Actually, when θ = 1/2, then all Φ’s that are such that (3.23)
is satisfied produce, through (3.27), a matrix M with M21 = 0, hence a matrix
N := MR⊥ such that N22 = 0.

Indeed, the existence of Φ is equivalent to that of v(y) = My + w(y) with
w ∈ H1

per(Y2;R2) such that

∇v(y)R⊥ = K
1
2 (y1)Φ(y)

which implies that, for a.e. y1 ∈ (0, 1),

K
1
2 (y1)

ˆ 1

0

Φ(y1, t) dt =

ˆ 1

0

∇v(y1, t)R
⊥ dt.

In view of (3.30), (3.29), the last relation yield in particular that
v1(y1, 1)− v1(y1, 0) = −

ˆ 1

0

∂v2

∂y1
(y1, y2) dy2, 0 ≤ y1 ≤ 1/2

v1(y1, 1)− v1(y1, 0) = +

ˆ 1

0

∂v2

∂y1
(y1, y2) dy2, 1/2 ≤ y1 ≤ 1,
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or still, since v(y) = My + w(y) with w Y2-periodic,
M12 = −

ˆ 1

0

∂v2

∂y1
(y1, y2) dy2, 0 ≤ y1 ≤ 1/2

M12 = +

ˆ 1

0

∂v2

∂y1
(y1, y2) dy2, 1/2 ≤ y1 ≤ 1,

But then

M21 =

ˆ
Y2

∂v2

∂y1
(y1, y2) dy1dy2 = 0.

¶

Then, through an argument identical to that used in case (i), we find that, for
x0 Lebesgue point for u1b∂Ω (and for u2b∂Ω as well if θ 6= 1/2), u1(x0) = 0 (and
u2(x0) = 0 if θ 6= 1/2) while, if θ = 1/2, u2ν1, which is well defined as an element

of H−
1
2 (Ω), satisfies u2ν1 = 0.

So, here again, we can apply Theorem 3.3 provided that θ 6= 1/2. It thus remains
to compute the Γ-limit in case (ii) when θ = 1/2. This is the object of the last step
below.

Step 3 – Identification of the Γ-limit – case (ii) – θ = 1/2; the Gutiérrez case. As far as
the Γ- lim sup is concerned there is nothing to prove once again, because, as already
stated at the onset of Subsection 3.1 we know the existence of a recovery sequence
for any target field u ∈ H1

0 (Ω;R2). But, according to Remark 3.2, H1
0 (Ω;R2) is a

fortiori dense in X . So any element u ∈ X can be in turn viewed as the limit
in the topology induced by the inner product 〈, 〉X of a sequence up ∈ H1

0 (Ω;R2).
Since, as noted in Remark 3.1, ∂up2/∂x2 does not enter the expression

ˆ
Ω

L0∇up · ∇up dx,

we immediately get that

lim
p

ˆ
Ω

L0∇up · ∇up dx =

ˆ
Ω

L0∇u · ∇u dx.

A diagonalization process concludes the argument.

Consider now, for u ∈ X , a sequence uε ∈ H1
0 (Ω;R2) such that uε ⇀ u weakly

in L2(Ω;R2). We revisit Step 2 in the proof of Theorem 3.3 in Subsection 3.1,
taking into account Remark 3.7. Since, because of that remark N22 = 0, (3.24)
now reads as
(3.33)ˆ

Ω×Y2

ϕ(x)S(x, y)·Φ(y) dx dy = −
∑¶

ijkh

(k, h) 6= (2, 2)

ˆ
Ω×Y2

uk(x)K
1
2

ijkh(y)Φij(y)
∂ϕ

∂xh
(x) dx dy.
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The rest of the argument goes through exactly as in Step 2, yielding, in lieu of (3.26),

(3.34) lim inf
ε→0

I ε(uε) ≥

inf

ßˆ
Ω×Y2

K(y)(∇′xu(x) +∇yv(y)) · (∇′xu(x) +∇yv(y)) dx dy : v ∈ H1(T2;R2)

™
+

ˆ
Ω

|u|2 dx

= inf

ßˆ
Ω×Y2

L(y)(∇′xu(x) +∇yv(y)) · (∇′xu(x) +∇yv(y)) dx dy : v ∈ H1(T2;R2)

™
+ 4µ1

ˆ
Ω

det∇′xu dx+

ˆ
Ω

|u|2 dx

=

ˆ
Ω

L0∇′xu · ∇′xu dx+ 4µ1

ˆ
Ω

det∇′xu dx+

ˆ
Ω

|u|2 dx

with ∇′xu := ∇xu−
∂u2

∂x2
e2 ⊗ e2.

It now suffices to remark that, in this specific setting and because −λ2−µ2 = µ1,
the precise expression for L0 in the basis (e1, e2) is as follows (see [8]):

L0
1111 =

2
1

λ1 + 2µ1
+

1

λ2 + 2µ2

, L0
1122 = L0

2211 =

λ1

λ1 + 2µ1
+

λ2

λ2 + 2µ2

1

λ1 + 2µ1
+

1

λ2 + 2µ2

= −2µ1,

(3.35)

L0
1212 = L0

1221 = L0
2112 = L0

2121 =
2µ1µ2

µ1 + µ2
, L0

1112 = L0
1121 = L0

2111 = L0
1211 = 0,

(3.36)

L0
1222 = L0

2122 = L0
2212 = L0

2221 = 0 and L0
2222 = 0.(3.37)

Consequently, recalling Remark 3.1,

ˆ
Ω

L0∇xu · ∇xu dx =

ˆ
Ω

L0∇′xu · ∇′xu dx+ 2 L0
1122

ˆ
Ω

∂u1

∂x2

∂u2

∂x1
dx

=

ˆ
Ω

L0∇′xu · ∇′xu dx+ 4µ1

ˆ
Ω

det∇′xu dx.

which, in view of (3.34), proves the Γ- lim inf inequality in the Gutiérrez case.

4. Concluding remarks

Remark 4.1. Thanks to Theorem 3.4, we can now consider the Gutiérrez case.
Take e.g. f ∈ L2(Ω;R2), and consider an almost minimizing sequence {uε ∈
H1

0 (Ω;R2)}ε for the functionals

I ε(v)− 2

ˆ
Ω

f · v dx
.
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It is clearly bounded in L2(Ω;R2) and we conclude in particular to the L2-weak
convergence of (a subsequence of) this sequence of almost minimizers to a minimizer
u0 ∈X of the Γ-limit functional

I 0(v)− 2

ˆ
Ω

f · v dx

which, in view of the precise values of L0 in (3.35), can be easily checked to satisfy

−div (L0∇u0) + u0 = f in Ω,

where L0∇u0 is a priori a distribution since u0 ∈X . ¶
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