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Abstract

The dynamics of railway tracks on non-uniform viscoelastic foundations is investi-

gated by a new analytical model. Firstly, a model is developed for a periodically

supported beam where the supports behaviours are changed periodically through the

length of the beam. By using a periodicity condition, the dynamic equation of the

Euler-Bernoulli beam leads to a general relation between the reaction forces of the

supports and the displacement of the beam. Then, the responses are computed by

combining this relation and the constitutive law of the supports. Thereafter, a peri-

odically supported beam on a non-uniform foundation is considered with a support

system included a defect zone where the supports behaviours are different from the

non-defect supports. Then, a larger interval of the support system bounding this de-

fect zone is considered as one period of a periodical support system provided that the

dynamic responses outside this zone are unchanged and equal to the steady responses.

The analytical method is efficient when the number of the supports in one period is

not very large. Otherwise, a numerical method has been developed to compute the

response by using the fast Fourier transforms and an iteration procedure. This method

is simple and fast, particularly when using the fast Fourier transform, to compute the

dynamic responses of railway tracks on non-uniform foundations.

Keywords: railway, non-uniform foundation, periodically supported beam, Dirac

comb, fast Fourier transform.

1 Introduction

The dynamics of railway tracks have often been investigated by a periodically sup-

ported beam subjected to moving forces. In this model, the beam rests on identical

supports at periodical intervals through the length of the beam. The supports can have
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linear or nonlinear behaviours which depend on the constitutive laws of the support

components and the foundation. A spring-mass has been often used for such a sup-

port system in articles of Mead [1], Belotserkovskiy [2], Nordbord [3, 4]. In order

to take into account the coupling of the supports via the foundation, Metrikine et al

[5, 6] considered the shearing force of a viscoelastic foundation. Recently, Hoang et

al. [7] has developed a periodicity condition to establish a general relation for any uni-

form support system. However, if the supports are not identical, these models are not

applicable because the periodicity is not available. Unfortunately, the non-identical

supports appear frequently, e.g. the transitions zones of a railway track, the damage

of sleepers or foundation... and there are not any analytical model for this dynamical

problem.

In this paper, we have developed an analytical model for a periodically supported

beam subjected to moving forces with non-identical supports. In section 2, we present

an analytical model for a periodical support system where the supports behaviours are

changed periodically through the length of the beam. We propose a new periodicity

condition for the reaction forces of the supports. This condition together with the

Fourier transforms and the Dirac comb properties lead to a relation between the reac-

tion forces of the supports and the displacement of the beam. Particularly, this relation

can be described in a matrix form or in a convolution product form. Then, combin-

ing this relation with the constitutive laws of the support system gives the dynamical

responses.

For a non-uniform support system, we consider a larger interval containing a defect

zone. When this interval is large enough, we suppose that the dynamic responses are

unchanged when the moving forces arrive or leave this interval, and they equal to the

response of a support in an uniform support system. Therefore, we can consider this

interval as one period of a periodical support system except that it contains many sup-

ports. Therefore, the previous model can be used. A numerical method is developed

to calculated fast the responses based on the fast Fourier transforms and an iteration

procedure. The numerical applications will be presented in section 3 with results of

the analytical and numerical methods. The results shows that a support can be over-

loaded when the neighbour supports are damaged. This overloading is also studied for

a railways track which misses some sleepers.

2 Model

2.1 Dynamic stiffness of a support

A support on a viscoelastic foundation can be described by a mass-spring system and

the dynamic stiffness is given by

Kf = kf + iωηf −Mω2 (1)

where M is the mass of the support and kf , ηf are stiffness and damping coefficient

of the foundation.In addition, the dynamic stiffness of the rail pad is Kp = kp + iωηp.
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When the rail pad is included in a support system, the total dynamics stiffness of a

support is calculated by
1

Ks

=
1

Kf

+
1

Kp

(2)

In other words, we can write

Ks =
(kf + iωηf −Mω2)(kp + iωηp)

kf + kp + iω(ηp + ηp)−Mω2
(3)

When an infinite beam rest on identical support at periodical intervals (called an

uniform support system), we have a classical model for a periodically supported beam.

This model has an exact analytical solution when it is subjected by moving forces.

However, when the supports are not identical, i.e. Ks are different from each others,

this model is not applicable and there is no model for this dynamic problem. In ad-

dition, the difference of supports behaviours is very common phenomenon, e.g, the

supports on a railway bridge, the transition zone between ballast and non-ballast rail-

way tracks, the defect of the foundation and the sleepers... In the next sections, we

will consider a support system where the supports behaviours are changed periodically

through the length of the beam (in the section 2.2) and then a support system which

contains a defect zone (in the section 2.3).

2.2 Periodical support system

Let’s consider a beam rested on a periodical support system as shown in Figure 1. This

system contains m different supports separated by distance l and they are distributed

periodically through the length of the beam. Thus, this support system together with

the beam is a periodic structure with the length of one period equals to L = ml. The

beam is subjected by moving forces Qj which are characterized by the distances to

the first moving force Dj .

p = 0 1l m− 1

one period

Figure 1: Beam on a periodical support system

In steady-state, we suppose that the responses of the support system are repeated

when the forces move though a length equal to one period of the support system. It

means that the reaction forces of two supports at the distance L = ml are described

by the same function with a delay equal to the time for the movement of the forces

from one to another. In other words, the reaction force of the support p + nm (with

n ∈ Z) at the coordinate x = (p+ nm)l is calculated by

Rnm+p = Rp

(

t−
nL

v

)

∀n ∈ Z (4)
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where Rp(t) (with 0 ≤ p < m) is the reaction force of the support p at the coordinate

x = pl. By the help of the Dirac functions, the total of the reaction forces and the

moving forces can be written as follows

F (x, t) =
∑

n∈Z

m−1
∑

p=0

Rp

(

t−
x− pl

v

)

δ(x− pl − nL)−
K
∑

j=1

Qjδ(x−Dj − vt) (5)

The dynamic equation of the Euler-Bernoulli beam subjected to force F (x, t) is

EI
∂4wr(x, t)

∂x4
+ ρS

∂2wr(x, t)

∂t2
= F (x, t) (6)

where ρ, E are the density, the Young’s modulus and S, I are the section and the

longitudinal inertia of the beam. By performing the Fourier transform of equations (5)

and (6) with regard to time t, we obtain

F̂ (x, ω) =
∑

n∈Z

m−1
∑

p=0

R̂p(ω)e
−iω x−pl

v δ(x− nL− pl)−

K
∑

j=1

Qj

v
e−iω

x+Dj

v

EI
∂4ŵr(x, ω)

∂x4
− ρSω2ŵr(x, ω) = F̂ (x, ω) + Q̂(x, ω)

Thereafter, by combining the last equations and by performing the Fourier transform

with regard to x, we obtain

(EIλ4 − ρSω2)Π(λ, ω) + 2πδ
(

λ+
ω

v

)

K
∑

j=1

Qj

v
e−iω

v
Dj

−
∑

n∈Z

m−1
∑

p=0

R̂p(ω)e
−i(λ+ω

v
)nL−iλpl = 0 (7)

where Π(λ, ω) is the Fourier transform of ŵr(x, ω) with regard to x. The last term of

equation (7) can be rewritten as follows

∑

n∈Z

m−1
∑

p=0

R̂p(ω)e
−i(λ+ω

v
)nL−iλpl =

(

m−1
∑

p=0

R̂p(ω)e
−iλpl

)

∑

n∈Z

e−i(λ+ω
v
)nL (8)

By using the properties of the Dirac comb [8], we have

∑

n∈Z

e−i(λ+ω
v
)nL =

2π

L

∑

n∈Z

δ

(

λ+
ω

v
+

2πn

L

)

(9)

By substituting equations (8), (9) into equation (7), we can write

Π(λ, ω) =
2πR̂(λ, ω)

LEI(λ4 − λ4
e)

∑

n∈Z

δ

(

λ+
ω

v
+

2πn

L

)

−
2πδ

(

λ+ ω
v

)

vEI(λ4 − λ4
e)

K
∑

j=1

Qje
−iω

v
Dj

(10)
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where λe =
4

√

ρSω2

EI
and R̂(λ, ω) is defined by

R̂(λ, ω) =

m−1
∑

p=0

R̂p(ω)e
−iλpl (11)

Finally, performing the inverse Fourier transform of Π(λ, ω) in equation (10) gives the

following result

ŵr(x, ω) =
∑

n∈Z

m−1
∑

p=0

R̂p(ω)

LEI

e−i( 2πn
L

+ω
v
)(x−pl)

(

ω
v
+ 2πn

L

)4
− λ4

e

−

K
∑

j=1

Qj

vEI

e−iω
x+Dj

v

(

ω
v

)4
− λ4

e

(12)

Equation (12) establishes a relation between the beam displacement and the reac-

tion forces of the supports in steady-state. We will simplify this relation by computing

the displacements of the beam at the support positions. For the support at the origin

of reference, by substituting x = 0 into the last equation, we obtain

ŵr(0, ω) =
∑

n∈Z

m−1
∑

p=0

R̂p(ω)

LEI

ei(
2πn
L

+ω
v
)pl

(

ω
v
+ 2πn

L

)4
− λ4

e

−
K
∑

j=1

Qje
−iω

v
Dj

vEI
[

(

ω
v

)4
− λ4

e

]

=

m−1
∑

p=0

R̂p(ω)e
iω
v
plηp − η0Qe (13)

where

ηp =
1

LEI

∑

n∈Z

ei2πn
p

m

(

ω
v
+ 2πn

L

)4
− λ4

e

(14)

Qe =
1

η0vEI

K
∑

j=1

Qje
−iω

v
Dj

(

ω
v

)4
− λ4

e

(15)

This ηp can be deduced to a simple analytical expression as shown in Appendix A.

For the support at x = ql (0 < q < m), we have

ŵr(ql, ω) =
∑

n∈Z

m−1
∑

p=0

R̂p(ω)

LEI

e−i( 2πn
L

+ω
v
)(q−p)l

(

ω
v
+ 2πn

L

)4
− λ4

e

−
K
∑

j=1

Qj

vEI

e−iω
v
(ql+Dj)

(

ω
v

)4
− λ4

e

By multiplying two sides of the last equation with eiω
ql

v , we obtain

ŵr(ql, ω)e
iω ql

v =
m−1
∑

p=0

∑

n∈Z

R̂p(ω)e
iω pl

v

LEI

e−i2πn q−p

m

(

ω
v
+ 2πn

L

)4
− λ4

e

−
K
∑

j=1

Qj

vEI

e−iω
v
Dj

(

ω
v

)4
− λ4

e

By using the notation η(p−q) defined by equation (14) with a remark that η(p−q) =
η(m+p−q), the last equation becomes

ŵr(ql, ω)e
iω ql

v =
m−1
∑

p=0

R̂p(ω)e
iω pl

v η(p−q) − η0Qe (16)
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Let wq(t) and Rq(t) be defined by
{

wq(t) = wr

(

ql, t− ql

v

)

Rq(t) = Rq

(

t− ql

v

) (17)

Indeed, wq and Rq are the displacements and the reaction force at x = ql with the

time t = 0 corresponds to the instance that the first moving force arrives this position.

By performing the Fourier transform of the last equations, we obtain
{

ŵq(ω) = ŵr(ql, ω)e
iω ql

v

R̂q(ω) = R̂q(ω)e
iω ql

v

(18)

By substituting equation (18) into equation (16), we have

ŵq =

m−1
∑

p=0

R̂pη(p−q) − η0Qe (19)

The last equation can be written in matrix form as follows










η0 η1 · · · ηm−1

ηm−1 η0 · · · ηm−2
...

...
. . .

...

η1 η2 · · · η0





















R̂0

R̂1
...

R̂m−1











= η0Qe











1
1
...

1











+











ŵe

ŵe

...

ŵe











(20)

or

C R̂ = η0QeI+ ŵ (21)

where matrix C and vectors R̂, I, ŵ are defined to correspond to the terms of equation

(20).

Equation (21) is another relation between the reaction forces of the supports and

the displacements of the beam at the support positions; This relation does not depend

on the supports behaviours, and it is the result of the periodicity condition and the

dynamic equation of the Euler-Bernoulli beam. We will now combine this relation

with the constitutive laws of the support system to work out the responds.

Suppose that all supports are linear supports as shown in section 2.1. Let k0, k1, ..., km−1

be dynamic stiffness of m supports in one period of the support system. By definition,

we have

R̂q(ω) = −kqŵq(ω) (22)

The last equation can be written in the matrix form following:

ŵ = −D R̂ (23)

where D is defined by

D =











1/k0 0 · · · 0
0 1/k1 · · · 0
...

...
. . .

...

0 0 · · · 1/km−1











= diag(1/k0, 1/k1, ...1/km−1) (24)
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Then, by combining equations (21) and (23), we obtain

η−1
0

(

C+D
)

R̂ = QeI (25)

The matrix A = η−1
0

(

C+D
)

can be written as follows

A =











1 + 1/η0k0 η1/η0 · · · ηm−1/η0
ηm−1/η0 1 + 1/η0k1 · · · ηm−2/η0

...
...

. . .
...

η1/η0 η2/η0 · · · 1 + 1/η0km−1











(26)

Finally, the reaction forces are obtained by

R̂ = QeA
−1I (27)

Wee see that A is dimensionless m×m matrix and it depends on the frequency ω.

Therefore, we have to inverse this matrix for all frequencies to find out the reaction

forces of the supports given by equation (27). This calculation is simple and fast when

m is small. However, if it exists a stiffness equals to zero (e.g. lack of a sleeper in a

railway track), A is not convergent and equation (27) can not be applied. In the next

section, we will present a numerical method to compute the responses. This method is

convenient for computing a big number of supports in one period which is presented

a support system containing a defect zone.

2.3 Non-uniform support system

Let’s consider a periodically supported beam which has a defect zone where the sup-

ports behaviours are different from others zones. This zone is located in a interval

contained m supports (see Figure 2). m is supposed big enough for that the responses

are unchanged when the moving forces come or leave this interval (and they equal to

the responses of an uniform supports). Thus, we can consider this interval as one pe-

riod of a periodic support system as shown in the previous section. Therefore, we can

use equation (27) to compute the response of the supports system. In this section, we

will develop a numerical method for equations (19) and (22) to compute the responses

of the supports system.

p =

0

1 m−
1

defect

zone

Figure 2: Periodically supported beam included a defect zone

Equation (19) presents a convolution product and it can be written by

ŵ = η ⋆ R̂− η0QeI (28)
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where η = (η0 η1 · · · ηm−1)
t. Performing the discrete Fourier transform of the last

equation gives

Fq{ŵ} = Fq{η}Fq{R̂} − η0QeFq{I} (29)

where the discrete Fourier transform of a vector (e.g. ŵ) is defined by

Fq{ŵ} =
m−1
∑

p=0

ei2π
pq

m ŵp (30)

In addition, we have (see Appendix B)

Fq{η} = χq =
1

4λ3
eEI

(

sin lλe

cos lλe − cos(ωl
v
+ 2πq

m
)
−

sinh lλe

cosh lλe − cos(ωl
v
+ 2πq

m
)

)

Thus, equation (29) becomes

Fq{ŵ} = χqFq{R̂} −mη0Qeδ1q

or we can write:

Fq{R̂} = κqFq{ŵ}+mQeδ1q (31)

where κq = χ−1
q and Qe = η0Qe/χ0.

Equation (31) is a characteristic relation of a periodically supported beam subjected

to moving forces. This equation links the discrete Fourier transforms of the series

of the reaction forces and the series of the beam displacements at support positions.

When all supports are identical, the vectors of reactions forces and displacements are

proportional to I and we can deduce easily this quation to

R̂0 = κ0ŵ0 −Qe (32)

The last equation is a fundamental relation of a periodically supported beam with

identical supports presented by Hoang et al. [7].

We will now combine this equation with the constitutive laws of the supports to find

out the responses. We consider the system of linear supports described by equation

(22). This equation can be also written as follows

R̂ = −K ŵ (33)

where K = diag(k0, k1, ..., km−1). The last equation can be rewritten by

R̂ = −
(

K− kndI
)

ŵ − knd ŵ (34)

= R̃− knd ŵ (35)

where knd is the dynamic stiffness of a non-defect support.By substituting equation

(35) into equation (31), we obtain






R̃ = −
(

K− kndI
)

ŵ

Fq{ŵ} =
1

κq + knd

[

Fq{R̃}+mQeδ1q

]

(36)
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Rail mass ρS kgm-1 60

Rail stiffness EI MNm2 6.3

Train speed v km/h 160

Charge per wheel Q kN 100

Block mass M kg 90

Sleeper length l m 0.6

Stiffness of rail pad kp MNm-1 200

Damping coefficient of rail pad ηp MNsm-1 1.0

Stiffness of prepared sleeper kf MNm-1 20

Damping coefficient of prepared sleeper ηf MNsm-1 0.2

Stiffness of damaged sleeper k′
f MNm-1 10

Damping coefficient of damaged sleeper η′f MNsm-1 0.2

Table 1: Parameters of a railway track

Remarks: kq = knd when the support q is outside of the defect zone. Thus, the

vector R̃ takes zeros for all components outside of the defect zone.

Iteration procedure: Let’s add an evolution index into equation (36) as follows







R̃
n
= −

(

K− kndI
)

ŵn

ŵn+1 = F−1

(

1

κq + knd

[

Fq

(

R̃
n
)

+mQeδ1q

]

0≤q<m

)

(37)

where the initial values are given as the response of a periodically supported beam

with an uniform support system

ŵ0 =
Qe

κ0 + ks
I (38)

Equation (37) and (38) define completely a recurrent sequences of an iteration pro-

cedure. This procedure gives an approximation of the displacement vector ŵ. The

reaction forces is computed from this vector by equation (33).

3 Numerical examples

3.1 Prepared railway track with periodical replacement

In order to prepare fast the damaged railway sleepers without many traffic interrup-

tions, people can chose to replace a damaged sleeper among 3 successive damaged

sleepers. Therefore, this procedure makes a periodic support system as mentioned in

section 2.2 where one period contains one prepared support and two damaged sup-

ports. Let’s consider such a prepared railway track with parameters given in Table 1.

9



By using equation (3), the dynamic stiffness of supports in one period are

k1 = Kprepared =
(kf + iωηf −Mω2)(kp + iωηp)

kf + kp + iω(ηf + ηp)−Mω2
(39)

k2 = k3 = Kdamaged =
(k′

f + iωη′f −Mω2)(kp + iωηp)

k′
f + kp + iω(η′f + ηp)−Mω2

(40)

We calculate the responses of the sleepers by using the analytic formula (27). Figures

3 and 4 show the responses of the sleepers in one period of railway track. In these

figures, the ”reference” curves correspond to the responses of a railway track with all

sleepers are prepared (k1 = k2 = k3 = Kprepared). Here we have changed the time

scale so that the time t = 0 corresponds to the moment where the moving force is

at the sleeper position. We see that the displacements of all sleepers are almost the

Temps (s)
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

D
is

pl
ac

em
en

t (
m

m
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

reference
prepared
damaged 1
damaged 2

Figure 3: Displacements of the sleepers

same but they are bigger than the reference displacement. Indeed, the stiffness of the

damaged sleepers are smaller than the reference stiffness and it causes this difference.

Otherwise, the reaction forces of the supports are very different from each other. The

prepared sleeper is overloading while the damaged sleepers are under-loading. In

conclusion, this periodical replacement can improve the stiffness of the railway track

but it makes the prepared supports are overloading and they could be damaged soon.

3.2 Railway track with defect zone

When a railway track misses some sleepers, the absent sleepers can be consider as a

defect zone with the dynamic stiffness equal to zeros kdamaged = 0. In this example,

we consider the railway track given in Table 1 with one defect sleeper. We take the nu-

merical method with an interval m = 101 supports which contains the defect sleeper
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Temps (s)
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

F
or

ce
 (

kN
)

-5

0

5

10

15

20

25

30

35

40

45

reference
prepared
damaged 1
damaged 2

Figure 4: Reaction forces of the sleepers

at the middle. Figures 5 and 6 show the responds of the supports in this interval.

We see that the dynamical influence of the defect sleeper is negligible from the third

next supports of the defect sleeper. This result verifies again the condition that the

responds are unchanged outside the interval and they equal to the reference response.

Moreover, the first and the second next sleepers to the defect sleeper are overloading

and the displacement of the beam at the defect sleeper increases significantly.

Temps (s)
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

D
is

pl
ac

em
en
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m

m
)
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-1.5

-1
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0.5
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others

Figure 5: Displacements of the sleepers
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Figure 6: Reaction forces of the sleepers

4 Conclusion

An analytical model for a railway track with a non-uniform support system has been

developed. By using a periodicity condition, the dynamic equation of the Euler-

Bernoulli beam leads to a relation between the beam displacement and the reaction

forces of the supports. Then, the analytical and numerical methods have been de-

veloped to find out the dynamical responses. This model has been applied to the

dynamics of railway tracks with different kinds of support system. The calculations

are very fast, especially when using the numerical method.

Appexndix A. Calculation of expression ηp

We will reduce a more general expression of ηp defined as follows

η(x) =
1

LEI

∑

n∈Z

e−i2πn x
L

(

ω
v
+ 2πn

L

)4
− λ4

e

(41)

=
L

2λ2
eEI

∑

n∈Z

[

e−i2πn x
L

(

ωL
v
+ 2πn

)2
− (Lλe)2

−
e−i2πn x

L

(

ωL
v
+ 2πn

)2
+ (Lλe)2

]

We will show that each term of the last expression can be deduced as follows:

∑

n∈Z

e−i2πn x
L

(

ωL
v
+ 2πn

)2
− (Lλe)2

=
eiω

x
v sin λe(L− x) + e−iωL−x

v sinλex

2Lλe

(

cosLλe − cos ωL
v

) (42)

∑

n∈Z

e−i2πn x
L

(

ωL
v
+ 2πn

)2
+ (Lλe)2

=
eiω

x
v sinh λe(L− x) + e−iωL−x

v sinhλex

2Lλe

(

coshLλe − cos ωL
v

) (43)
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Indeed, the right hand sides of equations (42) and (43) are expressions of Fourier

series with regard to the variable x. Therefore, it is sufficient to demonstrate that the

coefficients of the Fourier series of the functions on the left hand sides correspond to

coefficients on the right hand sides. This demonstration is easy because the right hand

sides are trigonometric functions. Then, by combining equations (41),(42) and (43)

we obtain

η(x) =
1

4λ3
eEI

[

eiω
x
v sinλe(L− x) + e−iωL−x

v sinλex

cosLλe − cos ωL
v

−

eiω
x
v sinh λe(L− x) + e−iωL−x

v sinhλex

coshLλe − cos ωL
v

]

(44)

Particularly, when L = ml and x = pl, we have ηp = η(pl).

Appendix B. Calculation of expression χp

By setting n = rm+ p with 0 ≤ p ≤ m− 1 and r ∈ Z, we can develop equation (14)

as follows:

ηp =
1

LEI

∑

n∈Z

ei2πn
p

m

(

ω
v
+ 2πn

L

)4
− λ4

e

=

m−1
∑

q=0

1

LEI

∞
∑

r=−∞

ei2π(mr+q) p

m

(

ω
v
+ 2π(mr+q)

L

)4

− λ4
e

=
m−1
∑

q=0

ei2π
pq

m

mlEI

∞
∑

r=−∞

1
(

ω
v
+ 2π(mr+q)

L

)4

− λ4
e

In addition, we have

χq =
1

lEI

∞
∑

r=−∞

1
(

ω
v
+ 2π(mr+q)

L

)4

− λ4
e

=
1

2λ3
eEI

∞
∑

r=−∞

lλe
(

lω
v
+ 2π(r + q

m
)
)2

− (lλe)2
−

lλe
(

lω
v
+ 2π(r + q

m
)
)2

+ (lλe)2

=
1

4λ3
eEI

(

sin lλe

cos lλe − cos(ωl
v
+ 2πq

m
)
−

sinh lλe

cosh lλe − cos(ωl
v
+ 2πq

m
)

)

(45)

Thus, we have

ηp =
1

m

m−1
∑

q=0

ei2π
pq

mχq (46)

where χp is defined by equation (45).
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