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This paper presents the calibration of Eringen's small length scale coefficient e 0 for 14 elastically restrained beams (in the context of buckling and axially loaded vibration) on the 15 basis of an interesting connection between a discrete beam model (DBM) and the Eringen's 16 nonlocal beam model (ENBM). The DBM is formulated from the use of the central finite 17

difference method which has been shown to be equivalent to the Hencky bar-chain model. By 18 solving the discrete beam formulation using the theory of linear difference equations and 19 matching the buckling loads and natural frequencies of the DBM with those of the ENBM, 20 the small length scale coefficient e 0 may be calibrated for buckling and vibration beam 21 problems. It is found that by applying the traditional nonlocal continuous boundary 22 conditions, e 0 varies with respect to the boundary conditions. However, 0 1/ 6 e = for purely 23 free vibration problems while 0 1/ 12 e = for buckling problems, irrespective of the 24 boundary conditions, when the continualized discrete boundary conditions are applied. For 25 both traditional continuous and continualized discrete boundary conditions, the value of e 0 is 26 found to be dependent on the axial load. 27 28

Eringen's theory of nonlocal continuum mechanics allows for the effect of small length scale [START_REF] Wang | Exact Solutions for Buckling of Structural 679 Members[END_REF] which becomes significant when dealing with micro/nanostructures [START_REF] Eringen | Nonlocal polar elastic continua[END_REF][START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw 598 dislocation and surface waves[END_REF][START_REF] Eringen | On nonlocal elasticity[END_REF]. In contrast to the 33 2 local theory that assumes the stress at a point is only dependent on the strain at that point, the [START_REF] Zhang | Obtaining Eringen's length scale 685 coefficient for vibrating nonlocal beams via continualization method[END_REF] nonlocal theory assumes that the stress state at a point involves weighted contributions of [START_REF] Wang | Buckling analysis of micro-688 and nano-rods/tubes based on nonlocal Timoshenko beam theory[END_REF] strain tensors of all the points in the body [START_REF] Zhang | Bending, buckling, and vibration of 603 micro/nanobeams by hybrid nonlocal beam model[END_REF]. For an elastic material in a one-dimensional 36 case, Eringen's nonlocal constitutive relation may be simplified to [5] 37 where σ is the normal stress, ε the normal strain, E Young's modulus, l c the small length scale 39

parameter, e 0 the small length scale coefficient and a the internal characteristic length which 40 may be taken as the bond length between two atoms. If e 0 is set to zero, Eq. ( 1) reduces to the 41 conventional Hooke's law. 42

The problem in using Eringen's nonlocal beam theory lies in the value of the small length 43

scale coefficient e 0 that is to be adopted for a selected internal characteristic length. More 44 recently, Challamel et al. [START_REF] Challamel | Analytical length scale calibration of 608 nonlocal continuum from a microstructured buckling model[END_REF][START_REF] Challamel | Discrete systems behave as nonlocal structural 612 elements: bending, buckling and vibration analysis[END_REF][START_REF] Challamel | Nonlocal equivalent continua for buckling and 615 vibration analyses of microstructured beams[END_REF] and Wang et al. [START_REF] Wang | Calibration of Eringen's small length 618 scale coefficient for initially stressed vibrating nonlocal Euler beams based on 619 microstructured beam model[END_REF] proposed a method for calibrating e 0 by 45 linking the microstructured beam model (or Hencky bar-chain model [START_REF] Hencky | Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der 622 elastischen Gelenkkette[END_REF]) with the Eringen's 46 nonlocal beam model (ENBM). The microstructured beam model is composed of finite rigid 47 beam segments of equal length a, connected by frictionless hinges with elastic rotational 48 springs of equal spring stiffness C = EI/a where EI is the flexural rigidity of the beam. The 49 connection between the microstructured beam model and the ENBM lies in the condition that 50 the rigid segmental length a of the former model should be equal to the internal characteristic 51 length a of the latter model. Based on this connection, they discovered that 52 0 1/ 12 0.289 e = ≈ for the buckling problem and 0 1/ 6 0.408 e = ≈ for the free vibration 53 problem [START_REF] Challamel | Nonlocal equivalent continua for buckling and 615 vibration analyses of microstructured beams[END_REF] of nonlocal beams with classical boundary conditions. Furthermore, on the basis 54 of this analogy approach, Wang et al. [START_REF] Wang | Calibration of Eringen's small length 618 scale coefficient for initially stressed vibrating nonlocal Euler beams based on 619 microstructured beam model[END_REF] showed that 0 e = 0 1 1 6 12 m σ σ for the initially 55 stressed vibrating beams with pinned-pinned ends (where σ 0 is the initial stress and σ m is the 56 m-th mode buckling stress of the corresponding local Euler beam). The small length scale 57 coefficient e 0 , however, does not depend on the vibration/buckling mode considered. This 58 method has been recently applied to calibrate e 0 for buckling and vibration problems of 59 nonlocal Euler beams with allowance for selfweight [START_REF] Wang | Buckling of nonlocal columns with 624 allowance for selfweight[END_REF], nonlocal Timoshenko beams [12-60 14] and nonlocal rectangular plates [START_REF] Zhang | Eringen's length scale coefficient for buckling of 637 nonlocal rectangular plates from microstructured beam-grid model[END_REF][START_REF] Zhang | Eringen's length-scale coefficients for vibration 640 and buckling of nonlocal rectangular plates with simply supported edges[END_REF][START_REF] Challamel | Buckling and vibrations of 643 microstructured rectangular plates considering phenomenological and lattice-based 644 nonlocal continuum models[END_REF]. 61 Nevertheless, the aforementioned studies were focused on special cases of boundary 62 conditions (i.e., pinned-pinned, clamped-clamped, clamped-free, clamped-pinned). Wang et 63 al. [START_REF] Wang | Treatment of elastically restrained 647 ends for beam buckling in finite difference, microstructured and nonlocal beam 648 models[END_REF] calibrated the small length scale coefficient e 0 for buckling problem of a beam with 64 elastically rotationally restrained ends. In a very recent work by Wang et al. [START_REF] Wang | On boundary conditions for 650 buckling and vibration of nonlocal beams[END_REF], the small 65 length scale coefficient e 0 for buckling problem of a beam with elastically restrained ends 66 was discussed. However, the value of e 0 for a vibrating beam in presence of axial load with 67 more general elastic restraints needs further investigation and this problem will be treated 68 herein. 69 with elastic end restraints was presented in Ref. [START_REF] Wang | Hencky bar-chain model 653 for buckling and vibration of beams with elastic end restraints[END_REF]. In view of this, the Hencky bar-chain 72 model could be regarded as the physical model behind the first order central finite difference 73 method and these two aforementioned beam models may be referred to as the local discrete 74 beam model (DBM). It is the aim of this paper to present the exact buckling and vibration 75 solutions for the local DBM and to use them for calibrating the small length scale coefficient 76 e 0 for elastically restrained nonlocal beams in the context of buckling and vibration problems. 77 

Problem definition

ρ ω + - = for 0 < x < L (2) 100
where w is the transverse displacement, x the longitudinal coordinate with its origin at end A 101 of the beam, and ω the angular vibration frequency of the beam. 102

The boundary conditions for the two elastically restrained ends are given by [START_REF] Wang | Structural Vibration: Exact Solutions for Strings, Membranes, 659 Beams, and Plates[END_REF] 103 ( )

3 3 0 0 0 0 LA x x d w dw EI P K w dx dx = =     + + =         at x = 0 (3a) 104 2 2 0 0 0 RA x x d w dw EI K dx dx = =     - =         at x = 0 (3b) 105 ( ) 3 3 0 LB x L x L d w dw EI P K w L dx dx = =     + - =         at x = L (3c) 106 2 2 0 RB x L x L d w dw EI K dx dx = =     + =         at x = L (3d) 107
where a zero value of K R implies a free rotation at the end whereas an infinite value of K R 108 implies no rotation at the end. A zero value of K L implies a free vertical translation at the end 109 and an infinite value of K L implies no vertical translation at the end. 110

Discrete Beam Model (DBM)

We shall use the central finite difference method to solve the fourth order differential 112 equation ( 2) subjected to the boundary conditions [START_REF] Eringen | On nonlocal elasticity[END_REF]. In this classical method, the beam is 113 discretized and one ends up with solving a set of algebraic equations instead of a differential 114 equation. 115

The central finite difference beam model with n+1 nodes (see Fig. Based on the central finite difference method, the discrete governing equation for 120 vibrating beam under an axial compressive load is given by [START_REF] Rao | Mechanical Vibrations[END_REF] ρ ω

+ + - - + - - + - + + - + - = for j = 0…n (4) 122
where w j is the transverse displacement at node j and a is the nodal spacing. When n = L/a 123 approaches to infinity or the nodal spacing a approaches to zero, the DBM approaches the 124 local Euler beam model. 125

The discrete boundary conditions for the two elastically restrained ends are given by [START_REF] Wang | Hencky bar-chain model 653 for buckling and vibration of beams with elastic end restraints[END_REF] 126

( ) ( ) 2 1 1 2 1 1 0 3 2 2 0 2 2 LA EI P w w w w w w K w a a - - - - + - + - + = at j = 0 (5a) 127 ( ) ( ) 1 0 1 1 1 2 2 0 2 RA K EI w w w w w a a - - - + - - = at j = 0 (5b) 128 ( ) ( ) 2 1 1 2 1 1 3 2 2 0 2 2 n n n n n n LB n EI P w w w w w w K w a a + + - - + - - + - + - - = at j = n (5c) 129 ( ) ( ) 1 1 1 1 2 2 0 2 RB n n n n n K EI w w w w w a a + - + - - + + - = at j = n (5d) 130
For a detailed description of the finite difference method for solving eigenvalue problems, 131 see papers by Wang et al. [START_REF] Wang | Hencky bar-chain model 653 for buckling and vibration of beams with elastic end restraints[END_REF], Wang [START_REF] Wang | Applied Elasticity[END_REF], Seide [START_REF] Seide | Accuracy of some numerical methods for column buckling[END_REF], Elishakoff, Santoro [START_REF] Elishakoff | Error in the finite difference based probabilistic dynamic 666 analysis: analytical evaluation[END_REF] and Santoro, 132

Elishakoff [START_REF] Santoro | Accuracy of the finite difference method in stochastic setting[END_REF]. 133 Interestingly, Silverman [START_REF] Silverman | Numerical computation of 670 buckling loads by finite differences[END_REF] and Leckie, Lindberg [START_REF] Leckie | The effect of lumped parameters on beam frequencies[END_REF] pointed out that the central finite 134 difference beam model [START_REF] Salvadori | Numerical computation of buckling loads by finite differences[END_REF] (see Fig. 3) is equivalent to the Hencky bar-chain model (see Fig. For elastically restrained ends, Wang et al. [START_REF] Wang | Hencky bar-chain model 653 for buckling and vibration of beams with elastic end restraints[END_REF] showed that the finite difference beam 141 model and Hencky bar-chain model are equivalent discrete systems provided that 142

2 2 1 RA RA C C C K = + (6a) 143 2 2 1 RB RB C C C K = + (6b) 144 LA LA C K = (6c) 145 LB LB C K = (6d) 146
Therefore, Hencky bar-chain model may be regarded as the physical model for the first order 147 central finite difference method and these two aforementioned beam models may be referred 148 to as the DBM. 149

Exact buckling and vibration solutions for DBM 150

According to the method generally detailed by Goldberg [START_REF] Goldberg | Introduction to Difference Equations: With Illustrative Examples from 677 Economics[END_REF] for linear difference equations, 151 which has already been applied to solve beam buckling problem by Seide [START_REF] Seide | Accuracy of some numerical methods for column buckling[END_REF] and vibration 152 problem by Leckie, Lindberg [START_REF] Leckie | The effect of lumped parameters on beam frequencies[END_REF], the linear difference equation Eq. ( 4) can be exactly 153 solved by assuming that the displacement at point j of the discrete system is written as 154

j j w Bf = (7) 155
where B is a constant and f is a general function. 156

The substitution of Eq. ( 7) into the discrete governing equation (4) for the DBM yields 157 ( 2) ( 2) 

0 EI P A a a ρ ω Γ - + Γ -- = ( 
ϕ ϕ = - m (12a) 169 3,4 cosh sinh f θ θ = m (12b) 170
In view of Eqs. (12a), (12b) and ( 7), the general solution for j w can be represented as 171

1 2 3 4 cosh sinh cos sin j j w Bf A j A j A j A j θ θ ϕ ϕ = = + + + (13) 172 
where A 1 , A 2 , A 3 and A 4 are constants which can be solved by using the boundary conditions. 173

By substituting the general solution given by Eq. [START_REF] Zhang | Eringen's small length scale coefficient for 631 buckling of nonlocal Timoshenko beam based on microstructured beam model[END_REF] 

K K A n n n n A K K A n n G G G G A F F F F α α θ θ ϕ ϕ θ θ ϕ ϕ       -+ -+                     = - - - -                   (14) 176 where ra RA L K K EI = , rb RB L K K EI = , 3 la LA L K K EI = , 3 lb LB L K K EI = and 177 ( ) ( ) 1 2 3 sinh sinh 2 2 cosh cosh lb K G n n n n α θ θ θ θ   = -+ -     (15a) 178 ( ) ( ) 2 2 3 cosh sinh 2 2 cosh sinh lb K G n n n n α θ θ θ θ   = -+ -     (15b) 179 F o r R e v i e w O n l y 8 ( ) ( ) 3 2 3 sin sin 2 2 cos cos lb K G n n n n α ϕ ϕ ϕ ϕ   = - -+ -     (15c) 180 ( ) ( ) 4 2 3 cos sin 2 2 cos sin lb K G n n n n α ϕ ϕ ϕ ϕ   = -+ -     (15d) 181 ( )( ) ( ) 1 cosh cosh 1 sinh sinh 2 rb K F n n n θ θ θ θ = -+ (15e) 182 ( )( ) ( ) 2 sinh cosh 1 cosh sinh 2 rb K F n n n θ θ θ θ = -+ (15f) 183 ( )( ) ( ) 3 cos cos 1 sin sin 2 rb K F n n n ϕ ϕ ϕ ϕ = -- (15g) 184 ( )( ) ( ) 4 sin cos 1 cos sin 2 rb K F n n n ϕ ϕ ϕ ϕ = -+ (15h) 185
The vibration frequencies can be obtained by setting the determinant of the coefficient 186 matrix in Eq. ( 14) to zero and then solving the characteristic equation for the eigenvalues. 187

For the special case of buckling problem of an elastically restrained beam, the vibration 188 frequency ω is set to be zero in Eq. ( 4). As a result, Eqs. [START_REF] Wang | Buckling of nonlocal columns with 624 allowance for selfweight[END_REF] 

K K n n n n A K K A n n A K K G G A n n K F F n α α ϕ ϕ ϕ ϕ α     -+               - - -     =     -     -               (19) 198
where 199 ( ) ( )

1 2 3 sin sin 2 2 cos cos lb K G n n n n α ϕ ϕ ϕ ϕ   = - -+ -     (20a) 200 ( ) ( ) 2 2 3 cos sin 2 2 cos sin lb K G n n n n α ϕ ϕ ϕ ϕ   = -+ -     (20b) 201 ( )( ) ( ) 1 cos cos 1 sin sin 2 rb K F n n n ϕ ϕ ϕ ϕ = -- (20c) 202 ( )( ) ( ) 2 sin cos 1 cos sin 2 rb K F n n n ϕ ϕ ϕ ϕ = -+ (20d) 203 
The buckling load can be obtained by setting the determinant of the coefficient matrix in 204 [START_REF] Wang | On boundary conditions for 650 buckling and vibration of nonlocal beams[END_REF] to zero and then solving the characteristic equation for the lowest positive root. 205 

Eringen's Nonlocal Beam Model (ENBM)

( ) ( ) 4 2 2 2 2 2 4 2 0 c c d w d w EI Pl A l P A w dx dx ρ ω ρ ω - + + - = for 0 < x < L (21) 210
where w is the transverse displacement, x the longitudinal coordinate with its origin at end A 211 of the beam, ω the angular vibration frequency of the beam, l c (=e 0 a) the small length scale 212

parameter , e 0 the small length scale coefficient and a the internal characteristic length. 213

The general solution is given by [START_REF] Wang | Structural Vibration: Exact Solutions for Strings, Membranes, 659 Beams, and Plates[END_REF] 214

1 2 3 4 cosh sinh cos sin x x x x w C C C C L L L L ξ ξ ζ ζ = + + + (22) 215 where C 1 , C 2 , C 3 , C 4 are constants and 216 F o r R e v i e w O n l y 10 ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 4 1 2 1 γ α αγ γ α ξ αγ Ω + + Ω - -Ω + = - (23a) 217 ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 4 1 2 1 γ α αγ γ α ζ αγ Ω + + Ω - + Ω + = - (23b) 218 with c l L γ = .

219

The boundary conditions for nonlocal beam with elastically restrained ends are given by 220 [START_REF] Zhang | Bending, buckling, and vibration of 603 micro/nanobeams by hybrid nonlocal beam model[END_REF][START_REF] Wang | Structural Vibration: Exact Solutions for Strings, Membranes, 659 Beams, and Plates[END_REF] 

( ) ( ) ( ) 3 2 2 2 3 0 0 0 0 c c LA x x d w dw EI Pl A l P K w dx dx ρ ω = =     - + + + =         at 0 x = (24a) 222 ( ) ( ) 2 2 2 2 2 0 0 0 0 c c RA x x d w dw EI Pl A l w K dx dx ρ ω = =     - + - =         at 0 x = (24b) 223 ( ) ( ) ( ) 3 2 2 2 3 0 c c LB x L x L d w dw EI Pl A l P K w L dx dx ρ ω = =     - + + - =         at x L = (24c) 224 ( ) ( ) 2 2 2 2 2 0 c c RB x L x L d w dw EI Pl A l w L K dx dx ρ ω = =     - + + =         at x L = (24d) 225 221 
By substituting the general solution given by ( 22) into the four boundary conditions [START_REF] Wang | Applied Elasticity[END_REF], 226 we obtain four homogeneous equations which may be expressed as 227

( ) ( ) 2 2 2 2 1 2 2 2 2 2 2 2 2 2 3 1 2 3 4 4 1 2 3 4 1 1 1 1 0 1 1 la la ra ra K K C K K C C G G G G C F F F F ξζ ξ ζ αγ αγ ξ ζ ξ ζ γ ζ ξ γ αγ αγ   -   - -           + - -+ - =     - -               (25) 228 where 229 2 1 2 cosh sinh 1 lb K G ξ ξζ ξ αγ = -- (26a) 230 2 2 2 sinh cosh 1 lb K G ξ ξζ ξ αγ = -- (26b) 231 F o r R e v i e w O n l y 11 2 3 2 cos sin 1 lb K G ζ ξ ζ ζ αγ = -- (26c) 232 2 4 2 sin cos 1 lb K G ζ ξ ζ ζ αγ = - -- (26d) 233 ( ) 2 2 2 1 2 sinh cosh 1 1 rb K F ξ ξ ξ ξ ζ γ αγ = + + - (26e) 234 ( ) 2 2 2 2 2 cosh sinh 1 1 rb K F ξ ξ ξ ξ ζ γ αγ = + + - (26f) 235 ( ) 2 2 2 3 2 sin cos 1 1 rb K F ζ ζ ζ ζ ξ γ αγ = -+ -- (26g) 236 ( ) 2 2 2 4 2 cos sin 1 1 rb K F ζ ζ ζ ζ ξ γ αγ = -+ + - (26h) 237
By setting the determinant of the above coefficient matrix to zero and solving the 238 characteristic equation, one obtains the natural frequencies of the nonlocal Euler beam with 239 ends having rotational springs K ra , K rb and lateral springs K la , K lb . 240

Buckling of beams under an axial compressive load 241

For the special case of buckling of an ENBM under an axial compressive load P (see Fig. 1), 242 the angular vibration frequency ω in Eq. ( 21) is set to be zero and the governing equation 243 simplifies to 244 ( )

4 2 2 4 2 0 c d w d w EI Pl P dx dx - + = for 0 < x < L (27) 245
Since the general solution for displacement parameter w in Eq. ( 22) leads to 246 computational instability when determining the buckling load of the nonlocal beam, we 247 instead adopt the following general solution [32] 248

1 2 3 4 2 2 cos sin N N x w C x C x C C L L L α α = + + + where 2 2 N c PL EI Pl α = - (28) 249
The four constants C i (i = 1, 2, 3, 4) can be evaluated by the two boundary conditions at 250 each end of the beam. 251 From Eq. ( 28), the axial load parameter α can be written as 252 At the two elastically restrained ends, the boundary conditions for buckling ENBM are 256

given by [18] 257 ( ) ( )

3 2 3 0 0 0 0 c LA x x d w dw EI Pl P K w dx dx = =     - + + =         at 0 x = (31a) 258 ( ) 2 2 2 0 0 0 c RA x x d w dw EI Pl K dx dx = =     - - =         at 0 x = (31b) 259 ( ) ( ) 3 2 3 0 c LB x L x L d w dw EI Pl P K w L dx dx = =     - + - =         at x L = (31c) 260 ( ) 2 2 2 0 c RB x L x L d w dw EI Pl K dx dx = =     - + =         at x L = (31d) 261
By substituting the general solution (28) into these four boundary conditions [START_REF] Goldberg | Introduction to Difference Equations: With Illustrative Examples from 677 Economics[END_REF], we 262 obtain four homogeneous equations which may be expressed as 263 

N N N rb N N N rb K K C K K C C K K K K C K K K α α α α α α α α α α α α α α         - - -     =     - - - -           - - -   (32) 264
By setting the determinant of the foregoing coefficient matrix to zero and solving the 265 resulting characteristic equation, one obtains the buckling load of the nonlocal Euler beam 266 with ends having rotational spring constants K ra , K rb and lateral spring constants K la , K lb . 267

Calibration of Eringen's small length scale coefficient e0

268 Challamel et al. [START_REF] Challamel | Analytical length scale calibration of 608 nonlocal continuum from a microstructured buckling model[END_REF][START_REF] Challamel | Discrete systems behave as nonlocal structural 612 elements: bending, buckling and vibration analysis[END_REF][START_REF] Challamel | Nonlocal equivalent continua for buckling and 615 vibration analyses of microstructured beams[END_REF] argued that the small length scale coefficient e 0 of ENBM may be 269 calibrated by using the microstructured beam model (or the DBM). The reason is that the 270 DBM shows similar characteristics to ENBM in the following respects: 271

• Both have stresses/deflections as functions of strain/deflections of neighbouring 272 points.

273

• Both yield lower bound solutions to the solution for the local continuum beam model. 274

• Both have the same mathematical forms of continualized governing equations [START_REF] Challamel | Nonlocal equivalent continua for buckling and 615 vibration analyses of microstructured beams[END_REF]. 275

To calibrate Eringen's small length scale coefficient e 0 , we match the buckling load and 276 fundamental frequency of the DBM with those of ENBM as well as setting the internal 277
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13 characteristic length a of the two models to be the same. There are, however, basically two 278 approaches for the matching exercise depending on either making e 0 a constant or allowing it 279 to vary. These two approaches will be designated as: 280

• Approach 1 -allow e 0 to vary; 281

• Approach 2 -keep e 0 constant and use the discrete system as the reference system 282 with modified boundary conditions in the continualized discrete form (see Eq. ( 36)). 283 To calibrate Eringen's small length scale coefficient e 0 , we shall match the buckling load 310 obtained by solving Eq. ( 19) of the DBM with that obtained by solving Eq. ( 32) of ENBM. 311

Table 1 presents some sample values of Eringen's small length scale coefficient e 0 as 312 calibrated from this Approach 1 for the buckling problem of ENBM considered. It is worth 313 noting that the end stiffnesses K rb = 2, K lb =10 -3 lead to a maximum value of e 0 = 0.419 314 whereas K rb = 10 4 , K lb = 13 lead to a minimum value of e 0 = 0.154 as shown in Table 1. Since 315 the variation of e 0 depends on the end spring stiffnesses K rb and K lb , the graphical relationship 316 between e 0 and K rb , K lb is shown in Fig. 7. 317 In this section, we shall consider the vibration problem of beams with clamped-elastically-345 restrained ends as shown in Fig. 5. By using the governing equation ( 21) and boundary 346 conditions [START_REF] Wang | Applied Elasticity[END_REF] for the ENBM, Approach 1 furnishes a variation of Eringen's small length 347

scale coefficient e 0 with respect to spring stiffnesses. However, in the special case of a 348 cantilever, e 0 could not be calibrated as the vibration frequency parameter does not show any 349 variation with respect to the internal characteristic length of the ENBM. This problem is due 350 to the nonself-adjointness of Eringen's model as discussed in Ref. [START_REF] Challamel | 681 On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: 682 31 correction from a discrete-based approach[END_REF]. To remedy this 351 problem, the general boundary conditions (in Eq. ( 24)) have to be modified as 352 

( ) ( ) ( ) 3 2 2 2 3 0 0 0 0 c c LA x x d w dw EI Pl A l P K w dx dx ρ ω = =     - + + + =         for 0 x = (33a) 353
K ra = K la = K lb = ∞, K rb =
K ra = K la = ∞, K rb = K lb =
0 RA x x d w dw EI K dx dx = =     - =         for 0 x = (33b) 354 ( ) ( ) ( ) 3 2 2 2 3 0 c c LB x L x L d w dw EI Pl A l P K w L dx dx ρ ω = =     - + + - =         for x L = (33c) 355 2 2 0 RB x L x L d w dw EI K dx dx = =     + =         for x L = (33d) 356
By substituting the general solution [START_REF] Wang | Structural Vibration: Exact Solutions for Strings, Membranes, 659 Beams, and Plates[END_REF] into these four boundary conditions [START_REF] Challamel | 681 On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: 682 31 correction from a discrete-based approach[END_REF], we 357 obtain the revised four homogeneous equations which may be expressed as 358 To calibrate Eringen's small length scale coefficient e 0 , we shall match the fundamental 378 frequency obtained by solving Eq. ( 14) of the DBM with that obtained by solving Eq. ( 34) of 379 the ENBM. Table 2 presents some sample values of e 0 calibrated from Approach 1 for free 380 vibrating (α = 0) of clamped-elastically-restrained ENBM. It is worth noting that the end 381 stiffnesses K rb = 10 4 , K lb = 160 lead to a maximum value of e 0 = 0.989 and K rb = 10 -3 , K lb = 3 382 lead to a minimum value of e 0 = 0.580 as shown in Table 2. It can be seen that the variation 383 of e 0 depends on the end spring stiffnesses K rb and K lb . The relationship between e 0 and K rb , 384 K lb is shown graphically in Fig. 10. 385 Apparently, this result contradicts that 0 1/ 6 0.408 e = ≈ [START_REF] Challamel | Nonlocal equivalent continua for buckling and 615 vibration analyses of microstructured beams[END_REF] for free vibration beam 395 problems, irrespective of boundary conditions. 396 Table 3 presents the values of e 0 calibrated from Approach 1 for vibrating of clamped-397 elastically-restrained ENBM subjected to an axial load α = π 2 /8. It is interesting to find that 398 the presence of axial load will decrease the value of e 0 . Similar to the free vibration problem, 399 the increase of the rotational spring stiffness K rb leads to a monotonous increase of e 0 . 400 
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K ra = K rb = 0, K la = K lb = ∞ Discrete beam
Ω Ω Ω Ω 1 (b)
Clamped-Clamped: Eringen's small length scale coefficient e 0 has already been analytically proven to be a 420 constant value for the buckling problem irrespective of the boundary conditions. If we choose 421

K ra = K la = K rb = K lb = ∞
to keep e 0 constant and match the buckling loads or fundamental frequencies between the 422 DBM and the ENBM, we need to adopt the discrete system as the reference system and the 423 modified boundary conditions for the ENBM as argued by Challamel et al. [START_REF] Challamel | Discrete systems behave as nonlocal structural 612 elements: bending, buckling and vibration analysis[END_REF][START_REF] Challamel | 681 On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: 682 31 correction from a discrete-based approach[END_REF] and Zhang 424 et al. [START_REF] Zhang | Obtaining Eringen's length scale 685 coefficient for vibrating nonlocal beams via continualization method[END_REF]. 425

The modified boundary conditions for the ENBM should take the similar form as the 426 discrete boundary conditions in Eq. ( 5) but in a continualized sense given by 427

( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 2 2 2 0 0 2 2 LA EI P w a w a w a w a w a w a K w a a - + --- + -- + =         (36a) 428 ( ) ( ) ( ) ( ) ( ) 2 2 0 0 2 RA K EI w a w w a w a w a a a - + - - -- =         (36b) 429 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 2 2 2 0 2 2 LB EI P w L a w L a w L a w L a w L a w L a K w L a a + - + + -- - + + - - - =         430 (36c) 431 ( ) ( ) ( ) ( ) ( ) 2 2 0 2 RB K EI w L a w L w L a w L a w L a a a + - + - + + - - =         ( 
36d) 432

Buckling ENBM 433

Consider first the buckling problem. The governing equation is given by Eq. ( 27) and 434 modified boundary conditions by Eq. ( 36). The substitution of the general solution (28) of 435 ENBM into the four boundary conditions [START_REF] Wang | Vibration of carbon nanotubes studied using nonlocal 691 continuum mechanics[END_REF] yields four homogeneous equations which may 436 be expressed in a matrix form as follows 437 

3 2 3 3 1 2 2 3 1 2 3 3 4 1 2 2 sin 2 2 cos cos 1 sin 0 0 2 2 0 2 N N la la N N ra ra lb lb rb K K n n n n n n C K K C n n n n C K K G G C n n K F F n α α α α α α α     -+                   - - -     =       -   -               ( 
N N lb N N K G n n n n α α α α α   = - -+ -       (38a) 440 2 2 3 cos sin 2 2 cos sin N N lb N N K G n n n n α α α α α   = -+ -       (38b) 441 1 cos cos 1 sin sin 2 N N rb N N K F n n n α α α α   = --       (38c) 442 2 sin cos 1 cos sin 2 N N rb N N K F n n n α α α α   = -+       (38d) 443
By allowing the determinant of the coefficient matrix in Eq. ( 37) to vanish and solving 444 the characteristic equation for the lowest positive root, one obtains the buckling load of the 445 ENBM with rotational spring constants K ra , K rb and lateral spring constants K la , K lb . Note that 446 the coefficient matrix in Eq. ( 37) is very similar to that in Eq. ( 19) in Section 5. However, the 447 third column of the coefficient matrix in Eq. ( 19) is n times of that in Eq. [START_REF] Zhang | Silicon nanotubes: Why not? 694[END_REF]. Therefore the 448 determinant of the former is n times of the latter. Since the buckling load is calculated by 449 setting the determinant to be zero, the buckling load obtained by these two approaches should 450 be the same provided that 451 4 sin 2

N n n α α   =       ( 

41) 456

An asymptotic expansion shows that 457 4 sin 1 2 12

N N N n n n α α α α     = = - +          

L for very large n (42) 458

The analytical solution for the small length scale coefficient e 0 can be obtained by 459 comparing Eq. ( 42) and Eq. ( 29) and using Pade's approximation, thereby furnishing 460 43) applies for all boundary conditions for the buckling problem because only 462 the characteristic equations are used in the foregoing derivation. However, it is necessary that 463 n should be sufficiently large so as to make the solution accurate. For simply-supported 464 beams, Challamel et al. [START_REF] Challamel | Analytical length scale calibration of 608 nonlocal continuum from a microstructured buckling model[END_REF] have already obtained the same small length scale coefficient 465 0 1/ 12 e = by making use of the analytical buckling solution. 466 Table 4 presents the calibrated Eringen's small length scale coefficients e 0 for buckling 467 problems obtained from Approach 1 and Approach 2. As discussed above, n should be 468

adequately large so that one can obtain the accurate e 0 by using the curve fitting method. 469 
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Vibrating ENBM 473

Next, we consider the vibration problem of ENBM. The governing equation of motion is 474 given by Eq. ( 21) and the boundary conditions by Eq. [START_REF] Wang | Vibration of carbon nanotubes studied using nonlocal 691 continuum mechanics[END_REF]. By substituting the general 475 solution [START_REF] Wang | Structural Vibration: Exact Solutions for Strings, Membranes, 659 Beams, and Plates[END_REF] of ENBM into the four boundary conditions [START_REF] Wang | Vibration of carbon nanotubes studied using nonlocal 691 continuum mechanics[END_REF], the following four 476 homogeneous equations may be expressed as 477

3 2 3 2 1 2 3 1 2 3 4 4 1 2 3 4 sinh 2 2 cosh sin 2 2 cos 0 cosh 1 sinh cos 1 sin 2 2 la la ra ra K K C n n n n n n n n C K K C n n n n n n G G G G C F F F F ξ α ξ ζ α ζ ξ ξ ζ ζ       -+ -+                     = - - - -                   (44) 478 1 2 3 sinh sinh 2 2 cosh cosh lb K G n n n n ξ α ξ ξ ξ   = -+ -     (45a) 479 2 2 3 cosh sinh 2 2 cosh sinh lb K G n n n n ξ α ξ ξ ξ   = -+ -     (45b) 480 F o r R e v i e w O n l y 24 3 2 3 sin sin 2 2 cos cos lb K G n n n n ζ α ζ ζ ζ   = - -+ -     (45c) 481 4 2 3 cos sin 2 2 cos sin lb K G n n n n ζ α ζ ζ ζ   = -+ -     (45d) 482 1 cosh cosh 1 sinh sinh 2 rb K F n n n ξ ξ ξ ξ   = -+     (45e) 483 2 sinh cosh 1 cosh sinh 2 rb K F n n n ξ ξ ξ ξ   = -+     (45f) 484 3 cos cos 1 sin sin 2 rb K F n n n ζ ζ ζ ζ   = --     (45g) 485 4 sin cos 1 cos sin 2 rb K F n n n ζ ζ ζ ζ   = -+     (45h) 486
By setting the determinant of the coefficient matrix in Eq. ( 44) to zero and solving the 487 characteristic equation for its roots, one obtains the natural frequencies of the ENBM with 488 springs K ra , K rb , K la and K lb . In order to match the natural frequencies of the DBM with those 489 of ENBM (i.e., by comparing Eqs. ( 44) and ( 14)), we have 490

nθ ξ = (46a) 491 nϕ ζ = (46b) 492
In view of Eq. ( 46), for purely free vibration problem (α = 0), Eq. (11a) could be 493 expressed as 494 51) applies for all boundary conditions and vibration modes because only the 504 characteristic equations are used in the foregoing derivation. There is also a condition that n 505 should be sufficiently large in order to get accurate value of e 0 . For simply-supported beams, 506

Wang et al. [START_REF] Wang | Calibration of Eringen's small length 618 scale coefficient for initially stressed vibrating nonlocal Euler beams based on 619 microstructured beam model[END_REF] have derived the analytical solution for the small length scale coefficient 507

0 0 1 1 6 12 m e σ σ =
in the presence of an initial stress σ 0 = P/A. 508

For vibrating beams under an axial compressive load that is equal to the buckling load, 509 the fundamental frequency of the ENBM becomes zero, i.e., cr α α = and 1 0 Ω = . For this 510 case, to match the fundamental frequency of the DBM with that of ENBM (i.e., by comparing 511

Eqs. ( 44) and ( 14)), Eqs. (46a) and (46b) should also be satisfied. 512 However, for vibrating beam under buckling load, Eq. (11a) becomes 513 56) applies for buckling of beams with all boundary conditions. There is also a 523 condition that n should be sufficiently large to ensure that e 0 is accurate. 524 Table 5 presents the calibrated Eringen's small length scale coefficients e 0 for vibration 525 problems of beams with different boundary conditions obtained from Approach 1 and 526 Approach 2. Note that the boundary conditions in Table 5 are the same as those in Table 4. It 527 can be seen that Approach 2 gives a constant e 0 for free vibration problem, irrespective to the 528 boundary conditions, which agrees with the finding by Challamel et al. [START_REF] Challamel | Nonlocal equivalent continua for buckling and 615 vibration analyses of microstructured beams[END_REF]. However, the 529 value of e 0 is dependent on the axial load for both Approach 1 and Approach 2. This may 530 imply that the presence of axial compressive load reduces the rigidity of the beam so that the 531 e 0 value changed. 532 Taking pinned-pinned end restraints as an example, from Wang et al. [START_REF] Wang | Buckling analysis of micro-688 and nano-rods/tubes based on nonlocal Timoshenko beam theory[END_REF], we have the 541 ratio between the buckling load of the nanobeam and that of the classical or local Euler-542

Bernoulli beam given by 543 where P N is the buckling load of the nanobeam and P E the buckling load of the classical Euler 545 beam. 546

From Wang et al. [START_REF] Wang | On boundary conditions for 650 buckling and vibration of nonlocal beams[END_REF], the ratio between the free vibration frequency of the pinned-547 pinned nanobeam and that of the classical or local Euler-Bernoulli beam is expressed as 548 is the mode number [START_REF] Wang | Structural Vibration: Exact Solutions for Strings, Membranes, 659 Beams, and Plates[END_REF]. Here we consider single-walled carbon nanotube (CNT) and single-555 walled silicon nanotube (SNT) and the characteristic lengths or bond lengths are taken as 556 a CNT = 0.142nm [START_REF] Wang | Vibration of carbon nanotubes studied using nonlocal 691 continuum mechanics[END_REF] and a SNT = 0.225 nm [START_REF] Zhang | Silicon nanotubes: Why not? 694[END_REF]. 557

Figure 12 shows the buckling load ratios of CNT and SNT of different lengths. It can be 558 seen that when the length of the nanobeam is larger than 9nm, the buckling results obtained 559 from the nonlocal theory are nearly the same as the results obtained from the local theory. 560

Besides, nanobeam of material with larger bond length (i.e., SNT) has lower buckling load 561 and converges to the local Euler beam slower. Therefore, nonlocal theory could 562 accommodate material with larger bond length better. 563 564 Fig. [START_REF] Duan | Development of analytical vibration 627 solutions for microstructured beam model to calibrate length scale coefficient in 628 nonlocal Timoshenko beams[END_REF] Buckling load ratios of CNT and SNT of different lengths 565

Figure 13 shows the first to fourth mode free vibration frequency ratios of CNT and SNT 566 of different lengths. As shown in the figure, the upper limit of the length of nanobeam 567 increases as the vibration mode number increases. Specifically, the upper limit of the length 568 is about 9nm for the first mode, 11nm for the second mode, 12nm for the third mode and 569 14nm for the fourth mode. Therefore, nonlocal theory has a good applicability on material of 570 larger bond length and nanobeam on a higher vibration mode. 571 
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  the equivalence between the Hencky bar-chain model (or the 70 microstructured beam model) and the central finite difference beam model for a general beam 71
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 53 Fig. 3 Finite difference beam model with elastic end restraints 119
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 44 Fig.[START_REF] Zhang | Bending, buckling, and vibration of 603 micro/nanobeams by hybrid nonlocal beam model[END_REF] Hencky bar-chain model with elastic end restraints 140
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 61 Vibration of beams under an axial compressive load 207The governing equation for the vibration problem of an ENBM under an axial compressive 208 load P (see Fig.1) is given by [4] 209

  , α N can be expressed in terms of α as 254

7. 1 Fig. 5 Fig. 6

 156 Fig. 5 Nonlocal clamped-elastically-restrained beam 296By solving Eq. (19), one obtains the dimensionless buckling load parameter α cr = P cr L 2 /EI 297 of the DBM. In Fig.6, we present sample results for the case when n = 100 for various 298 rotational spring stiffnesses K rb and lateral spring stiffnesses K lb at the right end. It can be 299 seen that the buckling load parameter varies with respect to the rotational and lateral spring 300 stiffnesses. When K rb = 10 -3 and K lb = 10 -3 , we approach the case of a cantilever beam since 301 the right end is nearly free. When K rb = 10 4 and K lb = 10 4 , we approach the case of a 302 clamped-clamped beam since the right end is almost fully clamped. Moreover, K rb = 10 -3 , K lb 303 = 10 4 represents clamped-pinned case and K rb = 10 4 , K lb = 10 -3 represents clamped-sliding 304 case. 305 306
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 78 Fig. 7 Variation of Eringen's small length scale coefficient e 0 for buckling of clamped-324 elastically-restrained ENBM with various spring stiffnesses K rb and K lb 325 It can be seen that if one adopts Approach 1, e 0 varies from 0.154 to 0.419 for the 326 buckling problem of clamped-elastically-restrained ENBM depending on the spring 327 stiffnesses. This result contradicts the value of e 0 found by Challamel et al. [8], which showed 328 that 0 1/ 12 0.289 e = ≈ , irrespective of boundary conditions. So Approach 1 is not 329 recommended for the calibration of e 0 . 330 Fig. 8(a)-8(f) show how well the buckling load parameters of the DBM match with those 331 of the corresponding ENBM having the e 0 values shown in the figures. It can also be seen 332 that the buckling load parameter increases monotonically with respect to the number of 333 segments n and approaches to the buckling load value of the local Euler beam asymptotically. 334

  K ra = K la = K rb = ∞, K lb = 0Discrete beam model Nonlocal Euler beam with e 0 = 0Restrained:K ra = K la = ∞, K rb = K lb = 40Discrete beam model Nonlocal Euler beam with e 0 = 0.303

Fig. 9
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 10 Fig. 10 Variation of Eringen's small length scale coefficient e 0 for free vibrating of clamped-391 elastically-restrained ENBM with various spring stiffnesses K rb and K lb 392 If one adopts Approach 1, it is found that e 0 varies from 0.580 to 0.989 for vibration 393 problem of clamped-elastically-restrained ENBM depending on the spring stiffnesses. 394
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  . (49) into Eq. (50) and using Pade's approximation, one obtains

  ω N is the vibration frequency of the nanobeam and ω E the vibration frequency of the 550 classical Euler beam. 551As discussed in Section 7.2, 0 1/ 12 e = for buckling problem and 0 1/ 6 e = for purely 552 free vibration problem. For pinned-pinned Euler beam, the buckling load parameter
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 101113 Fig. 10 Variation of Eringen's small length scale coefficient e 0 for free vibrating of clampedelastically-restrained ENBM with various spring stiffnesses K rb and K lb

Table 1

 1 Sample values of Eringen's small length scale coefficient e

	0 obtained from Approach

Table 2

 2 Sample values of Eringen's small length scale coefficient e 0 obtained by Approach 1

	386					
	387	for free vibrating of clamped-elastically-restrained ENBM	
		K lb	10 -3	10 -1	K rb 20	10 2	10 4
		10 -3	0.603	0.611	0.798	0.814	0.819
		10 -1	0.601	0.609	0.795	0.812	0.816
		3	0.580	0.586	0.739	0.754	0.758
		10 2	0.713	0.717	0.906	0.944	0.955
		160	0.682	0.685	0.913	0.971	0.989
		10 4	0.629	0.631	0.786	0.816	0.823
	388					

Table 3

 3 Values of Eringen's small length scale coefficient e 0 obtained by Approach 1 for

	401					
	402	vibrating of clamped-elastically-restrained ENBM subject to α = π 2 /8
		K lb	10 -3	10 -1	K rb 20	10 2	10 4
		10 -3	0.497	0.507	0.672	0.685	0.688
		10 -1	0.497	0.507	0.671	0.683	0.687
		3	0.507	0.512	0.636	0.648	0.650
		10 2	0.661	0.665	0.845	0.883	0.894
		160	0.639	0.642	0.852	0.907	0.925
		10 4	0.602	0.604	0.749	0.778	0.785
	403					
	404	Fig. 11(a)-11(f) show the excellent agreement of fundamental frequency parameters
	405	obtained from the DBM and ENBM with the listed values of e 0 for different boundary
	406	conditions. It can also be seen that the fundamental frequency parameter increases
	407	monotonically with respect to the number of segments n and asymptotes to the fundamental
	408	frequency value of the local Euler column.		

Table 4

 4 Comparison of calibrated Eringen's small length scale coefficients e 0 for buckling 470 problems between Approach 1 and Approach 2 for different boundary conditions 471

	Boundary conditions	Small length scale coefficient e 0 Approach 1 Approach 2
	PP (K ra	

Table 5

 5 Comparison of calibrated Eringen's small length scale coefficients e

	0 obtained by

Upper limit of applying Eringen's nonlocal theory

  

	537	
	538	As is known, the Eringen's nonlocal theory was proposed to account for the small scale
	539	length effect. Naturally, one may question that what is the upper limit of the length of
	540	nanobeam that Eringen's nonlocal theory could apply?

Table 1

 1 sensible value of e 0 than Approach 1 and therefore it is recommended for the 589 calibration of Eringen's small length scale coefficient e 0 of ENBM. 590The upper limit of the length of nanobeam that Eringen's nonlocal theory could apply is 591 also investigated herein. It is found that when the bond length of material is larger and the Sample values of Eringen's small length scale coefficient e 0 obtained from Approach 1 for buckling of clamped-elastically-restrained ENBM

	e 0 is

Table 2

 2 Sample values of Eringen's small length scale coefficient e 0 obtained by Approach 1 for free vibrating of clamped-elastically-restrained ENBM

	K lb	10 -3	10 -1	K rb 20	10 2	10 4
	10 -3	0.603	0.611	0.798	0.814	0.819
	10 -1	0.601	0.609	0.795	0.812	0.816
	3	0.580	0.586	0.739	0.754	0.758
	10 2	0.713	0.717	0.906	0.944	0.955
	160	0.682	0.685	0.913	0.971	0.989
	10 4	0.629	0.631	0.786	0.816	0.823

Table 3

 3 Values of Eringen's small length scale coefficient e 0 obtained by Approach 1 for vibrating of clamped-elastically-restrained ENBM subject to α = π 2 /8

	K lb	10 -3	10 -1	K rb 20	10 2	10 4
	10 -3	0.497	0.507	0.672	0.685	0.688
	10 -1	0.497	0.507	0.671	0.683	0.687
	3	0.507	0.512	0.636	0.648	0.650
	10 2	0.661	0.665	0.845	0.883	0.894
	160	0.639	0.642	0.852	0.907	0.925
	10 4	0.602	0.604	0.749	0.778	0.785

Table 4

 4 Comparison of calibrated Eringen's small length scale coefficient e 0 for buckling problem between Approach 1 and Approach 2 for different boundary conditions

	Boundary conditions	Small length scale coefficient e 0 Approach 1 Approach 2
	PP (K ra	

Table 5

 5 Comparison of calibrated Eringen's small length scale coefficients e 0 obtained by using Approach 1 and Approach 2 for vibration problems of beams with various boundary conditions

	Boundary	e 0 for free vibration (α = 0)	e 0 for vibration with α = π 2 /8
	Conditions	Approach 1	Approach 2	Approach 1	Approach 2
	PP	0.408	0.408	0.395	0.395
	CC	0.819	0.408	0.785	0.399
	CP	0.628	0.408	0.601	0.398
	CF	0.603	0.408	0.497	0.770
	CS	0.819	0.408	0.688	0.375
	CE	0.770	0.408	0.715	0.377
	EE	0.584	0.408	0.574	0.397
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Re: Eringen's small length scale coefficient for vibration of axially loaded nonlocal Euler beams with elastic end restraints by C.M. Wang, H. Zhang, N. Challamel 
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The authors greatly appreciate the reviewers' comments and suggestions on our manuscript. We have revised the manuscript accordingly and highlighted the changes in yellow colour in the track changes version. Our replies to the reviewers' comments and suggestions are summarized below.

Authors' Response to Reviewer #1

Reviewer's Comment: It is truly hard to understand "The general solution given in Eq. ( 22) and Eq. ( 28) are valid for the governing equation ( 21) and ( 27), respectively while there are no ranges of the general solutions." In mathematics and structural mechanics, a general solution for an equation or a modeling share the same definition of valid domains. The solutions in Eqs. ( 22) and ( 28) are only valid for L>x>0, which is a fundamental understanding.

Authors' response: The authors deeply appreciative the reviewer's comments. The reviewer is correct.

For a classical continuum problem, the differential equation to be solved is defined in a domain (0, L), and the boundary conditions should apply at x = 0 and x = L. For the lattice problem, we use fictitious nodes outside the domain, for i = -2, -1, n+1 and n+2. This is equivalent to the fictitious nodes method used in finite difference scheme, where the order of the scheme is the same for the boundary and inside the domain (see for instance Collatz, 1960). This method is equivalent to prolonging the domain outside its physical boundary, and to assume the prolongation requirement w-= w + . The nonlocal boundary conditions obtained by continualization of the lattice equations are defined in an extended domain using w(-2a), w(-a), w(L+a) and w(L+2a).

Collatz L., The numerical treatment of differential equations, Springer-Verlag, 1960.

Response to Reviewer #2

Reviewer's Comment 1: In this paper, vibration and buckling of nanobeams are studied using stress gradient elasticity theory of Eringen and a discrete model. Nonlocal coefficient is calibrated for different problems using discrete model. The subject of the manuscript is interesting and suitable for the journal. Similar subject is considered by the authors for different problems. The manuscript is recommended for publication after considering following commnets.

Authors' response: The authors are deeply appreciative of the reviewer's positive comments. The domains for the governing equations ( 2), ( 21) and ( 27) have been changed.

Reviewer's Comment 2: 2-Some more references can be added related with the subject.

Authors' response: The relevant papers have been cited on Line 59-61 and Line 63-67 on Page 2 and the revised text reads as This method has been recently applied to calibrate e 0 for buckling and vibration problems of nonlocal Euler beams with allowance for selfweight [START_REF] Wang | Buckling of nonlocal columns with 624 allowance for selfweight[END_REF], nonlocal Timoshenko beams [START_REF] Duan | Development of analytical vibration 627 solutions for microstructured beam model to calibrate length scale coefficient in 628 nonlocal Timoshenko beams[END_REF][START_REF] Zhang | Eringen's small length scale coefficient for 631 buckling of nonlocal Timoshenko beam based on microstructured beam model[END_REF][14] and nonlocal rectangular plates [START_REF] Zhang | Eringen's length scale coefficient for buckling of 637 nonlocal rectangular plates from microstructured beam-grid model[END_REF][START_REF] Zhang | Eringen's length-scale coefficients for vibration 640 and buckling of nonlocal rectangular plates with simply supported edges[END_REF][START_REF] Challamel | Buckling and vibrations of 643 microstructured rectangular plates considering phenomenological and lattice-based 644 nonlocal continuum models[END_REF].

Wang et al. [START_REF] Wang | Treatment of elastically restrained 647 ends for beam buckling in finite difference, microstructured and nonlocal beam 648 models[END_REF] calibrated the small length scale coefficient e 0 for buckling problem of a beam with elastically rotationally restrained ends. In a very recent work by Wang et al. [START_REF] Wang | On boundary conditions for 650 buckling and vibration of nonlocal beams[END_REF], the small length scale coefficient e 0 for buckling problem of a beam with elastically restrained ends was discussed.

Reviewer's Comment 3: 3-Choosing a dimensional length for nanobeams would be interesting in order to see the upper limits of the theory and discrete model.

Authors' response: The analyses about the upper limits of the nonlocal theory (or discrete model) are given by the added Section 8. The authors think the "upper limit" is for the length of nanobeam that Eringen's nonlocal theory could apply. If the reviewer means differently, please explain more. Thanks.

We once again thank the reviewers for their insightful comments and we hope that the revised manuscript is acceptable for publication in Journal of Modeling in Mechanics and Materials. Thank