

Reliable Determination of Ge in Solid Environmental Samples Using a Chemical Preparation Procedure Developed for Si Isotopes and ICP-MS Analysis

Camille Delvigne, Abel Guihou, Bernard Angeletti, Isabelle Basile-Doelsch,

Jean-Dominique Meunier

▶ To cite this version:

Camille Delvigne, Abel Guihou, Bernard Angeletti, Isabelle Basile-Doelsch, Jean-Dominique Meunier. Reliable Determination of Ge in Solid Environmental Samples Using a Chemical Preparation Procedure Developed for Si Isotopes and ICP-MS Analysis. Geostandards and Geoanalytical Research, 2018, 42 (1), pp.139 - 149. 10.1111/ggr.12197 . hal-01695926

HAL Id: hal-01695926 https://hal.science/hal-01695926

Submitted on 18 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reliable determination of Ge using the silicon isotopes chemical preparation and ICP-MS analysis for solid environmental samples.

Journal:	Geostandards and Geoanalytical Research
Manuscript ID	GGR-0514.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Delvigne, Camille; Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement, Guihou, Abel; Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement Angeletti, Bernard; Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement Basile-Doelsch, Isabelle; Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement Meunier, Jean-Dominique; Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement
Keywords:	germanium, ICP-MS, reference materials, soils, plants, sample digestion, cation exchange purification

SCHOLARONE[™] Manuscripts

1	Reliable determination of Ge using the silicon isotopes chemical preparation and
2	ICP-MS analysis for solid environmental samples.
3	
4	
5	Camille Delvigne (1) *, Abel Guihou (1), Bernard Angeletti (1), Isabelle Basile-Doelsch (1), Jean-
6	Dominique Meunier (1)
7	(1) Aix-Marseille Univ, CNRS, IRD, Coll. de France, INRA, CEREGE, Europôle Mediterranéen de
8	l'Arbois BP 80 13545 Aix-en-Provence, cedex 4, France
9	
10	*Corresponding author. Email : <u>delvigne@cerege.fr</u>
11	
12	
13	
14	Keywords: germanium, ICP-MS, reference materials, soils, plants, sample digestion, cation exchange
15	purification
16	Mots clés: germanium, ICP-MS, matériaux de référence, sols, plantes, digestion d'échantillon,
17	purification cationique par résine échangeuse d'ions
18	

20	Germanium (Ge) exists at trace levels in the Earth's crust and is a powerful geochemical
21	tracer of the silicon (Si) cycle. This study proposes a simple and reliable method for
22	determining Ge contents in environmental samples using ICP-MS. As Si and Ge have very
23	similar chemical properties, we investigated the applicability of the chemical preparation
24	procedure developed for Si isotopes to the analysis of Ge in environmental samples.
25	Advantages of this procedure are: (1) efficient removal of the matrix and main interferences
26	affecting Ge analyses by ICP-MS; (2) a low limit of detection (6 ng l^{-1}); (3) relative
27	repeatability of approximately 3% obtained on ⁷⁴ Ge; and (4) robustness and accuracy based
28	on agreement within errors with the published Ge concentrations for rock standards (BHVO-
29	2, AGV-2 and BCR-2). This procedure allows revising the Ge concentrations for 3 soils
30	standards (1.67±0.09 μ g g ⁻¹ ; 2.41±0.18 μ g g ⁻¹ ; 1.89±0.10 μ g g ⁻¹ for GBW 07401, GBW 07404
31	and GBW 07407 respectively) and proposing a value for the ERM-CD281 plant standard
32	$(0.06\pm0.01 \ \mu g \ g^{-1})$. This method provides a convenient procedure for determining Ge
33	concentrations in environmental samples and opens the possibility of coupling two tracers of
34	the Si biogeochemical cycle with a single analytical procedure.
35	

1
2 3
4
5
6
7
8
9 10
11
12
13
14
15
10
18
19
20
21
22
$\begin{array}{c}2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\13\\14\\15\\16\\17\\18\\9\\20\\22\\23\\24\\25\\26\\7\\8\\9\\30\\1\\32\\33\\4\\56\\37\\38\\39\end{array}$
25
26
27
28
29
30 31
32
33
34
35
36
38
39
40
41
42
43 44
45
46
47
48
49 50
50 51
52
53
54
55
56
57 58
58 59
60

36	Résumé	

37	Le germanium (Ge), présent à des teneurs en trace dans la croute terrestre, est un traceur
38	géochimique performant du cycle du silicium (Si). Cette étude propose une méthode simple,
39	rapide et fiable pour déterminer les concentrations en Ge dans les échantillons
40	environnementaux par ICP-MS. Vu les propriétés géochimiques très similaires entre Ge et Si,
41	nous avons investigué la pertinence de la procédure de mise en solution et de purification
42	développée pour les isotopes du silicium à l'analyse du Ge dans des échantillons
43	environnementaux. Les avantages de cette technique sont : (1) une élimination efficace de la
44	matrice et des interférences principales affectant l'analyse du Ge par ICP-MS ; (2) une limite
45	de détection de 6 ng l ⁻¹ ; (3) une répétabilité relative de 3% obtenue sur l'isotope 74 Ge; (4) une
46	bonne fiabilité et justesse basées sur la concordance entre les valeurs de Ge publiées pour les
47	standards de roche (BHVO-2, AGV-2 et BCR-2) aux incertitudes près. Cette méthode a
48	permis de réévaluer les concentrations en Ge de 3 standards de sol (1.67 \pm 0.09 µg g ⁻¹ ;
49	2.41±0.18 μg g ⁻¹ ; 1.89±0.10 μg g ⁻¹ pour GBW 07401, GBW 07404 et GBW 07407
50	respectivement) et de proposer une valeur pour le standard de plante ERM-CD281 (0.06±0.01
51	$\mu g g^{-1}$). Cette méthode présente aussi le grand avantage de coupler deux traceurs du cycle du
52	silicium (à savoir les isotopes stables du silicium et le rapport Ge/Si), en une préparation
53	chimique unique.

1. Introduction

55	Germanium (Ge) exists at trace levels in the Earth's crust and is a powerful geochemical
56	tracer of the silicon (Si) cycle. Like Si, Ge is a Group IV element. Both elements have
57	identical outer electronic configurations and similar covalent radii (Ge: 1.22Å and Si 1.17Å;
58	Höll et al., 2007). The geochemistry of Ge is dominated by its propensity to substitute for Si
59	in silicate minerals, and thus closely follows Si through its biogeochemical cycle.
60	Fundamentals of high and low-temperature geochemistry of Ge are reviewed in Rouxel and
61	Luais (2017). To summarize, the Ge/Si ratio has been employed as a tracer of weathering
62	processes (e.g., Kurtz and Derry, 2004; Scribner et al., 2006; Opfergelt et al., 2010; Lugolobi
63	et al., 2010), hydrothermal and geothermal activity (e.g., Mortlock et al., 1993; Evans and
64	Derry, 2002), biological processes (e.g., Ellwood and Maher, 2003; Derry et al., 2005; Sutton
65	et al., 2010), and flow paths (e.g., Kurtz et al., 2011) in modern environments but also in
66	paleo-environmental studies (e.g., Filippelli et al., 2000; Hammond et al., 2004). The use of
67	Ge/Si has recently been extended to the study of the Archean Si cycle (e.g., Hamade et al.,
68	2003; Frei and Polat, 2007; Delvigne et al., 2012; 2016). Another facet of Ge environmental
69	research focuses on the potential economic resource of Ge in soils and plants as the Ge
70	demand for new technologies is exploding while Ge is rare in natural environments
71	(Rosenberg, 2009; Wiche et al., 2017). However, Ge content is often overlooked in the array
72	of analyzed elements. This arises from the analytical difficulties to obtain reliable data
73	because Ge concentrations in environmental samples are generally below the limit of
74	detection of many modern analytical methods. In addition, Ge suffers from various
75	interferences on its isotopes with ICP-MS techniques (mainly ⁵⁶ Fe ¹⁶ O on ⁷² Ge, ⁵⁷ Fe ¹⁶ O and
76	⁵⁶ FeH ¹⁶ O on ⁷³ Ge, and ⁷⁴ Se and ⁵⁸ Ni ¹⁶ O on ⁷⁴ Ge). Interferences due to iron oxides are
77	particularly problematic because some samples contain a few tenths of a percent of Fe while
78	Ge is present at a μ g g ⁻¹ level. The ⁵⁸ Ni ¹⁶ O interference is also an issue as it combines the

Page 5 of 27

79	most abundant Ni and O isotopes (⁵⁸ Ni=68%; ¹⁶ O=99%). In addition, Ar-based molecular
80	interferences (⁴⁰ Ar ¹⁶ O ₂ , ³⁶ Ar ³⁶ Ar and ³⁸ Ar ³⁶ Ar on ⁷² Ge, ⁷³ Ge and ⁷⁴ Ge, respectively) should
81	also be monitored. Germanium is then often qualified as a "tricky" element to analyze and is
82	not routinely determined in environmental samples.
83	The majority of studies published so far on Ge have been carried out using the isotope-
84	dilution hydride-generation ICP-MS technique (ID-HG-ICP-MS) developed by Mortlock and
85	Froelich (1996) (Fillipelli et al., 2000; Kurtz et al., 2002; Evans and Derry, 2002; Derry et al.,
86	2005; Wheat and McManus, 2005; Ellwood et al., 2006; Scribner et al., 2006; Blecker et al.,
87	2007; Makishima and Nakamura, 2009; Lugolobi et al., 2010; Sutton et al., 2010). This is
88	probably the most reliable and precise technique for Ge determination, although it requires a
89	hydride generation system, which is not widespread in laboratories. Alternative techniques
90	are: (1) graphite furnace atomic absorption spectrometry (GF-AAS) (McMahon et al., 2006);
91	(2) ICP-MS analysis with or without high resolution (Hamade et al., 2003 ; Delvigne et al.,
92	2009; Cornelis et al., 2010; Tribovillard et al., 2011); (3) laser ablation ICP-MS analysis
93	(Hamade et al., 2003; Shen et al., 2011; Belissont et al., 2014; Dong et al., 2015;); and (4) X-
94	ray fluorescence spectrometer analysis (Frei and Polat, 2007). While valid for most geological
95	samples, these techniques are working close to their limits of detection for environmental
96	samples, such as plants that commonly range from 0.07 to 20 ng g^{-1} (Derry et al., 2005;
97	Blecker et al., 2007; Delvigne et al., 2009; Cornelis et al., 2010; Lugolobi et al., 2010). One
98	option is to preconcentrate samples in order to reach concentrations above the detection
99	limits. This was investigated by Soylak and Yigit (2015), who suggested a separation-
100	preconcentration procedure using a polysulfone membrane filter combined with
101	spectrophotometric measurements. This method has the disadvantage of requiring specific
102	materials. For natural water samples, ID-HG-ICP-MS remains the only reliable technique
103	thanks to its high precision and unequaled low detection limits.

The objective of this study is to propose a simple and reliable alternative method determining Ge contents in solid environmental samples, with a notable focus on soils and plants using ICP-MS, a common instrument found in geochemistry laboratories. As silicon isotopes and Ge/Si ratios are complementary tracers of the Si biogeochemical cycle, we investigate the applicability of the chemical preparation procedure developed for silicon isotopes (Georg et al., 2006) to the analysis of Ge in solid environmental samples.

110 2. Experimental

111 2.1. Material analyzed

Reference materials with the recommended values for Ge concentrations are scarce. Three international geological USGS reference materials have been chosen in this study for intercomparison with previous studies: BHVO-2 (basalt), AGV-2 (andesite), and BCR-2 (basalt). Despite certified values not being available for these standards, an increasing number of published data provide constraints on Ge concentrations (Table 1). A considerable compilation effort was undertaken by Jochum et al. (2016), which provides reference values (or informative values) determined following ISO guidelines and IAG Certification Protocol using data published between 1995 and 2015. In addition, to better fit the matrix of targeted samples of soils and plants, we selected three soil standards from the Institute of Geophysical and Geochemical Exploration (IGGE, Langfang, China) (GBW 07401, GBW 07404 and GBW 07407, also known as GSS-1, GSS-4 and GSS-7) and a plant standard from European Reference Material (ERM-CD281). Certified Ge concentrations are available for the soils standards, but with low precision (Table 1), while no Ge data is provided for ERM-CD281. Recently, additional data have been made available for GBW 07401-07408 standards (Liu et al., 2014) (Table 1).

Page 7 of 27

	Sample type	Provider	Published value	rsd (2σ)	n	References
BHVO-2	basalt	USGS	1.62±0.04 μg g ⁻¹	2%	10	Jochum et al., 2016
			1.53 μg g ⁻¹	0.2%	n.s.	Escoube et al., 2012
			$1.59\pm0.04~\mu g^{-1}$	3%	3	Scribner et al., 2006
AGV-2	andesite	USGS	$1.20\pm0.08~\mu g^{-1}$	7%	6	Jochum et al., 2016
BCR-2	basalt	USGS	$1.46\pm0.26~\mu g^{-1}$	18%	6	Jochum et al., 2016
GBW 07401	soil	IGGE	$1.50\pm0.04~\mu gg^{-1}$	3%	6	Liu et al., 2014
			1.34±0.2 μg g ⁻¹	15% *	at least 8	Wang et al., 2013
GBW 07404	soil	IGGE	2.10±0.02 μg g ⁻¹	1%	6	Liu et al., 2014
			1.9±0.3 μg g ⁻¹	16% *	at least 8	Wang et al., 2013
GBW 07407	soil	IGGE	1.6±0.3 µg g⁻¹	19% *	at least 8	Wang et al., 2013
ERM-CD281	plant	ERM	no data	-	-	-

Table 1. Reference materials analyzed in this study with their Ge concentrations and associated uncertainties. Values in bold are certified values while others are informative values. * refers to an uncertainty of 3σ instead of 2σ ; n.s.= not specified.

131 2.2. Sample digestion

Samples were digested following the procedure developed for silicon isotopes using a solid sodium hydroxide (NaOH) flux (Georg et al., 2006). Between 10-20 mg (200 mg up to 600 mg for ERM-CD281, the plant standard) of powdered samples were weighed directly into silver crucibles after drying for at least 24h at 105°C. Prior to the fusion, calcination steps were carried out to ensure the combustion of organic matter into CO₂. Calcinations were performed at 450°C with a 1 h stage at 250°C to ensure slow temperature increase. The 450°C calcination step lasted for at least 1 hour for soils, and 16 h for plants. In the case of plants, the total calcination procedure lasted at least 24 h. Qi et al., (2011) showed that calcination at 600°C does not induce Ge loss. Ashes were mixed with approximately 200 mg of NaOH and placed in a furnace at 720°C for 10 minutes. Fusion cakes were then allowed to dissolve overnight in ultrapure water with a brief ultrasonic bath to favor dissolution. Solutions were then quantitatively transferred into pre-cleaned HDPE bottles and acidified to $pH \sim 2$ with HNO_3 . Due to the volatile behavior of Ge in the presence of halogens (HCl, HClO₄), only

145	HNO ₃ could be used (Luais, 2007; 2012). Acidification to pH~2 was important for Fe-rich
146	samples to ensure a complete dissolution of Fe-oxides as well as ensuring a complete
147	recovery during the following cationic purification (Fitoussi et al., 2009). At this pH, the
148	dominant Ge species is the Ge(OH)_4^0 form (Pokrovski and Schott, 1998).
149	2.3. Sample purification
150	To overcome matrix effects and various interferences, which are complex to correct for,
151	purification of samples appears to be an ideal approach. Perhaps more importantly, the
152	elimination of matrix elements prior to analysis allows a substantial reduction in the dilution
153	factor, which is of great interest for samples with low Ge contents. In addition, performance
154	of ICP-MS can be fully exploited, as the sampling interface and the ion optics are not
155	deteriorated due to salt depositions. A cation-free solution was obtained by passing the
156	solution through a cation exchange column. This allowed for testing of the resin used for
157	germanium isotopes chemical preparation, AG50W-X8 (100-200 mesh in H ⁺ form; Bio-Rad)
158	(Luais, 2007, 2012) using the column chemistry routine of silicon isotopes (Georg et al.,
159	2006). Sample solutions were loaded on a Bio-Rad type column filled with 1.8 ml of
160	AG50W-X8 cation-exchange resin, pre-cleaned with several rinsing with HCl, HNO3 as
161	detailed in the study of Georg et al., (2006) (Table 2). Before loading the sample on the resin,
162	ultrapure water was passed into the resin to remove acids (Georg et al., 2006). The matrix
163	(sodium from fusion and other cations from the sample itself) was retained on the resin, while
164	anionic and neutral species (<i>e.g.</i> , $Ge(OH)_4^0$ and $Si(OH)_4^0$) passed through. To minimize the
165	dilution due to elution, the sample volume was maximized (here ~ 10 ml of fused solution)
166	while the volume of eluent was kept to a minimum of one resin bed volume (~ 2 ml) (Table
167	2). Since the Si and Ge species do not interact with the resin, the eluent is simply ultrapure
168	water. Ge was collected in a \sim 12 ml cation-free solution. Recovered solutions were weighed
169	to minimize uncertainties inherent to the imprecise volumes recovered. Regarding the

removal of matrix element, Na is potentially the more difficult element to eliminate as it is the
most abundant and resin shows a weak relative selectivity for Na. To warrant a good
purification, resin is largely in excess based on expected resin capacity and fused sample
concentrations. Indeed, a 10 ml fused solution (typically 0.5 meq) saturates the resin
approximately 15% of its exchange capacity. Complete removal of ambient cationic species
and especially problematic cations (*i.e.*, Fe, Ni, Zn) and Na was checked with ICP-MS.

BioRad AG50W-X8, 1.8 ml resin bed							
Separation stage	Solution matrix	Volume (ml)					
Pre-cleaning	3N HCI	3 ml					
Pre-cleaning	6N HCI	3 ml					
Pre-cleaning	7N HNO ₃	3 ml					
Pre-cleaning	10N HCI	3 ml					
Pre-cleaning	6N HCI	3 ml					
Pre-cleaning	3N HCI	3 ml					
Rinse	ultrapure water	6 ml					
Sample load	Acidified fused sample	10 ml					
Elution	ultrapure water	2 ml					

Table 2. Column chemistry routine of the preparation of a solid sample fused with NaOH flux
 adapted from Georg et al., 2006.

179 2.4.Sample introduction and mass spectrometry

180 Ge concentrations were measured using an ICP-MS Nexion 300X (Perkin Elmer) using a PFA

181 nebulizer, a quartz cyclonic spray chamber and a SC-FAST DX-4 automated introduction

system. Operating conditions are detailed in Table 3. A series of five standard solutions with

different concentrations (50, 100, 250, 500, 1000 ng l^{-1}) were used to calibrate Ge

184 concentrations. These calibration solutions were made from single element Ge standard 1000

 $mg l^{-1}$ solution (Chem Lab, Plasma HIQU, 2-5% HNO₃). To correct for instrumental drift,

186 rhodium (Chem Lab, Plasma HIQU, 2-5% HNO₃) was introduced to sample solutions through

187 a cross flow line injection resulting in a Rh concentration of 1.58 μ g l⁻¹ in the analyzed

solution. Ge isotopes 72, 73 and 74 were analyzed and provided consistent values, proving the

190 most abundant isotopes (36.28%), given higher sensitivity and lower detection limits

191 compared to other isotopes. In the sequence, $400 \text{ ng } l^{-1}$ Ge standard solutions were measured

after every 15 samples to check for instrumental drift and evaluate reproducibility.

Plasma power	1600 W		
Torch	Quartz glass torch		
Plasma Ar gas flow rate	15 l min ⁻¹		
Auxiliary Ar gas flow rate	1.2 l min ⁻¹		
lebuliser Ar gas flow rate 0.95 - 1.05 l min ⁻¹			
	(optimized to minimize ${}^{140}Ce^{16}O^+/{}^{140}Ce^+ < 0.025$ and ${}^{70}Ce^{++}/{}^{140}Ce^+ < 0.03$)		
Nebuliser	PFA 0.4 ml min ⁻¹		
Spray chamber	cyclonic (quartz)		
Sample uptake rate	0.337 ml min ⁻¹		
Interfaces cones	Nickel		
Resolution	700		
Typical ⁷⁴ Ge sensitivity	~ 12000 cps μg ⁻¹ l		
Typical ¹⁰³ Rh sensitivity	~ 680000 cps μg ⁻¹ l		

Table 3. Instrumental operating conditions for ICP-MS Nexion 300X

195 3. Results and discussion

196 3.1. Assessment of Ge recovery yields during chemical procedure

As the dominant Ge species after fusion is the $Ge(OH)_4^0$, no affinity for cation exchange resin is expected and thus Ge should be quantitatively recovered through the chromatographic procedure. A complete Ge recovery $(102\pm2\%; n=6)$ during sample purification through cationic resin was obtained with single element Ge standard solution at different Ge concentrations (330 to 1100 ng l^{-1} ; Fig. 1). To take into account matrix effects, recovery yields for BHVO-2 and GBW 07401 were determined by Ge standard addition to the fused solution before purification (Ge addition from 10 ng l^{-1} to 100 ng l^{-1} ; Fig. 1). The recovery yields for BHVO-2 (99±2%; n=4) indicated a complete recovery for Ge. In the case of GBW 07401 (Ge addition from 10 ng l^{-1} to 1000 ng l^{-1} ; Fig. 1), recoveries of approximately 118±5% (n=6) were found when compared to the certified value (Wang et al., 2013). Considering the

Ge concentrations of Liu et al., (2014), who suggested that the Ge concentration of this standard should be revised, our recovery yield was 109±2% (Fig. 1). As the procedural blanks displayed very low levels of Ge $(3\pm 2 \text{ ng l}^{-1}; n=11)$ and the given large error range associated with the certified value of this standard (Table 1), we assume our recovery for this standard to be complete. A better agreement would require refining the reference value for the GBW 07401 standard (see section 3.2). Based on single element Ge standard solution and BHVO-2, we assume that Ge recovery is complete during cationic purification. The standard addition of BHVO-2 and GBW 07401 show that Si and other neutral, as well as anionic species do not create any matrix effect.

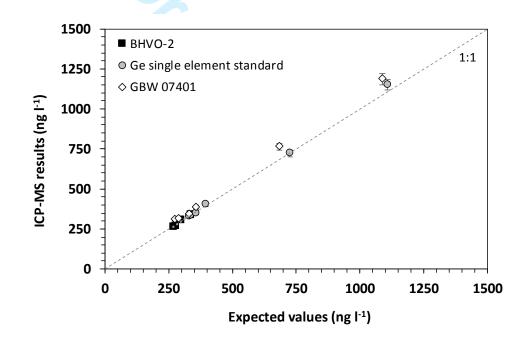
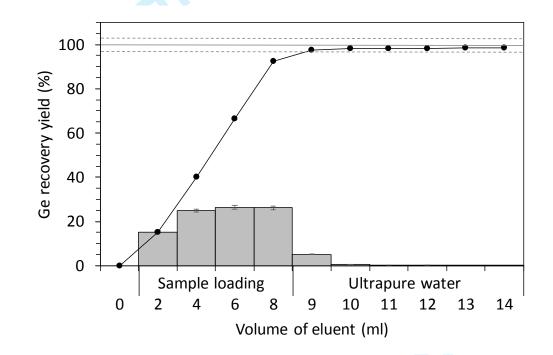
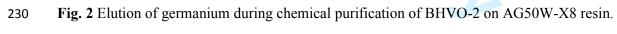
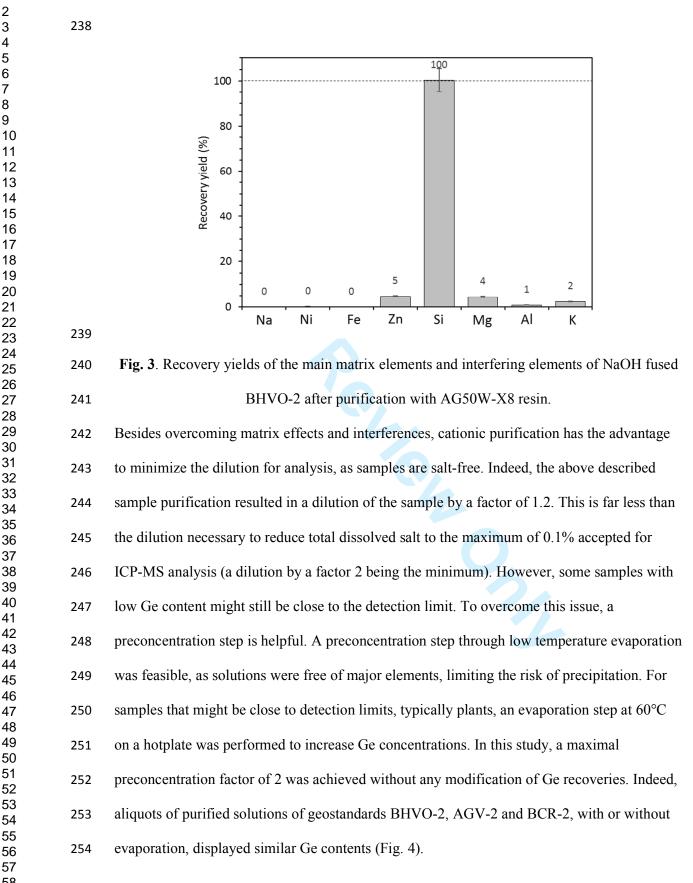




Fig. 1 Comparison of the Ge concentrations obtained by ICP-MS after cationic purification
and expected values for single element Ge standard solution at various Ge concentrations
(gray circles) and reference materials (BHVO-2, black squares; GBW 07401, open diamonds)
with Ge standard addition (Ge addition from 10 ng l⁻¹ to 1000 ng l⁻¹). The dashed gray line
represents a recovery yield of 100%. Expected values for reference materials are calculated

considering Ge data from the literature (Escoube et al., 2012; Scribner et al., 2006 and Liu et
al., 2014, see section 3.2). Error bars represent the analytical repeatability (3%).
The separation efficiency is demonstrated by the elution curves of two samples (a single
element Ge standard solution and a fused BHVO-2) that were loaded onto the pre-cleaned
cation exchange resins (Fig. 2). Ge is not retained by the resin and migrates straight through
the column and nearly 90% of the loaded Ge is already recovered while the sample load is
still infiltrating the resin bed. The last 10% is recovered with 2 ml of ultrapure water (Fig. 2).

The black circles corresponds to the cumulated Ge recovered whereas grey bars represent Ge


recovered in each volume loaded. Error bars represent the analytical repeatability.

Furthermore, ICP-MS screening of the purified solution confirms the absence of major cations
and interfering cations after purification (Fig. 3). As demonstrated for Si by Georg et al.,

235 (2006), this shows a complete separation of Ge from the ambient cation matrix. Matrix effects

and interferences are then negligible and should not be corrected for, minimizing the errors in

237 Ge contents. In addition, Ar-based molecular interferences are not detectable in the blanks.

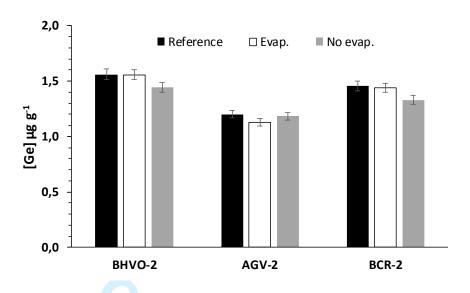


Fig. 4 Ge contents in reference materials (black; Escoube et al., 2012; Scribner et al., 2006;
Jochum et al., 2016) compared to ICP-MS Ge contents obtained using our preparation
protocol, with (white) or without a final evaporation step (gray). Error bars on our results
represent an uncertainty of 3%, the ICP-MS analytical repeatability.

3.2. Detection limits, repeatability and accuracy

The contribution of Ge from the whole procedural chemistry blank was measured on 11 procedural blanks and has been found to be 3 ± 2 ng 1^{-1} and indistinguishable from the instrumental blank. According to the IUPAC definition (IUPAC, 1997), method detection limits were calculated as the mean concentration of 11 procedural blanks plus three standard deviations of these 11 procedural blanks (Table 4). The lowest detection limit was obtained for 74 Ge (6 ng l⁻¹), the most abundant Ge isotope. For comparison, the detection limit for 72 Ge is 5 times higher, approximately 30 ng l^{-1} most likely due to the ArO₂ interference. Considering that 20 mg of powdered sample was dissolved in 100 ml, this corresponds to a detection limit of approximately 0.03 μ g g⁻¹ in the solid sample (Table 4). For the plant standard (200-600 mg dissolved in 100 ml), the detection limit is approximately 0.001 μ g g⁻¹ in the solid sample. Additionally, the linearity limit was demonstrated over the entire

 calibration range. The linearity limit was above 1000 ng l^{-1} , the highest standard in the

calibration curve, as the coefficient correlation of the calibration curve is above 0.995.

Method	Dissolution	Preliminary steps	DL in solution	DL in solid samples	Reproducibility	Difference with previously published values	Samples	References
ID-HG-ICP-MS	acid	ID	0.5 ng l ^{-1 a}	-	<3%	n.s.	natural waters	Evans and Derry, 2002
HR-ICP-MS	fusion	-	10 ng l ⁻¹	n.s.	4%	n.s.	plants and soils	Delvigne et al., 2009
ICP-MS	fusion	-	2 ng l ⁻¹	0.05 μg g ⁻¹	15%	n.s.	plants and soils	Cornelis et al., 2010
LA-ICP-MS	-	-	-	< 1 µg g ⁻¹	8% ^b	n.s.	rocks	Belissont et al., 2011; Shen et al., 2011
X-ray fluorescence	-	-	-	1.5 μg g ^{-1 c}	1%	15%	rocks	Frei and Polat, 2007
Spectrophotometry	acid	Polysulfone membrane filter	2 ng l ⁻¹	n.s.	5%	n.s.	waters and soils	Soylak and Yigit, 2015
ICP-MS	fusion	Cationic purification	6 ng l ⁻¹	0.03 μg g ⁻¹	3%	6%	plants, soils, rocks	This study

^a blank level

^b valid for Ge/Si ratio as detailed in Shen et al., 2011

^c minimum Ge concentration analyzed (no limit of detection provided)

Table 4. Comparison of metrological characteristics of different techniques used for Ge
determination. n.s. = not specified. DL = detection limit.

277 The relative repeatability of ICP-MS analysis based on a Ge single element standard solution

 $(400 \text{ ng } l^{-1})$ and analyzed six times on a single day is 3% (n=6, confidence level 95%).

279 Similarly, four aliquots of one fused solution (BHVO-2) passed through four different

columns and analyzed twice on the same day gives a relative repeatability of 2%.

281 Reference materials of different composition (BHVO-2; AGV-2; BCR-2; GBW 07401; GBW

282 07404; GBW 07407) were analyzed to evaluate the accuracy of results (Supplementary Table

1). However, the absence of properly certified Ge values complicated the exercise. As shown

in Fig. 5, our BHVO-2 data agree within 10% with the published value from the compilation

of Jochum et al. (2016) (Table 5). However, a careful sorting of compiled data reveals that

286 most of the dissolution protocols are not adapted to Ge, except for that of Scribner et al.

287 (2006). Indeed, all but one of the studies employed acid attacks using HCl, HClO₄ or HF (at

temperature above 60°C) or a combination of these, which induce loss of Ge (Luais et al.,

289 2012). Tests performed by Luais (2012) demonstrated that Ge loss is at 85% when HClO₄ is

employed in the acid dissolution mixture. In addition, it is unclear if ICP-MS analysis were

291 corrected for spectroscopic interferences and selected Ge isotopes were not specified. Thus,

292	Ge might be underestimated due to potential Ge volatilization during dissolution, while
293	uncorrected interferences would overestimate Ge content. In the literature, Ge contents
294	estimated using specific techniques devoted to Ge analysis (ID-HG-ICP-MS or double-spike
295	MC-ICP-MS) appear to be systematically lower than Ge contents estimated with ICP-MS
296	techniques. In the case of BHVO-2, ID-HG-ICP-MS and double spike MC-ICP-MS
297	techniques provided a compiled value of $1.56\pm0.07 \ \mu g \ g^{-1}$ (Table 5; Scribner et al., 2006;
298	Escoube et al., 2012), while ICP-MS techniques (acid attacks and interferences corrections
299	not specified) averaged approximately $1.62\pm0.04 \ \mu g \ g^{-1}$ (Table 5; Jochum et al., 2016).
300	Similarly, BHVO-1 data show a comparable shift between the two techniques (1.46 \pm 0.12 µg
301	g^{-1} , n=2 for ID-HG-ICP-MS and double spike MC-ICP-MS; 1.64±0.06 µg g^{-1} , n=3 for ICP-
302	MS; Jochum et al., 2016). An intermediate Ge content (1.58 μ g g ⁻¹) is obtained by Luais
303	(2012) using dedicated acid attack removing 80% of matrix analyzed by ICP-MS suggesting
304	that discrepancy between techniques is likely induced by matrix and interferences. Despite
305	being more limited in number, data acquired using isotope dilution techniques are the most
306	robust (Escoube et al., 2012; Scribner et al., 2006). Considering the compiled values from
307	these two studies, our BHVO-2 results agree within 6% (Fig. 5, Table 5).

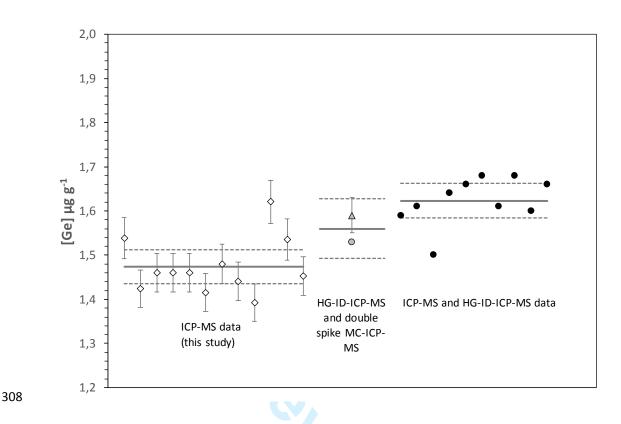


Fig. 5 Ge content in BHVO-2 from our study (open diamonds), high quality data (gray
symbols) from Escoube et al. (2012) (gray circle; double spike MC-ICP-MS), and Scribner et
al. 2006 (gray triangle; ID-HG-ICP-MS), compiled data from Jochum et al. 2016 (filled
circles; ICP-MS and one ID-HG-ICP-MS from Scribner et al., 2006). Bold and dashed lines
represent the mean and uncertainties (95% confidence level) of each subgroup, respectively.
Errors bars represent the analytical precision when provided (*i.e.*, the 3% repeatability in this
study).

Regarding the other rock standards (AGV-2 and BCR-2), there is a better agreement between
our data and the compiled data from Jochum et al., (2016) (Table 5). Considering these three
rock standards, our data agree within ~5% with published values.

Regarding soil standards (GBW 07401, 07404, 07407), our results are systematically 20 to 30% higher than certified values provided in Wang et al. (2013). However, a better agreement is noted when compared to data from Liu et al. (2014), suggesting that certified values should

323 accuracy of these data and may explain our systematically higher Ge contents.

		Sample type	Ge value (this study)	n	Difference with published values	Published values	n	Technique	References
	BHVO-2	basalt	1.47±0.04 μg g ⁻¹	11	9%	1.62±0.04 μg g⁻¹ 1.56±0.04 μg g ^{-1 a}	10 3	ICP-MS but one ID-HG-ICP-MS and	Jochum et al., 2016 Scribner et al., 2006 and
								double spike MC-ICP-MS	Escoube et al., 2012
	AGV-2 BCR-2	andesite basalt	1.14±0.08 μg g ⁻¹	6 5	5%	1.20±0.08 μg g ⁻¹	6	ICP-MS	Jochum et al., 2016
	BCR-2	Dasait	1.43±0.14 μg g ⁻¹	5	2% 11%	<u>1.46±0.26 µg g⁻¹</u> 1.50±0.04 µg g ⁻¹	6	ICP-MS but one ICP-MS	Jochum et al., 2016
	GBW 07401	soil	1.67±0.09 μg g ⁻¹	11	25%	1.34±0.2 μg g ⁻¹	at least 8	n.s.	Liu et al., 2014 Wang et al., 2013
	GBW 07404	soil	$2.41\pm0.18~\mu g~^{-1}$	4	15% 27%	2.10±0.02 μg g ⁻¹ 1.9±0.3 μg g ⁻¹	6 at least 8	ICP-MS n.s.	Liu et al., 2014 Wang et al., 2013
	GBW 07407	soil	1.89±0.10 μg g ⁻¹	3	18%	1.6±0.3 μg g ⁻¹	at least 8	n.s.	Wang et al., 2013
	ERM-CD281	plant	70±3 ng g ⁻¹	9				ICP-MS	This study
324 325 326			-						en this study and 95% confidence
327	uutu IIC				not specific	level.	ities ui		
328	To prov	ide the	first Ge data	on	a plant stan	dard, the sta	indard	ERM-CD281 w	vas analyzed. Its
329	Ge cont	ent is e	stimated to b	e a	pproximatel	y 70±3 ng g	⁻¹ (n=9	; Supplementar	y Table 1).
330	3.3. I	Perspec	tives						
331	This me	thod pr	ovides a con	ver	nient proced	ure for deter	mining	g accurate and p	precise Ge
332	concent	rations	in rocks, soil	ls a	nd plants. A	dditionally,	the co	mbination of G	e concentrations
333	with δ^{30}	Si anal	yses is the gr	eat	advantage o	of this metho	od, as l	ooth Si cycle tra	acers can be
334	analyzeo	d from	a single proc	edı	are allowing	a better und	lerstan	ding of the cont	tinental Si cycle.
335	As empl	hasized	in Cornelis	et a	ıl. (2011), th	e combinati	on of (Ge/Si ratios and	silicon isotopes
336	turned o	out to be	e a great asse	et fo	or tracing the	e sources and	d fate o	of Si in the criti	cal zone, where
337			ccurring proc						
338			•	•				ne condition of	
339			-		-	-		d then be suitab	
340	hydroth	ermal f	luids (12±13	μg	(1^{-1}) up to 50	μg l ⁻¹ ; Evan	s and l	Derry, 2002) an	d soil solutions

Geostandards and Geoanalytical Research

341	$(7.1\pm1.4 \ \mu g \ l^{-1}$; Cornelis et al., 2010). However, the analysis of silicon isotopes on the same
342	chemical preparation may not be straightforward because of DOC and anions responsible for
343	isotopic bias (Hughes et al., 2011). Water samples with lower Ge contents, such as freshwater
344	and seawater, might be pre-concentrated using Mg-coprecipation (Escoube, 2008). As many
345	other elements are scavenged by this method, the Mg-coprecipitation should be followed by
346	the cationic purification step. As both Ge and Si recoveries are complete during Mg-
347	coprecipitation (Escoube, 2008; Cardinal et al., 2005), the analysis of silicon isotopes and Ge
348	concentrations could again be performed on the same preparation. However, as anionic
349	species will not be removed completely, care should be taken to control the bias induced by
350	anionic species on δ^{30} Si analysis (Hughes et al., 2011).
351	In addition to silicon isotopes analysis, this method paves the way towards a new approach to
352	perform Ge isotopes is soils and plants, which has never been done before. Combining silicon
353	isotopes, germanium isotopes and Ge/Si ratios would be a powerful multi-proxy approach to
354	tackle continental Si biogeochemical cycle.
355	4. Conclusions
356	The fusion and purification technique based on the Si isotopes preparation protocol (Georg et
357	al., 2006) allows precise determination of Ge concentrations in environmental samples down
358	to a detection limit of approximately 6 ng l ⁻¹ . Analyses performed on ⁷⁴ Ge, the most abundant
359	isotope, show the best precision of approximately 3%. Accuracy, difficult to assess given the
360	scarcity of reliable data available for comparison, was assessed with an error of approximately
361	5%. This method provides data with equivalent or better metrological characteristics than
362	other published procedures and analytical techniques except for ID-HG-ICP-MS, which
363	shows the best precision and lowest detection limit (Table 4) but is much more time
364	consuming. In addition to the reliability of generated data, this technique has two major

advantages: (1) it does not require peculiar instruments such a hydride generation system, not found in most laboratories unless specific needs, and (2) Ge concentrations and Si isotopic analysis can be performed on the same solution. This last point represents a precious gain of time in terms of sample preparation as one procedure serves to perform both analyses. A systematic coupling of Ge/Si ratios and δ^{30} Si compositions is a great asset in the interpretation of the Si cycle, as both tracers are very complementary. Acknowledgments This study has been funded by the ANR project BIOSiSOL (ANR-14-CE01-002). The French Agence Nationale de la Recherche supported the study through the Project EQUIPEX ASTER-CEREGE. Authors thank Hélène Mariot for her management of the clean laboratory. References Blecker S.W., King S. L., Derry L.A., Chadwick O.A., Ippolito J.A. and Kelly E.F. (2007) The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochemistry, 86,189-199. Belissont R., Boiron M.-C., Luais B. and Cathelineau M. (2014) LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac – Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta 126, 518-540. Cardinal D., Alleman L. Y., Dehairs F., Savoye N., Trull T.W., André L. (2005) Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochemical cycles, 19, GB2007, doi:10.1029/2004GB002364.

387	Cornelis JT., Delvaux B., Cardinal D., André L., Ranger J., Opfergelt S. (2010). Tracing
388	mechanisms controlling the release of dissolved silicon in forest soil solutions using Si
389	isotopes and Ge/Si ratios. Geochimica et Cosmochimica Acta 74 (2010) 3913-3924.
390	Cornelis JT., Delvaux B., Georg R. B., Lucas Y., Ranger J., Opfergelt S. (2011) Tracing the
391	origin of dissolved silicon transferred from various soil-plant systems towards rivers: a
392	review. Biogeosciences, 8, 89–112.
393	Delvigne C., Opfergelt S., Cardinal D., Delvaux B. and André L. (2009) Distinct silicon and
394	germanium pathways in the soil-plant system: Evidence from banana and horsetail.
395	Journal of Geophysical Research, 114, G02013, doi:10.1029/2008JG000899.
396	Delvigne, C., Cardinal, D., Hofmann, A., André, L., (2012) Stratigraphic changes of Ge/Si,
397	REE+Y and silicon isotopes as insights into the deposition of a Mesoarchaean banded
398	iron formation. Earth and Planetary Science Letters, 355-356, 109-118.
399	Delvigne C., Opfergelt S., Cardinal D., Hofmann A. and André, L., (2016) Desilication in
400	Archean weathering processes traced by silicon isotopes and Ge/Si ratios. Chemical
401	Geology, 420, 139–147.
402	Derry L.A., Kurtz A. C., Ziegler K., and Chadwick O. A. (2005) Biological control of
403	terrestrial silica cycling and export fluxes to watersheds. Nature, 433, 728-731.
404	Dong L., Shen B., Lee CT. A., Shu XJ., Peng Y., Sun Y., Tang Z., Rong H., Lang X., Ma
405	H., Yang F. and Guo W. (2015) Germanium/silicon of the Ediacaran-Cambrian Laobao
406	cherts: Implications for the bedded chert formation and paleoenvironment interpretations.
407	Geochemistry, Geophysics, Geosystems, 16, 751-763, doi:10.1002/2014GC005595.
408	Ellwood M.J., Kelly M., Maher W. A. and De Deckker P. (2006) Germanium incorporation
409	into sponge spicules: Development of a proxy for reconstructing inorganic germanium

410	and silicon concentrations in seawater. Earth and Planetary Science Letters, 243, 749-
411	759.
412	Ellwood M.J. and Maher W.A. (2003) Germanium cycling in the waters across a frontal zone:
413	the Chatham Rise. New Zealand, Marine Chemistry 80, 145-159.
414	Evans M. J. and Derry L.A. (2002) Quartz control of high germanium/silicon ratios in
415	geothermal waters. Geology, 30, 1019-1022.
416	Escoube R. (2008) Iron and germanium isotope geochemistry in river and hydrothermal
417	systems. PhD Thesis, Université de Pau et des pays de l'Adour, 275 pages.
418	Escoube R., Rouxel O. J., Luais B., Ponzevera E. and Donard O. F.X. (2012) An
419	Intercomparison Study of the Germanium Isotope Composition of Geological Reference
420	Materials. Geostandards and Geoanalytical Research, 36, 149-159.
421	Filippelli G.M., Carnahan J.W., Derry L.A., and Kurtz A. (2000) Terrestrial paleorecords of
422	Ge/Si cycling derived from lake diatoms. Chemical Geology, 168, 9–26.
423	Frei R. and Polat A. (2007) Source heterogeneity for the major components of ~3.7 Ga
424	Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature
425	of interacting water masses in BIF formation. Earth and Planetary Science Letters, 253,
426	266–281.
427	Fitoussi C., Bourdon B., Kleine T., Oberli F. and Reynolds B. C. (2009) Si isotope
428	systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation
429	in the solar nebula and for Si in the Earth's core. Earth and Planetary Science Letters,
430	287, 77–85.

431	Georg R.B., Reynolds B.C., Frank M. and Halliday A.N. (2006) New sample preparation
432	techniques for the determination of Si isotopic compositions using MC-ICPMS. Chemical
433	Geology, 235, 95–104.
434	Hamade T., Konhauser K., Raiswell R., Goldsmith S. and Morris R. (2003) Using Ge/Si
435	ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology,
436	31, 35- 38.
437	Hammond D. E., McManus J. and Berelson W. M. (2004) Oceanic germanium/silicon ratios:
438	Evaluation of the potential overprint of temperature on weathering signals.
439	Paleoceanograpy, 19, doi/10.1029/2003PA000940.
440	Hughes H.H., Delvigne C., Korntheuer M., de Jong J., André L. and Cardinal D. (2011)
441	Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic
442	measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26, 1892-
443	1896.
444	Höll R., Kling M. and Schroll E. (2007) Metallogenesis of germanium—A review. Ore
445	Geology Reviews, 30, 145–180.
446	IUPAC (1997). Compendium of Chemical Terminology, 2nd ed. (the "Gold Book").
447	Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications,
448	Oxford.
449	Jochum K.P., Weis U., Schwager B., Stoll B., Wilson S.A., Haug G.H., Andreae M.O. and
450	Enzweiler J. (2016) Reference Values Following ISO Guidelines for Frequently
451	Requested Rock Reference Materials. Geostandards and Geoanalytical Research, 40,
452	333-350.

453	Kurtz A.C., Lugolobi F., and Salvucci G. (2011) Germanium-silicon as a flow path tracer:
454	Application to the Rio Icacos watershed. Water Resources Research, 47, W06516,
455	doi:10.1029/2010WR009853, 2011
456	Kurtz A. C., Derry L. A., and Chadwick O. A. (2002) Germanium-silicon fractionation in the
457	weathering environment. Geochimica et Cosmochimica Acta, 66,1525-1537.
458	Kurtz A. C. and Derry L. A. (2004) Tracing silicate weathering and terrestrial silica cycling
459	with Ge/Si ratios. In Wanty, R. B. and Seal, R. R., editors, Proc. 11th Int. Symp. on
460	Water Rock Interaction, 833-836, The Netherlands.Balkema Pubs.
461	Luais B. (2007) Isotopic fractionation of germanium in iron meteorites: Significance for
462	nebular condensation, core formation and impact processes. Earth and Planetary Science
463	Letters, 262, 21-36.
464	Luais B. (2012) Germanium chemistry and MC-ICPMS isotopic measurements of Fe-Ni, Zn
465	alloys and silicate matrices: Insights into deep Earth processes. Chemical Geology, 334,
466	295–311.
467	Liu Y., Diwu C., Zhao Y., Liu X., Yuan H., and Wang J. (2014) Determination of trace and
468	rare-earth elements in Chinese soil and clay reference materials by ICP-MS. Chinese
469	Journal of Geochemistry,33, 095–102.
105	
470	Lugolobi F., Kurtz A.C. and Derry L.A. (2010) Germanium-silicon fractionation in a tropical,
471	granitic weathering environment. Geochimica et Cosmochimica Acta, 74, 1294–1308.
472	Makishima A. and Nakamura E. (2009) Determination of Ge, As, Se and Te in Silicate
473	Samples Using Isotope Dilution-Internal Standardisation Octopole Reaction Cell ICP-
474	QMS by Normal Sample Nebulisation. Geostandards and Geoanalytical Research, 33,
475	369-384.

476	Mc Mahon M., Regan F. and Hughes H. (2006) The determination of total germanium in real
477	food samples including Chinese herbal remedies using graphite furnace atomic
478	absorption spectroscopy. Food Chemistry, 97, 411-417.
479	Mortlock R.A. and Froelich P.N. (1996) Determination of germanium by isotope dilution-
480	hydride generation inductively coupled plasma mass spectrometry. Analytica Chimica
481	Acta, 332, 277-284.
482	Mortlock R. A., Froelich P. N., Feely R. A., Massoth G. J., Butterfield D. A., and Lupton J. E.
483	(1993) Silica and germanium in Pacific-ocean hydrothermal vents and plumes. Earth and
484	Planetary Science Letters, 119, 365-378.
485	Opfergelt S., Cardinal D., André L., Delvigne C., Bremond L. and Delvaux B. (2010)
486	Variations of δ^{30} Si and Ge/Si with weathering and biogenic input in tropical basaltic ash
487	soils under monoculture. Geochimica et Cosmochimica Acta, 74, 225-240.
488	Pokrovski G.S., and Schott J. (1998) Thermodynamic properties of aqueous Ge (IV)
489	hydroxide complexes from 25 to 350°C: Implications for the behavior of germanium and
490	the Ge/Si ratio in hydrothermal fluids. Geochimica et Cosmochimica Acta, 62, 1631-
491	1642.
492	Qi HW., Rouxel O., Hu RZ., Bi XW., Wen HJ. (2011) Germanium isotopic systematics
493	in Ge-rich coal from the Lincang Ge deposit, Yunnan, Southwestern China. Chemical
494	Geology, 286, 252-265.
495	Rouxel O., and Luais B. (2017) Germanium isotope geochemistry. Reviews in Mineralogy
496	and Geochemistry, 82, 601-656.
497	Rosenberg E. (2009) Germanium: environmental occurrence, importance and speciation.
498	Reviews in Environmental Science Bio/Technology, 8, 29-57.

499	Scribner A. M., Kurtz A. C., and Chadwick O. A. (2006) Germanium sequestration by soil:
500	Targeting the roles of secondary clays and Fe-oxyhydroxides. Earth and Planetary
501	Science Letters, 243, 760-770.
502	Shen B., Lee CT. A., Xiao S. (2011) Germanium/silica ratios in diagenetic chert nodules
503	from the Ediacaran Doushantuo Formation, South China. Chemical Geology, 280, 323-
504	335.
505	Soylak M. and Yigit S. (2015) Preconcentration-separation of germanium at ultra trace levels
506	on polysulfone membrane filter and its determination by spectrophotometry. Journal of
507	Industrial and Engineering Chemistry, 24, 322-325.
508	Sutton J., Ellwood M.J., Maher W.A., and Croot P.L. (2010) Oceanic distribution of inorganic
509	germanium relative to silicon: Germanium discrimination by diatoms. Global
510	Biogeochemical Cycles, 24, GB2017, doi:10.1029/2009GB003689.
511	Tribovillard N., Bout-Roumazeilles V., Riboulleau A., Baudin F., Danelian T. and Riquier L.
512	(2011) Transfer of germanium to marine sediments: Insights from its accumulation in
513	radiolarites and authigenic capture under reducing conditions. Some examples through
514	geological ages. Chemical Geology, 282,120–130.
515	Wang Y., Gu T., Wang X., Gao YS., Jochum K.P., Müller W.E.G. (2013) Practical
516	handbook of reference materials for geoanalysis, second, Geological Publishing House,
517	Beijing.
518	Wiche O., Zertani V., Hentschel W., Achtzige R. and Midula P. (2017) Germanium and rare
519	earth elements in topsoil and soil-grown plants on different land use types in the mining
520	area of Freiberg (Germany). Journal Geochemical Exploration, 175, 120-129.

1 2		
2 3 4	521	Wheat C.G. and McManus J. (2005) The potential role of ridge-flank hydrothermal systems
5 6	522	on oceanic germanium and silicon balances. Geochimica et Cosmochimica Acta, 69,
7 8	523	2021–2029.
8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 42 52 62 7 8 9 30 31 32 33 45 36 37 38 9 40 41 42 34 45 46 47 48 9 50 51 22 34 55 65 7 85 9 60	524	