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Abstract

A wave finite element (WFE) based approach is proposed tyza#éhe dynamic behavior of finite-length
periodic structures which are made up of identical subgiras but also contain several substructures whose
material and geometric characteristics are slightly pbed. Within the WFE framework, a model reduc-
tion technique is proposed which involves partitioning aolehperiodic structure into one central structure
surrounded by two unperturbed substructures, and comsidperturbed parts which are composed of per-
turbed substructures surrounded by two unperturbed onekihg so, a few wave modes are only required
for modeling the central periodic structure, outside thgysbed parts. For forced response computation
purpose, a reduced wave-based matrix formulation is ésfedtdl which follows from the consideration of
transfer matrices between the right and left sides of theugesd parts. Numerical experiments are carried
out on a periodic 2D structure with two perturbed substmastwhich can be randomly located. The rel-
evance of the WFE-based approach is clearly establishedniparison with the FE method, in terms of
accuracy and computational saving. Additional simulatiare made to examine the feasibility to improve
the robustness of periodic structures to the occurrencedfittary slight perturbation, by artificially adding
several “controlled” perturbed substructures.

1 Introduction

The study of the dynamic behavior of finite-length periodrtictures with local perturbations is addressed
within the present paper. Those structures are made up mtidgdesubstructures, which can be of arbitrary
shapes and are assembled along a certain straight diredtioaddition, they contain several perturbed
substructures whose material and geometric charactsristidergo arbitrary slight variations. Assessing
the sensitivity of the frequency response functions (FRFgeriodic structures to the occurrence of those
perturbed substructures which can be arbitrarily locatee.g= such as variabilities of the design processes,
or defects — relates the motivation of the present study. dif@lenge concerns the development of a
numerical approach which is low time-consuming in commariwith the conventional FE method, while
keeping the same level of accuracy. The wave finite elememE)s investigated to address this task.
Indeed the WFE method has proved to be relevant for modeling)yperiodic structures like those involving
arbitrary-shaped substructures and large-sized FE madedswill be thus improved in this work with a view
to modeling periodic structures with local perturbations.



Originally, the WFE method has been developed to describavtive propagation along one-dimensional
periodic structures [1, 2, 3]. The procedure involves abeisng the finite element (FE) model of a given
substructure, and expressing a transfer matrix relatidwesn its right and left boundaries. The sought
transfer matrix is symplectic with eigenvectors and eigéues which are referred to as wave modes. The
eigenvectors are to be understood as wave shapes whichgptefeom substructure to substructure along
the right and left directions of a periodic structure. On dllger hand, the eigenvalues have the meaning of
wave parameters which are directly linked to the concepigaeenumbers and wave speeds.

To date, the WFE method has been mainly applied to homogeneaueguides [4, 5, 6, 7] and simple
periodic structures such as truss beams [8] or beams withddesupports [9]. The strategy to compute the
forced response of finite-length periodic structures, Witian be subjected to different kinds of boundary
conditions, has been investigated in different ways [10Q,1P] 13]. Recent works have been conducted
focusing on the analysis of truly periodic structures odtige complexity [14, 15]. In [15], a model reduction
technique has been proposed which enables fast computitibe forced response of periodic structures
composed of substructures of arbitrary shape and modekbdmwény degrees of freedom (DOFs). In this
framework, a periodic structure is partitioned into onet@rstructure which is modeled by means of the
WFE method, and two surrounding substructures which areeteddvith the FE method. In doing so, a
few wave modes are only required for modeling the centraictire, which is explained by the fact that
the kinematic and mechanical fields admit smooth variatmmsts boundaries. This WFE-based model
reduction technique has been proved to be relevant for ctingpilne forced response of a periodic structure
with heterogeneous substructures modeled with more $hap00 DOFs. The remarkable feature of the
approach is that it can be easily implemented on MATI®\Band yields small computational times when
compared to dedicated FE softwares.

The approach proposed in [15] is considered and improvetldmtesent work with a view to modeling
periodic structures with local perturbations. In this feamork, it is proposed to partition a whole periodic
structure into one central structure surrounded by two togeed substructures, and introduce perturbed
parts which are composed of perturbed substructures suteduby two unperturbed ones. In doing so, a
few wave modes are only required for modeling the centrabper structure, outside the perturbed parts.
For forced response computation purpose, a reduced waeetmaatrix formulation is established which
follows from the consideration of transfer matrices betmvie right and left sides of the perturbed parts.

The rest of the paper is organized as follows. The WFE methbdéfly presented in Section 2. The strate-
gies used to compute the wave modes and the forced respgmeseaafic structures are recalled. The analysis
of periodic structures with perturbed substructures isi@émout in Section 3. A derivation of the transfer
matrices of the perturbed parts is proposed. Also, the vbaged formulation used to compute the forced re-
sponse of periodic structures with perturbed substrustisrperesented. In Section 4, numerical experiments
are carried out on a periodic 2D structure with two perturbeldstructures. Monte Carlo simulations are
performed with a view to assessing the sensitivity of the $®Rhe occurrence of arbitrarily-located pertur-
bations. A robust design strategy is also proposed whickistnin artificially adding several “controlled”
perturbed substructures for lowering the sensitivity ef #iRFs to the occurrence of other uncontrolled per-
turbations.

2 WEFE method

2.1 Wave propagation

The WFE method aims at describing the wave propagation adoegdimensional periodic structures like
the one shown in Figure 1. These are composed of identicatrsigtures — which are assumed to be linear,
elastic and damped by means of a constant loss facter which are assembled along a certain straight
direction. Also, the substructures are modeled with theeseEimesh and with the same number of D@Fs
on their left and right boundaries.
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Figure 1: FE mesh of a periodic structure and related sutisne!

Denote asD the dynamic stiffness matrix (DSM) of a given substructueepressed bD = —w?M +

(1 + in)K whereM andK are the mass and stiffness matrices of the substructuneeatdgely, andw

is the angular frequency. Also, denotel2s the DSM condensed on the left and right boundaries of the
substructure, expressed Dy = Dgg — DBIDl‘IlDIB where subscript8 andI refer to the boundary and
internal DOFs, respectively.

Within the WFE framework, a transfer matrix relation is ciolesed which links the kinematic/mechanical
guantities between the substructures, as follows [3]:

k k k k
S q ay ™| 5 ay” )
D _p® ; U+ g |-

where superscriptk) (resp.(k + 1)) denotes the coupling interface between two consecutiustsictures

k — 1 andk (resp.k andk + 1). Also,q andF aren x 1 vectors of nodal displacements and nodal forces,
respectively, while subscripisandR refer to the DOFs on the left and right boundaries of the subktres,
respectively. In Eq. (1)S is a2n x 2n symplectic matrix [2], given by:

—Dix 'Diy —Diy’ ] .

S =
[DEL — DD Dy DDy’

The eigenvalues and eigenvectorsSore denoted ag; and ¢;, respectively, and are referred to as the
wave modes of the periodic structure. The eigenvalues &ged to as the wave parameters, expressed as
pj = exp(—if;d) whered is the substructure length whilg relates wavenumbers. Also, the eigenvectors
are referred to as the wave shapes, defined on each substrinteuface ag, = [¢fj ¢§j]T whereg,; and

¢r; aren x 1 vectors of displacement and force components, respegtivel

From the numerical point of view, the direct computation la# eigensolutions of the matri is prone to
numerical issues. The reason lies in the fact that the matmkgenvectors is partitioned into displacement
and force components whose orders of magnitude can beyatigplrate each other, meaning that the matrix
of eigenvectors is ill-conditioned. Instead, an alteneagigensystem based on e+ S~ transformation
[16] can be considered which overcomes this issue. Thiteglydhas proved to be relevant for computing
the wave modes of periodic structures composed of arbisiaaped substructures (see [15]).

Due to the fact that the matri® is symplectic, its eigenvalues come in pairs(as, 1/4;). This leads to
the consideration af right-going wave mode§(y.;, ¢;)}j=1,....» for which [u;| < 1, andn left-going wave
modes{(x}, @) }j=1,..» for which u3 = 1/p;, with [zZ[ > 1. In matrix form, those right-going and
left-going wave modes are written as follows:

p=(p*) " =diag{;}j=1,..n, ®)



(I’q:[¢q1¢q2"'¢qn} ) (I,F:[¢F1¢F2“'¢Fn}> (4)

where®,, ®r, &3 and®; are square matrices of sizex n.

2.2 Forced response

The computation of the forced response of a periodic stracttcomposed ofV substructures, involves

expanding the vectors of displacements and forces, on a gislestructure boundatk) (k = 1,..., N+1),
in the basis of wave shapes:
a’ = o’ = 2,Q¥ + 2;Q"® . —F = F = 2:QM 1 2;Q"®), (6)

whereQ(®) andQ** aren x 1 vectors of wave amplitudes. Alsq\" andq”’ (resp.F\*) andF{") are to
be understood as the vectors of nodal displacements (redpl forces) on the left boundary of substructure
k and the right boundary of substructure- 1, respectively.

Also, the spatial variation of the wave amplitudes alongpéeodic structure is governed by [10]:
(k+1) Q) w0

Hence, the vectors of wave amplitudes at the left and righs eaf the whole structure can be linked as
QWHY = ,NQMW andQ*(M) = N QW+,
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Figure 2: Finite-length periodic structure with prescdhbmundary conditions.

The particular case of a periodic structure whose left (regght) end is subjected to arbitrary vectors of
prescribed displacementg (resp. q;5) and forcesF (resp. Fg) is shown in Figure 2. In this case, the
boundary conditions at the left and right ends can be expdeisswave-based form as follows (see [14] for
further details):

QW —cQ*M4F |, QW) — crQWVtD L F*, @)
whereC andC* aren x n scattering matrices whose components relate the reflectiefficients for the
wave modes incident to the boundaries, wiiilandF* aren x 1 vectors of excitation sources. From Egs.
(7) and (8), a whole matrix equation can be established &ssi

AQ = F, )

[ 1, —cp _[ QW _[F
Solving the matrix equation (9) yields the vectors of wavepkiindes Q") and Q*(N+1) and by means of
Eq. (7) the vectors of wave amplitud€s*) andQ*(*) at any substructure boundaf¥). Also, the vectors
of nodal displacements and nodal forces are simply retliéven Eq. (6).

where



3 Modeling of periodic structures with local perturbations

3.1 Framework

To begin, let us consider a periodic structure wittsubstructures and one perturbed substructure labeled as
p. This substructure is perturbed in the sense that its nahtemd geometric properties are slightly different
from those of the other substructures. The modeling of thelevherturbed periodic structure is achieved
by considering the model reduction technique proposed5h [[b this framework, the periodic structure is
partitioned into one central structure, made up\of- 2 substructures, and two extra substructuresd NV,

see Figure 3. In doing so, the kinematic and mechanical feglelsupposed to admit smooth variations over
the interfaces between the central structure and the exhstrsictures, meaning that they can be described
with a few wave modes only. By using the same idea, a pertysheg can be defined which is composed of
the perturbed substructupeand two surrounding unperturbed substructyres1 andp + 1. The proposed
strategy enables the central structure to be modeled witdhwarave modes, outside the perturbed part
which leads to large time saving for forced response conipataurpose. The theoretical derivation of the
proposed approach is detailed hereafter.

Q@ Q*(p—1) Q*v+2) Q)
::Q@) ::EQ(p—l) <-Q(p+2) <-'Q(N)
5 ﬁﬁ&
1 2 p —1N
\ | w
Extra Extra
substructures - 1 —— substructures

Figure 3: Periodic structure consisting of one centralcstme surrounded by two unperturbed substruc-
tures1 and N, and containing a perturbed partnade up of a perturbed substructgreurrounded by two
unperturbed substructurgs- 1 andp + 1.

: . = ~ ~ = ~ ~ =~ % ~% ~%
Coniujler r(?V(J*IucedNrI\atrlces of wave shags= [¢q1 - Do), Pr = (@1 Prp)s Py = [Dg1 - Pyl
and®; = [¢g - - - P, ] Which concern the first: low-order wave modes among the full séts; } -1,
and{¢j};=1,.n, .., those associated with the valueg;of and|.;| which are the closest to orte Also,
denote agx = diag{fi;};=1,..m» them x m diagonal matrix of wave parametefs for those low-order
wave modes.

As it turns out, a reduced wave expansion can be considezed=@. (6)):

G =Gl = 8,00+ B QW FYSF - 8:Q0 800,
Also, the spatial variation of the wave amplitudes, outsigeperturbed part, is governed by (see Eq. (7)):
Qk+1) = QW) ~ |m O
[Q*(k—irl) =T Q*(k) , where T = 0o all’ (12)

On the other hand, the boundary conditions at the left ard @gds of the central structure can be expressed
in wave-based form as follows (see [15] for further details)

QY =CQ@4+F ., QW QW™ 4+ (13)

The selection of those low-order wave modes can be carrieblyoconsidering the technique proposed in [17].




Finally, the relation linking the wave amplitudes betweka tight and left sides of the perturbed paiis
expressed by (see Figure 3):

Qr+2)  ms ~2\ | Q1)
[Q*(p—i—?) - (T +APT) Q*(p—l) ’ (14)
whereT? + A, T? represents the transfer matrix of the perturbed part, where
~3
w3 _ | 0
T — [0 ﬁ_:,,]. (15)

By considering Egs. (12), (13) and (14), a wave-based matjixation can be established to compute the
forced response of a periodic structure with one or moraugeet! substructures (see next section).

As a preliminary study, the transfer matfi® + APT?’ has to be expressed, as follows.
Denote adD; the DSM of the perturbed paptwhich is condensed on its left and right boundaries. Hence,
the dynamic equilibrium equation of the perturbed part camvhitten as

(p—1) ~(p—1)

FL * qL

— =D . 16
F}({p+2) P [a}({pw)] (16)

By considering Egs. (16) and (11), it can be shown that

o~ ~ Qr+2) o~ ~ Q-1
(D ¥, — T G| =~ [Dj¥q + P | a1 | (17)
where
~ ~x
~ b, P ~ 0 0
U= P % U= |~  ~x 18
ql 0 0 ) q2 (I)q (I)q ) ( )
I, %p ‘5* o~y 0 0
U = F Wey = |~ ~%|. 19
n=|t B S|y o] (19)
As a result, the transfer matri®® + A, T? is given by
~3 ~3 3 5 17 [hg 3
T + AT = — |:Dp‘I’q2 — ‘I’FQ] |:Dp‘Ilq1 + ‘I’Fl] ) (20)

where[D} ¥y, — ¥ro]* is the left pseudo-inverse @D} — o).

3.2 Forced response

Consider a periodic structure composed\osubstructures and containing a certain numbef perturbed
partsp; (i = 1,...,P). The concept of perturbed past has been originally introduced to designate a
perturbed substructurg, surrounded by two unperturbed ones. It can be easily exteadeas to model

a set of two (or more) consecutive perturbed substructs@spunded by two unperturbed substructures.
However, for the sake of clarity, such a case will not be gedtere.

By considering Eqgs. (12) and (14), a simple relation can bveld which links the vectors of wave ampli-
tudes at any substructure boundéky+ 1), inside the central structure and outside the perturbetd pato
those at the left end of the central structure:

~ u—1 ~
QY | i)y, T3 =3\ mpr—s | QP
[Q*(k-i—l) - T( S H <T + Apu—i']r ) T Q*(Q) ) (21)

1=0
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Figure 4: lllustration of the perturbed and unperturbedsp@and related transfer matrices.

wherep;' = py_; — py—i—1 fori # v — 1 andp;,_, = p1, while p, refers to the perturbed part which is
the closest to substructure boundaky+ 1). In Eq. (21),T® + A,,, T3 refers to the transfer matrices of

the perturbed parts,—; (i =0, ...,u — 1), while T(k=D—pu andTP: 3 refer to the transfer matrices of the
unperturbed parts, i.e., between the perturbed parts (gascH).

Also, the vectors of wave amplitudes at the left and rightseofdthe central structure can be linked as, see
Eq. (21):

QWM Q®

Q) ’

Q@
whereA + AA andA are the transfer matrices of the perturbed and unperturbetiat structure, respec-
tively:

(22)

= (7\ + AT\)

P—1
A+ AR =TW-2rr I (Tri” + Ay ) T2, (23)
=0
T A 0
A=TN"2= 0 -2 (24)

Also, the wave-based boundary conditions at the left ankit iignds of the central structure need to be
considered, see Eq. (13). From Egs. (13) and (22), a wholexnegjuation can be established:

~ __[Q® F
A B Q*(Q) F*
—<K+AK) L | | Q™ | = o] (25)
QM 0
where ~
~ [1, -C -~ [0 o
Al e[ ] 2o

By condensing the matrix equation (25) w.r.t. the first roadil this gives
~ o~ o~ ~ Q® - F
[A+B(A+a4)] oo | = | & | (27)

Solving Eq. (25) enables the vector of wave amplitu@é¥ andQ*2), at the left end of the central structure,
to be expressed, and ultimately the vectors of nodal dispi@nts and nodal forces on any substructure
interface along the central structure, outside the pestlifarts.

Notice however that the inversion of the matrix on the leftith side of Eq. (27) is prone to numerical
ill-conditioning, which is particularly due to the occunee of the matrix term@”¥ 2 andz= V=2 in A,



whose components can be largely disparate each other. Vi@ thid issue, a preconditioner can be used, as
follows:

~ I, 0
Hence, Eq. (27) can be rewritten as
~ - ~_1 (5(2) F
([A +B(A+ AA)] )T a0 | = | | (29)
where
~—1 I, 0
rl [ ;g (30)
Thus, the vectors of wave amplitudes at the left end of thérakestructure are obtained as follows:
Q(2) ~ ST~ o~ g~ NT\-1| F
[Q*@) ~T([A+B(A+24)|T) = |- (31)

The vectors of wave amplitudes, at any interface betweemtiperturbed substructures, follow from Eq.
(21), while the vectors of nodal displacements and nodakf®follow from Eq. (11).

In Eq. (31), the size of the matr[>A+B(A+AA)] is 2m x 2m wherem is the number of right/left-going
wave modes retained. Past studies have demonstrated thkdgdor a periodic structure with a moderate
number of substructures, can be less than one per mil of the total number of DOFs usedotiehthe
whole structure [15], without penalizing the accuracy @& WFE method. This means that the inversion of
the matrlx[A + B(A + AA)]I‘ can be achieved in a very fast way. As it turns out, Eq. (31yides a
fast and simple way to quantify how much the dynamic behawia periodic structure is sensitive to the
occurrence of a certain number of perturbed substructures.

4 Numerical experiments

4.1 Periodic structure with two perturbed substructures

The purpose of the present section is to validate, first, tbpgsed WFE modeling when compared to the
conventional FE analysis. Here, the FRF of a periodic 2Dcire containing two perturbed substructures
is studied. The structure under concern is shown in Figurdt 3% made up ofN = 15 substructures
whose characteristics are: density?ﬁDOk:g/m3, Young’s modulus o210G Pa, Poisson ratio 0.3, loss
factor of 0.005, length of0.1m, height of0.1m and thickness o6.001m. The whole structure is clamped
on its right end, and it is subjected to a longitudinal poimtcé on the left end. The substructures are
meshed in the same way using 2D plane stress linear trigngigstwo DOFs per node, leading t@24
DOFs for each substructure and= 42 DOFs over each left/right boundary. Also, the locationsha t
perturbed substructures gse = 10 andp, = 13, as shown in Figure 5. In the present case, the perturbed
substructures share the same geometrical characteristiocsh are however slightly different from the rest
of the structure, see Figure 5. Also, their loss factors #ferdnt to each other, i.e0.005 for substructure

p1 = 10 andn = 0.008 for substructurey, = 13.

The magnitude of the longitudinal displacement of the pbed periodic structure, at the excitation point,
is assessed avoo discrete frequencies which are uniformly spread on a frequéand[5H =, 5000H z].
Within the WFE framework, the computation of this FRF is avled by considering Egs. (31), (21) and
(11). Also, only a reduced set of wave modes is consideredn. = 3 right/left-going wave modes for
modeling the central structure outside the perturbed gads Section 3). For comparison purpose, the
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Figure 5: Periodic structure consisting 8f= 15 substructures and containing two perturbed substructures
p1 = 10 andpy, = 13.

FRFs issued from a commercial FE software are also calcutagarding the periodic structure with and
without perturbed substructures. The results are shownguar& 6. As it can be seen, the occurrence of
the perturbed substructures significantly impact the FRReperiodic structure, especially aboM#0H =.
Also, the WFE solution exactly matches the FE-based FRFegbdénturbed periodic structure over the whole
frequency band. Hence, the accuracy of the proposed mgdslastablished.
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Figure 6: FRF of the periodic structure with two perturbetsttuctures; = 10 andps = 13: FE solution
(violet solid line); WFE solution (blue dotted line). FEd®l FRF of the unperturbed structure (black solid
line).

The efficiency of the WFE method lies in the reduction of thenpatational times. For instance, the pro-
posed approach can be advantageously used to perform Marite Stnulations when the locations of the
perturbed substructures are randomly chosen along thesvgtoicture. The results are shown in Figure 7.
In this case, both perturbed substructures are identi@ddb other with the same loss facion05. Regard-
ing Figure 7, it should be emphasized that the FRF of the gieristructure becomes more sensitive to the
occurrence of the perturbations as the frequency growtbgailing now the computational times, it takes
less thard0s with MATLAB ® to perform all those simulations with the present approagfainst more
than3000s with the FE method (and the same processor). Hence, theeefficof the proposed approach is
clearly demonstrated.

4.2 Robust design

The question arises as to whether the sensitivity of paristluctures — i.e., to the occurrence of perturbed
substructures which are not controlled — can be loweredtifycélly adding several “controlled” perturbed
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substructures. To address this issue, a periodic struaiitiiteN = 30 substructures — like those previously
described — is considered which contains one “uncontrofestturbed substructure whose location along
the structure varies randomly. This substructure is diigigrturbed in the sense that its DSM is expressed by
1.05x D*, whereD* relates the DSM of an unperturbed substructure. In additiemso-called “controlled”
perturbed substructures are considered, whose shapeasdae ® those of the previously studied perturbed
substructures (see Figure 8). These substructures aificgigtly perturbed in the sense that their DSM is
0.5 x Dy, whereDj is the DSM of the perturbed substructures depicted in theique subsection.

WSSt e b S b b S G B
== | |

¥\

D* 4+ D*

Figure 8: Periodic structure made up/f= 30 substructures with two controlled perturbed substrusti?e
and24, and containing one randomly-located uncontrolled pbadrsubstructure whose DSMIi$)5 x D*.

Again, MC simulations are performed to assess the FRF of tituetare without controlled perturbed
substructures over a frequency bapdi =, 2500H z] (see Figure 9). For the sake of clarity, the varia-
tion/dispersion of the FRF around the resonance peakl&tH > is also displayed. The purpose behind the
present analysis is to assess whether the consideratitve obntrolled substructures enables the dispersion
of the FRF to be reduced, especially around the resonank&eap2hl 0 H z. A simple trick is considered here
which consists in adding those controlled perturbed subiires at the locations where the periodic struc-
ture is the most sensitive to the occurrence of the uncdetr@erturbed substructure. Such an analysis can
be simply achieved in a pre-processing step, by calculdtingelative error of the displacement response
for each possible location of the uncontrolled perturbdessucture. This yields the locatiops = 12 and

p2 = 24 (see Figure 8). Then, the FRF of the periodic structure wathtrolled perturbed substructures
p1 = 12 andp, = 24, and one randomly-located uncontrolled perturbed suttstre?, is assessed as shown
in Figure 10.

As it can be seen, the frequency range with which the FRF pedigd around the resonance peak decreases

2Notice that the locations of the uncontrolled perturbedssuisture can match the positiops = 12 andp, = 24 of the
controlled perturbed substructures. In this case, theigextl DSM is1.05 x (0.5 x Dy).



from 6.5H z until 5H z, i.e., it admits a decrease 28%. As a second feature, the dispersion of the FRF
around the anti-resonance20i80H z is strongly reduced as shown in Figure 10. Hence, the paténtof
such a robust design is clearly highlighted.
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Figure 9: FRF of the periodic structure with one uncontiterturbed substructure whose location varies
randomly.
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Figure 10: FRF of the periodic structure with two controlfgetturbed substructures = 12 andp, = 24,
and with one uncontrolled perturbed substructure whossitmt varies randomly.

5 Conclusions

The WFE method has been investigated for modeling periddictsires with local perturbations. A model
reduction technique has been proposed which enables tlzamiyiehavior of a whole perturbed periodic
structure to be described with a small number of wave modesedfced wave-based matrix formulation
has been proposed to compute the FRFs of periodic strudtuesery fast way. Numerical experiments
have been carried out which highlight the relevance of tlmpgsed approach in terms of accuracy and
computational saving. In addition, a robust design stsatdgeriodic structures has been proposed, which
consists in artificially adding several controlled peratibns for lowering the sensitivity of the FRFs to the
occurrence of uncontrolled perturbations.
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