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ABSTRACT

A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure
diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is
described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss’ method, we computed
the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-
like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate
the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have
illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution
function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test
star in the vicinity of the black hole (the “Schwarzschild barrier”) as a result of the divergence of the relativistic precessions. The dual
stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic
processes.
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1. Introduction

The dynamical evolution of stellar clusters in the vicin-
ity of galactic centres’ supermassive black holes (SMBH)
has triggered some interest over the last couple of decades
(Morris & Serabyn 1996; Gillessen et al. 2009), amplified by the
recent direct detection of gravitational waves through the coales-
cence of intermediate mass black holes (Abbott et al. 2016). Un-
derstanding the dynamics of stars in the vicinity of our galaxy’s
SMBH is now one of the prime goal of the new generation of
interferometers such as Gravity (Jocou et al. 2014). Within the
next decade, the community will also build the LISA observa-
tory1 to detect gravitational waves from systems of black holes
with masses ranging from a few to 108 M� (Amaro-Seoane et al.
2012).

SMBHs absorb stars and debris whose orbits reach its loss-
cone (Frank & Rees 1976; Shapiro & Lightman 1976), where
they are either taken directly into the black hole or close enough
to interact strongly with it (see a review of the loss-cone the-
ory in Merritt 2013b). The continuous loss of stars reshapes
the central stellar distribution (Genzel et al. 2000), also affect-
ing the secular evolution of the SMBH’s mass and spin (e.g.
Volonteri et al. 2016). This dynamical process triggers different
observational signatures depending on the mass of the stars, such

? Hubble Fellow.
1 E.g. http://elisascience.org/whitepaper/.

as binary capture and hyper-velocity star ejection (Hills 1988),
tidal heating and disruption of stars (Syer & Ulmer 1999;
Magorrian & Tremaine 1999; Alexander & Morris 2003), and
gravitational waves generation by inspiraling compact rem-
nants (Hils & Bender 1995). These signatures provide indi-
rect evidence of the existence of the central black hole and
can be used to test the theory of gravity in the strong field
regime (Merritt et al. 2009). It is therefore timely to model the
wide range of masses involved in nuclear clusters – from brown
dwarfs up to intermediate black holes – to understand their long-
term dynamics near SMBHs, which should eventually allow us
to predict for example the rate of extreme mass ratio inspirals
(EMRI; see review in Sigurdsson 2003).

The dynamics of stars in galactic nuclei comprise numerous
processes (see reviews in Alexander 2005, 2017; Merritt 2013a).
To a first approximation, because of the domination of the cen-
tral SMBH’s potential, stars follow elliptical orbits that main-
tain their orientation for many orbital periods. The cluster may
then be thought as a collection of massive wires, where the mass
of each star is smeared along its quasi-Keplerian orbit. This is
Gauss’ method for secular dynamics (Touma et al. 2009). The
coherence of stars’ orbits over many dynamical times leads then
to an efficient diffusion of the wires’ angular momentum, via a
process called (scalar) resonant relaxation (Rauch & Tremaine
1996; Hopman & Alexander 2006a; Merritt 2015). In addition,
stars also undergo a diffusion of their orbits’ orientation via
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vector resonant relaxation (Kocsis & Tremaine 2011, 2015), and
a diffusion of their semi-major axes via two-body (non-resonant)
encounters (Chandrasekhar 1944; Binney & Tremaine 2008).
These last two effects will not be considered in the present work.

Recently, Fouvry et al. (2017b, hereafter Paper I) presented
the kinetic equation that describes self-consistently the secular
resonant relaxation of a large set of particles of various masses
orbiting a SMBH (or a protoplanetary debris disc surrounding
a star). This set of so-called Balescu-Lenard and Landau ki-
netic equations was obtained by simply averaging the BBGKY
equations over the fast angle that describes motion along the
Keplerian ellipses2. It describes self-consistently the long-term
evolution of the distribution of multi mass quasi-Keplerian or-
bits around the central object. It models the diffusion and drift of
their actions, induced through their mutual resonant interaction.
Hence, this set is the master equation that describes the secu-
lar effects of resonant relaxation (Rauch & Tremaine 1996), and
should now be implemented to predict the joint dynamical evo-
lution of the central SMBH and its nuclear cluster.

Following Paper I, the aim of this paper is now to implement
this kinetic equation for the Galactic centre’s inner stellar cluster.
Specifically, it will quantify the adiabatic distortion of its orbits,
the stalled diffusion of test stars near the so-called Schwarzschild
barrier (Merritt et al. 2011), the induced mass segregation in ec-
centricity and the corresponding quantitative kinematic signa-
tures. As such, it will also provide a first complete implementa-
tion of the inhomogeneous multi-mass Landau formalism in an
astrophysical context.

The paper is organised as follows. Section 2 presents quasi-
Keplerian discs and introduces the degenerate inhomogeneous
Landau kinetic equation describing self-consistently these discs’
resonant relaxation. Section 3 applies this self-consistent dif-
fusion formalism to the self-induced resonant relaxation of a
discrete razor-thin quasi-Keplerian disc. Section 4 investigates
the stochastic resonant diffusion of individual test stars, in par-
ticular the quenching of the diffusion in the neighbourhood of
the central BH, the Schwarzschild barrier. Section 5 wraps up.
Appendix A details the method used to compute the interaction
potential between two Keplerian wires.

2. Secular evolution of quasi-Keplerian discs

This paper focusses on the long-term dynamics of a razor-
thin axisymmetric disc of stars surrounding a central SMBH.
Section 2.1 briefly recalls the appropriate angle-action coordi-
nates that may be used to describe the motion of particles in such
a system. Section 2.2 presents the disc model that will be consid-
ered throughout the paper, while Sect. 2.3 introduces the degen-
erate Landau equation. This equation describes self-consistently
the long-term evolution of razor-thin discrete quasi-Keplerian
discs induced by finite-N effects (in the limit where collective
effects are not accounted for).

2.1. The disc’s geometry

Let us assume that the system takes the form of a razor-thin ax-
isymmetric disc, so that the dimension of configuration space is

2 This approach relies on a long tradition of kinetic theory, start-
ing from the seminal papers of Landau (1936) and Chandrasekhar
(1942, 1943a,b), followed by Balescu (1960) and Lenard (1960), and
using the recent developments of Luciani & Pellat (1987), Mynick
(1988), Heyvaerts (2010) and Chavanis (2012). See Heyvaerts et al.
(2017) for a review.

d = 2. Following the conventions from Paper I, let us introduce
the angle-action coordinates

(θ, J) = (θs, θf , Js, Jf) = (E, θf), (1)

where E = (J, θs) corresponds to the coordinates of a given
Keplerian wire, that are all conserved along the Keplerian mo-
tion induced by the central BH. Here, the angles and actions are
respectively given by

θs = g; θf = w; Js = L; Jf = I = L + Jr, (2)

where θs = g, being the slow angle, is conserved along the mo-
tion and corresponds to the argument of the periapse, while
θf = w stands for the mean anomaly and is the fast angle that
describes the phase of the particle along its Keplerian motion.
Finally, Eq. (2) also introduced L and Jr as the angular mo-
mentum and radial action of a given orbit (Binney & Tremaine
2008). Here, I = L + Jr is the fast action associated with the
orbit, which is adiabatically conserved during the resonant re-
laxation. For prograde orbits, the mapping (θ, J) 7→ x is given
by (Sridhar & Touma 1999; Binney & Tremaine 2008)[
x
y

]
=

[
cos(g) − sin(g)
sin(g) cos(g)

]
·

[
a(cos(η) − e)

a
√

1 − e2 sin(η)

]
, (3)

where the semi-major axis a, the eccentricity e, and the eccentric
anomaly η are given by

a =
I2

GM•
; e =

√
1 − (L/I)2; w = η − e sin(η). (4)

The mapping from Eq. (3) also allows us to obtain the mapping
to the polar coordinates (θ, J) 7→ (R, φ) as

R = a(1−e cos(η)) ; φ = g+Arg
[
cos(η)−e ;

√
1 − e2 sin(η)

]
. (5)

2.2. The disc model

Let us now specify the disc model that will be considered
throughout the paper. This disc is chosen to somewhat mimic
some of the features of the “clockwise disc” of the Galactic cen-
tre, considered in Kocsis & Tremaine (2011). In order to con-
sider dimensionless quantities, the mass, length and time units
are such that

M� = 1; 1 mpc = 1; 1 kyr = 1. (6)

Within these units, the central BH and the surrounding razor-thin
disc are characterised by

M• = 4 × 106; M? = 4 × 103; ε = M?/M• = 10−3,

µ? = 1; N? = 4 × 103, (7)

where M• is the mass of the central BH, M? the total mass of
the disc composed of N? stars of individual mass µ?. Because
the BH dominates the dynamics, one has ε = M?/M• � 1. For
simplicity, let us assume that the star’s DF takes the form of a
quasi-isothermal DF (Binney & Tremaine 2008), reading

F?(L, I) =
1

M?

ΩKep(L)Σ?(L)
πκKep(L)σ2

r (L)
exp

[
−
κKep(L)
σ2

r (L)
(I − L)

]
, (8)

which satisfies the normalisation condition
∫

dθdJ F?(J) = 1.
Equation (8) introduced the azimuthal and radial orbital fre-
quencies ΩKep and κKep (Binney & Tremaine 2008), which in the
Keplerian case depend only on I and read

ΩKep(I) = κKep(I) =
(GM•)2

I3 · (9)
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Fig. 1. Illustration of the disc’s surface density Σ?(R), as given by
Eq. (11). Following the units from Eq. (6), the disc extends between
0.2 pc and 0.6 pc.

In Eq. (8), the Keplerian orbital frequencies have to be evalu-
ated in the vicinity of circular orbits, that is where I = L. Fi-
nally, Eq. (8) also introduced the local velocity dispersion σr(L)
and the disc’s surface density Σ?(L). For a Keplerian potential,
the mapping between the angular momentum L and the guiding
radius Rg of the corresponding circular orbit is straightforwardly
given by

Rg =
L2

GM•
· (10)

Relying on this mapping, the disc’s surface density Σ?, ex-
pressed as a function of radius takes the form

Σ?(R) =
1

2π
M?√
2πσ2

Σ

1
R

exp
− (R − RΣ)2

2σ2
Σ

 , (11)

where RΣ is the mean radius of the disc, and σΣ its radial ex-
tent. Such a surface density satisfies very closely the constraint∫

dRRdφΣ? = M?. Finally, in units of Eq. (6), we choose

RΣ = 0.4 pc = 400; σΣ = 0.15 × RΣ. (12)

Figure 1 illustrates the disc’s surface density Σ?(R). In Eq. (8),
the radial velocity dispersion σr is chosen to be

σr = const. = 0.2 × vc(RΣ), (13)

where vc(RΣ) = L(RΣ)/RΣ stands for the circular velocity at the
radius RΣ. The larger σr, the hotter the disc, and therefore the
more eccentric the orbits. In order not to consider a domain of
infinite extent in the (L, I)-plane, in all the subsequent numerical
applications, we will restrict ourselves to the trapezoidal region

Lmin ≤ L ≤ Lmax; L ≤ I ≤ L + Jmax
r . (14)

In Eq. (14), it is bounded in angular momentum by

Lmin = L
[
RΣ − 2.5 × σΣ

]
; Lmax = L

[
RΣ + 2.5 × σΣ

]
, (15)

using the mapping L = L[Rg] from Eq. (10). In addition, in
Eq. (14), the value of Jmax

r is chosen so that the exponential fac-
tor in Eq. (8) is small enough, namely

Jmax
r = 3

σ2
r (LΣ)

κKep(LΣ)
, (16)

Fig. 2. Illustration of the disc’s DF F? from Eq. (8), in action space
J = (L, I). It was assumed here that all stars are prograde, so that L > 0.
Moreover, the action coordinates satisfy I ≥ L, so that I = L corre-
sponds to circular orbits. The contours are spaced linearly between 95%
and 5% of the DF maximum. The grey dashed lines correspond to the
domain in action space from Eq. (14), to which the computations are
restricted.

where LΣ = L[RΣ]. Finally, let us pave the domain of Eq. (14)
with a grid of constant step distance ∆J defined as

∆J =
Lmax − Lmin

nGrid
, (17)

where nGrid is an integer which characterises the density of the
considered grid. A fairly sparse grid is used given the com-
putational costs associated with the computation of the wire-
wire interaction potential (see Appendix A). Derivatives on the
grid are computed by finite differences, so that for example,
one has [∂ f /∂L](L, I) = [ f (L + ∆J, I) − f (L − ∆J, I)]/(2∆J). All
the subsequent numerical applications were performed with
nGrid = 30. Figure 2 illustrates the disc’s DF, F?, from Eq. (8)
on the considered grid. Finally, as detailed in Appendix A, the
gravitational interaction potential is softened so that

U(|x|) = −
GM•√∣∣∣x∣∣∣2 + ε2

soft

· (18)

In all the upcoming applications, the softening length is given by
εsoft = 10−3 × RΣ.

2.3. The degenerate Landau equation

Because it is made of a finite number of stars, the razor-thin disc
presented in Sect. 2.2 will undergo a self-induced resonant dif-
fusion on secular timescales. This is the process of resonant re-
laxation (Rauch & Tremaine 1996). Paper I recently derived the
appropriate master equations to describe such a long-term self-
consistent and self-induced evolution. These are the inhomoge-
neous degenerate Balescu-Lenard and Landau equations. For a
razor-thin axisymmetric disc, and in the limit where the con-
tributions from the self-gravitating amplification are neglected,
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resonant relaxation is governed by the inhomogeneous degener-
ate Landau equation for razor-thin disc (Sridhar & Touma 2017,
Paper I), which reads

∂F?

∂τ
=

π

N?

∂

∂L1

[∫
dJ2 δD(Ωs(J1) −Ωs(J2))

×
∣∣∣Atot(J1, J2)

∣∣∣2( ∂

∂L1
−

∂

∂L2

)
F?(J1) F?(J2)

]
, (19)

Eq. (19) describes the self-induced resonant evolution of the
disc’s DF as a result of its discreteness. Following the notations
from Paper I, Eq. (19) introduced the rescaled time τ defined
as τ = 2πεt, with ε = M?/M•. This equation also involves the
disc’s total bare susceptibility coefficients Atot(J1, J2), defined
as

|Atot(J1, J2)|2 =
∑
mL

|mL||AmL,mL (J1, J2)|2, (20)

where the bare susceptibility coefficients AmL,mL (J1, J2) are
given by the Fourier transform in angle of the wire-wire inter-
action potential U12. They read

AmL,mL (J1, J2) =

∫
dg1

2π
dg2

2π
U12 e−imL(g1−g2)

=

∫
d∆g

2π
U(J1, J2,∆g) e−imL∆g, (21)

since for wires belonging to the same orbital plane, the wire-
wire interaction potential U12 only depends on the phase differ-
ence between the two pericentres, ∆g = g1 − g2. Equation (21)
introduces the wire-wire interaction potential, U12, given by

U(J1, g1, J2, g2) =

∫
dw1

2π
dw2

2π
U

(
|x1[E1, w1] − x2[E2, w2]|

)
.

(22)

Let us emphasise that the additional symmetry of the interaction
potential in Eq. (21) is the very reason why the Landau Eq. (19)
for discs can be written without any sum on resonance vec-
tors. The effective calculation of the interaction potential from
Eq. (22) remains a difficult numerical computation, which is
the bottleneck of all the upcoming numerical applications. Ap-
pendix A details how this potential may be computed efficiently
in practice, following Gauss’ method (Touma et al. 2009).

Equation (19) finally involves a resonance condition on the
in-plane precession frequency Ωs of the Keplerian wires. In the
present context, the precession frequencies are given by

Ωs(J) = Ωs
self(J) + Ωs

rel(J), (23)

where Ωs
self stands for the mass precession due to the disc’s po-

tential, and Ωs
rel for the relativistic precession induced by the cen-

tral BH. Section 3.1 details how these frequencies may be com-
puted. In Fig. 3, we illustrate the variation of these precession
frequencies for circular orbits (i.e. for I = L) as a function of
the wires’ angular momentum L. One can note that in the neigh-
bourhood of the disc (i.e. for 7 × 104 . L . 10 × 104), the wire’s
precession is dominated by the self-consistent mass precession
frequency Ωs

self . Such a precession is said to be retrograde be-
cause Ωs

self < 0 for L > 0. Section 3 investigates the properties
of the disc’s self-consistent resonant relaxation in this region of
action space. In the vicinity of BH (i.e. L . 3 × 104), the wire’s
precession is dominated by the relativistic precession frequency
Ωs

rel. Such a precession is said to be prograde because Ωs
rel > 0

Fig. 3. Dependence of the precession frequencies Ωs
self and Ωs

rel for cir-
cular orbits (i.e. for L = I), as a function of the angular momentum L.
In the vicinity of the BH, a wire’s precession is dominated by the rela-
tivistic precession Ωs

rel, while in the vicinity of the disc, its precession is
dominated by the self-consistent mass precession Ωs

self .

for L > 0. Section 4 investigates the properties of the resonant
diffusion of a test wire in such a region of action space, where its
precession is dominated by relativistic effects.

We refer the reader to Paper I for a detailed discussion of
the physical content of the kinetic Eq. (19). Let us however em-
phasise that in the present approach, one has to enforce the 2D
symmetry of the system, by constraining all wires to remain in
the plane of the disc. The direction of each wire’s angular mo-
mentum vector remains therefore the exact same during the evo-
lution. Wires can only see the norm of their angular momentum
L change on secular timescales. This corresponds to the process
of scalar resonant relaxation (Rauch & Tremaine 1996). Such an
approach neglects the contributions from out-of-plane preces-
sions, and cannot therefore capture the process of vector reso-
nant relaxation (Kocsis & Tremaine 2011, 2015). Similarly, be-
cause this approach relies on the orbit-average of particles into
wires, it cannot describe the diffusion associated with two-body
non-resonant relaxation (Bahcall & Wolf 1976). Let us finally
note that the kinetic Eq. (19) is limited to the description of the
dynamics of axisymmetric razor-thin discs. Should one be inter-
ested in the secular evolution of a non-axisymmetric razor-thin
disc (corresponding for example to the expected configuration of
the galactic centre of M31 (Tremaine 1995)), the derivation of
the kinetic equation presented in Paper I would have to be revis-
ited. Indeed, as a result of the global non-axisymmetries, such
a disc would precess as a whole, so that its unperturbed mean
state would not per se be in a collisionless equilibrium. This new
derivation would first involve identifying new angle-action coor-
dinates for the non-axisymmetric configuration (i.e. by placing
oneself within the appropriate rotating frame), before extending
the formalism accordingly.

In order to emphasise the respective contributions of
the diffusion tensor and the friction force by polarisa-
tion (Heyvaerts et al. 2017), one can also rewrite the Landau
Eq. (19) by explicitly introducing the disc’s drift and diffusion
coefficients. It becomes
∂F?

∂τ
=

∂

∂L1

[
A(J1) F?(J1) + D(J1)

∂F?

∂L1

]
, (24)

where the drift and diffusion coefficients A(J1) and D(J1) are
respectively given by

A(J1) = −
π

N?

∫
dJ2δD(Ωs(J1) −Ωs(J2)) |Atot(J1, J2)|2

∂F?

∂L2
,

D(J1) =
π

N?

∫
dJ2δD(Ωs(J1) −Ωs(J2)) |Atot(J1, J2)|2F?(J2).

(25)
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In order to stress the conservation of the number of wires dur-
ing diffusion, the Landau Eq. (19) can finally be written as the
divergence of a flux as

∂F?

∂τ
=

∂

∂L1
[FL(J1)] =

∂

∂J1
· [F tot(J1)] = div(F tot), (26)

where the flux FL(J1) in the L-direction and the total flux
F tot(J1) in the (L, I)-space are respectively defined as

FL(J1) = A(J1) F?(J1) + D(J1)
∂F?

∂L1
,

F tot(J1) = (FL(J1), 0) . (27)

We note that the diffusion flux F tot(J) is always zero in the I-
direction, which corresponds to the adiabatic conservation of the
fast action Jf = I during the resonant relaxation, which implies
the conservation of the wires’ semi-major axis. We also note that
for an isotropic DF, F?(J) = F?(I), the drift coefficients, A(J1),
from Eq. (25) exactly vanish. Finally, we recall that the equi-
librium states of the self-consistent diffusion Eq. (19) are given
by the Boltzmann DFs (Chavanis 2012; Sridhar & Touma 2017),
reading

Feq(L, I) = C(I) exp
[
−βHeq(L, I) + γL

]
, (28)

where β stands for an inverse temperature, γ is the Lagrange
multiplier associated with the conservation of the total angular
momentum. Here, the energy Heq(L, I) is given by the primitive

Heq(L, I) =

∫
dL Ωs(L, I). (29)

In Eq. (28), the function C(I) is imposed by the initial conditions.
Indeed, because of adiabatic invariance F̃(I) =

∫
dL F(L, I, τ)

is conserved throughout the diffusion, so that C(I) is de-
termined by C(I) = F̃(I)/

∫
dL e−βHeq(L,I)+γL. In the high tem-

perature limit, β→ 0, the equilibrium distribution reduces to
Feq(L, I) = C(I) exp[γL] (Rauch & Tremaine 1996). Let us note
that this end state differs from the relaxed power law density
cusp, F = F(I) = Ip, associated with two-body non-resonant re-
laxation (Bahcall & Wolf 1976). Such a difference is of course
expected as the degenerate Balescu-Lenard and Landau equa-
tions capture the long-term evolution induced by resonant in-
teraction between orbit-averaged wires, while Bahcall & Wolf
(1976) investigated the relaxation induced by direct (non-
resonant) interactions between particles (i.e. without orbit-
average). In particular, during the non-resonant relaxation, par-
ticles can exchange I, while during the resonant relaxation, I
is an adiabatically conserved quantity, so that wires can only
exchange L. As can be seen in the end state of Eq. (28), the
I-dependence of the equilibrium DF of resonant relaxation is
fixed by the initial conditions, so that one cannot expect it to
generically relax to the F = F(I) = Ip equilibrium state pre-
dicted in Bahcall & Wolf (1976).

3. Self-consistent resonant relaxation

Having specified the properties of the considered discrete
quasi-Keplerian disc and the master equation describing self-
consistently its self-induced resonant relaxation, let us now de-
tail how the Landau flux from Eq. (19) may be computed.

3.1. Computing the Landau flux

Relying on the fact that in razor-thin discs, the wire-wire in-
teraction potential only depends on the pericentre’s phase shift
∆g = g1 − g2, one may perform a harmonic expansion of the
form

U(J1, g1, J2, g2) =
∑

k

Uk(J1, J2) eik∆g. (30)

One may then compute this harmonic expansion for each pair
(J1, J2) in the grid from Eq. (14). In the subsequent numerical
applications, the Fourier coefficients are computed by FFT using
NFFT = 27 points. The calculation of the harmonic development
of the wire-wire interaction potential in Eq. (30) allows then for
the computation of two quantities: the self-consistent mass pre-
cession frequencies and the bare susceptibility coefficients ap-
pearing in the resonance condition from Eq. (19).

Turning to the total precession frequencies Ωs from Eq. (23),
which originate from both the disc mass precession and the rela-
tivistic corrections, the self-consistent mass precession frequen-
cies are given by

Ωs
self(J) =

∂Φ

∂L
· (31)

Equation (31) involves the self-consistent potential Φ of the disc.
It is given by

Φ(J1) =

∫
dJ2d∆g F?(J2) U(J1, J2,∆g)

= 2π
∫

dJ2 F?(J2) U0(J1, J2), (32)

relying on the harmonic development of the interaction poten-
tial from Eq. (30). The 1PN Schwarzschild relativistic preces-
sion frequencies induced by the central BH were obtained in
Appendix A of Paper I. They read

Ωs
rel(J) =

∂Φrel

∂L
, (33)

where the relativistic potential Φrel, when correctly normalised,
is given by

Φrel(J) =
1

2π
M•
M?

H1PN
rel (J), with H1PN

rel (J) = −
3(GM•)4

c2

1
LI3 ·

(34)

The relativistic precession frequencies can then be explicitly
computed and read

Ωs
rel(J) =

1
2π

M•
M?

3(GM•)4

c2

1
L2I3 · (35)

Equations (31) and (35) jointly characterise the precession fre-
quencies that come into play in the resonance condition of the
Landau Eq. (19).

Finally, the harmonic expansion from Eq. (30) also allows us
to evaluate the disc’s total bare susceptibility coefficients from
Eq. (20), which become∣∣∣Atot(J1, J2)

∣∣∣2 = 2
∑
k>0

k
∣∣∣Uk(J1, J2)

∣∣∣2, (36)

relying on the fact that U being real, one has |U−k | = |Uk |.
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Fig. 4. Total precession frequencies Ωs = Ωs
self + Ωs

rel in action space in
the neighbourhood of the razor-thin quasi-Keplerian disc introduced in
Sect. 2.2. The disc being typically 0.4 pc away from the central BH,
the precession frequencies are dominated by the mass precession fre-
quencies Ωs

self . These mass precession frequencies are retrograde, so that
Ωs(J) < 0. The contours in this plot are spaced linearly between 95%
and 5% of the minimum precession frequency satisfying Ωs

min ' −0.2.
Because the degenerate Landau Eq. (19) does not involve any resonance
vectors, the contours levels of Ωs also correspond to the critical resonant
lines γ(ω) introduced in Eq. (39).

Having determined the system’s precession frequencies as
well as the total bare susceptibility coefficients, the computation
of the r.h.s. of Eq. (19) involves dealing with the resonance con-
dition encapsulated by the Dirac delta δD(Ωs(J1) −Ωs(J2)), by
identifying the critical lines of resonance. To do so, let us first
recall the generic definition of the composition of a Dirac delta
and a smooth function (Hörmander 2003), which gives∫
Rd

dx f (x) δD(g(x)) =

∫
g−1(0)

dσ(x)
f (x)
|∇g(x)|

, (37)

where g−1(0) = {x | g(x) = 0} is the hypersurface of (generically)
dimension (d − 1) defined by the constraint g(x) = 0, and dσ(x)
is its surface measure. In the present context, the resonance con-
dition is given by the function

g(J2) = Ωs(J1) −Ωs(J2). (38)

For any given value of J1, and introducing ω = Ωs(J1), one may
then define the critical resonant curve γ(ω) as

γ(ω) =
{
J2

∣∣∣ Ωs(J2) = ω
}
. (39)

This curve corresponds to the location in action space of all the
wires which are in resonance with the precessing wire of ac-
tion J1. This is illustrated in Fig . 4 for the disc from Sect. 2.2.
Once these resonant lines have been identified, the Landau drift
and diffusion coefficients from Eq. (25) may straightforwardly
be computed, and read

A(J1) =

∫
γ(Ωs(J1))

dσ
GA(J1, J2)
|∇(Ωs(J2))|

; D(J1) =

∫
γ(Ωs(J1))

dσ
GD(J1, J2)
|∇(Ω)s(J2)|

·

Fig. 5. Diffusion flux, FL, predicted by the degenerate Landau Eq. (26)
for the razor-thin quasi-Keplerian disc introduced in Sect. 2.2. Follow-
ing the convention from Eq. (26), the direction of diffusion of individual
wires in action space is given by −FL. Red contours, for which FL < 0,
correspond to regions where wires tend to diffuse towards larger L, that
is decrease their eccentricity. Blue contours, for which FL > 0, are as-
sociated with regions in action space, where individual wires tend to
diffuse towards smaller L, that is increase their eccentricity. The con-
tours are spaced linearly between the minimum and the maximum of
FL. Within the units of Eq. (6), the maximum value for the positive blue
contours is given by F max

L ' 10−10, while the minimum value for the
negative red contours reads F min

L ' −3 × 10−10.

(40)

Equation (40) introduced the two functions GA and GD as

GA(J1, J2) = −
π

N?

∣∣∣Atot(J1, J2)
∣∣∣2 ∂F?

∂L2
,

GD(J1, J2) =
π

N?

∣∣∣Atot(J1, J2)
∣∣∣2 F?(J2), (41)

as well as the resonant contribution |∇(Ωs(J2))| given by

|∇(Ωs(J2))| =

√[
∂Ωs

∂L2

]2

+

[
∂Ωs

∂I2

]2

· (42)

3.2. Self-induced resonant diffusion

Equipped with the bricks presented in the previous section, one
may then study how the disc’s DF, F?, from Eq. (8) will get to
diffuse on secular timescales under the effect of its own discrete-
ness. This involves i) evaluating the pairwise interaction poten-
tial U12 on the grid elements following the Gauss method from
Appendix A; ii) determining the precession frequencies (illus-
trated in Fig. 4), as well as the disc’s total bare susceptibility co-
efficients |Atot|

2; iii) integrating Eq. (40) along the associated res-
onant lines, and iv) computing the disc’s self-consistent drift and
diffusion coefficients, A(J) and D(J). These steps allow finally
for the computation of the total diffusion flux FL, introduced in
Eq. (26).

The contours of this flux are illustrated in Fig. 5. Let us
first recall that because the equations of motion were averaged
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Fig. 6. Divergence of the diffusion flux, div(F tot), predicted by the
degenerate Landau Eq. (26) for the razor-thin quasi-Keplerian disc
introduced in Sect. 2.2. Red contours, for which div(F tot) < 0, cor-
respond to regions from which the wires will be depleted, whereas
blue contours, for which div(F tot) > 0, are associated with regions
in action space, where the value of the disc’s DF will increase dur-
ing the resonant relaxation. The contours are spaced linearly between
the minimum and the maximum of div(F tot). Within the units of
Eq. (6), the maximum value for the positive blue contours is given by
div(F tot)max ' 5 × 10−14, while the minimum value for the negative red
contours reads div(F tot)min ' −10−13.

w.r.t. the fast Keplerian orbital motion, that is w.r.t. w the an-
gle associated with the action I, the diffusion is one-dimensional
only: individual Keplerian wires conserve their fast action I (i.e.
conserve their semi-major axis), and can only diffuse in the L-
direction (i.e. change their eccentricity). In Fig. 5, this translates
to the fact that wires diffuse along horizontal lines. Following
the convention from Eq. (27), one can note that individual wires
will diffuse along the direction of −FL, so that in Fig. 5, most of
the individual wires will diffuse towards lower L, that is towards
larger eccentricities. The self-consistent diffusion of the system
therefore tends to dynamically heat up the system by making it
more eccentric.

Following the calculation of FL, it is straightforward to com-
pute the divergence of the diffusion flux, div(F tot), whose con-
tours are illustrated in Fig. 6. It is the first application of the
degenerate Landau equation in the context of galactic centres,
and constitutes a main result of this paper. This allows us to de-
scribe the self-induced local changes of the disc’s DF, that is to
determine the value of [∂F?/∂t](t = 0+). We note from Fig. 6
that the self-consistent diffusion is associated with an increase
in the orbits’ eccentricities. It is similar to the localised “heat-
ing” found in Fouvry et al. (2015a,b) when studying the secu-
lar self-consistent diffusion of discrete razor-thin self-gravitating
stellar discs. There, diffusion induced a heating of the system’s
DF, which was very localised in action space, taking the form
of a narrow resonant ridge. It was amplified by the disc’s self-
gravitation, as accounted for by the Balescu-Lenard framework.
Figure 6 limits itself to the computation of the Landau flux, for
which collective effects are not considered. Should the disc be
strongly self-gravitating, one expects the self-gravitating ampli-
fication not only to accelerate the overall diffusion of the system,

but also to enhance it in specific locations in action space where
collective effects are the strongest, leading to the appearance of
narrow ridges of diffusion.

Let us now estimate the typical timescale associated with
this self-consistent resonant diffusion. The contours of F?

presented in Fig. 2 are separated by an increment equal to
∆F? = 0.2 × Fmax

? , where Fmax
? ' 5 × 10−10 is the maximum of

the disc’s DF from Eq. (8). In order to observe the effects of
the secular diffusion, the value of the disc’s DF should typi-
cally change by an amount of the order of ∆F?. From the con-
tours of Fig. 6, one can note that the maximum of the norm
of the divergence of the diffusion flux is typically of the order
of |div(F tot)|max ' 10−13. Equation (26) then allows us to write
the relation ∆F? ' ∆τLd. |div(F tot)|max, where ∆τLd. is the typi-
cal (rescaled) time during which the Landau Eq. (26) has to be
evolved for the disc to undergo a significant diffusion. With the
previous numerical values, one gets ∆τLd. ' 103. Following the
convention from Eq. (19), the associated diffusion time is given
by ∆tLd. = ∆τLd./(2πε), with ε = M?/M• = 10−3. Using the units
from Eq. (6), one finally gets

∆tLd. ' 200 Myr. (43)

The self-consistent diffusion captured by the Landau Eq. (19)
and computed in Fig. 6 allows therefore the disc to resonantly
diffuse on timescales much shorter than the age of the universe,
and also much shorter than the timescale associated with the self-
induced relaxation of galactic stellar discs (Fouvry et al. 2015b).
When accounting for collective effects, the total bare suscepti-
bility coefficients from Eq. (36) should then be replaced by their
dressed analogues. As was already observed for non-degenerate
stellar discs (Fouvry et al. 2015b), provided the disc is suffi-
ciently massive and self-gravitating, one expects that account-
ing for the wires’ polarisation will lead to an acceleration of the
disc’s self-induced diffusion, and therefore to a reduction of the
typical timescale of diffusion from Eq. (43).

Following the estimation of div(F tot) in Fig. 6, let us finally
investigate how this diffusion impacts the disc’s surface density.
Recalling the normalisation convention

∫
dxduF? = 1, the disc’s

surface density Σ? is given by

Σ?(R) = M?

∫
du F?(R, u). (44)

Appendix B briefly details how Eq. (44) may be computed. For
sufficiently short diffusion times, the Landau Eq. (26) allows us
to approximate the perturbed DF as

F?(τ) ' F?(τ = 0) + τ div(F tot), (45)

where the value of the divergence of the diffusion flux is taken
for τ = 0. One may then use this perturbed DF to estimate the
associated perturbed surface density. This is illustrated in Fig. 7,
for which the diffusion has been integrated for a time ∆τLd. as
given by Eq. (43). In this figure, one can note that as a result of
resonant relaxation, the surface density of the disc gets to dif-
fuse towards smaller radii. Let us finally emphasise that in order
to describe the evolution of the disc’s surface density on longer
timescales, one cannot assume anymore the disc’s drift and dif-
fusion coefficients to be stationary in time. Indeed, as imposed
by the self-consistency of the kinetic equation, one has to update
the diffusion flux as the disc’s DF gets to evolve.
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Fig. 7. Evolution of the disc’s surface density Σ?(R, τ) as a function of
time. As already illustrated in Fig. 6 in phase space, one can note that
on a timescale of the order of ∆tLd. (see Eq. (43)), the disc undergoes a
self-induced resonant relaxation which broadens it.

3.3. Multi-component self-consistent diffusion

The previous section considered the self-consistent diffusion of
the disc’s wires, assuming that all the wires in the disc have the
same individual mass. In galactic centres, the range of masses
of stars and lighter black holes orbiting the central one is likely
to be the key to understand the dynamics of the central clus-
ter and possible EMRIs. The effects associated with the pres-
ence of a broad mass spectrum have been the subject of various
studies (Bahcall & Wolf 1977; Hopman & Alexander 2006b;
Freitag et al. 2006; Keshet et al. 2009; O’Leary et al. 2009). In
particular, Bahcall & Wolf (1976) showed how the two-body re-
laxation of a multi-component 3D cluster around a central point
mass leads to a mass segregation of the different components.
The more massive objects segregate from the lower mass ones
by relaxing towards a steeper power-law density profile. Let us
note that such a mass segregation is the outcome of the non-
resonant relaxation of a 3D spherical isotropic galactic centre. In
the present work, we focus on describing the resonant relaxation
of a 2D disc, so that the results from Bahcall & Wolf (1977) do
not directly translate to this regime.

This section will now show how the Landau Eq. (19) al-
lows us to describe self-consistently the simultaneous evolution
of multiple components. Let us therefore assume that the disc
from Sect. 2.2 is composed of two distinct components, denoted
with the letters “a” and “b”. The component “a” is assumed to be
composed of Na stars of individual mass µa, so that the total mass
of this population is given by Ma

? = Naµa. Similar notations for
the component “b” are used. As in Sect. 2.2, the total stellar mass
of the system is defined as M?, so that one has M? = Ma

? + Mb
?.

Let us also assume that up to a normalisation the two populations
initially follow the same DF, so that one has Fa

? ∝ Fb
? ∝ F?,

where F? stands for the total stellar DF introduced in Eq. (8).
Keeping track of the normalisations of the multi-component DF
(see Paper I), the DFs of the components “a” and “b” initially
satisfy

Fc
? =

Mc
?

M?
F?, (46)

where the index “c” runs over the two populations “a” and
“b”. We note that these DFs satisfy the normalisation conven-
tions

∫
dxduFc

? = Mc
?/M?. In this multi-component context, the

Landau Eq. (19) for razor-thin quasi-Keplerian discs now de-
scribes the evolution of each component, and reads

∂Fa
?

∂τ
= π

∂

∂L1

[∫
dJ2 δD(Ωs(J1) −Ωs(J2))

×
∣∣∣Atot(J1, J2)

∣∣∣2 ∑
c

(
ηc

∂

∂L1
− ηa

∂

∂L2

)
Fa
?(J1) Fc

?(J2)

 ,
(47)

where the rescaled time τ is still defined as τ = 2πεt, with
ε = M?/M•. Equation (47) also introduced the small param-
eter ηa = µa/M?, which replaces the factor 1/N? present in
Eq. (19). Following Eq. (28), it is straightforward to obtain that
the equilibrium of the coupled evolution Eq. (47) is given by the
Boltzmann DF reading

Fa
eq(L, I) = Ca(I) exp

[
−β ηa Heq(L, I) + ηaγL

]
, (48)

where Ca(I) are functions imposed by the initial conditions, the
inverse temperature β and the multiplier γ are the same for all the
populations, and the energy Heq(L, I) was introduced in Eq. (29).

Following Eq. (24), one can introduce multi-component drift
and diffusion coefficients to rewrite Eq. (47) as

∂Fa
?

∂τ
=

∂

∂L1

∑
c

{
ηaAc(J1) Fa

?(J1) + ηcDc(J1)
∂Fa

?

∂L1

} , (49)

where the drift and diffusion coefficients Ac(J1) and Dc(J1) de-
pend on the component “c” used as the underlying DF to esti-
mate them. Accounting for normalisations, they read

Ac(J1) = −π

∫
dJ2 δD(Ωs(J1) −Ωs(J2)) |Atot(J1, J2)|2

∂Fc
?

∂L2
,

Dc(J1) = π

∫
dJ2 δD(Ωs(J1) −Ωs(J2)) |Atot(J1, J2)|2 Fc

?(J2).

(50)

Equation (49) can finally be rewritten as

∂Fa
?

∂τ
=

∂

∂L1

[
ηaAtot(J1) Fa

?(J1) + Dtot(J1)
∂Fa

?

∂L1

]
, (51)

where the total drift and diffusion coefficients are

Atot(J1) =
∑

c

Ac(J1); Dtot(J1) =
∑

c

ηcDc(J1). (52)

Equation (46) assumes that the two populations “a” and “b”
follow a DF proportional to the one introduced in Eq. (8) for
the one-component problem. As a consequence, the calculations
of the multi-component drift and diffusion coefficients from
Eq. (50) are, up to changes in normalisations, the same as the
ones performed in Sect. 2.3 for the one-component problem. Fol-
lowing the normalisations from Eq. (46), the multi-component
drift and diffusion coefficients from Eq. (50) are given by

Ac =
Mc
?

M?

M?

µ?
A; Dc =

Mc
?

M?

M?

µ?
D, (53)

where A and D stand for the drift and diffusion coefficients in-
troduced in Eq. (24) for the one-component problem, and µ? is
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Fig. 8. Divergence of the diffusion flux, div(F tot), predicted by the multi-component Landau Eq. (47) and following the conventions from Fig. 6.
Left panel: for the population “a” of light wires of individual mass µa = 1. The maximum value for the positive blue contours is given by
div(F a

tot)max ' 8 × 10−13, while the minimum value for the negative red contours reads div(F a
tot)min ' −3 × 10−12. Right panel: for the popula-

tion “b” of heavy wires of individual mass µb = 10. The maximum and minimum values for the contours are given by div(F b
tot)max ' 3 × 10−12 and

div(F b
tot)min ' −10−12. Wires are initially distributed according to similar DFs, but undergo a mass segregation on secular timescales. Light wires

get larger eccentricity (smaller L), while heavy wires circularise (larger L).

the individual stellar mass of the one-component problem. Fol-
lowing Eq. (52), the total drift and diffusion coefficients are then
given by

Atot =

[ Ma
?

M?

M?

µ?
+

Mb
?

M?

M?

µ?

]
=

M?

µ?
A,

Dtot =

[
µa

M?

Ma
?

M?

M?

µ?
+
µb

M?

Mb
?

M?

M?

µ?

]
D =

Ma
?µa + Mb

?µb

M?µ?
D. (54)

These total multi-component drift and diffusion coefficients then
allow us to compute the flux appearing in Eq. (51), given the
specific normalisation of the multi-component DFs in Eq. (46).

Let us illustrate this multi-component diffusion by consider-
ing the exact same disc profile as in Sect. 2.2. However, here it
will be assumed that half of the mass of the disc is due to a popu-
lation of stars whose individual mass is ten times larger than the
individual mass considered in the one-component case. Follow-
ing the units from Eq. (7), the two populations “a” and “b” are
such that

Ma
? = Mb

? =
M?

2
; µa = 1; µb = 10. (55)

One may then reuse the calculations presented in Sect. 3.2 to
compute the divergence of the diffusion flux of each of the two
populations “a” and “b”. This is illustrated in Fig. 8. In this
figure, one can note that the population “a” of light wires tends to
diffuse toward larger eccentricities, while the population “b” of
heavy wires diffuses towards smaller eccentricities. This segre-
gation is of particular astrophysical interest in galactic centres in
order to investigate how a sub-population of intermediate mass
black holes (represented by the heavy wires) may diffuse in these
regimes compared to the stellar population. In the present case,
the diffusion coefficient from the degenerate Landau equation
presented in Fig. 8 predicts that the heavy population circularise
as a result of the self-induced resonant relaxation. The mass seg-
regation observed in Fig. 8 has a direct counterpart in configura-
tion space, as illustrated in Fig. 9.

In closing, let us briefly recover the mass segregation ob-
served in Fig. 8 by computing the initial rate of change of the
mean angular momentum of each population. Defining

〈
La

〉
=

∫
dJ Fa

?(J) L, (56)

and following Eq. (51), one has

d
〈
La

〉
dt

= −ηa

∫
dJ Atot(J) Fa

?(J) −
∫

dJ Dtot(J)
∂Fa

?

∂L
· (57)

Thanks to Eq. (54), the value of d
〈
La

〉
/dt at the initial time is

given by

d
〈
La

〉
dt

∣∣∣∣∣
0

= −
µa

M?

M?

µ?

Ma
?

M?

∫
dJ A(J) F?(J)

−
Ma
?µa + Mb

?µb

M?µ?

Ma
?

M?

∫
dJ D(J)

∂F?

∂L
· (58)

The disc’s total angular momentum being conserved (Sridhar &
Touma 2017), one has∫

dJ A(J) F?(J) +

∫
dJ D(J)

∂F?

∂L
= 0, (59)

so that Eq. (58) can finally be rewritten as

d
〈
La

〉
dt

∣∣∣∣∣
0

=
Ma
?Mb

?

M?M?µ?
(µa − µb)

∫
dJ D(J)

∂F?

∂L
· (60)

Following Fig. 2, let us assume that ∂F?/∂L > 0 (which is true
in most of action space). The diffusion coefficient D(J) being
always positive, one has∫

dJ D(J)
∂F?

∂L
> 0· (61)
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Fig. 9. Illustration in configuration space of the mass segregation of the two different components obtained in Fig. 8. Here, the population of
red orbits has a lighter individual mass than the blue population. Left panel: illustration of the initial orbits of the wires, where the blue and red
wires have the same semi-major axis and eccentricity. Right panel: illustration of the wires’ orbits after the resonant mass segregation. During the
resonant relaxation, the wires conserve their semi-major axis, but, following Fig. 8, the light red wires get larger eccentricities, while the heavy
blue wires diffuse towards smaller eccentricities and circularise. Because of this segregation, one can note that red orbits get closer to the central
BH, as illustrated by the dashed circles.

As a consequence, for µa < µb, one has d
〈
La

〉
/dt|0 < 0 and

d
〈
Lb

〉
/dt|0 > 0. Equation (60) therefore predicts that as a result

of resonant relaxation, the light wires will see a decrease in their
mean angular momentum (i.e. an increase in eccentricity), while
the heavy wires will see an increase in their mean angular mo-
mentum (i.e. a decrease in eccentricity). This corresponds to the
segregation observed in Fig. 8. Let us finally emphasise that ex-
cept for specific cases (e.g. here ∂F?/∂L > 0 , ∀J), it remains
difficult to predict a priori the direction of mass segregation for
other arbitrary initial conditions, as the calculation of the Landau
diffusion fluxes from Eq. (49) is very intricate. Such a 2D reso-
nant mass segregation is associated with a different dynamical
regime than the 3D non-resonant mass segregation considered
in Bahcall & Wolf (1977).

4. Reaching the Schwarzschild barrier

The previous section investigated the self-induced diffusion of
the disc’s DF as a whole. The long-term self-consistent diffusion
of this DF is then described by the degenerate Landau Eq. (19),
which is quadratic in the system’s DF. Instead of describing the
evolution of the disc’s DF as a whole, it is of interest to follow
the stochastic evolution of arbitrary individual stellar wires, per-
turbed by the 1/N noise due to the disc. This would allow us
for instance to investigate the impact of the stellar disc on the
evolution of stars or intermediate mass black holes in the vicin-
ity of the SMBH. Such stochastic dynamics are captured by a
Langevin equation, as described below. In this context, the quasi-
Keplerian disc will be treated as a bath, so that its mean DF,
F?, does not evolve on the relevant timescale. Similarly to the
wires forming the razor-thin disc, these test wires are assumed
to lie within the same plane than the razor-thin disc, and are con-
strained throughout their diffusion to remain within this plane
(i.e. the direction of their angular momentum is conserved). The
wires from the razor-thin disc and the test wires are therefore
coplanar.

4.1. The stochastic Langevin equation

Let us consider a given test star, and represent its statistics by the
probability distribution function (PDF), P. This PDF describes
the stochastic dynamical evolution of individual test wires driven
by the 1/N noise of the disc (the bath). The PDF P obeys a
Fokker-Planck equation (Heyvaerts et al. 2017, and references
therein) reading

∂P
∂τ

=
∂

∂L

[
A(J) P(J) + D(J)

∂P
∂L

]
, (62)

where the drift and diffusion coefficients, A(J) and D(J), are
induced by the disc, and were introduced in Eq. (24)3. In prac-
tice, this equation is obtained by replacing F? by P in the flux
of Eq. (24). The corresponding Langevin equation describes
the stochastic dynamics of an individual test wire of action
Jt = (Lt, It) (Risken 1996). It reads

dLt

dτ
= h(Jt) + g(Jt) Γ(τ);

dIt

dt
= 0. (63)

Equation (63) introduces the 1D Langevin coefficients h(Jt) and
g(Jt) defined as

h = −A +
∂D
∂L
−
√

D
∂
√

D
∂L

= −A +
1
2
∂D
∂L

; g =
√

D. (64)

3 Equation (62) can also straightforwardly be rewritten under the tra-
ditional form (Binney & Tremaine 2008)

∂P
∂τ

=
∂

∂L

[
− D(1)(J) P(J) +

∂

∂L

[
D(2)(J) P(J)

]]
,

where the first- and second-order diffusion coefficients are given by
D(1) = −A + ∂D/∂L and D(2) = D. Here, D(1) captures the true friction
force, while −A captures the friction force by polarisation (Chavanis
2012; Heyvaerts et al. 2017).
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Finally, Eq. (63) also introduces a Gaussian white noise Γ(τ),
whose statistics obeys〈
Γ(τ)

〉
= 0;

〈
Γ(τ) Γ(τ′)

〉
= 2δD(τ − τ′). (65)

As expected, the stochastic evolution Eq. (63) allows only
for diffusion in the Lt-direction, while the fast action It of
the test wire remains conserved during the resonant relax-
ation. This stochastic rewriting of the dynamics of a test
wire directly connects to the Monte-Carlo approaches consid-
ered in Madigan et al. (2011) and the η-formalism presented in
Bar-Or & Alexander (2014, 2016). The equilibrium solutions of
the Fokker-Planck Eq. (62) are straightforwardly given by

Peq(L, I) = C(I) exp
[
− Veq(L, I)

]
, (66)

where C(I) is an arbitrary function, and where the potential
Veq(L, I) is imposed by the bath and is given by the primitive

Veq(L, I) =

∫
dL

A(I, L)
D(I, L)

· (67)

If one considers a test wire evolving in a Boltzmann (thermal)
bath as given by Eq. (28), the Fokker-Planck Eq. (62) takes the
simpler form

∂P
∂τ

=
∂

∂L

[
D(J)

{
∂P
∂L

+ (βΩs(J) − γ) P(J)
}]
, (68)

thanks to the Einstein relation A(J) = (βΩs(J) − γ) D(J) satis-
fied by the drift and diffusion coefficients. In the high tempera-
ture limit, β→ 0, the Einstein relation becomes A(J) = −γD(J).
Finally, for an isotropic bath, F? = F?(I), following Eq. (25),
the drift coefficients exactly vanish, that is A(J) = 0. The asso-
ciated Fokker-Planck equilibrium states from Eq. (66) are then
also isotropic and read Peq(L, I) = C(I).

4.2. Diffusion of an eccentric particle

In the context of the so-called last parsec problem, relying on the
stochastic Langevin Eq. (63), let us investigate how a given test
wire diffuses in the vicinity of the central BH under the effect of
the noise due to the discrete quasi-Keplerian disc. This section
will show in particular how the diffusion of this test wire strongly
quenches as it reaches large eccentricities, a phenomenon called
the Schwarzschild barrier, first observed in Merritt et al. (2011)
in the context of 3D quasi-Keplerian systems. In short, because
the relativistic precession frequencies diverge in the neighbour-
hood of the BH (see for example Fig. 3), wires that diffuse in-
wards closer to the BH experience a rise in their precession fre-
quency. This prevents them from resonating anymore with the
wires from the disc, therefore strongly suppressing further in-
wards resonant diffusion. This region of action space where the
diffusion is suppressed is the so-called Schwarzschild barrier4.
Let us finally note that Merritt et al. (2011) included the effects
associated with gravitational wave emission, which are not in-
cluded in the present work. The contributions from this process
on the Schwarzschild barrier are expected to be negligible as the
capture rate of stars is determined primarily by dynamical inter-
actions that take place far beyond the Schwarzschild radius (see
e.g. Fig. 1 in Bar-Or & Alexander 2016).

4 Let us note that the mechanism of the Schwarzschild barrier
shares some analogies with the phenomenon of kinetic blocking ob-
served in the kinetic theory of point vortices in 2D hydrodynam-
ics (Chavanis & Lemou 2007). In these systems, a suppression of the
resonant diffusion occurs for monotonic profiles of angular frequencies.

Fig. 10. Diffusion of an individual test wire in the ( j, a) =
(L/I, I2/(GM•))-space. Because of the adiabatic conservation of the
fast action I, wires diffuse on horizontal lines. The red line cor-
responds to the last stable orbit (LSO), aLSO( j) = Rg(4/ j)2, with
Rg = GM•/c2 (Bar-Or & Alexander 2016). The contours of the disc’s
DF, F?, introduced in Eq. (8) are represented by the blue lines. The
background lines correspond to some of the level lines of the precession
frequency Ωs = Ωs

self + Ωs
rel, which are dominated by the relativistic pre-

cession Ωs
rel for such eccentric orbits. These contours are computed for

a retrograde test star, and are therefore associated with negative preces-
sion frequencies. They are spaced linearly between the maximum and
the minimum precession frequency in the region of the disc, which are
dominated by the self-consistent precession Ωs

self . The dashed grey line
corresponds to the segment along which the drift and diffusion coeffi-
cients for the test wire are computed in Fig. 11. (Recall that the test star
is assumed to be retrograde, i.e. Lt < 0, but for clarity, it is represented
on the same diagram than the disc.) The cyan line illustrates the location
of the Schwarzschild barrier, γSchw., for retrograde test stars defined in
Eq. (70). Retrograde test wires to the left of this barrier will precess too
fast to resonate with this disc, see Figs. 11 and 12. Such wires do not
undergo any resonant relaxation, and can only diffuse as a result of addi-
tional diffusion mechanisms, such as two-body non-resonant relaxation.

Following Fig. 10, let us therefore consider a test wire of in-
dividual mass µt = µ? and of fast action It(at) = It(102.5), where
the fast action It and the associated semi-major axis at are di-
rectly related by Eq. (4). Any wire in the system undergoes two
simultaneous precessions, given by Ωs = Ωs

self + Ωs
rel. As em-

phasised in Kocsis & Tremaine (2011) and in Fig. 3, one can
note that the self-consistent mass precession frequencies Ωs

self
induced by the disc are retrograde precessions in the vicinity of
the disc (i.e. Ωs

self < 0 for L > 0), while the relativistic preces-
sion frequencies Ωs

rel are prograde precessions (i.e. Ωs
rel > 0 for

L > 0). Because the mass precession dominates the precessions
in the vicinity of the disc, a wire located within the disc region
will undergo a retrograde precession, while a wire located close
to the central BH will mainly precess as a result of the relativis-
tic precessions and therefore will undergo a prograde preces-
sion. We note that the resonance condition present in the Landau
Eq. (19) is sign-dependent, that is requests to exactly match the
precession of the resonating wires so that Ωs(J1) = Ωs(J2). As
a consequence, for a test wire located close to the central BH to
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Fig. 11. Drift and diffusion coefficients for a retrograde test wire diffusing in the inner region of the system along the grey dashed line, It = const.,
identified in Fig. 10. Left panel: illustration of the drift coefficient Lt 7→ A(Lt, It), as introduced in Eq. (62). Right panel: illustration of the diffusion
coefficient Lt 7→ D(Lt, It), as introduced in Eq. (62). As the test wire gets closer to the centre of the system, the drift and diffusion coefficients tend
to 0: this is the Schwarzschild barrier, which prevents individual stars to diffuse closer to the central BH as a sole result of resonant relaxation.
The quenching of the resonant diffusion is very abrupt in razor-thin discs, as a result of the limitation to 1:1 resonance in the degenerate Landau
Eq. (19). This is specific to the razor-thin geometry.

Fig. 12. Stochastic Langevin coefficients associated with the drift and diffusion coefficients shown in Fig. 11. Left panel: illustration of the Langevin
drift coefficient Lt 7→ h(Lt, It). Following Eq. (63), this coefficient gives the mean direction of motion for a given location in action space. Right
panel: illustration of the Langevin diffusion coefficient Lt 7→ g(Lt, It). This coefficient describes the jitter of wires around the mean flow given by
h. In particular, it allows wires to stochastically penetrate the barrier.

be able to resonate with a disc composed only of prograde orbits
(i.e. L > 0), this test wire has to be retrograde (i.e. Lt < 0), as we
will now assume. Should the test wire in the central wire be also
prograde, no efficient resonant couplings would be permitted by
the Landau Eq. (19) and the associated diffusion would tend to 0.
Let us note that this requirement on the central test wire direction
of rotation arises from the additional constraints associated with
the disc’s geometry. For a 3D spherical quasi-Keplerian systems,
the Landau Eq. (19) would allow for additional resonances. This
will be the subject of a future work.

As shown in Fig. 10, one may then study the stochastic diffu-
sion of such a retrograde test wire along the grey segment where
it may resonate with the outer quasi-Keplerian disc. This is il-
lustrated in Fig. 11 where the drift and diffusion coefficients as-
sociated with the diffusion of this test wire are computed fol-
lowing Eq. (62). Recall that because the test star is assumed
to be retrograde, one has Lt < 0. In Fig. 11, one can note that
for |Lt| . 2.7 × 103, the drift and diffusion coefficients tend to
0. This is the Schwarzschild barrier. Wires of high eccentricity,
that is wires which get close to the central BH undergo a large
relativistic precession. For eccentricities large enough, this rel-
ativistic precession gets so large that it prevents any coupling
between the test wire and wires within the disc. The resonant
relaxation stops. For a razor-thin disc, the quenching is very
abrupt, and for low enough |Lt|, the drift and diffusion coeffi-
cients tend to 0. This is a direct consequence of the Landau

Eq. (19), which for razor-thin discs, only allows for 1:1 res-
onances. For 3D systems, the geometric constraint on the al-
lowed resonances weakens. Higher-order resonances, while as-
sociated with weaker coupling factors, are allowed by the kinetic
equation, so that the quenching of the resonant relaxation in the
vicinity of the Schwarzschild barrier is expected to be less abrupt
compared to what has been obtained in Fig. 11. In practice, this
suppression of the diffusion is tempered by simple two-body re-
laxation, not accounted for in the present orbit-averaged diffu-
sion. This provides an additional mechanism allowing stars to
diffuse closer to the BH, once resonant relaxation becomes inef-
ficient. As demonstrated in Bar-Or & Alexander (2016), the ef-
fects of resonant relaxation are limited to regions well away of
the loss cone, so that the dynamics of stars’ accretion is only
moderately affected by the presence of resonances.

Following the computation of the drift and diffusion coef-
ficients in Fig. 11, one may then rely on Eq. (64) to estimate
the Langevin coefficients, h and g, characterising the stochas-
tic diffusion of the test wire. These coefficients are illustrated
in Fig. 12. As already noted in Fig. 11, the Langevin coeffi-
cients tend to 0 for |Lt| . 2.7 × 103, which corresponds to the
Schwarzschild barrier. In the Langevin Eq. (64), the coefficient
h corresponds to the drift coefficient and describes the mean de-
terministic motion followed by the test particle. Here, it is neg-
ative right before the barrier, so that retrograde test wires in the
vicinity of the barrier diffuse in average towards larger |Lt|, that
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Fig. 13. Stochastic motion, t 7→ Lt(t), of a retrograde test star of mass
µt = µ? for different initial conditions. The trajectory of the star is de-
scribed by the Langevin Eq. (63), with the Langevin coefficients h and g
obtained in Fig. 12. Because these coefficients tend to 0 for low enough
angular momentum (|Lt| . 2.7 × 103), retrograde test stars cannot dif-
fuse closer to the BH. This quenching of the resonant diffusion in the
inner regions of the system is associated with the Schwarzschild barrier
and is illustrated with the grey region.

is towards smaller eccentricities. In Eq. (64), the coefficient g is
associated with the stochastic diffusion of the test wire. It de-
scribes the jitter of the test wire around the mean flow due to h.
On the long-term, it can allow wires to stochastically penetrate
the diffusion barrier. Finally, while the drift coefficient −A(Jt)
is always positive in Fig. 11, the contributions from the diffu-
sion coefficient in Eq. (64) lead to a Langevin drift coefficient h
taking both positive and negative values in Fig. 12.

Figures 11 and 12 recover the diffusion barrier for a retro-
grade test wire of fast action It. The location of this quenching
of the resonant diffusion can be interpreted as being given by the
value of the slow action LSchw., such that

Ωs(LSchw., It) ' Ωmax
disc , (69)

where Ωmax
disc is the typical maximum precession frequency in

the disc region, that is the maximum value of Ωs in Fig. 4.
For a retrograde test wire such that |Lt| . LSchw., its relativistic
Schwarzschild precession makes it precess too fast to allow for a
resonant coupling with the disc and the diffusion quenches. Fol-
lowing the criterion from Eq. (69), the location of the barrier for
retrograde test stars is then given in action space by the curve
γSchw., such that

γSchw. =

{
(Lt, It)

∣∣∣ Ωs(Lt, It) = Ωmax
disc

}
. (70)

The location of this barrier is illustrated in Fig. 10, where it is
given by the left-most level contours of Ωs. Retrograde test wires
below this barrier are precessing too fast to resonate anymore
with the disc. Different retrograde test wires having different fast
actions It will therefore see their stochastic diffusion quench for
different values of their slow action Lt.

Having computed the Langevin coefficients h and g in
Fig. 12, it is then straightforward to integrate the Langevin
Eq. (63) forward in time. Such realisations are illustrated in
Fig. 13, which shows again that wires cannot diffuse below the
Schwarzschild barrier. These evolution equations share some
similarities with the equations of motions of individual stars.
However, the significant gain of this framework is that it directly
describes the stochastic motion of Keplerian wires, so that the
Keplerian motion of stars along their quasi-Keplerian ellipses
does not have to be resolved anymore. This allows for much
larger timesteps in Eq. (63), which are orders of magnitude larger
than those required to solve the individual trajectories of stars.

Fig. 14. Diffusion of a population of retrograde test wires of individ-
ual mass µt = µ? as a function of time. The evolution of each star is
driven by the Langevin Eq. (63). The initial PDF of the population is
represented by the red histogram, while the coloured histograms de-
scribe the statistics of the population after a time ∆T = 200 and 2∆T .
Solving the dynamics of this population via the Langevin Eq. (63) al-
lows for the integration forward in time of the Fokker-Planck Eq. (62),
which describes the diffusion of the test wires’ PDF as a whole, without
resorting to direct N-body simulations.

Relativistic effects and the associated post-Newtonian correc-
tions are also effortlessly accounted for.

Not only can one use the Langevin Eq. (63) to describe the
evolution of an individual test particle, but also the secular dif-
fusion of a population of wires as a whole. This is illustrated in
Fig. 14, which shows how the long-term diffusion of the PDF
of a population of retrograde test wires may also be estimated.
The method followed in Fig. 14 allows indeed for the effective
integration forward in time of the Fokker-Planck Eq. (62). To do
so, one samples the test particle’s PDF, P, with test wires. The
stochastic motion of each test wire is then integrated forward in
time via the Langevin Eq. (63) for a time ∆T that can be much
larger than the Keplerian dynamical time of the system. After a
time ∆T , the population of test wires is then distributed accord-
ing to the PDF P(t = ∆T ), illustrated in Fig. 14. In this figure,
even if the time of integration was short, one can already note
that some wires tend to accumulate at the Schwarzschild barrier,
where the diffusion quenches.

The sampling method used in Fig. 14 may also be used to
integrate forward in time the self-consistent Landau Eq. (19). To
do so, one has to estimate the disc’s drift and diffusion coeffi-
cients A(J) and D(J). The disc’s initial DF, F?, is then sam-
pled by a finite number of test stars Nsamp.. Assuming tem-
porarily that the drift and diffusion coefficients are frozen, one
may then integrate the motion of these Nsamp. test stars follow-
ing the Langevin Eq. (63). This allows for the estimation of
P(t = ∆T ) ' F?(t = ∆T ), provided that ∆T is not too large com-
pared to the timescale of resonant relaxation. Having estimated
the disc’s new DF at the time ∆T , one may then recompute the
new drift and diffusion coefficients of the disc, A(J,∆T ) and
D(J,∆T ). Sampling once again this new DF with Nsamp. test
stars, one can proceed further. Provided that the timestep ∆T
is chosen accordingly, so that the disc’s self-consistent drift and
diffusion coefficients do not change much on the timescale ∆T ,
the present step-by-step approach allows therefore for the inte-
gration forward in time of the self-consistent Landau Eq. (19).

4.3. Resonant dynamical friction on a massive perturber

The previous section described the stochastic diffusion of an
individual test star, whose individual mass is identical to that
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Fig. 15. Stochastic Langevin coefficient Lt 7→ h(Lt, It) associated with
the stochastic diffusion of a retrograde massive perturber of mass
µt = 100µ? along the grey dashed line, It = const., identified in Fig. 10.
The coefficient g associated with the stochastic of this massive perturber
is the same as in Fig. 12. Following Eq. (71), one can note that for
a massive enough perturber (or for light enough bath wires), one has
h(Jt)→ −(µt/µ?)A(Jt) and g(Jt)→ 0. This non-vanishing contribution
is the friction force by polarisation, which drives dynamical friction.

of the stars forming the discrete quasi-Keplerian disc. Inspired
by the multi-component calculations presented in Sect. 3.3, one
could also consider the individual diffusion of a massive per-
turber whose mass would not be the same as the wires from the
discrete bath. Noting the mass of this test perturber as µt and the
individual mass of the wires of the bath as µ?, the Fokker-Planck
Eq. (62) becomes

∂P
∂τ

=
∂

∂L

[
µt

µ?
A(J) P(J) + D(J)

∂P
∂L

]
, (71)

where P is the PDF of the massive perturber. In Eq. (71), the
drift and diffusion coefficients, A(J) and D(J), were already
introduced in Eq. (24) and are sourced by the discrete quasi-
Keplerian disc. When accounting for a possible different mass
for the test particle, the equilibrium solution from Eq. (66) im-
mediately becomes

Peq(L, I) = C(I) exp
[
−(µt/µ?)Veq(L, I)

]
, (72)

where the potential Veq(L, I) was introduced in Eq. (67).
Following Eq. (64), one can straightforwardly obtain

the Langevin coefficients associated with the Fokker-Planck
Eq. (71). They read

h = −
µt

µ?
A +

1
2
∂D
∂L

; g =
√

D. (73)

In Eq. (73), one can note that only the Langevin drift coeffi-
cient h depends on the mass of the test particle. Figure 15 illus-
trates this coefficient for a retrograde massive test wire of mass
µt = 100µ?. Let us note that the definition from Eq. (25) is such
that the disc’s drift and diffusion coefficients, A(J) and D(J),
satisfy A,D ∝ µ?. The larger the number of wires in the disc, the
slower the diffusion. As a consequence, in the limit of a collision-
less bath, that is when µ? → 0, only the drift component remains
in Eq. (71). This corresponds to the friction force by polarisation,
which does not vanish in the collisionless limit (Heyvaerts et al.
2017). Following Eq. (73), one can note that in this collisionless
limit only the drift coefficient h(Jt)→ −(µt/µ?) A(Jt) remains
in the Langevin Eq. (63). The evolution of the test wire is fully
deterministic and, following Eq. (63), reads

dLt

dt
= h(Lt, It) = −µt

A
µ?
, (74)

Fig. 16. Diffusion of two populations of retrograde test stars of different
individual mass. The two populations are initially distributed accord-
ing to the same PDF, illustrated with the black histogram. The evolu-
tion of each test star is described by the Langevin equation associated
with the Fokker-Planck Eq. (71). After a time ∆T = 200, the PDF of
the light population (of individual mass µt = µ?) is given by the red
histogram, while the heavy population (of individual mass µt = 10µ?)
follows the PDF given by the blue histogram. Because of the prefac-
tor (µt/µ?) present in Eq. (71), populations of different individual mass
do not follow the same stochastic motions, and the system undergoes a
mass segregation. Light (red) wires tend to become less eccentric and
heavy (blue) wires tend to become more eccentric.

where, following Eq. (25), A/µ? is independent of µ?. Equa-
tion (74) is the equation describing dynamical friction. Compar-
ing Figs. 12 and 15, one can note that for a test wire of individual
mass µt = 100µ?, the Langevin coefficients satisfy g . h. As a
consequence, the evolution of such a heavy wire can be approx-
imated by the deterministic Eq. (74). From Figs. 12 and 15, one
can also note that for a massive enough retrograde test particle,
one has h(Lt) > 0 for Lt < 0. As a consequence, the dynamical
friction undergone by this retrograde massive perturber induces
a drift towards smaller |Lt|, that is towards higher eccentricities:
the orbit of this retrograde massive perturber gets more eccentric.

Expanding on Sect. 3.3, let us finally investigate the pro-
cess of mass segregation using the Langevin formalism. Hav-
ing already estimated the disc’s drift and diffusion coefficients in
Fig. 11, one may now rely on Eq. (73) to compute the Langevin
coefficients of populations of retrograde test stars of different in-
dividual mass. Figure 16 presents the respective diffusion of two
populations of retrograde test stars of individual mass µt = µ?
and µt = 10µ?, distributed initially according to the same PDF.
Figure 16 predicts that populations of retrograde test wires of
different mass segregate in the vicinity of the disc. The heav-
ier wires will tend towards orbits of smaller angular momentum,
that is towards more eccentric orbits. One can also note that some
heavy wires already tend to accumulate at the Schwarzschild bar-
rier, where resonant diffusion stops.

Figure 8 emphasises that heavy prograde stars in the disc
would tend to diffuse towards smaller eccentricities, while
Fig. 16 shows that heavy retrograde test stars would preferen-
tially segregate towards higher eccentricities. Let us clarify the
origin of this dichotomy. Such differences in the behaviours of
prograde and retrograde massive test stars originate from the fact
that the razor-thin degenerate Landau Eq. (19) only allows for
1:1 resonances, and that the quasi-Keplerian razor-thin disc con-
sidered in Eq. (8) is only composed of prograde stars. Let us il-
lustrate this property by computing the sign of the friction force
by polarisation undergone by a massive perturber, as given by
Eq. (74). Following Fig. 2, let us assume that ∂F?/∂L > 0 (this
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is true in most of action space). The expression of the drift coef-
ficients from Eq. (25) gives us then that A(J) ≤ 0 for all J, that
is whatever the sign of L and therefore for both prograde and ret-
rograde stars. As a consequence, the direction of the associated
dynamical friction given by Eq. (74) reads

∀J,
∂F?(J)
∂L

> 0 =⇒
dLt

dt

∣∣∣∣∣
Fric.

> 0. (75)

We note that the result from Eq. (75) is independent of the sign
of the angular momentum Lt of the considered test star. As a con-
sequence, for a prograde test star (i.e. Lt > 0), the friction force
leads to a diffusion towards larger |Lt|, that is towards smaller ec-
centricities, while for a retrograde test star (i.e. Lt < 0), the fric-
tion force leads to a diffusion towards smaller |Lt|, that is towards
larger eccentricities. This dichotomy is related to the “secular dy-
namical anti-friction” put forward in Madigan & Levin (2012).
Should one consider a quasi-Keplerian disc made of both pro-
grade and retrograde stars, the condition ∂F?/∂L > 0 would not
hold anymore, and the direction of dynamical friction cannot be
predicted using Eq. (75). Similarly, in 3D quasi-Keplerian sys-
tems, the associated Landau equation does not impose anymore
the restriction to 1:1 resonances, which also prevents us from
relying on Eq. (75).

5. Conclusion

We investigated the secular dynamics of a razor-thin axisym-
metric discrete quasi-Keplerian disc surrounding a SMBH. In
the limit where collective effects are not accounted for, such
an evolution induced by finite-N effects is described by the
degenerate inhomogeneous Landau Eq. (19), recently derived
in Sridhar & Touma (2017) and Fouvry et al. (2017b). This is
the master equation of resonant relaxation (Rauch & Tremaine
1996). The present paper presented the first effective implemen-
tation of this kinetic equation to quasi-Keplerian systems5.

In Sect. 3, we computed the self-consistent diffusion flux of
the quasi-Keplerian disc and predicted the associated timescale
of resonant relaxation. We also considered the simultaneous re-
laxation of two components of different individual mass, which
leads to a mass segregation of the two components. For the spe-
cific disc considered here, we showed that heavier wires would
diffuse towards smaller eccentricities and would therefore circu-
larise, while lighter wires would diffuse towards larger eccen-
tricities and therefore approach the central BH. More generally,
all discs for which ∂F?/∂L > 0 obey such a trend.

In Sect. 4, we illustrated how the same formalism also de-
scribes the stochastic diffusion of individual wires, by relying
on the associated Langevin Eq. (63). We identified the quench-
ing of the diffusion in the central region of the system, a phe-
nomenon called the Schwarzschild barrier (Merritt et al. 2011).
This rewriting of the dynamics in terms of the diffusion of indi-
vidual wires may be used to integrate forward in time the evo-
lution of the system’s DF as a whole. Hence the present method
offers an effective alternative to direct N-body or Monte-Carlo
methods, in order to integrate self-consistently in time the evo-
lution of a system’s DF driven by resonant relaxation. Most of
the tools presented in this paper could also be implemented in
the context of protoplanetary debris discs (Tremaine 1998).

5 More generally, it has only been applied to a handful of systems:
2D razor-thin non-degenerate stellar discs (Fouvry et al. 2015a,b), 3D
thickened stellar discs (Fouvry et al. 2017a), or to the 1D inhomoge-
neous HMF model (Benetti & Marcos 2017).

The present work should be extended in various ways. It is
currently limited to razor-thin axisymmetric discs for which the
kinetic Eq. (19) takes a simpler form. In particular, it only in-
volves 1:1 resonances on the precession frequencies. As shown
in Fouvry et al. (2017b), 3D spherical systems are also quasi-
stationary states whose resonant relaxation can be described by a
very similar inhomogeneous degenerate kinetic equation. How-
ever, because of the additional vertical dimension, higher order
resonances are allowed. For such systems, following Fig. 11,
one should investigate how the resonant diffusion quenches in
the central regions and how populations of different masses may
segregate in eccentricities. In addition, by accounting for vector
resonant relaxation and the induced changes in the orientation
of each wire, one could investigate how the plane of the razor-
thin disc gets slowly distorted by out-of-plane precessions (see
e.g. Chen & Amaro-Seoane 2014). Another venue would be to
investigate the long-term evolution of non-axisymmetric razor-
thin discs (e.g. Tremaine 1995), which requires to extend accord-
ingly the derivation presented in Paper I. In the present calcula-
tions, we accounted only for the 1PN Schwarzschild in-plane
relativistic precession. It might be of interest to investigate the
possible effects associated with the 1.5PN Lense-Thirring rela-
tivistic precession, which can in particular induce a precession
of the wire’s orbital plane. The kinetic equations considered rely
on the orbit-averaging of the fast Keplerian motions and can
only account for resonant diffusion. As such, it cannot capture
mean motion resonances. A subsequent improvement would be
to add the secondary effects of two-body non-resonant relax-
ation in the Langevin Eq. (63). In particular, this two-body non-
resonant relaxation allows particles to exchange energy, that is
to change their fast action I, which cannot occur via resonant
relaxation (Amaro-Seoane et al. 2013).

One could also be interested in investigating the long-
term effect of stellar binaries on the cluster’s diffusion (see
e.g. Perets et al. 2007; O’Leary et al. 2009; Perets 2009;
Antonini & Perets 2012; Witzel et al. 2014; Pfuhl et al. 2014;
Prodan et al. 2015; Stephan et al. 2016; Hoang et al. 2017;
Witzel et al. 2017). Binaries could first be treated as a second
population of effective particles of higher individual masses (as
in Sect. 3.3), and their respective resonant relaxation would
be governed by the present kinetic theory. Yet, these meth-
ods cannot account for the binaries’ additional degree of
freedom, their associated energy. This plays for example an es-
sential role in the gravothermal catastrophe of globular clus-
ters (Lynden-Bell & Wood 1968). Moreover, the detailed inter-
actions between a stellar binary and a passing-by star could not
be accounted for as such, because they correspond effectively to
three-body effects out of reach of a kinetic framework based on a
truncation at order 1/N of the evolution equations. A final venue
would be to consider a central binary black hole and its orbiting
stellar cluster (following e.g. Rothe & Schäfer 2010), where the
corresponding extra internal orbital degree of freedom may pro-
vide a range of intermediate frequencies, allowing the stars to
pass the barrier and/or the binary to tighten, leading for example
to EMRIs. Predicting the impact of resonant relaxation with the
stellar cluster on the corresponding rates should be of interest
when preparing for LISA.

This paper implemented the inhomogeneous Landau equa-
tion while neglecting collective effects. In order to account for
the self-gravitating amplification of the system one should rely
on Fouvry et al. (2017b), which derived the corresponding in-
homogeneous degenerate Balescu-Lenard equation. For quasi-
Keplerian systems, accounting for collective effects requires the
evaluation of the disc’s averaged response matrix, a quantity
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which characterises the strength of the self-gravitating amplifica-
tion in the system (see Tremaine 2005; Polyachenko et al. 2007;
Jalali & Tremaine 2012 for examples of stability investigations
in the quasi-Keplerian context). Because of the BH’s prevalence
on the dynamics of individual stars, it is not straightforward to
determine the amplitude of the gravitational polarisation in these
degenerate systems, seen as a collection of Keplerian wires. This
will be the subject of a future work.
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Appendix A: The wire-wire interaction potential

Let us compute the wire-wire interaction potential U12 from
Eq. (22). The difficulty with such a calculation is that it requires
to integrate over the fast orbital angle of each of the two wires
involved. This turns out to be numerically very demanding, in
particular when the two wires share the same orbital plane. For-
tunately, Gauss’ method (Touma et al. 2009) allows us to per-
form explicitly one of these two integrals. We will not repeat
the calculations presented in Touma et al. (2009), but will rather
detail how they may be adapted to the present context.

In order to avoid divergences associated with crossing or-
bits or identical orbits, the pairwise interaction potential is soft-
ened according to Eq. (18), for which the method of Touma et al.
(2009) can also be applied. Using the notations from Eq. (18),
the interaction potential from Eq. (22) requires us to evaluate

U12(E1,E2) = −
GM•
(2π)2

×

∫
dw1dw2

1√∣∣∣x1[E1, g1] − x2[E2, w2]
∣∣∣2 + ε2

soft

·

In order to emphasise the fact that one of the two angle integrals
will be performed analytically, let us rewrite this equation as

U12(E1,E2) =
1

2π

∫
dw1 Ur(x[E1, w1],E2), (A.1)

where Ur(x1,E2) was introduced as

Ur(x1,E2) = −
GM•

2π

∫
dw2

1√∣∣∣x1 − x2[E2, w2]
∣∣∣2 + ε2

soft

· (A.2)

Here, the potential Ur(x1,E2) corresponds to the potential in-
duced at position x1 by the wire of coordinates E2. This poten-
tial involves an average over the orbital phase w2 of the second
particle, which is the integration that will be performed explic-
itly via Gauss’ method. Given the mapping from Eq. (4), one can
rewrite Eq. (A.2) as an integral over the eccentric anomaly η2. It
becomes

Ur(x1,E2) = −
GM•

2π

∫
dη2

1 − e2 cos(η2)
∆

, (A.3)

where the distance ∆ is introduced as

∆2 =
∣∣∣x1 − x2[E2, η2]

∣∣∣2 + ε2
soft. (A.4)

The non-trivial dependence of ∆ with η2 is the reason for the dif-
ficulty of computing Eq. (A.3). Let us first rewrite the distance ∆
in a simpler manner. One can note that the angle-action mapping
from Eq. (3) takes the form

x[E, η] = R(g) · t(J, η), (A.5)

where the rotation matrix R(g) and the vector t(J, η) (indepen-
dent of g) read

R(g) =

[
cos(g) − sin(g)
sin(g) cos(g)

]
; t(J, η) =

[
a(cos(η) − e)

a
√

1 − e2 sin(η)

]
. (A.6)

If the location x1 considered in Eq. (A.3) is associated with the
angle-action coordinates (E1, η1), one can then write∣∣∣x1 − x2

∣∣∣ =
∣∣∣R(g1) · t1 −R(g2) · t2

∣∣∣
=

∣∣∣R(g1 − g2) · t1 − t2
∣∣∣. (A.7)

From Eq. (A.7), one recovers again that the wire-wire interaction
potential only depends on the phase difference ∆g = g1 − g2, as
in Eq. (21). Introducing the notation

x̃1 = R(g1 − g2) · t1 = (x, y), (A.8)

one can finally rewrite the distance ∆2 from Eq. (A.4) as

∆2 =
∣∣∣x̃1 − t2

∣∣∣2 + ε2
soft

= A − 2B cos(η2 − ε) + C cos2(η2), (A.9)

given the quantities

A = x2 + y2 + a2
2 + 2a2e2x + ε2

soft; B cos(ε) = a2
2e2 + a2x,

B sin(ε) = a2y
√

1 − e2
2; C = a2

2e2
2. (A.10)

We note the presence in Eq. (A.9) of the quadratic term in
C cos2(η2). This term is the reason why one cannot apply Gauss’
method to get an explicit expression for the potential Ur from
Eq. (A.3). However, if instead of the potential, one considers the
force by differentiating w.r.t. x̃1, since C is independent of x̃1,
this quadratic term vanishes and Gauss’ method may be applied
to obtain an explicit expression for the force. Equation (A.3)
gives us

−
∂Ur(x̃1,E2)

∂x̃1
=

GM•
2π

∫
dη2

1 − e2 cos(η2)
∆3

×
[
F0 + F1 sin(η2) + F2 cos(η2)

]
, (A.11)

where the vectors F0, F1, and F2 obey

F0 =

[
−x − a2e2
−y

]
; F1 =

 0

a2

√
1 − e2

2

 ; F2 =

[
a2
0

]
. (A.12)

Equation (A.11) gives the force created at the position x̃1 by the
wire of coordinates E2. Using Gauss’ method, this force may be
computed analytically and is given by Eq. (67) of Touma et al.
(2009), to which we refer.

Once the force from Eq. (A.11) has been computed, one
may finally compute the wire-wire interaction potential from
Eq. (A.2). Recalling the definition of x̃1 from Eq. (A.8), the in-
teraction potential from Eq. (A.1) may be rewritten as

U12
[
E1,E2

]
=

1
2π

∫
dη1 (1 − e1 cos(η1)) Ur

[
R(g1 − g2) · t1,E2

]
=

1
2π

[
(η1 − e1 sin(η1)) Ur

[
R(g1 − g2) · t1,E2

]]2π

0

−
1

2π

∫
dη1 (η1 − e1 sin(η1))

∂Ur
[
R(g1 − g2) · t1,E2

]
∂η1

= Ur
[
R(g1 − g2) · t1(η1 = 0),E2

]
(A.13)

+
1

2π

∫
dη1 (η1 − e1 sin(η1))

∂(R(g1 − g2) · t1)
∂η1

·

−∂Ur
[
x̃1,E2

]
∂x̃1

 ,
where the last term is given by the force from Eq. (A.11) via
Gauss’ method. In Eq. (A.13), the term involving a derivative
w.r.t. η1 is straightforward to compute via the mapping from
Eq. (A.6). The two remaining terms in Eq. (A.13) involve both
only one integration and are therefore estimated by relying on
the trapezoidal rule. For a 2π-periodic function f , we consider K
equally spaced points on [0; 2π] given by[
θ1, ..., θK

]
=

[
0; 2π/K; ...; 2π(K − 1)/K

]
. (A.14)
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Integrations are then approximated as∫ 2π

0
dθ f (θ) '

2π
K

K∑
i=1

f (θi). (A.15)

In Eq. (A.13), the first term is estimated by sampling K points
in η2 to compute Eq. (A.3), while the second term is estimated
by sampling K points in η1, using the explicit expression of the
force obtained from Gauss’ method in Eq. (A.11). In order to
ensure an appropriate numerical convergence, the numerical ap-
plications presented in Sects. 3 and 4 used an estimation of the
wire-wire interaction potential with K = 104 sampling points.

Appendix B: Computing the disc’s surface density

In this Appendix, for the sake of completeness, we briefly detail
how the integral from Eq. (44) may be computed in order to de-
termine the disc’s surface density associated with a given disc’s
DF. To do so, we introduce the radial and tangential velocities
u = (vr, vt). The tangential velocity is given by vt = L/R, while
the radial one satisfies

EKep =
1
2
v2

r +
1
2

L2

R2 + ψKep(R). (B.1)

Equation (B.1) introduced the Keplerian potential induced by
the BH as ψKep(R) = −(GM•)/R, while the Keplerian energy
EKep of the wire depends only on the fast action I and reads
EKep(I) = −(1/2)(GM•/I)2. One can then write

dvr

dI
=

(GM•)2

I3

1√
2(EKep(I) − ψKep(R)) − L2/R2

· (B.2)

Paying a careful attention to the fact that the radial velocity can
be both positive and negative, Eq. (44) becomes

Σ?(R) =
2M?(GM•)2

R

∫
dLdI

1
I3

×
F?(L, I)√

2(EKep(I) − ψKep(R)) − L2/R2
· (B.3)

In Eq. (B.3), the integration over (L, I) has to be limited to the
domain where the argument of the square root is positive, that is
one must have

L2

R2 +
(GM•)2

I2 ≤
2GM•

R
· (B.4)

This first asks for the action L to be such that L ∈ [Lmin; Lmax],
with

Lmin = 0; Lmax =
√

2GM•R. (B.5)

Then, for such a value of L, the action I, which also has to satisfy
the constraint I ≥ L, is restricted to the domain I ∈ [Imin; Imax],
with

Imin = Max
[
L,

RGM•√
2GM•R − L2

]
; Imax = +∞. (B.6)

Equation (B.3) is the equation that was used in Fig. 7 to compute
the evolved surface density Σ?(τ).
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