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Abstract
In this paper, a numerical method for solving the linearized Navier-Stokes
equations is presented for aeroacoustic sound propagation problem. The
Navier-Stokes equations are linearized in the frequency domain. The fan
noise of jet engine is emitted nearly selectively at certain frequencies, which
depend on the rotation velocity of the fan. A frequency domain approach is
highly suitable for this kind of problem, instead of a costly time-dependent
simulation which can handle a large range of frequencies depending on the
time step and the mesh.

The calculations presented here were all made using Aether, a Navier-
Stokes code which uses finite elements stabilized with SUPG (Streamline
Upwind Galerkin). Automatic code differentiation was used to linearize this
code. Entropy variables bring interesting mathematical properties to the
numerical scheme, but also prevent the easy implementation of boundary
conditions. For instance, the pressure is a non-linear combination of the
entropy variables. Imposing a pressure variation needs a linearization of
this relation which is detailed herein. The performance of different types of
boundary conditions used to impose the acoustic pressure variation inside
the engine is studied in detail. Finally, a very surprising effect of the SUPG
scheme was to transform a homogeneous Dirichlet boundary condition on all
variables to a transparent one which is able to let only outgoing waves pass
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through with no incoming wave. A one-dimensional toy model is given to
explain how SUPG brings about this transformation.

The last part of the article is dedicated to an industrial test case. The
geometry of a model turbine from the Clean Sky European project was used
for sound propagation of the fan exhaust noise of a jet engine. Computations
on several modes with increasing complexities were done and the results
compared to a boundary element method which served as a reference when
no mean flow is present. Results of a computation with a mean flow are
shown.

1 Introduction
Aircraft manufacturers face ever more stringent noise regulations [13]. They
need to be able to predict the noise emitted by aircraft, especially during
take-off and approach, the only two phases of flight during which the aircraft
is close to the ground. The noise emitted by an aircraft can be split into two
components. Airframe noise is the first one, and is due to unsteadiness of the
flow. Turbulence in the flow and cavities in the surface of the aircraft can all
generate unsteadiness, and each gives rise to noise with very different spectral
contents [14]. The second noise component comes from the engine. It can
itself be split into two main sources, which are the fan noise coming from the
rotating parts of the engine, and the jet noise, where very high turbulence
generates large pressure fluctuations. The engine noise is predominant
especially at take-off, during which the engines run at full power.

In this paper, the propagation of engine fan noise is investigated. In this
case, acoustic perturbations stem from rotating parts. They are thus emitted
selectively at some frequencies, which depend on the rotation velocity of
the engine. A frequency-domain linearization of the Euler or Navier-Stokes
equations is the method of choice for such problems where computations can
be done for one frequency at a time.

The exhaust fan noise propagation combines different physical phenomena.
The sound waves are diffracted and reflected by the engine and aircraft surface,
and they are also refracted by the velocity gradients at the interface of the jet.
While the two former phenomena can be reduced to integral computations
on the surface, the latter can only be computed by volume methods as the
base flow is not potential [2].

The finite element method is often used in computational fluid dynamics
[3]. Its main advantages lie in the natural handling of unstructured meshes,
which enable complex geometries to be easily handled, and strict mathe-
matical setting for convergence proof. The use of linearized Euler equations
solved with a finite element method for aeroacoustic is not new [6, 11, 12],
though this paper might be the first one in which an industrial use of this
technique is presented.
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The industrial test case presented here is a model turbine from the Clean
Sky European project. This project aims at developing environmentally
friendly aircraft which would burn less fuel and also emit less noise. As part
of the Smart Fixed Wing Aircraft, one of the six platforms of the Clean Sky
project, Dassault Aviation is working on the integration of aft-body concepts
for engine noise shielding [13]. An innovative U-tail aircraft model equipped
with turbine powered simulators was wind-tunnel tested to assess the acoustic
shielding effect of the U-tail on a typical business jet with side-mounted
engines.

In this paper, the Navier-Stokes code Aether which was used for the
calculations is first presented, along with all the steps an aeroacoustic compu-
tations requires. Although the use of stabilized finite elements for solving the
linearized Euler equations is not new (see [6, 11, 12]), solving the linearized
Navier-Stokes equations for aeroacoustic noise propagation is not a standard
industry practice. It is also the first time results of aeroacoustic computations
with the code Aether on industrial test cases are published. Afterwards,
the boundary conditions used in these computations are presented, with
both mathematical settings and numerical tests. One surprising side-effect
of the use of SUPG stabilization is that a standard homogeneous Dirichlet
boundary condition transformed itself into a transparent boundary condition.
A careful mathematical analysis in 1D shows that Dirichlet boundary condi-
tions are perfect transparent boundary conditions. Though no such analytic
demonstration can be done in 2D and 3D (actually, it is easy to see that a
Dirichlet boundary condition cannot be exactly transparent), it turns out
that, in numerical practice for real test cases, a Dirichlet boundary condition
behaves reasonably well as a transparent boundary condition. This enables
us to considerably restrict the extent of the computational domain, in turn
resulting in smaller computation time. Finally, results on a model turbine
engine are presented to display the industrial use of such methods.

2 The Navier-Stokes code Aether
Dassault Aviation uses an in-house developed code called Aether for solving
the non-linear Navier-Stokes equations on unstructured meshes using finite
element modeling [3]. Several turbulence models are available for stationary
computations using RANS (k − ε, Spalart-Allmaras, etc). For unsteady
computations, DES and VMS approaches can be used [19]. The Navier-
Stokes equations have been fully implicited, using the GMRES algorithm
to solve the linear problem at each Newton-Raphson iteration. The code
has been parallelized using MPI for large scale computations. The main
numerical ingredients of the code Aether are detailed below.
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2.1 Main numerical ingredients

Aether uses entropy variables for solving the Navier-Stokes equations. These
equations can be written in quasi-linear form using the conservative variables
U = (ρ, ρu, ρet) with ρ being the density, u the velocity vector and et the
total energy. Using the Einstein summation notation, they read

U,t + AiU,i = (KijU,j),i (1)

Here, U,i denotes a spatial derivative in the direction i, and U,t is the
time derivative of U. The matrix Ai is the Jacobian of the Euler flux FEul
in the direction i, so that AiU,i = FEul,i . Similarly, Kij is the Jacobian in
the direction j of the diffusive flux in the direction i. To get better numerical
properties, Mallet [8, 10] introduced a change of variables. Using the entropy
function H = −ρs, where s is the entropy, the so-called entropy variables are
defined as VT = ∂H

∂U . In three dimensions, defining h as the enthalpy, the
entropy variables are thus

V = 1
T


h− Ts− ‖u‖2

2
u1
u2
u3
−1

 (2)

Introducing the change of basis matrix Ã0 = UV, the non-linear Navier-
Stokes equations in entropy variables are described by equation (3).

Ã0V,t + ÃiV,i =
(
K̃ijV,j

)
,i

(3)

The definition of the Euler flux and diffusive matrices simply follows the
change of variables, i.e. Ãi = AiÃ0 and K̃ij = KijÃ0. Matrices with a
tilde indicate that they operate on entropy variables. These matrices have
interesting numerical properties. They are all symmetric, Ã0 also being
positive definite and the block matrix K̃ =

[
K̃ij

]
being positive semi-definite

[8].
Aether uses the finite element method to solve the Navier-Stokes equations

on an unstructured mesh. Complex geometries can easily be meshed with
unstructured meshes composed of simplex [3]. Standard finite element
methods are not suitable for convection dominated problem, as they are
unstable [9, 10]. They need to be stabilized. The authors of [9, 10] generalized
the SUPG stabilization method for multi-dimensional system of equations.
The standard (Galerkin) finite element discretization of equation (3) stems
from its variational form. It is simply obtained by multiplication with a test
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functional W, and then integrated over the whole domain Ω.∫
Ω

W ·
(

Ã0V,t + ÃiV,i −
(
K̃ijV,j

)
,i

)
dΩ (4)

As stated before, this Galerkin discretization is not stable when the
equations are dominated by advection [10]. The SUPG stabilization consists
in modifying the test function. Ladv is the advective operator of equation
(3), i.e. Ladv (V) = ÃiV,i, the stabilized formulation reads

∫
Ω

(
W + τLadv (W)

)
·
(

Ã0V,t + ÃiV,i −
(
K̃ijV,j

)
,i

)
dΩ (5)

This formulation is consistent. This means that the solution of equation
(3), which drives the residual Ã0V,t + ÃiV,i−

(
K̃ijV,j

)
,i
to zero, is solution

to both the stabilized and the standard Galerkin discretizations. The stabi-
lization matrix τ is symmetric positive definite. The definition of τ from
Mallet [10] for the Euler equations is

τ = Ã−1
0

((
∂ξi
∂xj

∂ξi
∂xk

)
AjAk

)− 1
2

(6)

Here ξi is the i coordinate in the reference element, and ∂ξ
∂x is the Ja-

cobian of the transformation from the current element to the reference
element. This advective τ is thus defined element-wise. The stabilization
term WT

,jÃjτ ÃiV,i is analogous to a diffusion. Stabilizing the Navier-Stokes
equations uses nearly the same SUPG matrix τ as for the Euler equations.
When the physical diffusion is high, the diffusion term due to the SUPG
stabilization can be scaled down to keep the numerical scheme from being
overly diffusive. The details are in Mallet [9, 10].

The code Aether has been linearized using the automatic differentiation
tool Tapenade [7]. It has been used for aerodynamic shape optimization
[4] and flutter calculations [5]. Its use for aeroacoustics is described here
for the first time. The linear system for solving these equations is built as
follows. Starting from the non-linear residual E which is equation (5), the
matrix A of the linear system Ax = b is simply the jacobian of the residual
with respect to the entropy variables V. For a time harmonic problem, the
imaginary part of the matrix is the jacobian of the residual with respect to
the time derivative of V. Thus the matrix is

A = ∂E
∂V + iω

∂E
∂V,t

(7)

The right-hand side of the linear problem has a less universal definition.
For aeroelasticity (and direct optimization problem), it is created by volume
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Figure 1: Mach number downstream a jet engine at full-power for take-off

source terms stemming from mesh deformation [5]. In aeroacoustics, the
right-hand side comes from non-homogeneous Dirichlet boundary conditions
solely which are described below in section 3.1. The matrix A is sparse as it
comes from a finite element discretization method. This non-symmetric linear
system is solved using the iterative algorithm GMRES [15]. It minimizes the
residual on a basis formed by orthogonalizing successive iterates with the
matrix of the starting vector.

2.2 The steps of an aeroacoustic computation

An aeroacoustic computation is done in three steps. First, the mean flow
has to be computed. Then the linearized Navier-Stokes computation is done.
Finally, some sort of post-processing is made to get the quantity of interest,
usually the far-field acoustic pressure. In this section, examples are taken
from the test case presented in section 4.

As stated before, the first step is to get a mean flow around which the
aeroacoustic computation will be done. Different sorts of computations can
be used for this. In figure 1, a RANS computation was used.

Non-linear Navier-Stokes computations, be they unsteady or time aver-
aged, need a highly detailed mesh near the surface of the object to properly
capture the boundary layers. These regions with strong gradients need to be
meshed with extremely fine elements in the normal direction to the surface.
For the extremely high Reynolds flows typical of external aerodynamic of
airplanes, the first element in the boundary layer might be a couple of mi-
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RANS mesh Acoustic mesh

RANS solution RANS solution on the
acoustic mesh

Solution on the acoustic
mesh after smoothing

Figure 2: Top: mesh used for the non-linear Navier-Stokes computation and
mesh used for sound propagation. Bottom: effect of the projection of the
RANS solution onto the acoustic mesh, and smoothing of the boundary layer
afterwards

crons high. Because the surface of the object cannot be meshed with such
a fine discretization, the elements in the boundary layer are also extremely
elongated, with aspect ratios well above the tens of thousands. Figure 2, top
left, shows an example of such a mesh.

These meshes cannot be used for aeroacoustic sound propagation, as they
are overly fine in the boundary layer region and too coarse elsewhere. The
linearized Navier-Stokes computation has to be done on another mesh suited
for this task. To be properly captured, sound waves need at least a certain
number of nodes per wavelength. The mesh needs also to be quite isotropic,
as the sound waves can propagate in all directions. The size of the elements
is chosen with respect to the highest intended frequency.

After projecting the solution onto the acoustic mesh, care should be taken
to eliminate the remaining boundary layer. First of all, the boundary layer
is not resolved by the isotropic elements. This is seen in figure 2. Secondly,
the effect of the boundary layer on the acoustic propagation is neglected [14],
as being negligible compared to diffraction by the object and refraction by
the mean flow. An appropriate volume smoothing was used to remove the
boundary layer, as seen in figure 2. The mean flow field on the acoustic mesh
after smoothing shows no large difference with the solution on the RANS
mesh.
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Figure 3: Normalized residual of the GMRES iterations for solving the linear
system. Computation of a plane mode at 2 kHz on a coarse mesh comparing
linearized Euler and linearized Navier-Stokes, with and without smoothing
of the boundary layer. Linearized Euler without boundary layer smoothing
failed to converge

Acoustic sound propagation is governed by the Euler equations. Viscosity
effects are not of interest in our case. Atmospheric sound attenuation over
distance is not taken into consideration. Acoustic boundary layer is neglected
for aeroacoustic application. Thus, there are no obvious advantages which can
be conceived beforehand to use the linearized Navier-Stokes equations instead
of the linearized Euler equations. Some numerical experiments showed us
that using linearized Navier-Stokes gives better convergence on some cases.
Figure 3 shows the convergence of GMRES residuals, normalized so that the
first residual is of norm 1, comparing the convergence of linearized Euler
and Navier-Stokes equations on a coarse mesh, with or without smoothing
the boundary layer of the mean flow. From this graph, it is clear that the
Navier-Stokes equations enable a faster convergence, and a higher tolerance
to unresolved gradients, such as the one found in the boundary layer when not
smoothed. It is also interesting to note that the linearized Euler equations
failed to converge when the boundary layer of the mean flow was not smoothed.
This indicates a clear gain of robustness of using the full Navier-Stokes
equations. As a last comment, it should be duly noted that the results
were completely the same, regardless of the equations used. This was made
possible by using the same boundary conditions on the surface of the object,
i.e. slip boundary conditions which are the only one available when computing
Euler solutions.

On a finer mesh, the overall picture looks quite different, as presented on
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Figure 4: Normalized residual of the GMRES iterations for solving the linear
system. Computation of a plane mode at 2 kHz on a high quality mesh
comparing linearized Euler and linearized Navier-Stokes with boundary layer
smoothing.

figure 4. The convergence curves of the linearized Euler and Navier-Stokes
schemes are hardly distinguishable. In this case, the added viscosity terms
of linearized Navier-Stokes do not bring much improvement. The added cost
of these terms is negligible, as they are only computed to build the matrix,
which takes little time compared to the resolution of the linear system. To
conclude, it seems that using the Navier-Stokes equations may bring some
robustness in cases where the mesh is not perfect, and where some gradients
of the mean flow are not perfectly resolved. Thus, linearized Navier-Stokes
was always used to be sure of not running into convergence troubles if the
smoothing step or the mesh were not good enough.

The computation of the sound propagation gives the near-field solution.
The far-field solution is of interest to characterize the sound footprint of an
aircraft. As extending the volume mesh to far-field distances would be cost-
prohibitive, another method is used for propagating the near-field solution to
great distances. The far field medium is supposed to be homogeneous with a
uniform sound velocity and no diffracting object. The propagation of sound
waves has an analytic solution using Green function. Using information on an
interpolating surface near the aircraft, the sound is propagated to arbitrary
distances using the Kirchhoff method.
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3 Boundary conditions
Aeroacoustic computations using the code Aether used three types of Dirichlet
boundary conditions. As explained in section 2.2, slip boundary conditions,
which are typical of Euler equations, were used at the boundary of the
object. When computing the propagation of jet engine fan noise, the sound
perturbation induced by the fan is first projected onto a modal basis. In
cylinders, it is easy to give the exact form of these modes [14]. The com-
putation of the propagation of the whole fan noise is done on its leading
modal components separately, which are then recombined. The modes are
imposed on a plane called the modal plane, located near the true location of
the fan in the real engine. On the modal plane, modes were injected using
non-homogeneous Dirichlet boundary condition on the pressure only, or on
the incoming characteristic. Finally, the far-field boundary condition was
a simple homogeneous Dirichlet one, which proved transparent. These two
latter types of conditions are explained below.

3.1 Inhomogeneous Dirichlet boundary condition

Recalling section 2.1, the Navier-Stokes code Aether uses entropy variables.
The five variables, a chemical potential, velocities divided by temperatures,
and minus the inverse of the temperature, are not natural quantities to handle.
Following the work of Shakib [17], the next paragraphs will explain how to
impose a quantity which depends non-trivially on the entropy variables.

3.1.1 Imposing a pressure variation

To impose an acoustic pressure variation dp on the linearized system, a linear
relation linking dp and the linearized entropy variables dVi has to be found.
This linear formula is simply the linearization of the nonlinear relation linking
the pressure p and the entropy variables Vi. This nonlinear formula is:

p = exp
(

1
R

(
V1 −

V 2
2 + V 2

3 + V 2
4

2V5
+ C

)
− γ

γ
(1 + ln (−V5))

)
(8)

Here γ is the ratio of specific heats i.e. γ = cp/cv and γ represents γ − 1.
C is a constant. Note that the pressure depends non linearly on all the
variables. As imposing the pressure through variables which only depend on
temperature and/or velocities (i.e. V2, · · · , V5) would make little sense, the
first variable will be used for the Dirichlet condition. Inverting the previous
expression gives
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V1 = R ln p+ V 2
2 + V 2

3 + V 2
4

2V5
− C + Rγ

γ
(1 + ln (−V5)) (9)

= fp (V2, V3, V4, V5, p) (10)

Linearizing the expression gives

dV1 =
5∑
i=2

∂fp
∂Vi

dVi + ∂fp
∂p

dp (11)

The variations of the variable depend linearly on each other, and the
coefficients are non-linear functions of the variables where the linearization
was made:

∂fp
∂V2

= V2
V5

∂fp
∂V3

= V3
V5

∂fp
∂V4

= V4
V5

∂fp
∂V5

= −V
2

2 + V 2
3 + V 2

4
2V 2

5
+ Rγ

γ

1
V5

∂fp
∂p

= R

p

The first variable dV1 was chosen to impose the pressure boundary
condition. It is replaced with the right-hand side of (11). In vector notation,
this gives

dV −→ SdV +


Rdp
p

0
0
0
0

 = SdV + αe1 (12)

Here e1 is the first vector of the canonical basis of R5 and α = Rdp
p .

Imposing the corresponding homogeneous boundary condition is simply a
matter of setting α to zero. The matrix S is defined as

S =


0 ∂fp

∂V2

∂fp

∂V3

∂fp

∂V4

∂fp

∂V5
0 1
... . . .

0 1

 (13)

The matrix S transforms only the five variables stored at a single node.
To impose a boundary condition on a full linear system, it is necessary to
index the matrix Si and the parameter αi by i, which is the label of the node.
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To transform the full square matrix of size 5×Nnp, the full transformation
matrix S is simply defined by block as

S =



I5
. . .

I5
0

Si

0
I5

. . .
I5


(14)

A similar re-indexing has to be made for the vector e1 which is written
ei,1. The linear system Ax = b, when accounting for the non-homogeneous
Dirichlet boundary condition at the node i becomes

A (Sx + αiei,1) = b (15)

The transformation Mx→MSx + αe1 amounts to combining columns
on the matrix M. It can be seen as imposing the inhomogeneous Dirichlet
boundary condition on the trial space. The test space should verify the
corresponding homogeneous Dirichlet boundary conditions. This amounts to
combining lines of the matrix (and of the right-hand side). Thus, the linear
system should be left multiplied by ST , which gives

STASx = ST (b− αiAei,1) (16)

This procedure modifies the linear system so as to impose the inhomoge-
neous Dirichlet boundary condition on the node i. One can simply iterate
this procedure on all the nodes on the border requiring such a condition.
An implementation more suited to a finite element setting is to apply such
transformation on local matrices when one of its nodes is on the boundary.
Thus, the combination of lines and columns can be done on compact elemen-
tal matrices, which is much easier than after they are distributed in a global
matrix stored in sparse format.

3.1.2 Imposing incoming acoustic pressure with characteristics

The previous boundary condition imposes total pressure. This means that
the sum of the pressure of the incoming and the outgoing waves is imposed.
No control is given on the incoming wave. The outgoing wave, which is
reflected back to the modal plane, depends on the geometry of the problem.
Comparing two computations with the same imposed total pressure which
differ by changes in the geometry can be difficult. The outgoing wave has
changed, and thus the energy injected in the system is no longer the same.
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Several techniques exist to get precise control of the injected energy.
They all stem from transparent boundary conditions, on which a wealth of
literature exists [18]. Usually, they are used to mimic the computation of a
problem in an unbounded domain in a bounded one. The far-field behavior is
modeled through the boundary condition. For acoustics, it implies that only
outgoing waves are allowed to pass through the boundary. For the modal
plane, one has to let all the outgoing modes and impose only one incoming
mode.

One of the easiest techniques for transparent boundary conditions is
the use of Euler characteristics. Let us consider that the boundary along
which the characteristic boundary condition will be imposed is normal to
the ex direction. Diagonalizing the Euler flux Jacobian computed along this
direction gives five eigenvectors (in 3D), which are called the characteristic
variables:

dW =


dW1
dW2
dW3
dW4
dW5

 =


dρ− 1

c2dp
duy
duz

dux + 1
ρcdp

−dux + 1
ρcdp

 (17)

Quantities with the prefix d refer to wave quantities and not the the mean
flow. The first three characteristic variables correspond to the convection
at a speed ux of respectively an entropy wave and two vorticity waves.
The characteristic variable dW4 represents the convected acoustic wave
propagating at a velocity ux+c. So is dW5, at a velocity ux−c. Imposing only
the incoming acoustic mode means imposing only the incoming characteristic
dW4 of velocity ux + c. The other characteristics are free. Using the modal
theory of sound propagation in tubes [14], one can easily compute the pressure
and the acoustic velocity and thus the incoming characteristic dW4.

From the definition of dW4, imposing the incoming characteristic intro-
duces an affine dependence between the pressure and the normal velocity.
One needs to replace the variation of pressure dp in (11) using the definition
of dW4 in (17).

dp = ρcdW4 − ρcdux (18)

From the definition of the entropy variables V (see section 2.1), ux = −V2
V5
.

Hence dux = − 1
V5
dV2 + V2

V 2
5
dV5. Therefore,

dp = ρcdW4 + ρc

V5
dV2 − ρc

V2
V 2

5
dV5 (19)

Replacing dp in (11) gives the partial derivatives of the implicit function
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fW4 :

dV1 =
5∑
i=2

∂fW4

∂Vi
dVi + ∂fW4

∂W4
dW4 (20)

Using the definition of the speed of sound for a perfect gas c2 = γRT and
the state law of the perfect gas p/ρ = RT , the partial derivatives of fW4 are

∂fW4

∂V2
= V2
V5
− c ∂fW4

∂V3
= V3
V5

∂fW4

∂V4
= V4
V5

∂fW4

∂V5
= −V

2
2 + V 2

3 + V 2
4

2V 2
5

+ Rγ

γ

1
V5

+ c
V2
V5

∂fW4

∂W4
= γR

c

3.2 Testing the pressure boundary condition

A simple tuned cavity was used to test the characteristic boundary condition.
A tuned cavity means that the real part of the incoming wave and the
outgoing wave are in phase. Their imaginary part cancels each other.

3.2.1 Test with a plane wave

For a plane wave, tuning a cavity means choosing a frequency so that the
length of the cavity is a multiple of λ/2, where λ is the wavelength. Using the
pressure boundary condition as described in section 3.1.1 means imposing the
sum of the incoming and the outgoing waves. Using the pressure boundary
condition on the incoming wave only as explained in section 3.1.2 will make
the amplitude of the standing wave two times higher than in the previous
case. Figure 5 shows the real part of the standing wave created in such
a cavity. For each type of boundary condition, a mode of one Pascal of
amplitude was used. As expected, when using characteristics, the amplitude
of the standing wave is twice higher than when imposing the total pressure.

3.2.2 Accuracy with complex modes

Other modes than a plane wave can propagate in infinite tubes. An infinity
of complex modes exists, each with a cut-off frequency below which it cannot
propagate. A tuned cavity with these complex modes is considered. It
consists in a tube of radius R0 with a length L. A system of orthoradial
coordinates (r, θ, x) is fitted to the tube. The tube is blocked at x = L with
a perfectly reflective boundary. The modes are introduced on the plane
x = 0. For complex modes, the tuning formula to determine all resonance
frequencies for a given mode is more complicated than for a plane wave,
where it is simply a matter of setting the length of the cavity to a multiple
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Figure 5: Real part of the pressure variation. Plane mode in a tuned cavity
at 340 Hz

of half wavelengths. The general form of these complex rotating modes is
given below [14].

Pm,n (r, θ) = Jm (km,nr) ei(ωt−mθ+kxx) (21)

This is the form of the (m,n) mode. The plane mode is (m = 0, n = 1).
Jm is the mth order Bessel function of the first kind. The radial wave number
km,n is such that km,nR0 = χm,n is the nth zero of J ′m the derivative of the
Bessel function. At r = R0, the pressure field has a zero radial derivative, so
as to verify the boundary condition ∂P

∂n = 0. The radial wave number and
the axial wave number follow the dispersion relation

k2 = k2
x + k2

m,n (22)

The total pressure field is the sum of the incoming and outgoing waves.
As the cavity is closed on one side, their amplitude is the same as the wave
bounces back without losing energy. They differ only by the sign of the axial
wave number kx and a difference in phase φ. The total pressure field writes

Ptot = Jm (km,nr) eiωt
(
ei(kxx−mθ) + ei(−kxx−mθ+φ)

)
(23)

The tuned cavity has a length L. At x = L there is a wall, where the
pressure follows ∂P

∂x = 0. From there it follows that φ = −2kxL. The cavity
is tuned if the incoming wave is the same as the outgoing wave at x = 0, i.e.
if

1 = e−2ikxL
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Figure 6: Dispersion relation and definition of the angle α

Thus, the axial wave number is entirely defined with the length L of the
cavity and p, the number of half-wave length fitting in the cavity length.

kx = pπ

L
(24)

Replacing the wave number k by its definition 2πf
c in the dispersion

relation (22) gives (2πf
c

)2
=
(
pπ

L

)2
+ k2

m,n (25)

The frequency as a function of the number of half wavelength in the
cavity is thus

f (p) =
√(

pc

2L

)2
+ f2

c (26)

fc = km,nc
2π is the cut-off frequency of the considered mode. For a large p,

the tuning frequency tends to be the same as for a plane mode, i.e. f ∼ pc
2L .

The dispersion relation (22) is a pythagorean relation, which enables to define
an angle α as shown on the figure 6.

As km,n depends only on the mode, the angle α decreases as the frequency
grows. At cut-off frequency, p = 0 so the angle is 90◦.

This definition enables the study of the characteristic boundary condition
as a function of the angle to the normal of the boundary plane. Transparent
boundary conditions using characteristics perform worse when the outgoing
wave is not normal to the plane [18]. It can be inferred that characteristic
boundary conditions used to impose the incoming wave should exhibit the
same limitation. Figure 7 shows the loss of pressure depending on the angle
α for various modes. Ideally, the ratio between the maximum pressure
when imposing total pressure and the maximum pressure when imposing the
incoming wave should be two. The delta should be divided by two in order
to get closer to the real loss of imposed pressure.

For angles smaller than 45◦, the loss of pressure is minimal (less than
10%). For large angles, it is not clear why the characteristic boundary
condition should degrade to the total pressure boundary condition. It is
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Figure 7: Loss of pressure depending on the angle for various mode as a
function of kx

k (left) or as a function of α (right)

quite interesting to see that the behavior of the characteristics does not
depend on the mode.

3.3 Transparent boundary conditions at infinity

The aeroacoustic calculations using Aether were first made without special
consideration regarding the far-field boundary conditions. Quite unexpect-
edly, simple homogeneous Dirichlet boundary conditions on all five variables
turned out to be transparent.

3.3.1 1D explanation of the phenomenon

To explain this unexpected phenomenon, a 1D model using the linearized
Euler equations was used. It enabled the discovery of SUPG stabilization
being responsible for turning simple homogeneous boundary condition into
transparent one. Recalling section 2.1, the 1D linearized Euler equations can
be written using the Jacobian of the Euler flux Ã1 as follows

jωÃ0V + Ã1V,x = 0 (27)

V is the vector of entropy variables for the Euler equations. For the
moment, only the convective part will be considered. Adding the complex
part, which depends on the frequencys will be done later on. Left-multiplying
by the test function Y, integrating and adding the SUPG stabilization term
gives ∫

Ωe
YHÃ1V,x + YH

,xÃ1τ Ã1V,xdΩe (28)

The stabilization matrix τ is defined as in [9]. For this 1D example, it
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simplifies to

τ = Ã−1
0

((
∂ξ

∂x
A1

)2)− 1
2

(29)

The term ∂ξ
∂x is the jacobian of the transformation from the current

element to the reference element. From the theory of generalized eigenvalues,
there exists two vector basis S and S̃ such that

(A1 − λiI) Si = 0 (30)(
Ã1 − λiÃ0

)
S̃i = 0 (31)

S̃T Ã0S̃ = I (32)

The vectors Si and S̃i are the column of the matrices S and S̃. These two
matrices are also linked by the relation S = Ã0S̃. The normalization relation
(32) comes from the fact that Ã1 and Ã0 are symmetric real matrices (no
such relation holds for S since A1 is not symmetric). From this definition it
follows that

S̃T Ã1S̃ = S−1A1S = Λ (33)
Note that S diagonalizes the Euler flux Jacobian matrix Ã1, so it rep-

resents the change of basis matrix from the conservative variables to the
characteristic variables. The eigenvalues λi are thus

Λ = diag (λi) = diag (u, u+ c, u− c) (34)
Using S̃ as a change of variables, and introducing the modified coordinates

in the trial and test spaces W = S̃−1V and Z = S̃−1Y, the equation reads∫
Ωe

ZH S̃T Ã1S̃W,x + ZH,xS̃T Ã1τ Ã1S̃W,xdΩe = 0 (35)

Using the definition and properties of S̃, the first term of the integral in
(35) is easily simplified to S̃T Ã1S̃ = Λ. Only the simplification of the second
term is a little more involved:

S̃T Ã1τ Ã1S̃ = ΛS̃−1τ Ã0S̃Λ
= ΛS̃−1τSΛ

As S is the eigenvector basis of A1, the matrix τ can be written more
simply

τ = ∂x

∂ξ
Ã−1

0 S|Λ|−1S−1 (36)
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|Λ| is the absolute value of the diagonal matrix. Coming back to the
simplification of the second term,

S̃T Ã1τ Ã1S̃ = ΛS̃−1τSΛ
= ∂x

∂ξΛS̃−1Ã−1
0 S|Λ|−1S−1SΛ

= ∂x
∂ξΛS̃−1S̃|Λ|−1Λ

= ∂x
∂ξΛ|Λ|−1Λ

= ∂x
∂ξ |Λ|

The full equation (35) is then diagonal:∫
Ωe

ZHΛW,x + ZH,x
∂x

∂ξ
|Λ|W,xdΩe = 0 (37)

Using linear function on the element, one can check that this formulation
provides a perfect upwinding of the convection term per characteristics.
For the present time only the convective term and its stabilization will be
considered. The frequency term will be treated afterward. For instance,
if 0 ≤ u < c so that u − c is the only negative eigenvalue, the discretized
equations on a uniform mesh of element size h is after division by the volume
of the element:

u
w

(1)
i − w

(1)
i−1

h
= 0

(u+ c)
w

(2)
i − w

(2)
i−1

h
= 0

(u− c) w
(3)
i+1 − w

(3)
i

h
= 0

Perfect upwinding of the convection is achieved and only the third char-
acteristic w(3) has a different discretization of its convective term.

Adding a homogeneous Dirichlet boundary condition on one end node
means that all the characteristics there are zero. If this boundary condition
is located at the upper-end of the 1D segment, i.e. at the last discretized
node N , the first two characteristics will not “see” the boundary condition
until they reach it, whereas the third characteristic will be set to zero. This
proves that the two first characteristics reach the wall without being affected
by it and that the reflected wave (third characteristic) is zero everywhere in
the computational domain. This explanation is illustrated on figure 8.
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Figure 8: Different upwinding of the two characteristics w(2) and w(3) when
using SUPG discretization

3.3.2 2D and 3D extension

The SUPG stabilization is proven to give a perfect upwinding for a scalar
equation in one dimension [10]. For a symmetric system of variable in one
dimension, the stabilization matrix τ given by Mallet [8] gives the same
property. For multidimensional problems, this is unfortunately no longer the
case. The stabilization matrix is defined as in Shakib [17]:

τ = Ã−1
0

(
∂ξk
∂xi

∂ξk
∂xj

AiAj

)− 1
2

(38)

As before, ∂ξ
∂x is the Jacobian of the transformation from the current

element to the reference element. In two (or three) dimensions, there is no
basis which diagonalizes simultaneously all flux operators Ai. Thus, it will
not be possible to put the system of stabilized equations in a diagonal form
as before. Therefore, the stabilization can not be perfect in all directions.
Another key point of the stabilization matrix τ is the definition of the
element length. In one dimension, the stabilization term is akin to a diffusive
term multiplied by a length, which is the element size. This gives rise to
cancellations with some terms of the discretization of the advective flux, and
in turn enables a perfect upwinding of the scheme. In three dimensions, the
definition of the element size is no longer clear, and does not enable perfect
cancellations.

Though the stabilization may not be exact, and the demonstration of
the transparency of a simple homogeneous Dirichlet boundary condition
no longer feasible, it is of interest to characterize the imperfection of this
transparent boundary condition. A simple numerical experiment was set up
for it. It is based on the sound propagation in two dimensions from a point
monopolar source. As the acoustic power is conserved on every circle whose
center is on the source, the acoustic intensity eacc is proportional to 1/r,
where r is the distance to the source. The acoustic intensity is proportional
to the square of the acoustic pressure, so p ∝ 1/

√
r.
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Figure 9: Superposition of the two rectangular computational domains with
an acoustic monopole in the center and transparent boundary condition on
its edges. The depicted field is

√
r|p| which is the pressure corrected for 2D

geometric attenuation. The smaller domain is depicted on top of the bigger
rectangle.

The results are shown on figure 9 on which the pressure corrected for
geometric attenuation is plotted. The first computation was made on a small
rectangle with a hole on it exact center where the circular wave is injected.
On the edge of this rectangle, homogeneous Dirichlet boundary conditions
acting as transparent boundary conditions were used. Only the top half of
this first computational domain is shown on the figure. Interference fringes
are obvious. They show that some energy is indeed reflected back into the
computational domain.

The computation on this first domain was to get a reference, from which
the relative difference when modifying the mesh could be computed. Then
the mesh was augmented on its left and right sides with symmetric extensions.
The bigger domain is depicted underneath the top-half of the first domain. As
a first remark, the interference pattern looks absolutely identical to the one in
the smaller rectangle. This means that the left and right vertical boundaries
are not the boundaries which reflect most of the energy inside the domain.
It also demonstrates that the corners do not reflect much energy. This is
important to note as corners might be difficult to handle when implementing
characteristic boundary conditions. In corners, it is impossible to properly
define a normal to the boundary.

Finally, as the distance to the source increases, the interference grows
stronger, especially near the horizontal boundaries. This clearly indicates
that the interference pattern is due to waves reflected on the horizontal
boundaries. The growing amplitude of the interference with the horizontal
distance indicates that as the angle to the normal of the boundary increases,
the waves are more and more reflected. This is expected for characteristic
boundary conditions [18].
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Figure 10: Real part of the pressure variation in Pascal for a plane mode at
2 kHz with no mean flow on a slice of the three dimensional computational
domain.

For three dimensional computations, no numerical experiments to charac-
terize precisely the angular behavior of such transparent boundary conditions
were done. Only full industrial configurations were tested. For a plane mode
at 2 kHz with no mean flow on the jet engine presented afterwards in section
4, the real part of the pressure variation is shown on figure 10. This figure
shows the real extent of the three dimensional computational domain on a
slice. The far-field boundaries which used transparent boundary conditions
were quite close to the exhaust of the engine. Some interference can be seen,
but overall it does not radically change the near field solution. Thus these
characteristic boundary conditions proved satisfactory as they enabled to use
quite small computational domains without altering too much the results.

3.3.3 A note on the full SUPG coupling

In section 3.3.1, the linearized Euler equations were considered so that the
explanation is clear and simple to grasp. Now, the effect of adding the
frequency term in the discretization will be analyzed, with regards to the
transparent boundary conditions and to the stability and accuracy of the
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scheme. From the previous section, the standard Galerkin discretization of
the linearized Euler equations, written in the characteristic variables, reads∫

Ωe
ZHjωIW + ZHΛW,xdΩe (39)

Their discretization on linear finite elements of uniform length h is given
below, where w(2)

i+1 is the value of the second characteristic at the node i+ 1.
A division by h was done so that the spatial derivatives stand out more
clearly. 

jω
(

1
6w

(1)
i−1 + 2

3w
(1)
i + 1

6w
(1)
i+1

)
+ u

w
(1)
i+1−w

(1)
i−1

2h = 0

jω
(

1
6w

(2)
i−1 + 2

3w
(2)
i + 1

6w
(2)
i+1

)
+ (u+ c) w

(2)
i+1−w

(2)
i−1

2h = 0

jω
(

1
6w

(3)
i−1 + 2

3w
(3)
i + 1

6w
(3)
i+1

)
+ (u− c) w

(3)
i+1−w

(3)
i−1

2h = 0

(40)

The convective velocity u is positive and subsonic, so that u− c is the
only negative eigenvalue of the Euler flux matrix. The equations stabilized
with SUPG, written in terms of entropy variables, read:∫

Ωe

(
Y + τ Ã1Y,x

)H
·
(
jωÃ0V + Ã1V,x

)
dΩe = 0 (41)

Compared to the standard Galerkin method, the test function are modified
with the term τ Ã1Y,x. Two terms are thus added to the equations. They
are simply the effect of this change of test function on the frequency and the
Euler flux terms. In the characteristic variables, it was already shown that
the latter simplifies to ∂x

∂ξ |Λ|. The former can also be expressed similarly
with the characteristic variables.

S̃T Ã1τ jωÃ0S̃ = ΛS̃−1τ jωS

= jω
∂x

∂ξ
Λ|Λ|−1

= jω
∂x

∂ξ
sgn (Λ)

Here, sgn (Λ) = diag (sgn (λi)), where the function sgn (x) is 1 if x ≥ 0
and −1 otherwise. As before, the stabilized equations with the characteristic
variables are diagonal and they are given below.

∫
Ωe

ZHjωW+ZH,xjω
∂x

∂ξ
sgn (Λ) W+ZHΛW,x+ZH,x

∂x

∂ξ
|Λ|W,xdΩe = 0 (42)
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Their discretization on the same linear finite elements of uniform size h
gives


jω
(

5
12w

(1)
i−1 + 2

3w
(1)
i − 1

12w
(1)
i+1

)
+ u

w
(1)
i −w

(1)
i−1

h = 0

jω
(

5
12w

(2)
i−1 + 2

3w
(2)
i − 1

12w
(2)
i+1

)
+ (u+ c) w

(2)
i −w

(2)
i−1

h = 0

jω
(
− 1

12w
(3)
i−1 + 2

3w
(3)
i + 5

12w
(3)
i+1

)
+ (u− c) w

(3)
i+1−w

(3)
i

h = 0

(43)

Here, the two stabilization terms have each brought in upwinding. The
convective term is perfectly upwinded, but the frequency term is also no
longer symmetric.

From both discretizations (40) and (43), the recurrence relation of the
second characteristic variable w(2) is studied. A solution of the form w

(2)
n =

αnw
(2)
0 is assumed. The parameter α is the solution of a quadratic equation

given by the recurrence relation. For instance, for the unstabilized equations
(40), the exponent 2 notation being dropped for clarity reasons, this equation
is

wi−1

(
jω

6 −
u+ c

2h

)
+ wi

2jω
3 + wi+1

(
jω

6 + u+ c

2h

)
= 0 (44)

Introducing ζ = u+c
ωh = λ

2πh , where λ is the wavelength, the equation can
be further simplified to

wi−1

(1
4 + 3

4jζ
)

+ wi + wi+1

(1
4 −

3
4jζ

)
= 0 (45)

The quadratic equation to solve is simply(1
4 + 3

4jζ
)

+X +X2
(1

4 −
3
4jζ

)
= 0 (46)

Its solutions are

αGal± = −2±
√

3− 9ζ2

1− 3jζ (47)

It is easy to show that for ζ > 1/
√

3, both roots have a modulus of one.
Moreover, αGal+ → −1 and αGal− → 1 as ζ → ∞. The general solution
of the recurrence relation (44) is a linear combination of the two solutions
which were found, i.e. wi = αiGal−w

−
0 + αiGal+w

+
0 . The modulus of both

αGal± is equal to one, so the scheme is stable. But the real part of αGal+ is
negative, so αiGal+w

+
0 will oscillate from node to node. This is unphysical,

as the period of the oscillation is fixed by the mesh size and will always exist
even if h→ 0.
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Figure 11: Modulus of the coefficients α introduced in (47) and (49)

For the stabilized equation (43), the resulting quadratic equation is

(−5− 12jζ) + (−8 + 12jζ)X +X2 = 0 (48)

The two roots of this equation are the following

αSUPG± = 4− 6jζ ±
√

21− 36jζ − 36ζ2 (49)

No simple analytic formula was found for the modulus of both of these
roots. They also have each a different limit which is

αSUPG+ −→∞
αSUPG− −→ 1

The norm of the recurrence coefficients α± is shown on figure 11 for the
Galerkin and SUPG discretizations. Figures 12 and 13 show respectively the
real part of the various α and their path on the complex plane. Only the
modulus αSUPG+ is not shown on the figures as for ζ = 0, |αSUPG+| ≈ 8.5
and its modulus grows with ζ and at infinity, its equivalent is |αSUPG+| ∼ 12ζ.
For all purposes, ζ is always greater than 1, as ζ = 1 corresponds to roughly
6 nodes per wavelength. Thus, the real part of αSUPG− is positive, as for
αGal−. The real part of αGal+ is negative. Also, |αSUPG−| < 1, as it can
be seen graphically and proved for large ζ by the equivalent described in
equation (53).
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Now, the property of non-reflectivity of a homogeneous Dirichlet boundary
condition when using SUPG stabilization can be shown. Consider a segment
of length L, discretized by N segments of length h, with nodes number
ranging from 0 to N . On the node N , a homogeneous Dirichlet boundary
condition on all variables is applied. Thus all characteristic variables are also
0. On the node 0, a characteristic boundary condition is applied, and imposes
1 on the incoming characteristic and 0 on the others. To simplify, only the
second characteristic, which is the incoming one, is considered. The two
boundary conditions on the second characteristic, the exponent 2 notation
being dropped once again for clarity reason, are{

w0 = 1
wN = 0

(50)

As the solution of the recurrence relation is of the form wi = αi−w
−
0 +

αi+w
+
0 , the two boundary conditions enable to find the starting point w+

0
and w−0 of both geometric solutions:{

w−0 + w+
0 = 1

αN−w
−
0 + αN+w

+
0 = 0

(51)

If αN+ − αN− 6= 0, its solutions are
w+

0 = αN
−

αN
−−αN

+

w−0 = αN
+

αN
+−α

N
−

(52)

For the equations stabilized with SUPG, the large modulus difference
between α+ and α− as indicated by their limit shows that αN+ − αN− 6= 0.
It also demonstrates that |w+

0 | � 1 and w−0 ∼ 1 for large N and ζ. As a
reminder, the solution is wi = αi+w

+
0 + αi−w

−
0 . Thus, the SUPG solution is

carried only by the well-behaved αSUPG−, and the divergent component is
here only to cancel the solution at the end of the segment. This solution
is non-oscillatory, as the real part of both α is positive. It is interesting to
note that the SUPG scheme is unstable, as |αSUPG+| > 1, but the boundary
conditions select only the stable root for the recurrence relation, and so in
practice, the scheme is stable.

For the standard Galerkin discretization, α+ and α− converge respectively
to -1 and 1. An analysis using equivalents shows that αN+ − αN− = (−1)N −
1 + jNζ

(
(−1)N

3 − 1
)

+ o
(

1
ζ2

)
. This proves that it is never zero, and that the

solution is highly dependent on the parity of N . In all cases, the solution
is more or less evenly distributed on a oscillatory component (αGal+) and a
sine wave one (αGal−). This makes this scheme unusable, as the amplitude
of the smooth component is not the real amplitude of the pressure wave and
that the noise is of the same order of magnitude as the real signal.
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The diffusion and the dispersion of the SUPG scheme can be studied
through α. The diffusion of the scheme relates to the norm of α and the
dispersion to its argument. Using the Landau notation, for ζ →∞,

|αSUPG| = 1− 1
24ζ4 + o

(
1
ζ5

)
arg (αSUPG) = −1

ζ − 11
720ζ5 + o

(
1
ζ6

)
(53)

It is logical that the first equivalent term of arg (αSUPG) should be −1/ζ.
After λ/h nodes, the argument of wi should be decreased by 2π. The minus
sign comes from the phase relation ωt− kx. The SUPG scheme is slightly
diffusive and dispersive. It is interesting to note that there is no term in 1/ζ2

for the modulus of αSUPG, nor a term in 1/ζ3 for the argument, which would
have been expected. This shows the high accuracy of the SUPG scheme.

4 Industrial test case
This aeroacoustic code was tested on an industrial test case taken from
the Clean Sky European project [1]. The Clean Sky project is aimed at
developing environmentally friendly airplanes, which would burn less fuel
and also emit less noise. As part of the Smart Fixed Wing Aircraft, one of
the six platforms of the Clean Sky project, Dassault Aviation was working
on the integration of aft-body concept for engine noise shielding [13]. An
innovative U-tail aircraft model equipped with turbine powered simulators
was wind-tunnel tested to assess the acoustic shielding effect of the U-tail
on a typical business jet with side-mounted engines. The test case was the
turbine-powered simulator only.

4.1 General description

The geometry of the test case is the one of a turbine-powered simulator. It
is a jet engine scaled down to a sixth of the original size, so as to fit on
a aircraft model for wind-tunnel test. Some parts are not exactly to scale
compared to a real jet engine. The annular duct is thinner in the turbine
simulator. The pylon is also bigger, as the piping bringing compressed air to
the turbine-powered simulator could not be made smaller. A picture of the
engine is presented on figure 14. For reference purpose, the diameter of the
exhaust is 20 cm.

To minimize the inaccuracies in the results due to the mesh, the volume
mesh was deliberately made very fine. It is designed for propagation of
waves at up to 9.6 kHz, though no computations were done at this frequency.
As the annulus duct is very thin, complex radial mode with a high radial
frequency dictated a high mesh refinement on the modal plane and thus
inside the turbine. Outside the exhaust, element size slowly increases to the
propagation size. Near the far field boundary, element size was increased
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Figure 14: Geometry of the engine with a cut to show the inside. Modal
injection is performed on the red plane

slightly to less than ten points per wavelength so as to minimize unwanted
reflections.

4.2 Results without mean flow

The first calculations were done without mean flow. This case is of little
industrial interest, but for being able to compute the solution with another
numerical method. When there is no mean flow, acoustic propagation
follows the Helmholtz equations. These equations can be solved for instance
with a boundary element method (BEM) [16]. An in-house code solving
the Helmholtz equations using the BEM method was thus used to give a
comparison on this test case. This integral method solves the Helmholtz
equations on the surface of the object and does not need a discretization of
the volume of the computational domain. It is significantly faster than a
finite element method, but it cannot deal with complex mean flows [2].

4.2.1 Plane wave mode at 2 kHz

A plane wave mode at 2kHz was first computed. This mode is the least
complex one, but still allows to evaluate the performance of the code Aether.
The total pressure on the modal plane was imposed to be a plane wave, as
described in section 3.1.1. The far-field directivity is pictured on figure 15.
The angle is relative to the exhaust’s axis. An angle of 0◦ indicates that the
point is downstream of the engine in the direction of the jet, while an angle
of 180◦ means that the point is in front of the engine. There is an excellent
agreement between the two methods. For the front lobe, they do not differ
by more than a decibel. For angles away from the axis by more than 120◦,
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Figure 15: Far-field directivity of a plane mode at 2 kHz without mean
flow. Comparison between linearized Navier-Stokes and boundary element
method.

diffraction error by the Kirchhoff interpolating surface which is open on the
upstream face is significant and explains most of the error between the two
curves.

4.2.2 Complex modes at 2 kHz and 5 kHz

As explained in section 3.2.2, other modes than the plane wave can exist
in cylindrical geometries. They are more challenging to compute, as they
have more complex directivities. To begin with, the (1,1) mode at 2 kHz
was computed. Its directivity is shown on figure 16. Once again there is an
excellent agreement with the BEM method. On the two lobes, the linearized
Navier-Stokes computation is within a decibel of the BEM computation. The
only significant difference is the capture of the noise cancellation directly on
the axis. Several explanation to this loss of precision can be brought forward.
It could either be due to a little bit of numerical diffusion in the volume
computation, or an insufficiently converged linear system, or finally the effect
of the diffraction in the far field propagation introduced by the openings
in the Kirchoff surface. Still, the linearized Navier-Stokes computation is
capable of resolving more than 20 dB of difference between the peak of the
lobe and the minimum in the axis.

Higher frequencies are more challenging to compute. For the (1,1) mode,
going to 5 kHz changes radically the far-field directivity. Figure 17 shows the
directivity at such a frequency. It shows that the code Aether starts to drift
away from the BEM method. The two main lobes are not perfectly captured,
and there is a distinctive lack of signal for the secondary lobe around −70◦.
The main features of the directivity are still captured. Figure 18 shows the
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Figure 16: Far-field directivity of a (1,1) mode at 2 kHz without mean flow.
Comparison between linearized Navier-Stokes and boundary element method.

real part of the pressure variation in the volume for this mode. It gives
an idea of the complexity of the propagation inside the nozzle, and of the
complicated interference pattern appearing further away from the exhaust.

4.3 Results with mean flow

When a mean flow is added, sound propagation pattern changes completely.
Refraction of the sound waves by velocity gradient of the mean flow alters
the direction of propagation. Sound waves are refracted away from the axis.
The mean flow is not potential, as it represents the jet emitted by the engine,
and so the acoustic propagation can no longer be computed using a boundary
element method [2].

4.3.1 Description of the mean flow

The mean flow was computed using a RANS simulation. As explained in
section 4.1, the engine is in fact a small scale model called a turbine powered
simulator. To propel the engine and create a jet, compressed nitrogen at
low temperature is fed into the model turbine. The jet is thus at around
−100◦C. As a consequence, the sound velocity is very low in the jet, and so
the jet is locally supersonic. This is pictured in figure 1.

4.3.2 Plane wave mode at 2kHz with mean flow

Figure 19 shows the real part of the pressure variation for a plane wave
mode at 2 kHz. As stated just before, the sound refraction directs the sound
energy on the sides. The high amplitude oscillations in the jet correspond to
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Figure 17: Far-field directivity of a (1,1) mode at 5 kHz without mean flow.
Comparison between linearized Navier-Stokes and boundary element method.

Figure 18: Real part of the pressure variation in Pascal for the mode (1,1)
at 5 kHz without mean flow on a slice
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Figure 19: Real part of the pressure variation in Pascal on a slice for a plane
wave mode at 2 kHz with the mean flow corresponding to the jet engine at
full power

Kelvin-Helmholtz instabilities which are unstable at this frequency. They are
located in the shear layer, and they create a high amplitude wave which does
not radiate. As the jet expands and is diffused, the shear layers are thicker,
and the Kelvin-Helmholtz instability is no longer unstable at this frequency.
This means that the amplitude of the wave decreases with the distance to the
engine after reaching a maximum. As the transparent boundary conditions
are not perfect, care has to be taken that these instability waves are damped
sufficiently before they reach the far-field boundary. This proved to be the
main driver of the size of the computational domain.

5 Conclusion
In this paper, the industrial use of linearized Navier-Stokes equations for
propagation of sound in aeroacoustics was demonstrated. A full propagation
computation requires first the mean flow solution, then the propagation
computation itself using the linearized Navier-Stokes (or linearized Euler)
equations, and finally a far-field propagation with the Kirchhoff method. So
the full computation uses two volume meshes, one for each of the two first
steps, with an interpolation step to transfer the mean flow solution between
the two meshes.

The use of entropy variables, which brings better numerical properties,
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introduces some additional complexity when imposing boundary conditions
on physical or conserved quantities. The pressure, for instance, depends non-
linearly on the entropy variables. In order to solve the linearized equations,
the gradient of these entropy variables is required, which yields a linear rela-
tion between the pressure linearized variation, for example, and the linearized
variations of the entropy variables. The resulting transformation matrix was
used to modify the linear system for imposing a non-homogeneous Dirichlet
boundary condition. Its use in a finite element scheme is straightforward. A
Dirichlet boundary condition on characteristic variables was implemented in
order to impose only the incoming acoustic pressure. A rigorous test using
complex modes in a tuned cylinder was devised and showed that the use of
normal characteristics is valid even to impose waves with a large angle to
the normal.

The SUPG stabilization is the reason why applying homogeneous Dirich-
let boundary conditions to all variables leads to a transparent boundary
condition. A 1D toy model was used to show that this suprising effect is due
to the perfect upwinding on all its characteristics. It also gave a convincing
explanation of the good numerical performance of the Aether code in terms
of dissipation and dispersion.

Industrial use of linearized Navier-Stokes for propagation of aft fan noise
in a jet engine was demonstrated. On a complex geometry, this volume
computation led to results which are very close to those obtained by a
boundary element method, when no mean flow was present. This assessment
demonstrates the numerical efficiency of the Aether code, as far as linearized
Navier-Stokes (or linearized Euler) equations are concerned.
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