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Abstract Inverse problem permits to map the subsurface properties from a few observed data. The
inverse problem can be physically constrained by a priori information on the property distribution in order
to limit the nonuniqueness of the solution. The geostatistical information is often chosen as a priori informa-
tion; however, when the field properties present a spatial locally distributed high variability, the geostatisti-
cal approach becomes inefficient. Therefore, we propose a new method adapted for fields presenting linear
structures (such as a fractured field). The Cellular Automata-based Deterministic Inversion (CADI) method is,
as far as we know when this paper is produced, the first inversion method which permits a deterministic
inversion based on a Bayesian approach and using a dynamic optimization to generate different linear
structures iteratively. The model is partitioned in cellular automaton subspaces, each one controlling a
different zone of the model. A cellular automata subspace structures the properties of the model in two
units (‘‘structure’’ and ‘‘background’’) and control their dispensing direction and their values. The partitioning
of the model in subspaces permits to monitor a large-scale structural model with only a few pilot-
parameters and to generate linear structures with local direction changes. Thereby, the algorithm can easily
handle with large-scale structures, and a sensitivity analysis is possible on these structural pilot-parameters,
which permits to considerably accelerate the optimization process in order to find the best structural
geometry. The algorithm has been successfully tested on simple, to more complex, theoretical models with
different inversion techniques by using seismic and hydraulic data.

1. Introduction

In geophysics, the inverse method is an efficient way for mapping the geological structures by assessing the
physical properties of the subsurface (such as hydraulic conductivity, electrical resistivity, magnetic susceptibil-
ity, volumetric density, porosity, etc.) from a set of observed data. These observed data represent the
responses of the investigated area to solicitations applied during the geophysical surveys (pumping tests,
electrical resistivity tomography, electromagnetic, gravimetry, seismic, etc.). Commonly, the inverse problems
are undetermined, with nonuniqueness of the solution, leading to provide doubtful interpretations of the geo-
physical surveys. Thus, the addition of a priori information on the properties to estimate is a necessity for
avoiding the physically unrealistic models. Most often, geostatistical constraints are used to reconstruct the
physical properties of a soil that can be modeled by smooth spatial variabilities [Hoeksema and Kitanidis,
1984]. However, when the parameters have a high spatial variability, the use of statistical characteristics as a
priori information becomes ineffective and inadequate to locate the discontinuities of the physical properties.
Therefore, several algorithms have been proposed to deal with the ‘‘structural’’ inversion, considering both the
estimation of physical properties and reconstruction of boundaries between different heterogeneities.

Among these approaches, we cite those which incorporate structural information in the model parameteri-
zation of the inverse problem, such as the multiscale method that rests on an increasing resolution of the
parameterization during the optimization sequences [Grimstad et al., 2003]. The adaptive multiscale method
permits to reduce the number of unknown parameters by a local refinement of the parameterization where
the heterogeneity is the most important, to avoid an overparameterization. Tsai et al. [2003] used the Voro-
noi zonation with a pilot-point parameterization method to identify parameters structures in a model.

For the approaches using no specific parameterization of the model, Lelièvre and Oldenburg [2009] have pro-
posed to incorporate constrains to the inversion objective function in terms of some structural information
such as orientation to obtain more realistic solutions. The spatial distribution of the unknown parameters

Key Points:
� A novel inverse approach is

developed to reconstruct the
structural heterogeneities
� The cellular automaton method is

used to parameterize the inverse
problem
� The inverse algorithm is validated on

the hydrogeological and geophysical
data

Correspondence to:
A. Jardani,
abderrahim.jardani@univ-rouen.fr

Citation:
Fischer, P., A. Jardani, and N. Lecoq
(2017), A cellular automata-based
deterministic inversion algorithm for
the characterization of linear structural
heterogeneities, Water Resour. Res., 53,
2016–2034, doi:10.1002/
2016WR019572.

Received 27 JUL 2016

Accepted 11 FEB 2017

Accepted article online 15 FEB 2017

Published online 11 MAR 2017

VC 2017. American Geophysical Union.

All Rights Reserved.

FISCHER ET AL. CADI ALGORITHM 2016

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2016WR019572
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


can also be approximated by a sparse set of coefficients to be identified in a compressed sensing sparsity-
promoting inversion [Jafarpour et al., 2010] which promotes sparse solutions. Finally, the inversion with total
variation prior [Lee and Kitanidis, 2013] uses a Laplace prior instead of a Gaussian in a Bayesian inversion in
order to delimitate the shapes of discrete structures piloted by some hyperparameters determined during
the inversion using an expectation-maximization approach.

In another register, Lochb€uhler et al. [2015] used the training image method in the inverse formulation to
represent the structural characteristics of a field as prior information to eliminate inversion artifact and
improve the estimate of the parameters. Hale [2009] and Soueid Ahmed et al. [2015] have proposed the
guided image method in which the structural features of the domain is presented graphically and used as a
priori information to guide the inversion by refining the model sensitivity at boundaries between different
zones. It permits a better estimate of the intrastructure parameter variabilities and location of different fea-
tures in a model. The level set is an alternative approach to detect the interfaces between different facies
thanks to the use of extensible boundaries that move during the inversion process to fit the observed data
[Lu and Robinson, 2006; Cardiff and Kitanidis, 2009]. Haber and Oldenburg [1997] have identified the profits
that could bring joint inversion to structural identification and have presented a protocol to run a joint
inversion in geophysics by constraining the results with a unique structural consideration. Since then, sever-
al other structural joint inversions tools have been developed which were summarized in a review proposed
by Gallardo and Meju [2011]. This review presents the recent techniques of structural joint inversions and
the upcoming challenges of such inversions in the next years.

However, regarding the imaging of linear structures, which are characterized by an aperture significantly
lower than their length (such as karst conduits and fractures), the deterministic inversion remains, according
to our knowledge, an unexplored subject. The inverse modeling of such structures requires a large-scale
parameterization, which makes the computation very heavy particularly in the case of stochastic or global
optimization algorithms [Pardo-Ig�uzquiza et al., 2012; Reeves et al., 2013; Bruna et al., 2015; Javadi et al.,
2016].

In this paper we propose a new method called Cellular Automata-based Deterministic Inversion (CADI),
adapted for the inversion of linear structures. This approach is based on a Bayesian formulation with the
use of Cellular Automaton (CA) concept to parameterize the model. The dynamic structural optimization in
the algorithm is controlled by the CA, which allows the drive of an entire discretized system with only some
local configurable interaction rules. After a global presentation of the model parameterization, we will detail
the interaction rules chosen for the CA in this CADI algorithm to reproduce linear structures (section 2.1).
Then we will present the structure of the inverse problem (section 2.2) and the protocol of optimization
(section 3). Several examples conducted with the CADI algorithm on linear problems (seismic) and nonlinear
problems (hydraulic tomography) are described in the last part of this paper (section 4).

2. Parameterization of Inverse Problem Using Cellular Automaton

2.1. Parameterization of the Model
In the CADI method, the distribution of the properties in the model is structurally generated by several CA.
In previous works, CA have already been coupled to global optimization algorithms such as genetic algo-
rithms [Dewri and Chakraborti, 2005; Ghosh et al., 2009]. However, in the CADI method we wanted to couple
the possibilities offered by CA to a deterministic inverse process. Therefore, the model (discretized in m
cells) is partitioned in mCA CA subspaces (with mCA�m), each one being monitored by an independent CA
configured by its neighborhood definition (Figure 1). Thus, the CA subspaces and their parameterization are
pilot zones for the model, which permits to avoid an overparameterization of the inverse problem.

The CA is a widely used mathematical system to generate discrete dynamic models. It has been applied to
diverse fields of modeling such as Random Number Generators [Tan and Guan, 2007], chemical reactions
[Van der Wee€en et al., 2011], solid-solid phase transformation during heating [Halder et al., 2014, 2015] or
cooling [Dewri and Chakraborti, 2005; Ghosh et al., 2009; Jin and Cui, 2012], fluid flow through fractures [Pan
et al., 2011], or transport in fluid flow [Chopard and Masselot, 1999]. The CA is a popular method due to its
capacity to model complex systems by using simple rules. In fact, the evolution of the entire system is driv-
en by some configurable local interaction rules.
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The CA is a discrete time-evolving system in which a cell of the system is defined by its state and its neigh-
borhood. At a CA time step tCA11, the state of each cell will simultaneously evolve to a new one depending
on a constant transition rule involving the state of a cell and the states of the cells in its neighborhood at
the time step tCA. Thus, a CA subspace of the model proposed in the CADI algorithm can be described as a
quadruple hu; Z;N; Ti [Sun et al., 2011; Van der Wee€en et al., 2011]:

1. u is a subspace of the global model, discretized as a lattice of c cells.
2. Z is a function returning the states values for each selected cells of the subspace at a specified time step

(with two possible states: ZtCA cið Þ5bbackground or ZtCA cið Þ5bstructure , where bbackground and bstructure are the
parameterized values assigned to the properties of the structure and the background in the subspace).

3. N is a neighborhood function that selects among all cells of the subspace the subset of cells that are con-
sidered in the neighborhood of a given cell ci .

4. T is a function of cell-state transition rule. Thus, a transition in the CA for a given cell ci is expressed as
ZtCA11 cið Þ5T ZtCA N cið Þð Þð Þ, and a full transition in the CA process (considering all cells of the subspace lat-
tice) is utCA115ZtCA11 cið Þ; 8i.

The choice of N and T for the CA in this work will be detailed in the following paragraphs. The CA will be
used to produce a spatial linear structure in the model. The global model is partitioned in several subspaces,
each one being discretized as a lattice of c squared cells (Figure 1c). Each cell of a subspace u can be in
only two possible different states: state ‘‘background’’ which take a value bbackground, or state ‘‘structure’’
which take a value bstructure . So, a subspace has a binary distribution. bstructure is homogeneous within a sub-
space but can vary among the different subspaces.

Commonly, CA use neighborhood sequencing such as the Moore or the Von Neumann neighborhood rules
(see Appendix 1) [Moore, 1962; Von Neumann and Burks, 1966]. But here we chose N as a dual-radius neigh-
borhood definition as presented in Figure 2. Two circles of cells, defined by their cell-radius Rinner and Router ,
are centered on a given cell ci (for a full CA time step transition ci would be alternatively each cell of the CA
subspace). The inner circle defines the ‘‘activator’’ cells for ci (green in Figure 2) and the outer circle defines
the ‘‘inhibitor’’ cells for ci (orange in Figure 2). The terms ‘‘activators’’ and ‘‘inhibitors’’ are relative only to the
cells in ‘‘background’’ state: the cells in state ‘‘background’’ in the ‘‘activator’’ neighborhood will tend to
transform the cell ci in a state ‘‘background’’ while the cells in state ‘‘background’’ in the ‘‘inhibitor’’ neigh-
borhood will tend to transform the cell ci in a state ‘‘structure.’’ The balance of the ratio of ‘‘background’’
cells in each ‘‘activator’’ and ‘‘inhibitor’’ neighborhoods can be disturbed by the existence of cells in state
‘‘structure’’ (for example the presence of a cell in state ‘‘structure’’ in the ‘‘activator’’ neighborhood of a cell ci

Figure 1. Scheme explaining how the CA are used in the CADI model. In the figure gray occurs for state ‘‘background’’ and white for state
‘‘structure.’’ The model is partitioned in mCA independent CA subspaces (here mCA 5 9). During the generation process the structure will go
through different CA subspaces (a) and will be generated in the local direction assigned by the structural parameters piloting these CA (b).
Along the generation direction the CA will modify the property values of the model cells it controls (represented by the squares lattice in
Figure 1c).
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will reduce the amount of cells in state ‘‘background’’ in this
‘‘activator’’ neighborhood compared to in the ‘‘inhibitor’’
neighborhood, and thus the cell ci would then become
‘‘structure’’). The cells outside of the circles are not consid-
ered for the state transition of the cell ci . This definition can
be seen as an extension of the Von Neumann rules, by add-
ing inhibitors neighbors to activators cells that follow a Von
Neumann neighborhood. Additionally, each circle of the
neighborhood definition was radially split into eight sectors
to allow for spatially variable weighting of activators and
inhibitors cells, in order to privilege particular directions dur-
ing the generation (see Figure 4).

During the transition to tCA11, the transition rule T defines
alternatively for each cell of the lattice the new state of a cell ci

by considering the equilibrium of activators and inhibitors cells
in state background (bbackground) in its neighborhood N cið Þ at
the instant tCA . Therefore, the neighborhood configuration
associates cells values in the activator zone to a positive
weighting (1) and cells values in the inhibitor zone to a nega-
tive weighting (2). The weighted values in each of eight acti-
vator and inhibitor sectors are then also corrected by an
additional balancing weight (ratio between the number of cells
in a sector and the total number of cells), in order to have the
same consideration between each sector of the neighborhood.
In fact, each sector does not contain the same amount of cells,
due to the consideration of deformations of circles in a lattice
of squares. Finally, the transition rule T sums the weighted val-

ues from all cells in state bbackground in the neighborhood N cið Þ. If the total weight of activators in state bbackground

is higher (the sum is positive), the cell ci will take the value bbackground (‘‘background’’), if the total weight of inhibi-
tor in state bbackground is higher (the sum is negative), the cell ci will take the value bstructure (‘‘structure’’)

T cið Þ5
Xncell

k51

Zweight
tCA

ckð Þ for ck 2 N cið Þ½ � \ ZtCA ckð Þ5bbackground

� �
ZtCA11 cið Þ5bbackground if T cið Þ � 0 ; ZtCA11 cið Þ5bstructure if T cið Þ < 0;

(1)

where ncell denotes the total number of cells in N cið Þ and Zweight
tCA

is the function returning the state value
taking into account the weighting parameterization from the neighborhood.

After sufficient time steps of the CA with the same transition rule, the subspace u will converge to a stable
geometry u

_ (the geometry will not change over increasing CA time steps anymore) depending on the
weighting parameterization given to the neighborhood definition N (Figure 3).

Figure 3. Time evolution of a CA configured with a neighborhood weighting defining a horizontal structure generation (see Figure 4).
After the sixth time step the CA has converged and its geometry is stable over the following steps. Here gray occurs for state ‘‘background’’
and white for state ‘‘structure.’’

Figure 2. An example of the dual-radius neighbor-
hood considered in our CA definition. The black
highlighted cell is the cell under consideration in this
example (each cell of the lattice would alternatively be
considered during a full CA time step). The greened
highlighted cells are considered as its ‘‘activators’’
neighbors in the transition rule and the orange
highlighted cells as its ‘‘inhibitors’’ neighbors. These
cells are selected by an inner and an outer circle (in
bold) with configurable radius which permit the con-
figuration of the neighborhood. In this example, the
inner circle has a radius 5 2 and the outer circle has a
radius 5 3. Additionally, the neighborhood is split into
2 3 8 sectors (by the radial lines) which permit a more
configurable weighting definition (see Figure 4).
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Thus, playing on the weighting distribution in the divided activator and inhibitor sectors, and on the radius
Rinner and Router of the neighborhood definition N, the CA can produce linear structures in eight directions
from a unique starting cell, as shown in Figure 4. The weighting distribution defining each direction has
been empirically specified.

On the presented configurations, the starting cell is considered in the center of the lattice. The neighbor-
hood weighting permits to modify the direction of the structure and the radius values modify its aperture.
These eight weighted neighborhood configuration functions Ni; i 2 1; 8½ � will be considered as the different
configuration possibilities in the subspaces parameterization in the dynamic structural optimization process
of the inversion algorithm (presented in the section 3.1). Thus, in the CADI algorithm a CA subspace of the
model is parameterized by two parameters: its structural direction (neighborhood configuration N) among
the eight possible and its values of property b5 bbackground;bstructure

� �
. Therefore, a converged configuration

of a parameterized subspace will be expressed as u
_

N; bð Þ (using one of the eight different direction config-
uration Ni , as presented in Figure 4).

Figure 4. Presentation of eight different stable structures started by a unique centered cell, and their associated CA neighborhood config-
uration. The grayed cell in the neighborhood configuration is a given cell considered during the CA process. It is surrounded by its neigh-
bor cells, which are not shown for reasons of readability. Its neighborhood is split in eight internal ‘‘activator’’ sectors and eight external
‘‘inhibitor’’ sectors, each one being assigned to a given weight. A ‘‘11’’ occurs for a positive weight for the neighbor cells in the area, a
‘‘11’’ weight is twice higher than a positive weight represented by a single ‘‘1.’’ A ‘‘2 2’’ occurs for a negative weight for the neighbor
cells in the area, a ‘‘2 2’’ weight is twice higher than a negative weight represented by a single ‘‘-.’’ An empty part of the neighborhood
occurs for a null weight, meaning that cells in the area are not considered in the transition rule. Here we present the CA configuration lead-
ing to eight different structure directions which will be considered as suborientation of the global structure in the model. In the structural
map, gray occurs for state ‘‘background’’ and white for state ‘‘structure.’’
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The geometry of a structure over the entire model C (composed of all converged subspaces
u
_

k N; bð Þ; k 2 1;mCA½ �) can be defined in the CA generation process with only two ‘‘pilot’’ vectors containing
each subspaces parameters. This piloted model can be expressed as C PN; Pb

� �
, where PN is a mCA vector

containing the direction of generation (configured by the weighted neighborhood configurations
Ni; i 2 1; 8½ �) assigned to each CA subspace of the model, and Pb a mCA11 vector containing the bstructure val-
ues assigned to the ‘‘structure’’ cells in each of the mCA CA subspaces and also the bbackground value (the back-
ground being considered, in this paper, as uniform, but it could also be possible to consider a bbackground

value for each subspace). Thus, by piloting the CA generation process with only PN and Pb as parameters
we can generate the whole model as shown in Figure 1. The aperture all along the structure is considered
as constant and can be configured with the CA neighborhood radius values and the partitioning of the
model.

The CA generation process of the structure starts from an entire ‘‘background’’ (bbackground) state model with
only one or several selected cell(s) of the model in state structure (bstructure) which are considered as the
starting point(s) of the structure. At the firsts CA time steps, the structure will be generated only in the sub-
spaces where initial structure cells are defined. Each boundary cells state at the edge of a CA subspace is
symmetrically transferred to the boundary cells of the adjacent CA. Therefore when the structure arrives to
the limit of its first subspace, it can enter a new CA subspace by local symmetry at the boundary limit
between them. The new CA subspace the structure has entered has potentially another neighborhood defi-
nition; thus, the structure will follow a new direction from there. Once the structure has been generated in a
subspace, this subspace becomes ‘‘inhibited’’ to another generation (the structure can enter only one time
each subspace). And so the structure will propagate within the model, through the increasing CA time
steps, until it reaches a stable geometry C PN; Pb

� �
(see Figure 1).

2.2. Statement of Inverse Problem
The inverse problem involves a formulation of the forward problem which links the spatial properties of the
model to the data

d5f C PN; Pb
� �� �

1e; (2)

where C PN; Pb
� �

is the spatial distribution of the m properties cells in the model. The cells of the model
take their values from a finite set Pb and are structured by the CA directions PN, d is a vector of n modeled
data, f is a forward problem application Rm ! Rn, and e represents the observed data error.

In a probabilistic framework, the aim of the inverse problem is to find the most probable models consider-
ing PN and Pb as parameters constrained by the observed data and the prior information on both parame-
ters. This inverse issue can be treated as a sequential inversion. First, for a given Pb, we determine the
geometry of the structure via the estimation of PN, which is then used in the second time to infer the values
of Pb. Using a Bayesian approach on Gaussian probability density functions, the problem can be formulated
by two posterior probability densities qstructure PNð jd; PbÞ and qproperties Pb

� ��d; PNÞ in order to image the geom-
etry of structure controlled by PN and their physical property values controlled by Pb

qstructure PNð jdobs; PbÞ / q dobsð jPN; PbÞ:q PNð Þ

/ exp 2
1
2

dobs2f C PN; Pb
� �� �� �T

Cd
21 dobs2f C PN; Pb

� �� �� �� �
;

3exp 2
1
2

PN;prior2PN
� �T

CPN
21 PN;prior2PN
� �� �

(3)

qproperties Pb
� ��dobs; PNÞ / q dobsð jPb; PNÞ:q Pb

� �
/ exp 2

1
2

dobs2f C PN; Pb
� �� �� �T

Cd
21 dobs2f C PN; Pb

� �� �� �� �
;

3exp 2
1
2

Pb;prior2Pb
� �T

CPb
21 Pb;prior2Pb
� �� �

(4)

with q denotes the Gaussian probability density function. q dobsð jPN; PbÞ is the likelihood function; q PNð Þ
and q Pb

� �
represent a priori information on the parameters PN and Pb. dobs is the 13nð Þ vector of observed

data. Pb;prior and PN;prior are the prior models (parameter assumptions) on the unknown parameters Pb and
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PN, chosen by the modeler to constrain the inversion. Cd n3nð Þ, CPN mCA3mCAð Þ, and CPb

mCA11ð Þ3 mCA11ð Þð Þ are covariance matrices of the expected uncertainties on data and the prior models.
CPN and CPb can also be seen as weighting values in the objective function to constrain the inversion result
to have subspaces property values and directions remaining close to the parameters chosen in the prior
models. The maximization of the posterior probability densities (equations (3) and (4)) can be achieved by a
minimization of the following objective functions in the inversion process [Tarantola and Valette, 1982]:

Wstructure PNð Þ5
1
2

dobs2f C PN; Pb
� �� �� �T

Cd
21 dobs2f C PN; Pb

� �� �� �
1

1
2

PN;prior2PN
� �T

CPN
21 PN;prior2PN
� �

;

(5)

Wproperties Pb
� �

5
1
2

dobs2f C PN; Pb
� �� �� �T

Cd
21 dobs2f C PN; Pb

� �� �� �
1

1
2

Pb;prior2Pb
� �T

CPb
21 Pb;prior2Pb
� �

:

(6)

This minimization can be achieved iteratively with sequential optimizations on the geometry of the struc-
ture and on the values taken by the properties. The convergence of these two objective functions to their
minimal values depends on the parameterization of the model and its initialization. A global minimization is
not guaranteed, as the result of the inversion depends of the initial model. However, the optimum can be
explored by leading several inversions starting from different initial models. The different steps of the CADI
algorithm are presented in Figure 5. The structural and property values parameters in PN and Pb are first ini-

tialized to generate the initial model. This ini-
tialization consists in assigning an initial
reasonable direction of generation and initial
property values bstructure and bbackground to
each CA subspaces in the model. After this
initialization part, a sequential inversion pro-
cess will first conduct an iterative structural
optimization in which the CA structural gen-
eration process will regenerate the model
with the updated parameters at each itera-
tion. Once this optimization is completed,
the inversion will continue with an optimiza-
tion of the property values for the previously
inverted structure. The process is then ended
by an estimation of uncertainties on the
structure geometry and on the property val-
ues. These different parts of the inversion
process are detailed in the following
sections.

3. Optimization Process

3.1. Structural Optimization
Initially, a chosen set of probable property
values Pb;ini and chosen direction configura-
tions PN;ini are assigned to the piloted model
to build an initial model. The aim of the
structural optimization will be to modify iter-
atively the structure piloted by PN for a given
distribution of Pb until the convergence of
the objective function (equation (5)). The
modification of the configuration PN is
defined through a sensitivity analysis.

Figure 5. Operating scheme for the Cellular Automata-based Determinis-
tic Inversion (CADI) algorithm. After an initialization of PN and Pb with
chosen directions and property values for each subspace, the algorithm
begins an iterative process. It will first optimize the geometry of the struc-
ture in the model by iteratively updating the structural model using the
CA generation process. Once the objective function has converged to a
local minimum on the structure, it will lead a second optimization on the
values of the properties for the previously inverted structure, until the
objective function converges to a local minimum again. Finally, the uncer-
tainties on the structure and the properties of the model are estimated.
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At an iteration step k, the sensitivity on the structure is estimated by introducing ‘‘perturbations’’ in the gen-
eration and by analyzing the responses by solving the forward problem. Here a perturbation consists in a
modification of the configuration N in a CA subspace of the model (i.e., a local direction modification), the
other subspaces configurations remaining unchanged. The structural inversion sensitivity analysis tests the
eight configuration possibilities Ni; i 2 1; 8½ � as parameter in each CA subspace in order to optimize the
geometry of the structure regarding the objective function. This sensitivity analysis is led on the entire mod-
el to create a 83mCA sensitivity matrix S. Thus, at the kth iteration and for a perturbation using a configura-
tion Ni in a subspace j, the element (i,j) of the sensitivity matrix is defined as

Sk i; jð Þ5 1
2

dobs2f C Pk
NjPk

N jð Þ5Ni
; Pb

	 
	 
	 
T
Cd

21 dobs2f C Pk
NjPk

N jð Þ5Ni
; Pb

	 
	 
	 


1
1
2

PN;prior jð Þ2Ni
� �T

CPN
21 PN;prior jð Þ2Ni
� �

;

(7)

where f C Pk
NjPk

N jð Þ5Ni
; Pb

	 
	 

represents the modeled data through this perturbation for a given model of

Pb, and PN;prior jð Þ2Ni represents the angular gap between the prior subdirection and the perturbation direc-
tion. Here the sensitivity analysis does not involve variations in Pb, it determines all possible variations of
the objective function for a single modification in the structure geometry.

The best improvement is found with the index i; jð Þmin in matrix S, representing the minimal value in the
matrix which will give the best improvement for the minimization of the objective function (i gives the
updated configuration Ni for the CA in the subspace j of the model). Thus, from a structural parameter set
Pk

N, the optimized set Pk11
N is built as Pk11

N 5Pk
N except for its index j: Pk11

N jð Þ5Ni . By updating the subspace
which gives the best structural improvement, a new structure will be generated for the iteration k 1 1. The
algorithm reproduces the same sensitivity analysis for each iteration until the convergence of the objective
function. The total number of forward problems evaluations for a structural iteration is 83mCA11 (with 83

mCA evaluations for the sensitivity analysis and 1 for the updated objective function calculation).

At the end of the inversion process, the uncertainties on the inverted structure are estimated through an
uncertainties analysis on each subspace of the structure. Due to difficulty to infer the posterior covariance
matrix of the structural inversion, this analysis is done for each subspace by inverting the difference
between the posterior objective function and the sum of sensitivity values for all CA configuration possibili-
ties, and the prior uncertainties for the subspace j

Spost jð Þ5 1
8

X8

i51

S i; jð Þ2Wpost
structure1CPN

21 j; jð Þ
 !21

; (8)

with Spost jð Þ is the posterior structural uncertainty for a subspace j in the model, i denotes the different rows of
the matrix S of the last iteration, and Wpost

structure is the value of the minimized objective function after
convergence.

If a subspace is well-constraint, its value Spost should be low (another structure direction would have a nega-
tive impact in the minimization of the objective function), and if not, this value should be high (another
structure direction would be quite neutral in the minimization of the objective function).

3.2. Property Values Optimization
Once the structure is optimized, the property parameters Pb taken by the CA subspaces of the model
are then also iteratively optimized, for the inverted structure; using a finite difference approach for
the sensitivity analysis (for mCA11 unknown property values to optimize, including mCA bstructure values
plus one common value for bbackground ). The Jacobian sensitivity matrix J n3ðmCA11Þð Þ, for an index (i,j)
is defined as

J i; jð Þ5 @fi

@Pb

����
Pb jð Þ5Pb jð Þ1DPb

; (9)

with fi the forward problem on a data i for a variation DPb of Pb jð Þ. Here DPb is the finite difference step.

The new values Pk11
b from a previous set Pk

b are calculated from a linearization of (equation (6))
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f ðPk11
b Þ � f ðPk

bÞ1Jk :ðPk11
b 2Pk

bÞ: (10)

The optimization of Pb is achieved via a Newton iterative process, initialized at a reasonable Pb;ini [Tarantola
and Valette, 1982]. For the k 1 1th step in the iterative process

Pk11
b 5Pk

b1 Jk
� �T

:Cd
21:Jk1CPb

21
	 
21

: Jk
� �T

:Cd
21: dobs2f C PN; Pk

b

	 
	 
	 

1CPb

21: Pb;prior2Pk
b

	 

:

(11)

The total number of forward problems in an iteration for the property value sensitivity evaluation in a mod-
el with a uniform background will be mCA11, while for a model with a varying background among the CA
subspaces it would require 23mCA evaluations. Then the compute of the updated objective function
requires one more forward problem evaluation.

The uncertainties on the values of properties, calculated at the end of the inversion process, are given by
the diagonal entries of the posterior covariance matrix

Cpost
Pb

5 Jpostð ÞT :Cd
21:Jpost1CPb

21
	 
21

: (12)

These values represent variances of the properties. Then, the square root of the diagonal entries represent
their standard deviation.

4. Applications

The CADI algorithm has been tested on six theoretical study cases for a linear inversion of a simple structure
(Study case 1), a more complex structure (Study case 2), a complex multidirectional structure (Study case 3)
and for a linear, nonlinear and joint inversions (Study cases 4–6) of a geostatistical generated structure. For
these different examples we did not use any prior information on the structure in PN;prior but we incorporat-
ed constant measurement errors in a diagonal matrix Cd5r2

data:Id nð Þ, and prior background and structure
property values in Pb;prior with their covariances in a diagonal matrix CPb 5r2

b:Id mCA11ð Þ. These six study
cases and their results are presented in Table 1, and the theoretical true structures to be reproduced are
presented in Figure 6.

4.1. Study Case 1
The first study case is a linear inversion of a simple structure. The purpose of this study case is essentially to
illustrate how the optimization within the CA subspaces in the structural inversion works. For the linear
inversion, we considered seismic data. The properties taken into account in the model are the seismic

Table 1. Inversion Results Obtained for the Six Different Study Casesa

Inversion Type

Number of
Cells (m)

Number
of Data

Number of
Iteration Data R2

Structural
Similarity

Inversion
TimeCA Grid Error Variance

Case 1 (Figure 5a) Linear 3,600 (3 3 3) 358 r2
data 5 1 ms 4 0.99 99.7% 4 min

Case 2 (Figure 5b) Linear 10,000 (5 3 5) 598 r2
data 5 1 ms 21 0.96 97.9% 1.3 h

Case 3 (Figure 5c) Linear 48,400 (11 3 11) 1,318 r2
data5 1 ms NoInit: 26

Init: 30
0.91
0.96

97.1%
98.3%

13.2 h
18.8 h

Case 4 (Figure 5d) Nonlinear 3,600 (3 3 3) 128 r2
data5 0.1 m 7 0.98 85.8% 13 min

Case 5 (Figure 5d) Linear 3,600 (3 3 3) 358 r2
data5 1 ms 4 0.99 82.6% 4 min

Case 6 (Figure 5d)
Joint: Linear 1

nonlinear
3,600 (3 3 3)

486 r2
data 5 1 ms,

r2
data 5 0.1 m

7
NL 5 0.98
L 5 0.99

88.2% 20 min

aThis table includes the inversion type, the number of cells of the model, the partitioning and the observed data considered in the
inverse modeling, the error variance of data, the number of iteration necessary to the convergence of the inversion process, the
proximity between inverted data and observed data (R2) and between the inverted structure and the true one pixel wise (structural sim-
ilarity), and the inversion time. In case 3, NoInit 5 initial simple model and Init 5 initial more complex model. In case 6, NL 5 nonlinear
and L 5 linear.
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velocities. Our simple synthetic model (Figure 6a) is set up as a field of 20 3 20 m2 with a perfectly uni-
form matrix (background) with a seismic velocity of 3.33 km/s, and an empty conduit (structure) of
0.26 km/s. The model properties are discretized in a 60 3 60 regular grid. Seismic transmitters and recep-
tors are set up around the theoretical model, at the beginning and end of each row, column and diago-
nal of the model grid, which would correspond to a device every 33 cm. The observed data consists on
travel time from seismic waves traveling through the model. The seismic wave travel time is calculated
by summing the products between inverse of seismic velocity and distance traveled in each cell swept
by the wave following the shortest path in the grid (in this case by summing cells in rows, columns and
diagonals). If each cell of the grid swept divides the path followed by the wave, the total travel time of
the wave is

twave5
Xg

i51

1
si
:Dxi ; (13)

where twave design the travel time of the wave (in ms), i 2 1; g½ � identifies the different g cells swept by the
wave during its travel, si is their seismic velocities (m/ms or km/s), and Dxi the distance traveled by the
wave through these cells (m).

Thereby, 358 observed data were generated from the theoretical model and will be used for the inversion
process. For this simple geometry structure, the inversion algorithm was conducted using a relatively coarse
3 3 3 CA partitioning, and by considering a simple straight structure initially (Figure 7a) with seismic veloci-
ties of 2 km/s for the background and 0.5 km/s in the structure. The covariance matrix Cb was generated
with a seismic velocity variance of r2

b 5 1 km/s and the seismic velocities of the initial model were also tak-
en as prior values in Pb;prior . The inversion converged in four iterations.

This case permits to understand how the CADI algorithm works. Each different step of the optimization of
the model is presented in Figure 7. Starting from the initial structure in Figure 7a, for each next steps the
optimization process tries to find new subdirections improving the initial structure over the partitioning of
the model (shown as a black grid in Figure 7). At the first step (Figure 7b) the initial model was improved in
its central part, and at the two next steps (Figures 7c and 7d) the angles of the lower left and upper right
parts of the true model were found. The last step of the inversion in Figure 7e corresponds to the properties
optimization in order to improve the objective function and find the true properties. With this parameteriza-
tion of the inverse problem, the result for this study case reproduces the true structure (Figure 8) and the
observed data (Table 1) well.

This simple case is useful to show how the CADI algorithm modifies at each step the geometry of the initial
structure and thus to understand why the information and the partitioning chosen in the initial model will
considerably influence the deterministic process (in term of time but also in term of result as we will see in
study case 3).

Figure 6. Presentation of the four different structures tested in the six study cases in this paper. (a) The case 1 is a linear inversion of a simple geometry to show how the optimization
works. (b) The case 2 is a linear inversion of a more complex geometry. (c) The case 3 is a linear inversion of a complex multidirectional linear structure. (d) The cases 4–6 are linear,
nonlinear, and joint inversion of a geostatistical generated geometry, appearing as a more natural structure.
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4.2. Study Case 2
The CADI algorithm was then applied on a more complex study case to test its capacities to reproduce com-
plex geometries. The theoretical structure under consideration for this case is presented in Figure 6b. As in
the first study case, the linear inversion is led by using seismic data, but with other seismic velocities for the

matrix (2.5 km/s) and the conduit (0.26 km/s). The
model was discretized as a regular grid of 100 3 100
cells. The observed data consist in 598 seismic time
travel calculated in the same way than explained for
the case study 1. This time, in order to give more possi-
bilities to the structural inverse process, the inverse
model was partitioned in a 5 3 5 CA subspaces with
the true property values initially known. The covari-
ance matrix Cb was generated with a seismic velocity
variance of r2

b51 km/s and the seismic velocities of
the initial model were also taken as prior values in
Pb;prior .

Initially, we set up a straight linear structure (Figure
9a). The algorithm then converged in 21 iterations (it
took approximately 1 h with a computer with 2 pro-
cessors Intel Xeon 2.4GHz of 16 cores). The Figure 9
shows several steps of the inversion process (Figures
9b–9d), the optimized inverse model in Figure 9e and
the true model in Figure 9f.

Figure 7. Result of the linear inverse modeling of the case study 1. The inversion finished after four iterations. This figure shows all differ-
ent iterations of the inversion from (a) initial model to (e) inverted model. The true structure is shown in Figure 7f. Figure 7d corresponds
to the structural optimization and Figure 7e to the properties optimization for this structure. The different CA subspaces of the model are
highlighted by the black lines.

Figure 8. Comparison of the optimal structure found by
inversion (in white) and the true structure (bold boundaries)
for the case study 1. For this simple geometry, the inverse
algorithm could easily reproduce the structure.
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For this case, the structural inversion is close to the real one but not perfect as in first study case (Fig-
ure 10) and we can show in Figure 9e that these imperfections are balanced by the properties optimi-
zation. Thus, the zone of the structure with an inverted structural part which does not exist in the true
structure (central part) is corrected by a light increase of its seismic velocity in order to minimize the
differences between calculated and observed data (0.5 km/s instead of 0.26 km/s). This correction
tends to locally slightly approach the structural seismic velocity to the matrix seismic velocity and
thus slightly reducing the existence of this local part of the structure in the model. This property val-
ues optimization permits a better convergence on the objective function and is, in some cases, useful
to counterbalance the approximations of the structural optimization when the property values are ini-
tially well known.

4.3. Study Case 3
In this third study case we applied the CADI algorithm on a complex multilinear structures network. The
study was done to show all the capacities of the CADI method to model fractured fields, which are equiva-
lent to linear structures dispersing in multiple direction among the space. The theoretical structure under
consideration for this case is presented in Figure 6c. The linear inversion is led by using seismic data gener-
ated with given seismic velocities for the matrix (2.5 km/s) and the conduit (0.33 km/s). The model was dis-
cretized as a regular properties grid of 220 3 220 cells. The observed data consist in 1318 seismic time
travel calculated in the same way than explained for the case study 1. The inverse model was partitioned in
an 11 3 11 CA subspaces with the true property values initially known to investigate the structural optimi-
zation capacities.

In this case we compared the sensitivity of the result to the initial model. We set two inversions with two
different initial models, the first one being very simple and incorporating only a global direction of

Figure 9. Result of the linear inverse modeling of the case study 2. The convergence is performed with 21 iterations. This figure shows some
different iterations of the inversion from (a) initial model to (e) inverted model. The true structure is shown in Figure 9f. We noted that the
optimization on the property values permits to balance the structural inversion errors. For example, in this case, the structural additions in
the center of the model in Figure 9e were optimized by a light augmentation of its seismic velocity (0.5 km/s instead 0.26 km/s).
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generation (Figure 11a) and the second one incorpo-
rating a bit more information on the structural shape
(Figure 11d). Figure 11 shows these initial models, the
inverted models they have produced and the compari-
son between the inverted models and the true one
(Figure 6c). For the first inversion the result is already
close to the true model, especially considering the sim-
plicity of the initial model. A simple straight structure
can become a more complex multidirectional structure
through the optimization process and find the main
shapes and trends of a complex structure geometry
which shows the possibilities given by the parameteri-
zation in the CADI algorithm. Starting from a different
initial structure in the second inversion we arrived to a
slightly better result on the geometry which becomes
really close to the true one. It highlights the impor-
tance of incorporating some information in the initial
model for the inversion process, but however if no
information are known, the first inversion shows that
even a very simple initial assumption can produce a
good result.

4.4. Study Case 4
For the fourth study case, a nonlinear inversion has been led on a structure generated by a geostatistical
technique using a directionally oriented variogram function with the package gstat in R (Figure 6d), which
appears to be more natural than the previous structures. The steady state observed data have been

Figure 10. Comparison of the optimal structure found by
inversion (in white) and the true structure (bold boundaries)
for the case study 2. The optimization process reproduced a
good structural inversion. The few inversion errors in the
center of the model were lightly balanced by the inversion
on the properties (see Figure 9).

Figure 11. Results of the linear inverse modeling of the case study 3. This figure shows two inversions with (a, d) different initial models,
(b, e) their results and (c, f) the comparison of these results to the true geometry boundaries in red. The convergence is performed with 26
iterations in the first inversion and 30 iterations in the second. We noted that the information contained in the initial model could slightly
modify the result of the inversion but even with a very simple initial case (a) the optimization process permits to find the main shapes and
trends of the true structure (c).
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produced by a hydraulic tomography with four
alternate pumping wells and 32 measurement wells
(for a total of 128 observed data) regularly distribut-
ed over the model. The positioning of the wells is
presented in the model in Figure 12, this model is
enclosed in a larger buffer zone (1000 3 1000 m2)
defined with a constant head (no drawdown) on its
lateral boundary condition and a uniform ‘‘back-
ground’’ transmissivity value.

The hydraulic transmissivities are considered as the
unknown properties to be inverted in a model with
a 60 3 60 cells grid. The theoretical model is set up
as a matrix with a transmissivity of 1.6 3 1027 m2/s
and a structure with an equivalent transmissivity of
5 3 1024 m2/s. A 3 3 3 CA partitioning was chosen
for the inverse modeling with a good a priori infor-
mation on the background properties and a struc-
ture transmissivity value of 1023 m2/s. The
covariance matrix Cb was generated with a multipli-
cative variance on the transmissivity of the form

106r2
b where r2

b51 (61 variance on the transmissivity exponent) and the transmissivities of the initial model
were also taken as prior values in Pb;prior .

From a straight linear initial structure (Figure 13a), the inversion converged in seven iterations and produced the
model presented in Figure 13b. The global trends of the true structure were found although the CADI, as pre-
sented previously, produces structures which have a constant aperture. Thus, the inversion process found the
best constant-aperture equivalent structure which reproduced the true model for the initial parameters. The prop-
erties optimization has permitted to find the true structure property value. However, the initial hydraulic proper-
ties did not permit to find the best fitting structure to the true model (Figure 13c). We will show in study case 6
that with the same initial model in a joint inversion, we can have both the true property values and a better fitting
structure geometry.

4.5. Study Case 5
A linear inversion has been led on the same geostatistical-generated structure than in study case 4 (Figure
6d). This time, observed data have been produced by seismic, as presented in study case 1 (producing 358

Figure 12. Map of the positioning of the wells for the hydraulic
tomography inversion for the study case 4. The circles are the
position of the measurement piezometers and the triangles are
the position of the pumping wells.

Figure 13. Result of the nonlinear inverse modeling of the study case 4. The inversion finished after seven iterations. This figure shows (a)
the initial model, (b) the inverted model, and (c) the true structure. The inversion process found an optimized equivalent structure to the
initial property value. The true transmissivities were found during the properties optimization.
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observed data). The seismic velocities are considered as the properties to be inverted in a model with a 60
3 60 cells grid. The theoretical model is set up as a matrix with a seismic velocity of 2 km/s and a structure
with a seismic velocity of 0.26 km/s. A 3 3 3 CA partitioning was chosen for the inverse modeling with close
initial property values (0.2 km/s for the structure and 2.5 km/s for the background). The covariance matrix
Cb was generated with a seismic velocity variance of r2

b51 km/s and the seismic velocities of the initial
model were also taken as prior values in Pb;prior .

The inversion converged in four iterations, the results are presented in the Figure 14. With the same initial
structure (Figure 14a) than the hydraulic inversion, the seismic inversion produced a slightly different equiv-
alent structure which approximately reproduces global trends of the true structure but is not the best fitting
possibility. The properties optimization (Figure 14b) has permitted to balance the structural approximations
caused by the limits of the initial information and the generation of a constant-aperture structure. Thus, in
the properties optimization, the seismic velocity of the background was decreased under the value of the
true one to counterbalance the lower aperture of the generated structure. Thereby, the properties optimiza-
tion part can bring more flexibility to the algorithm, which is constrained in its structural part by the prior
information in the initial condition and its constant aperture. However the inversion process could not truly
reproduce the structure and the properties of the true model for the initial parameters. As for the previous
nonlinear inversion, we will show in the next study case that a joint inversion permits to reproduce both
the property values and a better structure geometry for the same initial parameters.

4.6. Study Case 6
For the last study case, a joint inversion has been led on the same structure generated by a geostatistical
approach than in study cases 4 and 5 (Figure 6d). The joint inversion is a simultaneous inversion of different
data sets with a same unique inverted structure which has to be able to reproduce the information con-
tained in all different data sets. The information brought by different investigation techniques will reduce
the nonuniqueness of the inverse solution, each techniques bringing different information on the parame-
ters [Haber and Oldenburg, 1997]. We have jointly inverted the hydraulic data from study case 4 and the
seismic data from study case 5. The joint objective function in this case is a weighted linear combination of
the seismic properties objective function and the hydraulic properties objective function. We chose a
weighting in order to have initially approximately the same value for each of the two parts of the joint
objective function. The observed data were produced by hydraulic tomography and seismic (for a total of
486 observed data). The hydraulic transmissivities and seismic velocities are considered as the properties to
be inverted in a model with a 60 3 60 cells grid. The theoretical model is set up with the same property val-
ues as presented in study case 4 for the hydraulic properties (1.6 3 1027 m2/s for the matrix and 5 3 1024

Figure 14. Result of the linear inverse modeling of the study case 5. The inversion finished after four iterations. This figure shows (a) the
initial model, (b) the inverted model, and (c) the true structure. The structural optimization was limited by the initial properties and by its
constant aperture generation to reproduce a variable aperture true structure. In this case, the optimization on the property values permits
to balance the initial information and the structural inversion aperture limitations. The properties optimization balanced this limitation by
globally decreasing the seismic velocity of the background to a lower value than the true one.
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m2/s for the structure) and in study case 5 for the seismic properties (2 km/s for the matrix and 0.26 km/s
for the structure). A 3 3 3 CA partitioning was chosen for the inverse modeling with the same initial param-
eterized model than in study cases 4 and 5. The covariance matrices Cb were generated with a seismic
velocity variance of r2

b 5 1 km/s and a multiplicative variance on the transmissivity of the form 106r2
b where

r2
b51 (61 variance on the transmissivity exponent), and the seismic velocities and hydraulic transmissivities

of the initial models were also taken as prior values in Pb;prior .

Figure 15. Result of the joint inverse modeling of the study case 6. The inversion finished after seven iterations. This figure shows (a) the
hydraulic model, (c) the seismic model, and (b, d) the true models. The geometry of the structure in the models was optimized through a
joint inversion of seismic and hydraulic data.

Figure 16. Pixel-wise comparison of the optimal structures found by inversion (in white) and the true structure (bold boundaries) for the
study cases (a) 4, (b) 5, and (c) 6. Both hydraulic and seismic data permitted to find a geometry of the global trends of the true structure
but the joint inversion resulted to a better model regarding the structure and also the convergence on the data, which avoided the
difficulties encountered by the simple hydraulic inversion and the simple seismic inversion.
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The inversion converged in seven iterations. The results of the inversion for each method and the true mod-
els are presented in Figure 15. Compared to the hydraulic and seismic separate inversion, the joint inversion
produced better results on the data (Table 1) and on the inverted structure (Figure 16) which is closer to
the true structure. The structural joint inversion permits to combine the hydraulic and seismic data to find
the best structure. The optimized property values are also better in the joint inversion than in the separate
ones. The properties optimization permits to counterbalance the limitations of a constant aperture structure
by keeping a modeled higher value of transmissivity for the structure regarding the true value to simulate a
thicker structure. The lower left part of the structure was optimized with a transmissivity close to the real
one because the true structure is thinner in this part. The seismic velocity of the structure was also kept at a
lower value than the true one to counterbalance to constant aperture geometry.

The uncertainties analysis on the structure and the property values are reported in Figure 17. The structure
is well constrained by the data, except in the lower left part where the true structure is thinner and the
upper right part for the angle of the structure. This means that another close subdirection of the inverted
structure would not affect significantly the results. In the parameterization of the joint inversion more accu-
racy was given to the hydraulic data, therefore the uncertainties on the seismic properties are more impor-
tant than those on the hydraulic ones. The uncertainties on the hydraulic property values vary locally within
the structure. The lower left part has fewer uncertainties on the properties because its aperture is closer to
the true one and therefore this part is globally closer to the true structure. The background value is well
constrained because the true value was considered as a priori known. The seismic properties uncertainties

Figure 17. Uncertainties analysis for the joint inversion of the study case 6. The structural constraint in (a) indicates where the structure of
the model is well-constrained by a low value, and at the opposite, a high value indicates an uncertainty for its subspace direction. The
properties uncertainties for (b) the hydraulic transmissivity and (c) the seismic velocity are quantified by a standard deviation on the
inverted values.

Table 2. Main Advantages Provided by the CADI Algorithma

Advantages Limits Solutions

1. The complexity of the structural
optimization can be monitored with a
configurable partitioning of the model

2. The model properties are monitored by
pilot cellular automaton, which permits
to easily handle with large-scale model-
ing and makes a sensitivity analysis
possible to accelerate the optimization

3. The convergence of the inversion is
constraint to a local solution regarding
the prior information which can be
easily incorporated in the objective
function

1. The cellular automata parameteriza-
tion permits only the formation of
structure with a constant aperture all
along in the structural optimization

2. Only binary pattern are considered
(structure and background). The back-
ground is considered as invariable
regarding the variation structure/
background and intrastructure

1. The property values optimization
permits to digitally balance some
local variation of aperture. Thus, some
results on property values can be
structurally interpreted

2. If the algorithm is applied on a case
where the background has significant
intern variability, a particular attention
should be paid on setting an
appropriate equivalent background

aThe limits of the methods are also listed with a suggested solution for each limit.
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are more important for its background. This is caused by the high properties difference between structure
and background and because the background property was initially not known.

5. Discussion and Conclusion

The Cellular Automata-based Deterministic Inversion (CADI) algorithm is an especially adapted method
for linear structure geometries. The inversion process is based on a Bayesian approach and a sequentially
optimization of the structure geometry and property values. The structural optimization is monitored by
cellular automaton to generate the structure, and by a configurable partitioning of the model into sub-
spaces which permits a monitoring of the complexity of the inverted structure. One can choose a coarse
subspace partitioning for simple structures and for a fast inversion process, or a fine subspace partitioning
for inversion of more complex structures. The property values optimization brings more flexibility to the
inversion by slightly modifying the values of the properties in the structure. This optimization permits to
counterbalance some approximations in the structural optimization and some constraints from the initial
information.

The CADI algorithm parameterization is mainly focused on the structural optimization, therefore it considers
only two units: a constant-aperture structure and a background, which is considered as a unique uniform
unit or with an intern variability which is negligible regarding the variability with the structure. Therefore,
and as for any other inversion methods, it is especially effective for specific structural cases. Furthermore,
the limits of the CADI algorithm have to be clearly identified in order to make a good use out of it and to
have a critical view on the results it can produce. For this purpose, the main advantages and limits of the
CADI algorithm have been summarized in Table 2. For each limit of the algorithm, an appropriate solution
has been suggested.

In this paper we promote the potential of the CADI algorithm to image the complex linear structures, exploit-
ing its capacity to reproduce large-scale structures in a relatively short time. As far as we know, the CADI algo-
rithm is the first algorithm which permits the deterministic inversion of linear structures (global direction-
oriented structure characterized by an aperture significantly lower than its length) with a dynamic structural
optimization. This first attempt is mainly focused on the general presentation of the method and the theory
of the algorithm, but we believe that this method can be improved and inspire other ones in various domain.
For example, with the same algorithm structure, and by changing the cellular automaton configuration rules,
it is conceivable to generate other types of forms than linear structures. We also plan further works with the
presented algorithm, especially for improvements on its capacities (by adding a third ‘‘microstructures’’ state
within the background) and for field application cases, with a higher consideration on additional prior infor-
mation (as the tortuosity factor of the structure) and on sensitivity analysis of the method.

Appendix A

This appendix contains Figure A1.

Figure A1. Two mainly used CA neighborhood definition. The two left configuration represent a Von Neumann neighborhood and the
two right configuration represent a Moore neighborhood. These neighborhoods are presented for their firsts two radiuses. The black-filled
cell is the cell under consideration during the CA process, and the black highlighted cells are the cells considered as its neighbors in the
transition rule.
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