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ARTICLE INFO ABSTRACT
Keywords: It is well known that the 2D Laplace Dirichlet problem has a degenerate scale for which the direct boundary
Integral equations integral equation has several solutions. We study here the case of the mixed boundary condition, mainly for the

Boundaryelements
Laplace equation
Plane problems

exterior problem, and show that this problem has also one degenerate scale. The degenerate scale factor is a
growing function of the part of the boundary submitted to Neumann condition. Different special cases are then

addressed: segment, circle and symmetric problems. Some exact values of the degenerate scale factor are given for
Degenerate scale . N . . R
Mixed boundary condition equilateral triangle and square. The numerical procedure for determining the degenerate scale factor for mixed
Neumann condition BC is described. The comparison is made with other kinds of boundary conditions and the consequence of the
Dirichlet condition choice of Green’s function when using the Boundary Element Method is studied.



1. Introduction

Since its early development, the Boundary Element Method (BEM)
method has been intensively investigated. Notably, the error of the BEM
has been evaluated [1-3] and new numerical improvements are still be-
ing suggested using adaptative mesh [4-7], isogeometric boundary el-
ement analysis with non-uniform rational B-splines [8-10] and adapta-
tive cross approximation [11] or reducing the singularities of the bound-
ary integral formulation [12,13].

However, the issue of the degenerate scale for 2D problems persists
because it is linked to the underlying Boundary Integral Equation (BIE).
The existence of a degenerate scale for the Laplace equation with Dirich-
let boundary condition (BC) in the plane is well known [14,15]: for a
special size of the domain under study, characterized by its scale when
compared with all homothetic domains (the “degenerate scale”), the BIE
has more than one solution for Dirichlet BC over all the boundary. Nu-
merous results were obtained on the Laplace problem with Dirichlet BC,
either from a fundamental point of view, in relation with potential the-
ory [16-23] or for application to BEM [24-34]. Specific investigations
for Laplace’s problem deal with the way to evaluate numerically the de-
generate scale [27,35], to mitigate the numerical issues coming from
degenerate scale [24,26,27,33,36] or to deal with special geometrical
configurations [34,37-40] or multiply connected problems [29,30,41].
Some of these results were extended to the case of plane elasticity
[42-48] and to biharmonic equation [49,50]. For conduction problems,
it has been shown that degenerate scale for anisotropic conduction can
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be obtained from the ones obtained in the case of isotropy [51]. The
Laplace problem with Dirichlet BC has been extended to the case where
the Green’s function corresponds to the half plane [52] and to Robin
boundary condition [53]. It is also worthwhile mentioning that the ques-
tion arises also in dynamics: under special conditions, the degenerate
scales arise also in solving the Helmholtz equation [54], because the
dynamic singular kernel is asymptotically logarithmic. From a general
point of view, degenerate scales appear because of the logarithmic part
of the kernels that are involved when solving plane problems using a
Boundary Integral Equation, which is the case for conduction, elastic-
ity, elastoplasticity,...

The mixed BC (i.e. when a part of the boundary is at Dirichlet BC
while the other part is at Neumann BC) is the main contribution of
the present paper. It has been investigated in [19,28], for the inte-
rior problem uniquely. It was shown that if the logarithmic capacity
[16-18,23,31,55] is equal to 1 (or equivalently if the Dirichlet problem
is at its degenerate scale), the interior mixed problem is at a degenerate
scale. The existence and uniqueness of the solution of the integral equa-
tions for the interior problem are proved in [56] with the condition that
the diameter of the domain is less than 1; this paper also contains an
extensive bibliography of early works on mixed boundary problems.

The aim of this paper is to complete the results on degenerate scale
by providing a thorough study of the case of mixed BC. We focus on the
direct method of BIE (see for example [57]). In a first step, we recall
the main results in the case of boundary conditions which are of the
same kind over all the contour. Next, we complete the known results
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in the case of the interior boundary value problem by showing that the
degenerate scale for Dirichlet BC is the unique degenerate scale for the
interior problem with mixed BC. Then, we address the exterior problem.
One difference compared with the case of the interior problem is that
the non unique solution of the BIE leads to a non null solution of the
boundary problem via the representation formula. There is a unique de-
generate scale for this exterior mixed problem and the degenerate scale
factor increases when the part of the boundary submitted to Neumann
BC increases. The special case of segments is dealt with. Then some spe-
cial cases are solved using conformal mappings and symmetries, leading
to exact solutions for some cases of equilateral triangle and square. The
numerical procedure for obtaining the degenerate scale is provided and
finally, we compare the degenerate scale for mixed BC with other cases
where the BC is the same over all the boundary: Dirichlet, Robin, Neu-
mann.

2. Principal results on degenerate scales for BC of the same type
over the contour

This section reminds shortly the most important results on degener-
ate scales in the case of Dirichlet, Robin and Neumann BC. It aims to
prepare the study of mixed BC which is an analogous issue, needing of-
ten similar methods, and to allow the final comparison for all boundary
conditions in Section 11.

2.1. Dirichlet BC

The case of Dirichlet BC over all the contour has been the object of
numerous studies. The degenerate scale is related to the nature of the
BIE in the case of plane problems, which contains the integral operator
over the boundary I’

F(x)= /tI(y)G(X.y)dSy~ (1)
r

Where G is the Green function for the plane, G = 'El In(||x = y||). The
problem is to find the function g when the function F(x) is known over
.

Fq(x) is known from the boundary condition in the case of Dirichlet
BC, either in the case of direct or indirect formulation of the BIE, while
the meaning of g differs between these two formulations. In the case of
the Direct formulation of BIE, it is given by:

9G(x,y) 5
on(y) dsy» @

1
Fy(x)= Eu(x)+/ru(y)

In this formulation, g is the unknown boundary normal flux.

The degenerate scale is obtained by studying all domains correspond-
ing to homothetic contours pI” of I'. It was shown that this operator can
be null for non null values of g and a specific boundary poI" which is
homothetic to " by a factor py. This specific value of p, is the degen-
erate scale factor. This factor is related to the logarithmic capacity C
[16-18,23] by py = 1/C. This result is important since the logarithmic
capacity of numerous kinds of contours is known, that allows to find
easily the degenerate scale, a domain being at the degenerate scale if
its logarithmic capacity is null. The search of degenerate scale does not
involve the normal to the boundary. As a consequence, interior and ex-
terior problems with Dirichlet BC related to the same boundary corre-
spond to the same degenerate scale.

The existence of degenerate scales has an important consequence
when using the BEM, which rests on the discretized version of the bound-
ary integral equation, i.e. the linear system:

[H][u] = [G][4] (3)

where [u] contains the values of the searched harmonic potential at
nodes located at the boundary and [q] the values of the normal gradi-
ent of the potential at the same nodes. The numerical degenerate scale
corresponds to the size of the domain for which the matrix [G] is singu-
lar. The consequence of the existence of a degenerate scale is that the

matrix [G] becomes badly conditioned for domains whose scales are
near the one of the boundary at the degenerate scale [28].

2.2. Convection type or Robin BC

A convection type BC has the form :

ou
= = — . 4
o 1 (u— ) “4)

where u is given over the boundary and t is a positive physical constant
related to the convection coefficient and to the conductivity. Even if this
condition is well known in the case of thermal condition, it can be used
in other physical cases related to conduction: it corresponds to the exis-
tence of a very conductive thin layer over the boundary. Assuming that
this boundary condition is applied over all the boundary, the boundary
integral equation over I' can be written as:

1 G
5u(x)+‘/rG(x.y)tu(y)dSy+/ra—"yu(y)dSyz/rG(x.y)tuo(y)dSy. 35

If the domain bounded by I' is at a degenerate scale for this BC, it
means that the operator on the left hand side has a non-null solution
for a null value of uy. It means that the problem for u, = 0 in the con-
vection condition has a non null solution. This corresponds to the Robin
condition, t being the Robin constant.

The main results concerning the degenerate scale for this problem
can be found in [53]. In this paper, it has been shown that, for the
interior problem, the degenerate scale is the same as for the Dirichlet
problem. However, for the exterior problem, the degenerate scale is now
related to the value of the Robin constant.

2.3. Neumann BC

In the case of Neumann BC over all the contour, it is well known
that the solution of the interior problem is obtained up to a constant if
the compatibility condition [ %dsy =0 is satisfied (e.g. [58]). There
is always a solution of the exterior problem which is unique up to a
constant (e.g. [58]). There is no degenerate scale.

3. Study of the degenerate scale of interior problem with mixed
boundary condition

As seen previously, a degenerate scale does appear in the case of
Dirichlet BC and in the case of convection (Robin) BC. However, in
practice, different boundary conditions may be mixed and another very
important case is the case when a part of the boundary corresponds to
Dirichlet BC and the other to Neumann BC. This mixed BC case will be
studied in this section for interior problem and in the following sections
4-10 for exterior problems.

3.1. Definition of the degenerate scale for interior problem with mixed BC

We consider the following interior Laplace problem:
Au=0 xert;
u(x)=0 xeTlp: ©)
du
m(x) =0 xely.

Such a function satisfies the following boundary equations (e.g.
[571):

/ u(y)H(x.y)dSy - / q(y)G(x.y)dSy =0 xely

'y 'p

< (7
Tu(o)+ / u(y)H(x, y)dS, - / a()G(x,y)dS, =0  xeTy
B Ty rp

i g ! 9G(x.
with ¢ = &5, Gx,y) = =5 Inlx = y)), H(x,y) = 585
S



We say that the interior problem with Dirichlet condition on I'p and
Neumann condition I'y is at the degenerate scale if there exists a non

null ealutiaon (10 a) of (7)) dafinad an T T
WL SGIUon W, @) o/ GanneG on gy Xip.

3.2. Behavior of the problem with mixed BC if the whole contour is at the
degenerate scale for Dirichlet BC

This problem has already been investigated in [19] using complex
methods and more recently in [28]; we give here a new proof of this
main result on mixed BC. If I' is at its degenerate scale for Dirichlet BC
then there exists go # 0 such that:

o0

ﬁqo(X)G(x‘ »dS(x)=0 xeTl. ®)
We now consider the solution u of the following auxiliary Laplace
problem:

Aug=0 xeTI;
uy(x)=0 x€Tlp: ©)

dug
EOO: g x€ly.

The existence of this solution is a crucial point. For a connected in-
terior domain bounded by a finite number of simple curves of class C% 4
we can refer to [59].

This solution satisfies the following boundary integral equations:

a
/ uo(y)H(x.y)dsy—/ﬁc(x.y)dsﬁo xely:
T T on (10)

1 g
Euo(x) + </I'N uo(y)H(x.y)dSy - /r EG(x.y)dSy =0 xely.
Adding (8) to (10) we get the following equations:

a
/ Uy () H (x, p)dS, — / (% —qO)G(x.y)dS,.=0 xelp:
rN rD

ot
%uo(.\')+/ up(y)H (x, y)dS, — / (a—‘o - q0>G(x.y)dSr =0 xely.
r.‘l rD n

(11

So, we can conclude that (u, Z—“: —qp) is a solution of (7). If q, is
non null on Iy, then ug is non null and then ug is non null on I'. As
ug is null on I, then we deduce that u, is non null on I'y and then
(ug, 2—""’ — qp) is non null on I'y x I'p. If g is null on 'y, we conclude that
j;.D GoG(x, y)dS, = 0 with gy non null on T, and (0, go) is a non null
solution of (7), which proves that the domain is at a degenerate scale

for mixed BC.

3.3. Behavior if the mixed BC problem is at degenerate scale

The result of that section is that if the mixed BC problem is at de-
generate scale then, the Dirichlet BC problem is also at degenerate scale.
This result has been previously investigated in [19] using complex meth-
ods and we provide here a new proof of this fundamental property.
We suppose now that there are non null functions (y,, q,) defined on
(I'y xTp) satisfying (7). If we assume u, = 0, we define a function g(x)
by setting g(x) = 0,if x € 'y and g(x) = gy(x).if x €'p. Substituting u = 0
in (7), we conclude that fr q(x)G(x,y)dSy = 0and I is at the degenerate
scale for the Dirichlet BC.

We assume now that uy #0. And we consider the solution u of the
following auxiliary problem:

Wm

%
o

Fig. 1. Definitionof .’ =T, ul,.
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Au=0 xert,
S u(x)=0 xelp: (12)
u(x) = uy xely.

Such a function satisfies the following boundary integral equations:

/ u(YH (x.y)dS, - / X G(x,)ds, =0 xeTlp:
I'n ron

(13)

1 du
EM(X)+/1"N u(y)H(x.y)dSy— /raG(x.y)dSy =0 xely.

But (ug, qp) is a solution of (7), and by subtracting (7) out of (13) we
get:

i
Z1Gx, S, — | a()G(x.1)dS, =0 x €Ty
r on o v
’ (14)

)
a
/r S G, )aS, ~ /rp 201G (x.y)dS, =0 xe&Tly.

We define g by g = %(x) forxeTyandg= (g—:(x) — go(x)) forxeTp,
and we check that j;q G(»)G(x, y)dSy =0. As u#0 we must have :—:(x) #
0 on I'y and we conclude that ¢ # 0. So the boundary T is also at its
degenerate scale in that case.

Finally, as there is one and only one degenerate scale for Dirichlet
BC, there is one and only one degenerate scale for the interior problem
with mixed BC.

4. General results for an exterior Laplace problem with mixed BC

The main result of that section is that an exterior Laplace problem
with mixed BC has one and only one degenerate scale.

4.1. Preliminaries

Our results will rely on the existence and uniqueness of the solution
of an exterior problem with mixed boundary conditions. Different cases
have been studied, notably by Krutitskii [59,60]. We will refer here to
the case of an exterior domain bounded by one or several simple closed
curves of class C% 4 for A€ (0, 1] [60] see Fig. 1.

In the following, the finite set of the limit points where the type of
the BC changes is denoted by X.

A function u belongs to the smoothness class K if:

ue C'T)nC3I);
Vue COT~\ X): (15)
|Vu(y)| <clx=y|fif [x—=y| =0, x€ X,c>0,e > —1.



where T ~ is the closure of '~ (see Fig. 1) and r- \ X is the set of points
x such that x e T~ and x ¢ X.
We consider the following boundary problem:

Au(x)=0xel;
u(x)= fp(x)xelp: (16)

du
K(X) = fy(x): x€Ty.

The function defining the boundary conditions are assumed to be
C 4 for the parts with Dirichlet BC and C% 4 for the part with Neumann
BC. We assume that the behavior at infinity assumes the following con-
ditions:

{ u(x) = w+0(|x|_'):

(17)
Vu(x) = O(|x|72).

Then, if the measure of I'j; is not null, the problem defined by (16),
(17) has a unique solution in K [60]. (The condition on u(x) is stated in
[60] as u(x) = O(1) and Vu(x) = of|x|~!) but it is easily replaced by the
more precise formulation (17)). The condition (17) is also used in [61].
This condition at infinity is not satisfying, because it can be fulfilled only
if fpr qdS, =0, i.e. if the the resultant of the flux on the inner boundary
is null. However, for many practical problems, it is necessary to apply
flux over the inner boundary whose resultant is not null (for example, in
the case of normal flux constant over the boundary). So, a less restricting
condition is introduced in Section 4.2, which allows to deal with a larger
set of physical problems.

4.2. Characterization of the degenerate scale with mixed BC

We then consider the following problem : find (v, @) € K x R satis-
fying (16) with fy =0, f, =0 and the following condition at infinity:

u(x) = —% In(|x]) + @ + O(|x|™"):
- (18)
Vu(x) = =3V Inlx]) + O(Jx[ ).

This is the characterization of the degenerate scale used in [62] for
Dirichlet condition. This condition accommodates now the case of a con-
stant normal flux over the boundary. Then, we consider the following
BC:

1
fN=——lﬂ(|X|)X€rD'-
oo Lo a9
D= T on N

We denote by v the unique solution of (16), (17), (19). It belongs to
K. Then we consider u(x) = —— 1n(|x|) — v(x). This is a solution (1, ) of
the problem defined by (20) and 7).

Aux)=0xeTl
ux)=0xelp:
du

W(x)—o xely.

(20

If we assume two solutions (uy, @;), (uy, @,) of (20) and (18), then
u, — u, satisfies (16) and (17) with homogeneous conditions and hence
is null and we get that ; = w,.

This allows to define the degenerate scale factor py such that there
is a function u, defined on the exterior of the homothetic contour p,I"
such that u,, is the solution of (20) and (18) on poI"” with @ = 0. It can
be seen easily that the choice u ,(X) = u(x /p)and p = e~ satisfies these
conditions.

Fig. 2. Definition of I'p, Ty, I'py, Tr, Qg.

4.3. Behavior of the degenerate scale factor when the part of the contour
submitted to Neumann BC increases

The main result of this section is that the degenerate scale factor is
an increasing function of the part of the contour submitted to Neumann
BC.

We will compare the degenerate scale for two decompositions of the
contour and denote u; and u, the solutions related to these two kinds
of BC. We assume that for uy the part of the contour submitted to Neu-
mann condition 'y is larger than for uy ; more precisely, we assume that:
Iy €Ty We write: I'=Tp Uy UTpy, with Iy =Ty NIy, =T .
Iy =Ty NIy, =Ty,;Tpy =Tp; NIy, (see Fig. 2).

We write the Green’s first identity for the function (u, — u;) on the
domain Qp:

/ (uy — up)A(uy — up)dvV, =0

ANun —
/(u« —uy) Ay "l)dSy+ (uy — uy )Mdj'y
Tr ar

g

I Ir

—/ (V(uy = up))*dv,. [#3))
Qp
—_—

Igg20

The term I, is actually strictly positive if 'y, \ T'y, has a non null
length. If I, =0, then, u; —u; = Const. This constant is null because
we assume that I';, contains an open portion of the boundary with a
non null length. Then u, = u, is a harmonic function which is such that
u= % = 0 on a smooth open portion of the boundary. As a consequence,
u =0, from [63]. As uy #0, u, #0, we conclude that IQR > 0.

Using the boundary conditions we get:

(u~. —u O(uy — uy)
(u» - Uy ————— dS + (uq —u )—dS

Ny —u
+ / (uy — u, )Mdsy
I'on on_

_ / w2 s @2
2 . 22
rpy O

~
I

y




Using the condition at infinity we get:

o O

IR = -/rkxuz By or s,
T 1 1 1 1 1
—A (02- 01 +0( %)) (- 5,7 * 7er +O(7) )R =0(5)-

(23)

Using (21)-(23), we get:

I= M 45 >0 24
__/rm,uza - y>0. (24)

We now write the Green’s second identity for the functions (uy, u;)
on the domain Qp:

/ (yAuy — uy Auy)dV, =0
Qr

duy Ou, as. + duy duy ds o5
= Uy —— — 15 - ;. ~
-\ 2 on_ " on_ Yo rg \ Tor “or Y ®)

. v

v g

r I’

It can been seen easily that I’ = —1. Let us evaluate now I}:

’ ou, duy
e (o5
2z 1 1 1 |
=A [(—ﬂln(R)+wz+0(E))(—2”R+O(E))

- (—i In(R) + @, +0(%))(-ﬁ +0(r12))] Rdo

[T In(R)
—/0 (2][(wl w2)+0< R ))df). (26)

When R — o, I — (@) — w,). Combining (24)-(26), we get:

I=—I'=I;z=(vl—wz>0. 27)
We finally conclude:
Py = e—Z}rwl > e—Z)m:l = (28)

which proves that the degenerate scale factor is a growing function of
the part of the contour submitted to Neumann BC.

5. Degenerate scale of a segment for mixed BC

5.1. Comparison of the degenerate scale of a segment submitted to mixed
BC and the degenerate scale of the part of the segment to Dirichlet BC

The main result of this section is that the degenerate scale for a seg-
ment with mixed BC is equal to the degenerate scale of the part of the
segment subjected to Dirichlet condition.

We consider a segment S. It is split into a finite number of segments
Sp, and Sy, with respectively Dirichlet and Neumann conditions (the
same condition on both sides). If the set of segments (USD_) is at its
degenerate scale for Dirichlet BC, there exists a non null solution u to
the problem (29).

Au=0 x e (USD‘)':
ux)=0 xe USD,: (29)

1 -
u(x):—ﬁln|x|+o(|x| b x| = oo.

Due to the symmetry, the derivative % =0 for x in the interior of

USy,. We conclude that the segment S is at the degenerate scale for the
mixed BC.

5.2. Some exact values

It is possible to find exact values for some sets of aligned segments by
the “pullback formula” (see for example [55]). In the same reference,
the solution for two equal segments with Dirichlet BC [—a,—b] U [b,a]
(with a> b >0) is given: the set is at the degenerate scale if

Va—F=2, (0)

and some other examples with 3 segments are also given. An example
with 4 segments can been found in [64]. This paper provides also the
literature on the methodology leading to these results, that falls outside
the scope of our present work.

In this special case, the fact that the degenerate scale factor isa grow-
ing function of the part submitted to Neumann BC is a direct conse-
quence of the fact that the logarithmic capacity is a growing function of
the considered domain.

6. Degenerate scale for an exterior problem of a circle with mixed
BC

6.1. Relation between mixed boundary value problem on a circle and a
similar problem on a contour obtained by conformal mapping

We suppose that there is a conformal mapping w from the outside
of a circle C to the outside of the considered simple curve I' such that
w(z) =z +0(1/z) when |z| = co. If u(2) is a solution of a mixed problem
on the circle, then Y(¢) = u(w™'(&)) is a solution of a mixed BC problem
on I where the part of I' submitted to Dirichlet BC is the image of the
part of C submitted to Dirichlet BC. The boundary is an equipotential
line for the part of it with Dirichlet condition and a streamline for the
part of it with Neumann BC. The image of the stream lines and of the
equipotential lines of u are the stream lines and the equipotential lines
of Y (see e.g. [65]). And so Y is a harmonic function which satisfies the
mixed BC. The last point to check is the radiation condition and, from
the definition of the conformal mapping, it can be seen easily that Y ({)
behaves at oo like u(z).

We can conclude finally that if a circle C with Dirichlet BC on Cp, and
Neumann BC on Cy is at the degenerate scale for the exterior Laplace
problem then, I' = w(C) with Dirichlet BC on w(Cp) and Neumann BC
on w(Cy) is also at the degenerate scale.

6.2. Conformal mapping of a circle onto a segment

It is well known that w(z) = z + R*/z maps the circle with radius R
and center at the origin, onto the segment [-2R,2R]. We use the pre-
vious results on conformal mapping for the segment. For that, it is im-
portant that both sides of the segment (upper and bottom side) have the
same kind of BC as we use a symmetry argument along the real axis. So
we restrict ourselves to the case where the part Cp (and consequently
the part Cy) is symmetric with respect to the real axis.

Then the circle is at the degenerate scale if and only if the set of
segments w(Cp) is at the degenerate scale. We give now some examples.

6.3. Case when Cyp is connected

We consider a circle with radius R and the part Cp with Dirichlet BC
is connected with length 2Ra.

The circle is at its degenerate scale if the image of its part submitted
to Dirichlet BC which is the segment of length 2R(1 — cos(a)) is at its
degenerate scale, that is if its length is equal to 4. We get the condition
2R(1 — cos(a)) = 4 which can be written, using (1 — cos(a)) = Zsinz(a/Z).
in the following way:

Rsin®(a/2) = 1. (31)

This condition is different from the condition for Cj, to be at the degener-
ate scale: this condition writes Rsin(a/2) = 1 [17]: the useful property,



A A
c
By
o 1 2R 2R
‘ 2Rcos ()

Fig. 3. Case of a circle with one part with Dirichlet condition.

2Rcos(B) 2Rcos(c)

Fig. 4. Case of a circle with two parts with Dirichlet condition.
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2Rcos(f)

-2Rcos(o)

2Rcos(o)

Fig. 5. Case of a circle having four parts with Dirichlet condition.

relating the degenerate scale for mixed BC to the degenerate scale of
the part at Dirichlet BC, is true for a segment, but cannot be extended
to any boundary curve, as shown in the case of the circle. The condition
giving the degenerate scale for mixed BC with Dirichlet BC on the half
circle, i.e. a=7/2is R =2.

6.4. Case when Cp, has two connected parts

We consider the case with Cj, constituted by two symmetric arcs of
angle (f — a) (see Fig. 4).

The condition for Cp, being at the degenerate scale is: 2R(cos(a) —
cos(f)) = 4. We find the value of the degenerate scale factor R:

1
R= ———M (32)
sin( —ﬂ;")sin( —a;ﬁ)

A special symmetric case is a = x/4: p = 3z /4. Then, the total length of
Cp is zR and the degenerate scale factor is:

R=12 (33)

It is smaller than for one arc having the same length.
6.5. Case with four connected parts with Dirichlet BC
We consider now a set of four arcs symmetric with respect to the real

and the imaginary axes (Fig. 5).
Using (30), we get the following condition:

RVcos2(a) — cos2(f) = R/sin(f — a) sin(a + f) = 1. (34)

As an example, if @ = /8 and p = 37 /8. the total length of Cp is 7R
and the condition is:

R= 2. (35)

6.6. Case of a circle where the part submitted to the Dirichlet BC has a
n-fold symmetry

Then, we can evaluate the degenerate scale of a n-fold symmetric
problem on the unit circle with a n-fold symmetric part submitted to
Dirichlet BC C,, p, if we know the degenerate scale of the problem on the
unit circle with the Dirichlet BC on Cp such that, using polar coordinates,
(1,0 eC,L pe(1, nd) e Cp).

We consider the function u solution of (18), (20) of the problem with
Cp and we define u,(r.6) = ﬁu(r". n@). It can be seen easily that u is a har-
monic function outside the unit circle. It also satisfies the following BC:
u,=0on C, p, du,/d0 =0 on C, y. Checking the radiative condition,
we see that when r— co:

u,(r.0)= %u(r", né)

11 0] 1 1 0] 1
= —-—-— — — )= — - ). 3
n2”ln(ﬂ')+n+0(r) 2’rln(r)+n+o(r) (36)

So, we deduce that the degenerate scale factor R, of the n-fold symmetric

1
problem is R7. The preceding results (33), (35), appear to be particular
cases.

7. Degenerate scales with mixed BC for contours having a line
symmetry

7.1. Case when the Dirichlet BC is applied to one half of the boundary

We consider a simple contour with asymmetry axis and the following
mixed BC: the Dirichlet BC is applied to one of the two symmetric parts,
the Neumann BC is applied to the other one (Fig. 6).

The half part is mapped on the half part of the unit circle which is
mapped on the half of the segment of length 4. We deduce that the de-
generate scale factor for this particular mixed BC is twice the degenerate
scale factor for Dirichlet BC.

7.2. Case when the part submitted to Dirichlet BC has the same symmetry
line as the boundary

In that case, it is also possible to reduce the problem of finding the
degenerate scale of the mixed BC problem on I to the evaluation of the
logarithmic capacity of a set of aligned segments (Fig. 7).

8. Case of figures with a n-fold symmetry

8.1. Case when I'y, is a connected part equal to the fraction k/n of the
whole boundary

We suppose that a connected part corresponding to 1/n of the whole
curve is submitted to Dirichlet BC (Fig. 8). The conformal mapping
maps this part to an arc of circle of angle 2z/n. Using the result of
Section 6.1 and Eq. (31), we deduce that the degenerate scale factor
is
R=— 1 @7

sinz(ﬂ/ 2n)
if the curve is at its degenerate scale for Dirichlet BC.

If the part submitted to Dirichlet BC is the fraction k/n connected

part of the whole curve, we get :

R= — 1 (38)

sinz(ﬂk/Zn).
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Fig. 6. Case of a figure with a symmetry axis, the part submitted to Dirichlet BC being symmetric of the other part.
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Fig. 7. Case of a figure with a symmetry axis, the part submitted to Dirichlet BC being
symmetric with respect to the symmetry axis.

8.2. Case when I'yy is a set of n arcs with the n-fold symmetry

We denote by g the arc of circle corresponding by the conformal
mapping to the 1/n part submitted to the Dirichlet BC (Fig. 9). Then the
angle in the image circle by 2" is ng and applying (31) and (36) we get:

sin“(%)

It is interesting to notice that if the part submitted to Dirichlet BC is
constant, nf = Const < 2x, then when n— oo, R— 1: when the part sub-
mitted to Dirichlet BC becomes more and more finely divided, the de-
generate scale factor tends to the degenerate scale factor for the Dirichlet
case.

9. Applications
9.1. Case of an equilateral triangle

The use of conformal mapping allows to compare this case with the
case of the circle.

Thanks to the symmetry, it is easy to find the points of the circle
corresponding by the Schwarz—Christoffel mapping to the vertices and
to the middles of the sides. The results are given in Table 1 for 11 cases
of mixed BC.

In that table, we find the ratio p,,/pp. pp is the degenerate scale factor
that transforms the equilateral triangle (with Dirichlet boundary condi-
tion) with h height to the degenerate scale triangle with height #p =
pph ~ 2053 (and Dirichlet boundary condition). p,, is the degenerate
scale factor that transforms the equilateral triangle (with mixed bound-
ary condition) with h height to the degenerate scale triangle for mixed
boundary condition, having height #,, = p,,h. The ratio p,,/pp = h,, /by
does not depend on the original scale of the triangle.

Dirichlet
w1(z)

",
‘.,

The cases (1-9) can be solved by using (31). The case (7) is a direct
application of Section 7.1. The solutions of cases (11-12) are found by
using the results of Section 7.2 and Eq (32). The case (10) needs to
consider the inverse image of the triangle by the Schwarz-Christoffel
transform and to use Eq. (32) after a rotation. The case (13) is solved
with the help of Section 8.2 and Eq. (39).

As an example, let us detail the case 2 of Table 1. Due to the sym-
metry, the half side is mapped by the inverse of the Schwarz—Christoffel
mapping to the 1/6 part of the circle. Then, the angle « in Fig. 3 is
equal to z/6. Applying (31), the condition is R = p,,/pp = 1/ sin*(a/2) =
1/ sin’(x/12). We have 7/12 = \/5(\/3— 1)/4 see for e.g. [66]. An easy
calculus then results in R = 4(2 + V/3).

Looking at cases (1, 2, 4, 5, 7, 8, 9) allows to verify that the degen-
erate scale factor decreases when the part of the boundary submitted to
Dirichlet BC increases. We conclude in the same way when considering
cases (1, 2,10,7,9)and (1, 2, 10, 13, 9) . When comparing cases (4, 10,
11), it can been seen that the degenerate scale factor is smaller when
the distance between two half sides submitted to the Dirichlet BC is
larger.

9.2. Case of a square

The results for different configurations of the mixed BC are given
in Table 2 for 16 cases of mixed BC. The method is the same as for
the equilateral triangle: cases (1-10) need (31), case (6) is also solved
by using Section 7.1. Cases (13,15,16) can be found using the n-fold
symmetry (Section 8.2). Cases (12, 14) can be solved using Section 7.2 .
Case (11) needs a direct application of (32) on the inverse image of the
problem by the Schwarz—Christoffel mapping.

As an example, let us detail the case 12 of Table 2. Due to the
symmetry, the half side is mapped by the inverse of the Schwarz—
Christoffel mapping to the 1/8 part of the circle. Then, the angle «
in Fig. 4 is equal to /4 and g = x/2. Applying (32), the condition

is R = 1/(sin(z/8)sin(37/8)). We have sin(z/8)=1/(1 - v2/2)/2 and
sin(37/8) = /(1 + \/5/2)/2 see for e.g. [66]. An easy calculus then re-

sultsin R = 2\/5).

When comparing the cases (1, 2, 4, 5, 6 ,7, 8,9, 10), it can be seen
again that when I'p increases, the degenerate scale factor decreases.
When comparing the cases (3, 4, 11, 12, 13, 14) or the cases (6, 15,
16), we notice that the more homogeneous is the repartition of I'p, the
smaller is the degenerate scale factor.

Neumann

4
\J

“taey

Fig. 8. Case of a figure with a n-fold symmetry, the part submitted to Dirichlet BC being the fraction k/n of the whole boundary.
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Table 1

Value of the ratio for :—' for different mixed boundary conditions on an equilateral triangle. (p,, (pp) is
>
the degenerate scale factor for mixed BC (respectively Dirichlet BC), pp~2.053/h with h the height of

the equilateral triangle).

Case  Figure L3 Case  Figure L3
3 /o
Neu
-mann
1 ® 2 42+ /3) ~ 14928
. *,Dirich
SN -let
3 u 4 4 4
*, Dirich
*, -let
) K *,Dirich
b K ', et
5 2 6 RS m——— 1x133
*, Dirich
', -let
7 $x1333 8 cemem) 42- /3~ 10272
+, Dirich
B s, -let
9 FAEER—— N | 10 S 5 R2309
*, Dirich ,*, Dirich
s, -let N clet
11 ..-._A 2 12 [......k 2/V/3 % 1.155
* Dirich
*, -let
13 ,_.X 2173 %1.260

10. Numerical determination of the degenerate scale factor for
mixed BC

In that section, we consider the exterior problem.

10.1. Method of numerical determination of the degenerate scale

The numerical determination of the degenerate scale factor rests on
the boundary element formulation of the integral equation. It will use
standard direct formulation of the BEM and the mathematical tool of
generalized eigenvalue as already used in [41] for the case of Robin BVP
and described in [52] for the case of Laplace equation in the half-space.

We use the singular BIE and not the null field BIE as in [67,68].

The boundary element formulation is written by using the Green’s
function of Laplace equation defined up to a constant C by:

G = - In(r), (40)
2r

Let us consider the problem related to the boundary conditions u = u,
over I'p and g“—" = qp over I'y. The boundary element numerical repre-
sentation of the integral equation is formulated in this work by using
constant elements and can be written as:
[Hp. Hy| ["D] B [GD.GN][‘“’] (1)

Un N
with the obvious notation that index D (N) refers to the nodes where
Dirichlet (Neumann) BC is applied. H,, and G, are rectangular matri-
ces obtained by keeping the columns related to nodes on boundary at
Dirichlet BC and identically for Hy and Gy

This can be written by putting into the right hand side the known
quantities as:

[_GD' HN] [::] =[-Hp.Gyl [:z] (42)

the unknown being obviously uy, gp.



Table 2

Value of the ratio :—' for different mixed boundary conditions on a square. (p,, (pp) is the degenerate scale factor
0
for mixed BC (respectively Dirichlet BC), p,~1.699/a, with a the side of the square).

Case  Figure :—‘ Case  Figure :—'
> >
Dir-
Neu- : ich-
mann H let
1 © 2 —_ ~26274
2-\/ 242
[ . ===} Dir-
4 Diri- E ich-
:chlet tlet
.
"
I
3 4+2V2~ 6828 4 4+2V2~ 6828
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H .
I 4 I
5 ~ 3.240 6 2
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H H
H H
| ooeei 3
7 T f__~1446 08 000 TTTTTTT 4-2V2x 1172
24Y2-v2
......... ~ Dir- pessesssapi
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' let ' . let
4 " ' ]
' [ [ [
= ; ] :
9 P s~ Low N - X
2+\/1+\/5
} Dir-
rich- .
tlet let
1 e 27 3606 12 n— 22 % 2.828
2-v2
3 Dir- ———1Dir-
tich- i tich-
+let [ let
'
'
H
13 V4+2v2x2613 14 2v/2 ~2.828
: 1 Dir- et 3 Dir-
- 1ich- tich-
. = let let
H .
H H '
" " 1
: H : .
15 V2 & 1414 16 wmes 21 % L1I8

The scale factor is introduced by using the matrix [G,] related to pI"
as a function of [G] built from I'. It is shown in Appendix A that the
relation between these two matrices is:

[6,] =1G1+CIB]. (43)

where the computation of [B] is described in Appendix A and with C =
—Lln(p). Introducing this into (42) , the numerical formulation of the
mixed BIE for the domain with boundary pI" becomes:
u
[_GD_CBD~HN][qD] =[-Hp.Gx +CBN][ D]. (44)
Un aN

If the domain with boundary pI' is at the degenerate scale, it means

that matrix [-Gyp — C Bp. Hy ] is singular, i.e. the system

[-Gop — CBp . Hy1[X]1=0 (45)
has a non null solution. This can be written as:
[~Gop- Hy|[X]1= C[B.0][X]. (46)

Therefore, C is a generalized eigenvalue of ([-Ggp. Hy].[Bp.0)).
This generalized eigenvalue can be computed by using standard nu-

merical packages, for example in Matlab software. Looking for these
generalized eigenvalues, it is found that most of these eigenvalues are
very large (near the limit for digitized numbers). Therefore, it is better
to look for the eigenvalues u, of ([Bp.0].[~Gp.Hy]). It is found that
only one eigenvalue y is not (nearly) null and finally C is given by:

_1_1 =1

C= e log(a) = P log(p). (47)
The degenerate scale factor is finally given by:

p=e25/K, (48)

10.2. Applications

The numerical method for obtaining the degenerate scale factor has
been applied to a circle of radius 1. Fig. 10 shows the comparison be-
tween the analytical solution obtained in the previous section and the
numerical one for a circle with an increasing part of the contour con-
cerned by a Dirichlet BC, while on the remaining part a Neumann BC is
applied. The numerical results have been obtained by using BEM with



Table 3

Comparison between the different cases of BC. pp, g, g, are the degenerate scale factors for Dirichlet, Robin and mixed boundary conditions.

Case Dirichlet BC Robin BC [53]

mixed BC Neumann BC

Interior problem  One degenerate scale p,

Exterior problem  One degenerate scale factor p,, the
same as for the interior problem

One degenerate scale equal to pp,

One degenerate scale factor pp > o,
pg increases when the parameter tin
the Robin BC decreases - — tu=0

One degenerate scale factor equal to
pp [19] [28]

No degenerate scale; one solution up
to a constant if the prescribed flux

Jra=0

rd

One degenerate scale factor g, > pp, No degenerate scale; one solution up
pm increases when the part subjected  to a constant

to Neumann condition increases

4
10 T T T T T T

+ numerical solution
—— analytical solution

10
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degenerate scale factor
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Fig. 10. Comparison between analytical and numerical values of the degenerate scale
factor for a circle with increasing Dirichlet BC.
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Fig. 11. Comparison between analytical and numerical values of the degenerate scale
factor for a square with increasing Dirichlet BC, starting from one vertex.

400 constant elements. The results show that both analytical and numer-
ical methods produce the same results over all the range of the increas-
ing boundary. Fig. 11 produces similar results for the case of a square
which is at the degenerate scale for Dirichlet BC. On this figure, the
points related to analytical results are taken from Table 2. On this fig-
ure, some vertices can be seen on the numerical results, corresponding
to the cases when the increasing boundary at Dirichlet BC corresponds
exactly to the passage by a vertex of the square. The results show again
that both methods produce satisfying results.

11. Comparison with other BC and consequences

11.1. General features of the results related to different boundary
conditions

These results complete the previous works concerning, Dirichlet,
Neumann and Robin BC. They are synthesized in Table 3.

The evolution of the degenerate scale factor for the exterior problem
with Robin BC and with mixed BC is similar. When t decreases, the Robin
BC becomes closer to a Neumann BC and when the part submitted to
the Neumann BC increases, the mixed BC problem becomes also closer
to a Neumann BC problem. In both cases, the degenerate scale factor
increases.

11.2. Consequences on the implementation of the BEM for plane problems

The existence of degenerate scales for the Laplace problem and
Dirichlet boundary conditions is well known since a long time. How-
ever, as seen in the previous sections, degenerate scales appear also in
the case of Robin and mixed BC, the degenerate scale factors resting on
a large infinite range between 1 and infinity (starting from the domain
at the degenerate scale for Dirichlet BC).

The customary means to avoid the occurrence of degenerate scale
when solving Laplace equation within a given domain bounded by I is
to use a Green’s function having the form
G, = %m(g) (49)
where r = ||x — y|| and a is a large positive constant. It has been shown
in [69] for exterior problems, that the solution obtained by using a large
value of a produces an approximate solution of the 3D problem at the
vicinity of a long cylinder having a length 2a and a section built on T,
which explains why this procedure is physically sound.

The background on degenerate scales in the case of Dirichlet BC al-
lows to justify this procedure and also to give a bound on a to ensure
that degenerate scales do not appear when studying a problem related
to a given boundary I'. The degenerate scale factor for Laplace equation
complies with the inequality

P 2 é~ (50)
where d- is the diameter of a circle which contains the boundary I'. As
a consequence, the degenerate scale does not appear for Dirichlet BC
as soon as a >dp/2. With this condition, the degenerate scale factor for
Dirichlet equation complies with py > 1.

Looking now for Robin and mixed BC, it has been shown that
Por) > Popy and poar) > Pop)- As a consequence, the degenerate scale
factors for Robin and mixed BC are always greater than 1 and the do-
main bounded by I' is never at the degenerate scale for any of the pre-
vious boundary value problems. This corresponds to the experience of
scientists using the BEM.

12. Conclusion

The present paper completes the study of the influence of the bound-
ary conditions on the degenerate scale for Laplace problem in the plane



by dealing with the mixed (Dirichlet and Neumann) BC. Its main con-
tributions concerns the case of the exterior problem where it shows the
existence and the uniqueness of the degenerate scale and that the degen-
erate scale factor increases when the part of the boundary submitted to
Neumann BC increases. It has been possible to relate directly the degen-
erate scale for mixed BC on a segment when the conditions are the same
for both sides of segment with the degenerate scale for Dirichlet BC. For
special cases of contours with symmetries (circles, squares, equilateral
triangles, the problem can be solved in closed form using conformal
mapping and the results for mixed BC on a segment. It is worthwhile
mentioning that numerous results obtained for Laplace equation can be
naturally extended to other partial differential equations like those of
elasticity, Helmholtz equations,...This will be the subject of a further
work.

Appendix A. Obtaining matrix [B] in the numerical
determination of the degenerate scale used in this work

The coefficients of matrix [G] are built from a given discretization
over the contour I by using K collocation points x;,i = 1,K and inter-
polation functions N, (j = 1, K) by the relation:

G, =/rNj(y)G(x,,y)dS(,v) @

1 1
el = ﬂ‘“(m)

Using this relation, the coefficients of matrix [G,] are given by:

(A2)
Gpij = /,, - N;(0G(xs. y)ds(y) (A3)

The coefficients of matrix [G,] are obtained from those of matrix [G]
by:

Gy = [ NOIGOx9Ms) = Gy = 3 00) [ Njts) (A
This leads to :

[G,1= [G] - 5-In(p)B] A.5)

where

B = ANJ(YWS(,V)» Vx; (A.6)

For the case of constant elements, N; is equal to 1 over each element
and therefore By is obviously the length of element j. All lines of matrix
[B] are identical and contain the lengths of elements along the contour.

In the case of more sophisticated elements, the tedious computation
of matrix [B] from the expression above involving the integration of
interpolation functions can be avoided by using standard BEM codes
and computing [G] and [G,,, ] for an arbitrary scale factor py.

[B] is given by:

=2 [iG)-
[B1= 7, 55{(61- 16,1 )
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