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Abstract

The indocyanine green (ICG) clearance, presented as plasma disappearance rate is, presently, a re-

liable method to estimate the hepatic “function”. However, this technique is not instantaneously

available and thus cannot been used intra-operatively (during liver surgery). Near-infrared spec-

troscopy enables to assess hepatic ICG concentration over time in the liver tissue. This article

proposes to extract more information from the liver intensity dynamics by interpreting it through

a dedicated pharmacokinetics model. In order to account for the different exchanges between the

liver tissues, the proposed model includes three compartments for the liver model (sinusoids, hepa-

tocytes and bile canaliculi). The model output dependency to parameters is studied with sensitivity

analysis and solving an inverse problem on synthetic data. The estimation of model parameters

is then performed with in-vivo measurements in rabbits (El-Desoky et al. 1999). Parameters for

different liver states are estimated, and their link with liver function is investigated. A nonlinear

(Michaelis-Menten type) excretion rate from the hepatocytes to the bile canaliculi was necessary to

reproduce the measurements for different liver conditions. In case of bile duct ligation, the model

suggests that this rate is reduced, and that the ICG is stored in the hepatocytes. Moreover, the

level of ICG remains high in the blood following the ligation of the bile duct. The percentage of

retention of indocyanine green in blood, which is a common test for hepatic function estimation,

is also investigated with the model. The impact of bile duct ligation and reduced liver inflow on

the percentage of ICG retention in blood is studied. The estimation of the pharmacokinetics model

parameters may lead to an evaluation of different liver functions.
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1. Introduction

Liver function can be evaluated with blood sample analysis, quantifying the increase of biliru-

bine for example. The indocyanine green (ICG) is a dye eliminated exclusively by the liver (Alander

et al. (2012); Hoekstra et al. (2013)). Therefore it is used for determining liver function. At the

moment, a reliable method to estimate global hepatic “function” is the ICG clearance, presented5

as plasma disappearance rate. In fact, this biomarker combines the effect of liver perfusion and

functions. Blood analysis requires time and therefore is not instantaneously available during liver

surgery. The liver surgeries (partial hepatectomy and liver transplantation) are the only curative

treatments for advanced liver disease. The principal lethal complications after these surgeries are the

post-operative liver failure, after major partial hepatectomy, and the small-for-size syndrome, after10

partial liver transplantation (Tucker and Heaton (2005)). Both complications are related to a poor

pre- or intra-operative evaluation of the function of the remnant or transplanted liver. Therefore a

tool for the intra-operatively assessment of liver function is interesting for the clinics.

Liver function can be divided into two steps: the uptake by the liver cells (the removal of the com-

pound from the sinusoids blood) and the secretion from the cells into the bile. A good understanding15

of ICG processing by liver may improve the liver function assessment and help clinical decision. This

article proposes to improve knowledge on ICG processing by the liver, in healthy and pathological

situations, based on mathematical modeling and numerical simulations.

Several modeling works exist on transport and diffusion of various compounds (tracer, antibiotic,

hormone) in the liver (Schwen et al. (2014)), using pharmacokinetics models and including the whole-20

body PBPK (physiologically based pharmacokinetics) (Schwen et al. (2015)), or for tumor detection

with Magnetic Resonance Images modeling (Bezy-Wendling et al. (2007)). Recently, a compart-

ment model that included metabolism of ammonia detoxification has guided the identification of a

therapeutic strategy for liver disease (Ghallab et al. (2016)).

Regarding ICG, its concentration in the blood circulation has been studied based on pharma-25

cokinetics models. A minimal physiological model for liver uptake and excretion rate estimation has

been developed by (Weiss et al. (2011)), that includes compartments for pulmonary circulation, sys-

temic circulation, gut and liver. Parameter estimation has been based on arterial ICG concentration

over time in dogs that are awake and under anesthesia. The ICG clearance traditional sensitivity to

sinusoidal clearance uptake and canalicular excretion rates has been studied. Since anesthesia tends30
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to decrease cardiac output, the impact of a reduced flow on the estimated parameter has been also

analyzed. Their results suggest that ICG uptake is limited by sinusoidal clearance uptake capacity

and bile excretion, and not by blood flow. The ICG plasma disappearance rate has been largely

studied. In particular, a two-compartment pharmacokinetics model validated on healthy liver has

been proposed by (Grainger et al. (1983)). The same model has been subsequently studied for pa-35

tients with liver cirrhosis, and a tri-exponential function to better describe the elimination of ICG

from plasma has been proposed by (Burns et al. (1991)). Two fractions of ICG contained in dye

preparations have been taken into account by (Ott et al. (1994)), suggesting that the two fractions

disappearing rates are different. Measurements in pigs have been performed, and two types of model

have been considered, including or not a temporary storage compartment to determine if taking into40

account extrahepatic, extravascular distribution is required to explain the measurements. A four

compartments model has been proposed to explain measured plasma disappearance and biliary ex-

cretion of ICG in dogs chronically intoxicated with dimethylnitrosamine (Kawasaki et al. (1984)).

Plasma to liver transfer rate constant was found significantly smaller in intoxicated animals. In

all these models, the liver is represented with a single compartment, and therefore the exchanges45

between the different liver tissues are not modeled. The pharmacokinetics of ICG in cancerous

tumor has been modeled by (Alacam et al. (2006)). After tumor cell injection under the skin of

rats, the pharmacokinetics parameters have been estimated with ICG tumor tissue concentration

measurements, using the extended Kalman filter. The exchange rate between blood and tissue was

estimated, and edematous and necrotic tissue rates were compared. The model parameters may be50

useful for tumor differentiation.

Finally, the liver tissue ICG concentration has been less studied than plasma disappearing rate. Hep-

atic ICG concentration over time on rabbit liver has been measured with near-infrared spectroscopy

(Shinohara et al. (1996); El-Desoky et al. (1999)). The measurement curves have been fitted with

the sum of two exponential functions. Two parameters have been estimated, one interpreted as55

accounting for liver perfusion and dye uptake from plasma and a second for dye removal from the

liver (accounting for bile secretion and bile flow). The changes of uptake and excretion parameters

due to different treatments (colchicine, vessel occlusion ...) have also been analyzed (El-Desoky et al.

(1999)).

This article focuses on a precise description of the ICG processing by the liver, including three60

compartments for the liver model (sinusoids, hepatocytes and bile canaliculi). Contrary to previous

works, this model enables to precisely quantify the different exchanges between liver tissues, i.e. ICG
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uptake from sinusoids to hepatocytes and ICG excretion from hepatocytes to bile canaliculi. These

exchanges are related to different liver functions, thus a precise quantification of the two exchanges

may give information on the underlying pathology; e.g. portal thrombosis, which impedes the inflow65

to the liver, and bile duct obstruction are two pathologies impacting different functions of the liver.

The model is based on ordinary differential equations and parameters are estimated with an inverse

problem resolution based on the unscented Kalman filter. The model output sensitivity to parame-

ters is studied and the inverse problem resolution is verified on synthetic data. Then, the estimation

of model parameters is performed on the measurements from (El-Desoky et al. (1999)) in rabbits.70

They are estimated for different liver states, and their link with liver function is investigated. The

model predictions are then tested under different liver hypoperfusions, representing hepatic artery

or portal vein inflow obstructions. The proposed model, its sensitivity to data and its validation are

then discussed, along with ICG clinical aspects. This article proposes to extract more information

from the liver ICG concentration dynamics than is currently done by interpreting it through a dedi-75

cated pharmacokinetics model. The estimation of the pharmacokinetics model parameters may lead

to a finer evaluation of liver functions.

2. Methods

2.1. Indocyanine green pharmacokinetics model

The presented model aims at representing the transport of indocyanine green (ICG) (a fluorescent80

dye) in blood and its processing by the liver. After blood injection ICG exits the body exclusively

through liver (Alander et al. (2012); Hoekstra et al. (2013)). The ICG goes through the liver,

composed by mainly three types of tissue; a) blood vessels, in particular the sinusoids, which are

the smallest blood vessels of the liver, where exchanges occur, b) hepatocytes, which are the liver

cells, that take ICG from the sinusoids blood and secrete it into the bile, and c) bile canaliculi, small85

canals that transport bile to the common bile duct out of the liver.

To represent the ICG concentration dynamics over time, a pharmacokinetics model based on a

compartmental structure is developed. The compartments are the sinusoids, the hepatocytes, the

bile canaliculi and the rest of the blood circulation (Figure 1).

The compound is assumed to be injected in the rest of the blood circulation. Then, due to90

the double perfusion of the liver, ICG is transported in blood to the liver through the hepatic

artery (HA) and the portal vein (PV), and reaches the hepatocytes through smaller vessels, the

sinusoids. A passive exchange is assumed between sinusoids and hepatocytes. This exchange has
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been characterized by two parameters by (Weiss et al. (2011)). Assuming a passive exchange is

similar to assuming that these two parameters are equal. ICG is secreted from the hepatocytes into95

the bile canaliculi, with a process assumed active and possibly saturating (De Gasperi et al. (2016)).

The saturation is modeled by parameter S in the following equations. If the product of S and the

concentration in the hepatocytes is significantly higher than 1, then the secreted amount of ICG is

independent of the hepatocytes ICG concentration. The usual Michaelis Menten parameters Vmax

and Km can be expressed as a function of S and Qhb parameters as follows: Vmax = Qhb/(VhS) and100

Km = 1/S. Our choice of parameters (which is unusual) is detailed and discussed in section 4. Then,

if not taken by the hepatocytes ICG exits the liver through the hepatic veins and returns to the

rest of the blood circulation, or it reaches the common bile duct, carried with the bile through the

bile canaliculi and biliary tree. The liver ICG amount is assumed to be the sum of the amounts in

sinusoids, hepatocytes and bile canaliculi compartments. Figure 1 shows a schematic representation105

of the model. Notation for parameters and concentrations are summarized in Table 1. The model

described above is defined by the following equations

d

dt
(VbloodCblood) = (Fha + Fpv)Cs − (Fha + Fpv)Cblood

d

dt
(VsCs) = (Fha + Fpv)Cblood − (Fha + Fpv)Cs −Ksh(Cs − Ch)

d

dt
(VhCh) = Ksh(Cs − Ch)− Qhb

1 + SCh
Ch

d

dt
(VbcCbc) =

Qhb
1 + SCh

Ch − FbcCbc

(1)

and the liver ICG amount is defined as follows

VLCL = VsCs + VhCh + VbcCbc (2)

The state variables (dynamical model outputs) are thus chosen as the 4 component-vector y =

(VbloodCblood, VsCs, VhCh, VbcCbc) of the ICG amounts in each compartment.110

The non-linear system of equations (1) - (2) is solved with the IDA package, a part of SUNDIALS

(Suite of Nonlinear and Differential/Algebraic Equation Solver) (Hindmarsh et al. (2005)). The

time-integration is done with the Backward Differentiation Formula (BDF) method; the non-linear

algebraic system is then solved with a Newton method.

2.2. Available data for parameter estimation115

(El-Desoky et al. (1999)) present typical indocyanine green curves of concentration over time in

the rabbit liver. The goal here is to use these measurements to identify the model parameters. The
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Table 1: Notation and units for parameters and variables of the mathematical model.

Notation Physiological meaning

blood Rest of blood circulation

s Sinusoids

h Hepatocytes

bc Bile Canaliculi

L Liver

Fha Hepatic artery flow rate (Volume/Time)

Fpv Portal vein flow rate (Volume/Time)

Vi Volume of ith compartment

Ci Concentration of ith compartment (arbitrary units AU)

Fi ith flow rate (Volume/Time)

Ksh Exchange coefficient between sinusoids and hepatocytes (Volume/Time)

Qhb Excretion coefficient from hepatocytes to bile canaliculi (Volume/Time)

S Saturation parameter (1/Concentration; 1/AU)

Vmax (= Qhb/(SVh) ) Michaelis Menten parameter for maximum rate at saturating concentration (AU/s)

Km (= 1/S ) Michaelis Menten parameter for concentration at which the rate is half-maximum (AU)
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Figure 1: Model schematic description. The plain black boxes indicate the 4 compartments. The dash-box

corresponds to the entire liver. The arrows indicate the direction of compound transfer. The parameters in blue are

the ones fixed with literature data or non-ICG measurements, and in red are the estimated parameters by the solution

of an inverse problem. The state variables are framed in green.
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parameters are not all estimated with the Unscented Kalman Filter: some are fixed from literature

or from non-ICG measurements, as detailed below and summarized in Table 2.

The curves from (El-Desoky et al. (1999)) are in arbitrary units. Thus, in this work, the amount120

unit is concentration arbitrary unit times volume in ml (AU.ml). (El-Desoky et al. (1999)) gave the

injected ICG quantity. However, since the concentration functions are in arbitrary units, the bolus

function is unknown. Here, the initial time (t=0s) is assumed to be just after the bolus injection in

the blood circulation. Therefore, a non-zero initial value for ICG amount in the blood compartment

is assumed, and the ICG amount in the other compartments is set to zero. Finally, (El-Desoky et al.125

(1999)) measured the hepatic artery and portal vein flows. Hence the parameters Fha and Fpv are

known (Figure 1 in blue, Table 2).

All compartment volumes are fixed based on the literature as follows (Figure 1 in blue, Table

2). The total circulating volume is assumed to be 56 ml/kg of the animal body weight (Diehl et al.

(2001)). The weight of the rabbit, considered by (El-Desoky et al. (1999)), is 2.9 kg in average.130

Therefore, the rabbit average blood volume is assumed equal to 160 ml. The rabbit liver weight is

reported to be 2.7% of body weight by (Webster et al. (1947)). The liver is mainly composed of

blood or water. Therefore, the liver mass density is chosen close to blood density (1 g/ml). Finally,

the rabbit liver volume estimation is 80 ml. (Hammad et al. (2014)) reports, in a hepatic lobule,

the sinusoids and the bile canaliculi volumes, in percentage of the tissue volume. The results are135

extended to the whole liver and the remaining volume is assumed to be the hepatocytes volume.

The estimated volumes are then, for the sinusoids, 12.3 ml, for the hepatocytes 65 ml and for the

bile canaliculi 2.7 ml. The remaining parameters to estimate are Ksh, Qhb, S and Fbc (Figure 1 in

red).

(El-Desoky et al. (1999)) collected data on 36 rabbits, separated in 6 groups. Here, two of140

these groups are used for parameter estimation; the control group and the bile duct ligation group.

ICG concentration time-curves are fitted for all groups with a sum of two exponential functions:

−Ae−αt+Be−βt (El-Desoky et al. (1999)). For the two parameters α and β the mean and standard

deviation are reported. Moreover, a typical curve (and only one) is drawn for each group. A and B

can be identified from it. The curves from the paper start from non-zero values. In this work, the145

amount of ICG in the liver at time t = 0s is assumed null, because the initial time is assumed to be

just after bolus injection. Thus, no ICG has arrived to the liver yet. To obtain observation curves

starting at zero, the curves from (El-Desoky et al. (1999)) are shifted in time. The shift in time does

not change α and β values, but new values for A and B = A are found. The α and β parameters
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Table 2: Fixed parameter values, from literature data or from non-ICG measurements reported by (El-Desoky et al.

(1999)).

Parameter Value

Vblood 160 ml

VL 80 ml

Vs 12.3 ml

Vh 65 ml

Vbc 2.7 ml

Fha 0.25 ml/s

Fpv 1.5 ml/s

are chosen, in the given range, such that the obtained curve is close to the curves presented by150

(El-Desoky et al. (1999)). For the control group α = 1.85 min−1 and β = 0.1 min−1, for the bile

duct ligation group α = 1.82 min−1 and β = 0.002 min−1 and in both groups A = 349 AU. The liver

ICG amount is obtained by multiplying the concentration curve by the estimated liver volume (80

ml). A Gaussian noise is added to take into account the measurement errors. Therefore, for the

inverse problem the observation confidence σ2
obs = 0.02 is known. The noise variance is chosen to155

mimic the level of noise observed by (El-Desoky et al. (1999)) in vivo data.

2.3. Sensitivity analysis

Sensitivity analysis aims at quantifying the sensitivity of the model output (observations) to the

model parameters. This tool helps to identify the parameters that are likely to be estimated or

not from the available observations. Two complementary sensitivity tools are used: the traditional160

sensitivity function and the generalized sensitivity function. Details about sensitivity function defi-

nitions and analysis can be found in (Thomaseth and Cobelli (1999); Miao et al. (2011); Bai et al.

(2007); Pant et al. (2014)).

A low traditional sensitivity function value, in a time interval, means that the state value is

insensitive to the parameter changes in this particular time interval (Bai et al. (2007)). Traditional165

sensitivity fails to consider parameters correlation, and hence generalized sensitivity functions are

also considered. Generalized sensitivity functions analysis reveals important correlation between

parameters, and the distribution over time of information on a parameter contained into the obser-

vations. Generalized sensitivity functions start at value zero and end at one. The increase is not
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necessary monotonic and oscillations can occur if important correlations between parameters exist.170

The time interval, where the sharpest increase appears in the generalized sensitivity function, is

where most information on the parameter is contained during the observations (Bai et al. (2007)).

In this work, the sensitivity functions are computed with the IDAS solver, which is a part of

SUNDIALS (Hindmarsh et al. (2005)). The two sensitivity tools are local analyses: the initially

chosen parameters impact the sensitivity functions. Therefore, the sensitivity analysis is performed175

for two different sets of parameters, representing two regimes of the dynamical system. The sensi-

tivity of ICG amount in the liver compartment (equation (2)) to the parameters Ksh, Qhb, S and

Fbc is studied. The other parameters are set as explained in section 2.2. The initial conditions are:

in the blood compartment VbloodCblood = 83 000 AU.ml and set to zero in the other compartments.

Two different parameter sets are studied to consider different types of observation curve.180

In the first case, a fast decrease of ICG in the liver occurs (Figure 2 (a) left), due to a low

saturation parameter S. The first parameter set of the synthetic observation curve is: Ksh = 1.0

ml/s, Qhb = 6.5 ml/s, S = 0.001 1/AU and Fbc = 0.05 ml/s. In the second case, a higher saturation

parameter is chosen (S = 0.2 1/AU), leading to a slower decrease of liver ICG amount (Figure 2 (b)

left). All the other parameters are the same. The two cases correspond to two different regimes :185

- Case 1: SCh << 1, the exchange coefficient
Qhb

1 + SCh
Ch is similar to QhbCh (linear in Ch , so

first-order kinetics)

- Case 2: SCh >> 1, the exchange coefficient
Qhb

1 + SCh
Ch is similar to Qhb/S (independent of

Ch, , i.e. zero-order kinetics)

The generalized sensitivity functions are plotted by pairs, assuming the other parameters are190

known. Analyzing generalized sensitivity functions two by two enables to better understand the

correlations between parameters.

2.4. Parameter estimation method

Sensitivity analysis informs about parameter estimation problem difficulties, according to avail-

able measurements. Once the set of parameters to be reasonably estimated is defined, an algorithm195

to find the parameter values based on the available measurements also needs to be selected. The

Unscented Kalman Filter (UKF) algorithm is here chosen for parameter estimation (see (Julier et al.

(1995)) for method details).

The Kalman filter is initially a state estimator for linear dynamical systems. For non-linear

systems various modifications of the Kalman filter have been proposed, e.g. the extended Kalman200
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filter and the unscented Kalman filter (Haykin et al. (2001); Simon (2010)). The Unscented Kalman

Filter (UKF) algorithm (Julier et al. (1995, 2000)) has been used for state and parameter estima-

tion for different dimensional systems (Moireau and Chapelle (2011); Bertoglio et al. (2012); Pant

et al. (2014, 2017)). The UKF algorithm consists of two steps: the state mean and covariance are

propagated in time, by solving the model equations, and the state mean and covariance are then205

corrected with the noisy measurements (model output transformation, called observations). Here,

the forward model is fast and easy to solve. Therefore the UKF algorithm technique is well-adapted.

The parameter estimation, in UKF, is based on a prior confidence. The two coefficients, σobs and

σinit, are standing for the confidence in the measurements and in the initial guess respectively. These

two coefficients may impact the UKF results. Therefore, in the next section, different initial guesses210

are considered with varying confidence. The parameter estimation method is used to estimate pa-

rameters from synthetic data (model observation with added noise) and from in-vivo data extracted

from (El-Desoky et al. (1999)).

Synthetic data are generated by choosing a set of parameters and solving the model equations (the

direct problem (1) - (2)). The resulting amount in the liver, with added noise, can thus be taken as215

a synthetic observation. If the inverse procedure works well, one should recover as estimated param-

eters the parameter set used for the direct problem (called true parameter). This procedure enables

to verify the method as well as inform on parameter identifiability issues. Similarly to sensitivity

analysis, two sets of parameters were chosen to generate two synthetic curves that correspond to

two different regimes. A Gaussian noise of zero mean and with a given variance is added to the220

direct problem solution (the given variance corresponds to σ2
obs = 0.02). The noise variance for

the synthetic cases is chosen to be the same as for the in-vivo data case, i.e. to mimic the level

of noise observed by (El-Desoky et al. (1999)). For all the inverse problems, the UKF algorithm is

performed three times in a row. First, UKF is performed with the initial guess and the confidence

parameter σ2
init = 1.0. Then, UKF is run again with the estimation of the first run as initial guess225

and a reduced confidence σ2
init = 0.5. Finally, the UKF is run a third time, with the estimates of

the second run and the confidence is decreased σ2
init = 0.3.

3. Results

In the next sections, the sensitivity of the liver amount (equation (2)) to the parameters of

interest is analyzed. Then, to verify the approach, the inverse problem is solved with noisy synthetic230

data as observation (meaning that the data are generated by the model itself, adding noise). The
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sensitivity analysis and the inverse problem are performed for two different regimes of the dynamical

system. Finally, measurement curves from (El-Desoky et al. (1999)) are the basis for estimating the

parameters of interest.

3.1. Sensitivity on synthetic data235

Case 1. The liver amount of ICG over time and the traditional sensitivity functions are shown in

Figure 2 (a) over 1500 seconds (= 25 minutes). The traditional sensitivity functions (Figure 2 (a)

right), for parameters Qhb, S and Fbc have a single peak (negative or positive). The peak position is

around when the ICG amount in the liver is maximal. The Ksh sensitivity function has two peaks

(one positive and one negative, smaller in absolute value). One at the beginning of the simulation, as240

for the other parameters, and one later in time. It reveals the instants where changes in parameters

have an important impact on model solution.

In Figure 3, generalized sensitivity functions (GSFs) are plotted over time, assuming two of the four

parameters are known. The oscillations in GSFs reveal correlations between parameters. Three of

the six plots have oscillations (Figure 3 D, E and F). The parameters Qhb, S and Fb are likely to be245

correlated. The sharp increase of GSF reveals that the first part of the ICG liver amount contains

most information about the Ksh parameter (between 0 and 200 seconds). Moreover, when the ICG

amount decreases significantly, the observation is most sensitive to Qhb, S and Fbc. Therefore,

some correlation between the parameters Qhb, S and Fbc is expected, since the same part of the

observation is the most sensitive to these parameters.250

Case 2. The traditional sensitivity function curves and liver amount of ICG are shown in Figure 2

(b) over 1500 seconds (=25 minutes). The traditional sensitivity functions have a single maximum

or minimum for all parameters. The extrema are, for Qhb and S, at the end of the simulation. Fbc

traditional sensitivity function values remain constant and far from zero after 200 seconds. This

time interval corresponds to the decrease in the observations curve (Figure 2 (b) left). Thus, the255

second part of the curve is more sensitive to Fbc parameter than the first part. The Ksh traditional

sensitivity function extremum is at the beginning of the simulation (Figure 2 (b) right), when the

liver ICG amount is maximal (Figure 2 (b) left). Therefore, the changes in parameter Ksh mainly

impact the first part of the ICG liver amount curve. The second part of the observations curve is

more sensitive to Fbc, Qhb or S changes.260

Figure 4 shows generalized sensitivity functions for pairs of parameters, when the two others are

known. S and Qhb GSFs present much higher values and oscillations (25 times) more than in the
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Figure 2: Traditional sensitivity function. Left: ICG amount in the liver over time. Right: Traditional sensitivity

functions for Ksh, Qhb, S and Fbc parameters.
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Figure 3: Case 1: Generalized sensitivity functions. Generalized sensitivity functions for two parameters, with

the two other parameters fixed, for all pairs of parameters Ksh, Qhb, S and Fbc. A: Fbc and S are fixed; B: Qhb and

S are fixed; C: Qhb and Fbc are fixed; D: Ksh and S are fixed; E: Fbc and Ksh are fixed; F: Ksh and Qhb are fixed.
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Figure 4: Case 2: Generalized sensitivity functions. Generalized sensitivity functions for two parameters, with

the two other parameters fixed, for all pairs of parameters Ksh, Qhb, S and Fbc. A: Fbc and S are fixed; B: Qhb and

S are fixed; C: Qhb and Fbc are fixed; D: Ksh and S are fixed; E: Fbc and Ksh are fixed; F: Ksh and Qhb are fixed.

previous case (Figure 4 E). Such GSFs reveal large correlations between the two parameters. Figure

4 D and F reveal small correlations and no oscillations appear in Figure 4 A, B and C.

The sharp increase of GSF suggests that, in the curve of liver ICG amount, most information,265

on Ksh, is contained in the increasing part of the curve, and the second part of the curve informs

on the S, Qhb and Fbc parameters.

In summary, the two cases have different sensitivity functions. However for both of them, Qhb

and S parameters are likely to be correlated (much more in the second case). Moreover, in the ob-270

servations curve, most information about Ksh is contained in the increasing part, and the decreasing

part contains information about the other parameters.
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Table 3: Initial guess, true parameter and final parameter estimations for the different inverse problems performed

in the first case (each time after three consecutive runs of UKF). The confidence in the estimation is also reported.

Number of estimated parameters: 4 for the 1st estimation; 3 for the 2nd and 3rd estimations.

Parameter Ksh (ml/s) Qhb (ml/s) S (1/AU) Fbc (ml/s)

Initial guess 10 65 0.01 0.5

True parameter 1.0 6.5 0.001 0.05

First estimation

Final estimate 0.87±0.0001 782 [635,963] 4.21 [3.32, 5.19] × 10−6 0.048±0.0001

Second estimation

Final estimate 0.98±0.001 7.8 [7.6, 8] 0.007 [0.006, 0.008] known

Third estimation

Final estimate known 6.52±0.001 0.005 [0.004, 0.006] 0.052±0.0001

3.2. Parameter estimation on noisy synthetic data

The inverse problem on synthetic data is performed to verify the approach and to confirm the

previous observations on sensitivity functions. The time step of the observations is 0.5s, and the275

final time is 1500s (= 25 min). The initial conditions are always set to the correct ones. The initial

amount in the blood compartment is set to VbloodCblood = 83 000 AU.ml and set to zero in other

compartments. For all estimation the initial guess is ((Ksh, Qhb, S, Fbc)0= (10.0, 65.0, 0.01, 0.5)).

Case 1. First, all parameters are estimated with three runs of the algorithm. The UKF results are280

shown in Figure 10 (see Appendix). Table 3 summarizes the final estimated values as well as the

confidence in the estimation. Ksh and Fbc are well estimated (Appendix, Figure 10 C and F), while

S and Qhb are poorly estimated (Appendix, Figure 10 D and E). The direct model equations are

then solved, fixing the parameters with UKF final estimates (Appendix, Figure 10 B) and compared

to the original curve: the observation curve is not perfectly fitted.285

Then, the same procedure is repeated, assuming the bile canaliculi flow parameter (Fbc) is known.

The final estimated values are presented in Table 3 (second estimation line). The results of the inverse

problems are shown in Figure 11 (see Appendix). For all parameters, the converged value is close to

the known value. Moreover, the observation curve is well fitted (Appendix, Figure 11 B). Parameter

estimation is thus improved when the bile canaliculi flow Fbc is known.290

Now, assuming the parameter Ksh is known, the other parameters are estimated with the same
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Table 4: Initial guess, true parameter and final parameter estimations for the different inverse problems performed in

the second case (each time after three runs of UKF). The confidence in the estimation is also reported. Number of

estimated parameters: 4 for the 1st estimation; 3 for the 2nd and 3rd estimations.

Parameter Ksh (ml/s) Qhb (ml/s) S (1/AU) Fbc (ml/s)

Initial guess 10 65 0.01 0.5

True parameter 1.0 6.5 0.2 0.05

First estimation

Final estimate 1.1±0.01 9.81 [9.8, 9.83]× 105 4.5 [3.7, 5.5]× 10−4 7.4[6.4, 8.6]× 104

Second estimation

Final estimate 1.0±0.001 18.4 [16.6, 20.3] 0.58 [0.52, 0.64] known

Third estimation

Final estimate known 5.9 [5.4, 6.6] 0.18 [0.16, 0.2] 0.052±0.001

procedure. Estimated parameters are close to the known values (Table 3, third estimation line). The

results are shown in Figure 12 (see Appendix). Parameter S is overestimated and the confidence

in this parameter is small in relative terms (the grey zone in Figure 12 E remains large over time,

Appendix). The observation curve is however well fitted (Appendix, Figure 12 B).295

Thus, with noisy synthetic observations (measurements), the four parameters cannot be esti-

mated. However if Ksh or Fbc are known the other parameters are estimated such that the noisy

measurement is well matched.

Case 2. The second regime of the dynamical system is now studied with the same procedure.

First, the inverse problem is performed to estimate all parameters (Appendix, Figure 13). Table 4300

summarizes the final estimated values and the confidence in the estimates. The estimated parameter

Ksh is close to the known value, while Qhb and Fbc estimates explode (Figure 13 D and F). Moreover,

the S parameter is poorly estimated (Figure 13 E). The observation curve is not correctly fitted as

shown in Figure 13 B (Appendix).

When Fbc is known, the inverse problems results are shown in Figure 14 (Appendix) and Table

4 sumarizes the estimated parameter values. Ksh is well estimated. However, Qhb and S are

overestimated. Computing the ratio
Qhb
S

, for the estimates and the known values, the following

results are obtained (
Qhb
S

)
estimate

= 31.7 ;

(
Qhb
S

)
known

= 32.5

From the sensitivity analysis, the parameter Qhb and S are expected to be correlated. The ratio of305
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the two estimated parameters is close to the known values ratio. Moreover, the observation curve is

well fitted, even with the overestimated parameters Qhb and S (Appendix, Figure 14 B). Therefore,

in this regime, it is likely that the observation is sensitive to the ratio
Qhb
S

, when Fbc is known.

Finally, Ksh is fixed, and estimation of the other parameters is performed with the same pro-

cedure; three runs of UKF algorithm (Appendix, Figure 15). Qhb and S estimations are a little310

underestimated but converge to close values of the known parameters (Table 4). Fbc is correctly

estimated (Table 4) and the observation curve is well fitted (Appendix, Figure 15 B).

As for the first regime, with noisy synthetic observation the four parameters cannot be esti-

mated and the observation curve is mismatched. When Fbc or Ksh are known, then the parameter

estimation is improved and the observations curve is well matched. When Fbc is known, the un-315

satisfactory estimation of S and Qhb but the good estimation of their ratio may be explained by

the high correlation between these two parameters in this regime, as shown by the sensitivity analysis.

In summary, according to the inverse problems on synthetic observation and to the sensitivity

analysis, the estimation of the four parameters is unlikely with the curve of ICG amount in the liver.320

However, fixing Fbc or Ksh leads to parameter estimation that results in well fitted observation

curves. The estimated parameters have the correct order of magnitude, however they are given

within a certain confidence and especially in the 2nd case, the set of parameters is not necessary

the original one. This shows that more than one parameter set can lead to model output within

the noise range of the measurement. In the next section the model parameters are estimated using325

two curves from in-vivo data (El-Desoky et al. (1999)): one curve belongs to the second case regime

(bile duct ligation group) while the second curve is similar to the first case regime curve (control

group). To estimate the model parameters for the bile duct ligation group curve the parameter Fbc

is fixed and for the control group, the parameter Ksh is fixed based on the estimation from the bile

duct ligation group.330

3.3. Parameter estimation on real data

According to the results of the inverse problem on noisy synthetic data, the four parameters are

unlikely to be all estimated. Therefore, first the parameters Ksh, Qhb, and S are estimated with

the bile duct ligation group curve. Indeed, for this group, the bile canaliculi flow rate is known; it

is equal to zero.335

To estimate the initial amount of ICG in blood compartment, several UKF algorithm runs are per-

formed, with the bile duct ligation group curve as observation. Fbc = 0 ml/s, thus no ICG exits the
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system, and the sum of ICG amounts in all compartments at the end of the simulation should be

equal to the initial injected amount. After several runs of UKF, the value VbloodCblood(t = 0) = 82960

AU.ml is found. This value is used for the rest of the simulations.340

The aim of this section is to obtain model parameters for both control and bile duct ligation

groups and to compare them. For the bile duct ligation group, the parameter Fbc is known (Fbc = 0

ml/s). The parameter Ksh is assumed not impacted by the bile duct ligation, so the two groups share

the parameter value Ksh. Under these assumptions, the estimated parameters differing between the345

two groups are S and Qhb. The parameter estimation procedure is the following:

1. Based on bile duct ligation group observation curve (with three runs of UKF), the parameters

Ksh, Qhb, S are estimated.

2. The parameter Ksh is fixed with the estimated value in 1. Then, based on control group

observation curve (with three runs of UKF), the parameters Qhb, S, Fbc are estimated.350

According to the synthetic data examples (and the sensitivity analysis) more than one set of

parameters lead to a well fitted noisy observation curve. To determine whether bile duct ligation

impacts the parameters, the procedure to estimate both group parameters is repeated 100 times

with different UKF initial guesses. The idea is to estimate ranges of parameters for both groups,

and determine if these ranges are distinct. The initial guesses are uniformly sampled in the following355

intervals, [10, 100] for Ksh, [0.01, 1] for Qhb, [0.001, 1] for S and [0.001, 0.01] for Fbc. Finally, as Ksh

is shared by both groups for each estimation procedure only S and Qhb are estimated separately for

each group. This procedure leads to several sets of parameter per group. Parameters S and Qhb

are related to the more commonly used Michaelis Menten parameters Vmax and Km. The latter are

compared between the two groups. Figure 5 displays the model simulations run with the different360

estimated parameter sets. The bile duct ligation observation curve is reproduced with the different

sets of parameters. Two groups of simulated curve appear for the control group: the first group

captures the first part of the observation curve better while the second captures better the last

part of the observation curve. Figure 6 (top) shows the histogram of the final estimates for Ksh

(estimated with the bile duct ligation group curve) and for Fbc (estimated with the control group365

curve). The estimated Ksh parameter is mostly between 12 ml/s and 20 ml/s (Figure 6 top left) or

smaller than 2 ml/s. Fbc is estimated, smaller than 0.5 ml/s or between 1 ml/s and 1.5 ml/s (Figure

6 top right). Both parameters Vmax and Km are larger in the control group compared with the bile

duct ligation estimation (Figure 6 bottom). In the control group two ranges of parameters appear:
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Figure 5: Measurement and model liver ICG amounts over time for the duct ligation group (left) and control

group (right). Groups data curve from (El-Desoky et al. (1999)) with added noise (grey dots), and forward problem

solutions (solid lines; one line per acceptable set of parameters found by the UKF algorithm).

Vmax is mostly smaller than 1 AU/s or between 8 AU/s and 14 AU/s; and Km is between 1 AU and370

5 AU or 1000 AU and 2000 AU. For bile duct ligation, parameter ranges are lower: Vmax is smaller

than 0.018 AU/s with two groups of values, one smaller than 0.004 Au/s and the second between

0.014 AU/s and 0.016 AU/s. Km is distributed like a Gaussian with most values between 0.5 AU

and 1.5 AU.

To qualitatively compare the different behaviors, one of the estimated sets of parameters is375

chosen in each group. The control group parameters are Ksh = 13.8ml/s, Qhb = 0.47ml/s, S =

0.00077AU−1, Fbc = 4.3ml/s, and for bile duct ligation group the parameter set isKsh = 13.8ml/s, Qhb =

0.28ml/s, S = 2.6AU−1, Fbc = 0.0ml/s. Finally, two more pathophysiological conditions from (El-

Desoky et al. (1999)) are used to further challenge the model: the hepatic artery (HA) occlusion

group and portal vein (PV) partial occlusion group. The four parameters are set to be the same as for380

the control set, and simulations with various inflows are performed. The liver inflow is decreased by

10% (corresponding to HA occlusion), by 25%, by 40% (corresponding to PV partial occlusion), by

70% and by 90%. The percentage of occlusion corresponding to HA and PV are computed with the

flow measurements reported in (El-Desoky et al. (1999)). The model solutions are plotted in Figure

7, along with the curve averages and standard deviations in the group of rabbits from (El-Desoky385

et al. (1999)). The model simulation global behavior is similar to the curves from the paper. Indeed,

compared to the control group, when the liver inflow is decreased (HA occlusion), the maximum

amount of ICG is reduced (Figure 7 C). Moreover, the time-to-peak (time at maximum value), is

increased. However, the large standard deviation of the portal vein partial occlusion group in the
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Figure 6: Histograms of parameters for the two groups, estimated with different initial guesses. Top

left: Ksh parameters, estimated with the bile duct ligation curve (parameter shared by both groups). Top right: Fbc

parameters, estimated with the control group curve. Comparison of estimated parameter ranges between the two

groups: Vmax (left) and Km (right) parameters, estimated with control (top blue) and bile duct ligation (bottom red)

curves.
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Figure 7: Model outputs and experimental observations for different liver inflows. A: ICG amount over

time obtained with the model for different inflows; B: Control group average measure (solid line red) +/- standard

deviation (grey zone) and control simulation (solid line black); C: Hepatic artery occlusion (solid black line) group

average measure +/- standard deviation (grey zone) and control group average measure (solid red line); D: Portal

vein partial occlusion (solid black line) group average measure +/- standard deviation (grey zone) and control group

average measure (solid red line). The measurements are from (El-Desoky et al. (1999)).

experiment from (El-Desoky et al. (1999)) shown in Figure 7 D, makes the results difficult to further390

analyze.

4. Discussion and conclusions

A mathematical model has been developed for the indocyanine green processing by the liver.

The liver amount sensitivity to parameters has been studied, and the inverse problem of estimating

model parameters from liver dynamical data has been performed.395

The mathematical model. In the model, some parameters is fixed from the literature. Others, such

as the inflows, are set based on the experimental data reported in (El-Desoky et al. (1999)). The

core parameters are then estimated from liver dynamical measurements, one curve for each patho-

physiological group. The experimental measurements are well fitted with the proposed model. The
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liver three-compartment representation enables a more precise description of ICG processing by the400

liver than previously. In the model proposed by (Shinohara et al. (1996)) and used by (El-Desoky

et al. (1999)), a single compartment describes the liver. Furthermore, that model does not take into

account a re-circulation of ICG through the hepatic veins. However, the measurements from (Ott

et al. (1994)) have confirmed that ICG exits the liver through the hepatic veins. The re-circulation

is taken into account in the model proposed by (Weiss et al. (2011)) and the complete blood cir-405

culation has been considered. However, the liver is then represented by a single compartment and

the available data are ICG concentration in arterial blood samples, contrary to the liver tissue ICG

concentration used here.

The three compartments in the liver are required to take into account the two exchanges of dif-

ferent nature: the exchange between sinusoids and hepatocytes, where no energy consumption is410

assumed, and the exchange between hepatocytes and bile canaliculi, where the transport is active,

with possible saturation. The simple passive exchange between sinusoids and hepatocytes is enough

to reproduce the measurement curves. The non-linearity for the exchange rate between hepatocytes

and bile canaliculi cannot be replaced with a constant exchange rate. As shown in Figure 16 in the

Supplementary material, neither zero-order nor first-order kinetics would be valid. In the control415

group, the excretion and excretion rate vary during the entire simulation time following the concen-

tration curve. In the bile duct ligation group, the excretion reaches a constant value immediately i.e

the saturated regime is rapidly reached. The non-linearity enables to reproduce different behaviors

of ICG dynamics in the liver.

420

Sensitivity analysis. Generalized sensitivity functions have indicated correlation between the three

parameters affecting the bile canaliculi compartment, Qhb, S and Fbc. Overall, the strongest cor-

relation is between Qhb and S, while the exchange rate Ksh between sinusoids and hepatocytes

seems uncorrelated from the others. Usually the excretion rate Qhb/(1 + SCh) is expressed as

Vmax/Km +Ch. Our choice was motivated by the sensitivity analysis that showed that the correla-425

tion was reduced (but still present) with the chosen formulation. The inverse problems on synthetic

curves tend to confirm the sensitivity analysis. Indeed, in the first case, when all parameters are

estimated, Fbc and Ksh are correctly estimated. Whereas S and Qhb estimates are unsatisfactory,

confirming that the correlation between these two parameters make their estimation difficult. The

next inverse problems have revealed that, adding information about what happens inside or goes430

out of the liver overall compartment, i.e. knowing Ksh or Fbc improves the estimation of the other
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parameters. In the first case, when Ksh is known, the saturation parameter S seems harder to

estimate than the other parameters. Moreover, the confidence in its estimation is small (Figure 12

E Appendix).

In the second case, which corresponds to a regime that rapidly transitions to zero-order kinetics, i.e.435

in which the term SCh becomes rapidly larger than 1, when all parameters are estimated only the

sinusoid-hepatocyte exchange rate Ksh is correctly estimated, which is coherent with the sensitivity

functions (Figure 4). When the bile canaliculi outflow Fbc is known in the second case, Ksh is still

correctly estimated and Qhb and S are overestimated. However, the ratio of these two parameters,
Qhb
S

, is well estimated. In addition, the observation curve is correctly fitted. This result confirms440

the correlation between Qhb and S, even if Fbc is known. In this regime, the observation is more sen-

sitive to the parameters ratio than to the parameters. Indeed, as rapidly during the simulation SCh

becomes greater than 1, it leads to
Qhb

1 + SCh
Ch ' Qhb/S. In addition, due to the added noise (and

correlations), more than one set of parameters can fit correctly the noisy observation curve. One

would need more precise data during the transition regime to estimate the parameters separately.445

To conclude, the inverse problems on noisy synthetic data have verified the method and confirmed

the sensitivity analysis conclusions: with the liver ICG amount as observation, it is difficult - maybe

ill-posed - to identify the four parameters. However, knowing Fbc or Ksh parameters, leads to an

estimation of the other parameters, with three runs of UKF algorithm, and the observation curve is

well fitted.450

Data measurements and model validation. Once the approach has been verified on synthetic data,

the in-vivo measurements from (El-Desoky et al. (1999)) have been used as observations. Since the

inverse problems and the sensitivity analysis have revealed that the four parameters are unlikely to

be all estimated, two individual curves, each from different pathophysiological groups, are used to455

identify the unknown parameters of the mathematical model. The bile duct ligation group curve

seems similar to the second regime type of curve. In that case, according to the inverse problem

on synthetic observations, the observation curve is well fitted when the bile canaliculi flow Fbc

parameter is known. Moreover, Fbc is known for this group since the bile duct has been ligated.

The control group curve is similar to the first regime curve. According to the inverse problems on460

synthetic observations to fix Ksh improves the parameter estimation. Therefore, these parameters

are fixed respectively for each group, and 100 estimation procedures have been performed to identify

parameter ranges for each group. The Michaelis Menten parameters are compared between the
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control and bile duct ligation groups. Both Vmax and Km are much smaller in the bile duct ligation

group compared with the control group estimations. Due to a reduction in Km, saturation (meaning465

when the reaction rate is proportionally close to Vmax) is reached for a smaller concentration in the

bile duct ligation group than in the control group. Indeed, in Supplementary Figure 16, the exchange

term peaks at 100 Au ml/s for the control group, quite far from the Vmax = Qhb/S ∼ 610 Au ml/s;

whereas for the bile ligation group, the exchange term is rapidly around 0.107 Au ml/s, exactly

the value of Vmax = Qhb/S, despite the fact that during that time period (less than 1 minute),470

the hepatic cell concentration is similar in both groups (Figure 8). According to the simulation

results, when saturation is reached, the excretion rate to bile canaliculi is reduced, in the case of

bile duct ligation (Supplementary Figure 16). ICG specific carriers are for example MDRP2 and

MDR3 (De Gasperi et al. (2016)). Inhibition from other compounds, which share the same carrier

as ICG, might explain the decrease of Vmax and Km parameters that are linked to a change in475

activity of enzyme and/or transporters for ICG (De Gasperi et al. (2016)). Indeed, the export

pumps for ICG are also required for bilirubin excretion among others (Boyer (2013). Therefore the

excretion rate is reduced, with the reduction of Km and Vmax (meaning saturation is reached for

smaller concentration and less ATP is available). In this work, Ksh is the same in both groups,

but this assumption should be confirmed by further analysis, based on experiments for example like480

proposed by (Reif et al. (2016)). Besides, only one experimental curve per group was published in

(El-Desoky et al. (1999)). Hence, the parameter variance (inter-subject variability) could not be

estimated within each group.

Thanks to the model, the impact of bile duct ligation on the different liver compartments can

be assessed (with the assumption that Ksh is the same for both groups). Figure 8 shows the ICG485

amount over time in the sinusoids, the hepatocytes and the bile canaliculi compartments for the

control and the bile duct ligation groups. In the control group simulation (solid lines), the bile

canaliculi compartment contains less ICG than in the bile duct ligation group (dash lines) after 8

minutes. In the control group the amount of ICG is higher in the hepatocytes than in the bile

canaliculi or in the sinusoids compartment. A second observation is that in the control group, the490

ICG quantity decreases over time in all compartments. Whereas, in the bile duct ligation group, the

ICG is stored in the hepatocytes, and as a consequence also remains in high amount in the sinusoids

(because of the balance between sinusoids and hepatocytes concentration). This leads to a large

amount of ICG in the rest of the blood circulation.

495
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Figure 8: Model simulations of ICG amount over time in the different compartments of the liver. ICG

amount over time of sinusoids, hepatocytes and bile canaliculi for the control simulation (solid lines) and the bile duct

ligation simulation (dash lines).
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The small decay in the bile duct ligation group measurement curve is not reproduced with the

model, by construction (Figure 5 left). This small decrease can be due to fluorescence light intensity

decay over time. Indeed, if the common bile duct is completely ligated, no ICG can exit the liver

within the bile, thus no decrease should appear in the curve. In the model, because the bile canaliculi

flow is set to zero (Fbc = 0) the system will reach a stationary state, in which the amount of ICG500

in the blood, in the sinusoids and in the hepatocytes compartments is null and the bile canaliculi

ICG amount is constant, equal to the initial injected amount. Since the initial amount is large, the

stationary state is not reached after 25 minutes. The convergence to analytic solution is verified

with a smaller initial amount and an increased final time. As a result, with Fbc = 0 in the proposed

model, the ICG amount in the liver never decreases. A small bile canaliculi flow, due to leakage of505

bile duct ligation can also explain the small decrease in the measurements. Taking into account this

decay in the model would likely result in a better estimation of the bile duct ligation group param-

eters. This would lead to a better fit of the control group as well, through a better estimation of Ksh.

Decreasing the liver inflow in the model, leads to the same behavior as the one reported in (El-510

Desoky et al. (1999)). However, the large standard deviation in the observation within rabbits of

the group with portal vein partial occlusion, makes the analysis difficult.

ICG and liver function evaluation. A common test to evaluate liver function is the percentage of

retention of indocyanine green in blood (Moody et al. (1974); Cooke et al. (1963)). After intravenous515

injection, serum ICG level is measured at several time-points up to 15 minutes. The level of ICG

in serum after 15 minutes informs on the hepatic function, and an elevated level is linked to an

abnormal liver function. With the proposed mathematical model, the percentage of indocyanine

green retention over time in the blood compartment, can be compared between different groups.

Three groups are considered: a control group, a bile duct ligation group, and a reduced liver inflow520

group. The simulation for the last group is performed with the control group parameters and a

70% liver inflow reduction (from 1.75 ml/s in the control group, it is reduced to 0.53 ml/s). Liver

inflow reduction can be due to portal thrombosis for example (Sacerdoti et al. (2007)). Figure 9

shows the percentage retention of ICG in blood over time for the different groups. The dynamics

of the first decrease is not different between the control and bile duct ligation groups, whereas the525

second decay is different (Figure 9). For the inflow reduction group, compared with the control

group, the differences appear after a few minutes. The plasma disappearance curve of ICG after a
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Figure 9: Model simulations of % of ICG remaining in blood over 15 min. The simulation is performed for

different groups: control group (solid red), bile duct ligation group (dash line black) and 70% inflow reduction group

(dash line green).

single intravenous bolus reported by (Kawasaki et al. (1984); Imamura et al. (2005)) has the same

behavior. ICG retention is 50% higher in the bile duct ligation group than in the inflow reduction

group. In addition, in both of these groups, the value is larger than in the control group.530

According to these results, if the unhealthy liver problem is related to bile secretion, for the first two

minutes the ICG retention should be similar to the “normal” value and then stagnate. Whereas,

if the problem is related to liver perfusion (porto-caval shunts, portal thrombosis, hepatic arterial

stenosis, etc), already after two minutes the percentage of ICG retention should be higher than for

a healthy liver.535

Extrapolation to clinical applications. In this work, model parameters were estimated from in-vivo

ICG fluorescence measurements on rabbit liver. The measurement of liver fluorescence after intra-

venous injection of ICG can be applied to the clinics, as proposed by (Kawaguchi et al. (2013)).

In our parameter estimation procedure one of the parameters, Ksh or Fbc, was known. Indeed, ac-

cording to the sensitivity analysis, with the observation of the fluorescence in the liver tissue not all540

parameters can be estimated. Therefore, to apply the method described above to clinical cases more

information is required. However, in patients with bile duct obstruction, the proposed method could
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be applied since the bile canaliculi flow (Fbc) is known. Nevertheless we think that performing in-

vitro or similar study to improve knowledge on ICG transport and excretion processes could enable

to determine some parameters of the model. We are currently working on measurement protocols to545

improve parameter estimations, together with liver surgeons (Bekheit and Vibert (2015)). For now,

real-time imaging of ICG fluorescence has been used during liver surgery for a number applications

(Bekheit and Vibert (2015)), e.g. to identify liver tissue zones with perfusion issues (Kawaguchi et al.

(2013)), to detect small superficial liver nodules and to distinguish malignant from benign lesions

(Lim et al. (2014)), to evaluate the liver condition at reperfusion during transplantation, etc. To550

our knowledge, the quantification of hepatic function with ICG fluorescence has not been performed

yet in the clinics. Combining this technique with a mathematical model and parameter estimation

procedure might provide a novel estimation of the liver function(s) peri-operatively. Moreover, it

could constitute an additional tool to quantify which function of the liver is affected and by how

much in drug-induced toxicity studies: animal studies have shown that drug-induced cholestasis can555

come from sinusoid-hepatocyte or hepatocyte-bile uptake and effluxes (Jansen and Sturm (2003)).

To conclude, the sensitivity analysis combined with solving the inverse problem on synthetic data,

provides a good understanding of model parameters dependency. The proposed three-compartment

model for the liver is able to reproduce the different types of measurements from (El-Desoky et al.

(1999)). According to the model and the parameter estimation procedure, saturation is reached for560

smaller concentrations in the bile duct ligation group than in the control group. This leads to a

reduced excretion coefficient from hepatocytes to bile canaliculi. The reduction of excretion of ICG

might be linked the competition of ICG with other compounds. To our knowledge it is the first

time that a sequential approach is chosen to solve an inverse problem based on ICG liver amount

over time, that leads to an estimation of pharmacokinetics parameter ranges for ICG. According565

to the numerical simulations, the liver inflow issue is likely to induce an initial deviation of ICG

percentage retention dynamics whereas a bile secretion issue is likely to cause a slowing down of

the ICG percentage retention decrease after a few minutes. Finally, mathematical modeling and

numerical simulation of ICG processing by the liver, are promising tools to improve knowledge on

the relation between ICG processing and hepatic “functions”.570
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D., Gebhardt, R., Hengstler, J.G., 2016. Model-guided identification of a therapeutic strategy to

reduce hyperammonemia in liver diseases. J Hepatol 64, 860–71. doi:10.1016/j.jhep.2015.11.

018.

Grainger, S., Keeling, P., Brown, I., Marigold, J., Thompson, R., 1983. Clearance and non-invasive

determination of the hepatic extraction of indocyanine green in baboons and man. Clinical science615

(London, England: 1979) 64, 207–212.

Hammad, S., Hoehme, S., Friebel, A., Von Recklinghausen, I., Othman, A., Begher-Tibbe, B., Reif,

R., Godoy, P., Johann, T., Vartak, A., et al., 2014. Protocols for staining of bile canalicular

and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and

quantification of tissue microarchitecture by image processing and analysis. Archives of toxicology620

88, 1161–1183.

Haykin, S.S., et al., 2001. Kalman filtering and neural networks. Wiley Online Library.

Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward,

C.S., 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM

Transactions on Mathematical Software (TOMS) 31, 363–396.625

Hoekstra, L.T., de Graaf, W., Nibourg, G.A.A., Heger, M., Bennink, R.J., Stieger, B., van Gulik,

T.M., 2013. Physiological and biochemical basis of clinical liver function tests: a review. Ann

Surg 257, 27–36. doi:10.1097/SLA.0b013e31825d5d47.

31

http://dx.doi.org/10.1046/j.1365-2168.1999.01186.x
http://dx.doi.org/10.1016/j.jhep.2015.11.018
http://dx.doi.org/10.1016/j.jhep.2015.11.018
http://dx.doi.org/10.1016/j.jhep.2015.11.018
http://dx.doi.org/10.1097/SLA.0b013e31825d5d47


Imamura, H., Sano, K., Sugawara, Y., Kokudo, N., Makuuchi, M., 2005. Assessment of hepatic

reserve for indication of hepatic resection: decision tree incorporating indocyanine green test.630

Journal of Hepato-Biliary-Pancreatic Sciences 12, 16–22.

Jansen, P.L., Sturm, E., 2003. Genetic cholestasis, causes and consequences for hepatobiliary trans-

port. Liver international 23, 315–322.

Julier, S., Uhlmann, J., Durrant-Whyte, H.F., 2000. Technical notes and correspondence : A new

method for the nonlinear transformation of means and covariances in filters and estimators. IEEE635

Transactions on automatic control 45, 477.

Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F., 1995. A new approach for filtering nonlinear

systems, in: American Control Conference, Proceedings of the 1995, IEEE. pp. 1628–1632.

Kawaguchi, Y., Ishizawa, T., Miyata, Y., Yamashita, S., Masuda, K., Satou, S., Tamura, S., Kaneko,

J., Sakamoto, Y., Aoki, T., et al., 2013. Portal uptake function in veno-occlusive regions evaluated640

by real-time fluorescent imaging using indocyanine green. Journal of hepatology 58, 247–253.

Kawasaki, S., Umekita, N., Beppu, T., Wada, T., Sugiyama, Y., Iga, T., Hanano, M., 1984. Hepatic

transport of indocyanine green in dogs chronically intoxicated with dimethylnitrosamine. Toxi-

cology and applied pharmacology 75, 309–317.

Lim, C., Vibert, E., Azoulay, D., Salloum, C., Ishizawa, T., Yoshioka, R., Mise, Y., Sakamoto,645

Y., Aoki, T., Sugawara, Y., et al., 2014. Indocyanine green fluorescence imaging in the surgical

management of liver cancers: current facts and future implications. Journal of visceral surgery

151, 117–124.

Miao, H., Xia, X., Perelson, A.S., Wu, H., 2011. On identifiability of nonlinear ode models and

applications in viral dynamics. SIAM Rev Soc Ind Appl Math 53, 3–39. doi:10.1137/090757009.650

Moireau, P., Chapelle, D., 2011. Reduced-order unscented kalman filtering with application to pa-

rameter identification in large-dimensional systems. ESAIM: Control, Optimisation and Calculus

of Variations 17, 380–405.

Moody, F.G., Rikkers, L.F., Aldrete, J.S., 1974. Estimation of the functional reserve of human liver.

Ann Surg 180, 592–8.655

32

http://dx.doi.org/10.1137/090757009


Ott, P., Keiding, S., Johnsen, A.H., Bass, L., 1994. Hepatic removal of two fractions of indocyanine

green after bolus injection in anesthetized pigs. Am J Physiol 266, G1108–22.

Pant, S., Corsini, C., Baker, C., Hsia, T.Y., Pennati, G., Vignon-Clementel, I.E., 2017. Inverse

problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation

and heart rate variability. Journal of The Royal Society Interface 14, 20160513.660
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Appendix690

For each parameter estimation, the displayed results are: the model observable evolution after

the UKF correction step (i.e. while the parameters are being estimated) (plot A), the solution of the

mathematical model (direct problem) with the final parameter estimates (plot B), and the evolution

in time of the geometric mean +/- geometric standard deviation of the 4 estimated parameters

(plots C, D, E, F). The observation curve is also plotted as well as the parameter values from the695

synthetic observation (known values). The parameters are correctly estimated if the estimated value

converges after some time to the known value of the parameter (represented in the following figures

with dash line). In addition the confidence in the estimated parameter is increased when the variance

is reduced (represented in the following figures by the grey zones).
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Figure 10: Case 1 with all parameters being estimated. A: ICG amount in the liver over time, observation

curve (grey) and results from UKF runs (solid line, first UKF run in blue, second UKF run in red and third UKF run

in green); B: ICG amount in the liver over time, observation curve (grey) and direct model solution with parameters

from the last UKF run estimation (black solid line). Evolution over time of geometric mean (solid line, first UKF run

in blue, second UKF run in red and third UKF run in green) and +/- geometric standard deviation (grey zone) of the

estimated parameters for: Ksh (C); Qhb (D); S (E) and Fbc (F). Parameter known values (synthetic data parameter

set) are plotted with dotted lines.
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Figure 11: Case 1 with the Fbc parameter being known. A: ICG amount in the liver over time, observation

curve (grey) and results from UKF runs (solid line, first UKF run in blue, second UKF run in red and third UKF run

in green); B: ICG amount in the liver over time, observation curve (grey) and direct model solution with parameters

from the last UKF run estimation (black solid line). Evolution over time of geometric mean (solid line, first UKF run

in blue, second UKF run in red and third UKF run in green) and +/- geometric standard deviation (grey zone) of

the estimated parameters for: Ksh (C); Qhb (D) and S (E). Parameters known values (synthetic data parameter set)

are plotted with dotted lines.
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Figure 12: Case 1 with the Ksh parameter being known. A: ICG amount in the liver over time, observation

curve (grey) and results from UKF runs (solid line, first UKF run in blue, second UKF run in red and third UKF run

in green); B: ICG amount in the liver over time, observation curve (grey) and direct model solution with parameters

from last UKF run estimation (black solid line). Evolution over time of geometric mean (solid line, first UKF run in

blue, second UKF run in red and third UKF run in green) and +/- geometric standard deviation (grey zone) of the

estimated parameters for: Qhb(D); S (E) and Fbc (F). Parameters known values (synthetic data parameter set) are

plotted with dotted lines.
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Figure 13: Case 2 with all parameters being estimated. A: ICG amount in the liver over time, observations curve

(grey) and results from UKF runs (solid line, first UKF run in blue, second UKF run in red and third UKF run in

green); B: ICG amount in the liver over time, observations curve (grey) and direct model solution with parameters

from last UKF run estimation (black solid line). Evolution over time of geometric mean (solid line, first UKF run in

blue, second UKF run in red and third UKF run in green) and +/- geometric standard deviation (grey zone) of the

estimated parameters for: Ksh (C); Qhb (D); S (E) and Fb (F). Parameters known values (synthetic data parameter

set) are plotted with dotted lines.
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Figure 14: Case 2: Fbc parameter is known. A: ICG amount in the liver over time, observation curve (grey) and

results from UKF runs (solid line, first UKF run in blue, second UKF run in red and third UKF run in green); B: ICG

amount in the liver over time, observation curve (grey) and direct model solution with parameters from last UKF

run estimation (black solid line). Evolution over time of geometric mean (solid line, first UKF run in blue, second

UKF run in red and third UKF run in green) and +/- geometric standard deviation (grey zone) of the estimated

parameters for: Ksh (C); Qhb (D) and S (E). Parameters known values (synthetic data parameter set) are plotted

with dotted lines.
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Figure 15: Case 2 with Ksh parameter being known. A: ICG amount in the liver over time, observation curve

(grey) and results from UKF runs (solid line, first UKF run in blue, second UKF run in red and third UKF run in

green); B: ICG amount in the liver over time, observation curve (grey) and direct model solution with parameters

from last UKF run estimation (black solid line). Evolution over time of geometric mean (solid line, first UKF run in

blue, second UKF run in red and third UKF run in green) and +/- geometric standard deviation (grey zone) of the

estimated parameters for: Qhb (D); S (E) and Fbc (F). Parameters known values (synthetic data parameter set) are

plotted with dotted lines.
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Supplementary material700

The ICG mathematical model proposed in this work and the sensitivity analysis tools are available

in open-access in the github repository https://github.com/caudebert/LiverICG-CompartmentModel.

The figure 16 gives information on the type of kinetics for the ICG transfer between hepatocytes

and bile canaliculi. As commented in the main text, both the exchange and exchange rate vary over

time in the control group. The behavior is closest to first-order kinetics (exchange rate does not705

vary much). By contrast, in bile duct ligation, saturation (zero-order kinetics) occurs very rapidly.

Hence, to capture all behaviors, a nonlinear model is needed.
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Figure 16: Hepatocytes - bile canaliculi exchange coefficient over time. The exchange term
Ch(t)Qhb

1 + SCh(t)
and

exchange rate
Qhb

1 + SCh(t)
over time for the control and bile duct ligation groups.
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