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Abstract This paper addresses the detection of em-

boli in transcranial Doppler ultrasound data acquired

from an original portable device. The challenge is the

removal of several artifacts (motion and voice) intrinsi-

cally related to long-duration (up to 1h 40mn per pa-

tient) outpatient signals monitoring from this device,

as well as high intensities due to the stochastic nature

of blood flow. This paper proposes an adapted removal

procedure. This firstly consists of reducing the back-

ground noise and detecting the blood flow in the time-

frequency domain using a likelihood method for contour

detection. Then, an hierarchical extraction of features

from magnitude and bounding-boxes is achieved for the

discrimination of emboli and artifacts. After processing

of the long-duration outpatient signals, the number of

artifacts predicted as emboli is considerably reduced
(by 92% for some parameter values) between the first

and the last step of our algorithm.
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1 Introduction

Accurate detection of cerebral emboli is an important

medical challenge, as they are related to the risk of

strokes [28], and provide considerable information on

cerebral embolization risks during carotid artery stent

placement procedures [8]. Reliable detection of emboli is

therefore an essential step in the making of appropriate

patient-management decisions.

In this paper, transcranial Doppler ultrasound, a

cheap, portable and non-invasive technique, is applied

to the middle cerebral artery to potentially detect em-

boli [22]. Emboli are defined as high-intensity transient

signals (HITS). Several methods have been proposed to

reliably identify them using transcranial Doppler sig-

nals, with most of them relying on a signal process-
ing approach. The underlying idea of these methods is

to define a statistical parameter for detecting HITS,

which are considered as emboli. In [16] and [10], emboli

detectors using a time series model or cardiac cycle en-

ergy model were proposed. Other authors have used lin-

ear projections (such as short-time or fractional Fourier

transforms, or wavelet transforms and their derivatives)

as detection statistics [9], or as features for event clas-

sification [2, 7, 15, 25, 14, 12, 13]. In other words, they

try to classify events into emboli and artifacts. In [26],

authors use blood velocity information into the dual-

gated system for suppressing artifacts.

In this paper, all the HITS which are not emboli

are considered as artifacts. Thus, artifacts group con-

tains motion artifacts, voice artifacts, electrical arti-

facts, and high intensities due to the stochastic nature

of the blood flow. The major above-mentioned methods

addressed emboli detection using short-time signals to

analyze immobilized patients; this implies that few ar-

tifacts are present in the considered signals. Because
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emboli appear unpredictably, it is essential to perform

monitoring over long time periods (several hours). One

recent technological development that helps to realize

this possibility is a miniaturized portable device with a

robotized probe using a mono-gate system, the TCD-X

device (Atys Medical, France), which allows monitoring

outside of a hospital room, thereby releasing hospital

resources. The outpatient monitoring leads to increase

the number of artifacts particularly those from speaking

and motion. The removal of artifacts is generally a se-

rious problem in the biomedical signal domain, such as

in electroencephalography (EEG) and functional near-

infrared spectroscopy [27, 1] because artifacts can cor-

rupt the integrity, and hence compromise the interpre-

tation of monitoring signals.

The aim of this paper is to propose an approach

that can reliably detect emboli on transcranial Doppler

data derived from a portable device. The innovative

part of this study is the procedure for removing ar-

tifacts. Following the previous papers of Biard et al.

[3, 4], we deepen the detection of emboli by artifacts

rejection using their shapes in the time-frequency or

time-velocity domain (thanks to the Doppler effect),

instead of the time domain, where the discrimination

of emboli and artifacts appears difficult to achieve (see

Figures 1a, 1b, 1c and 1d). The underlying concept is

to use both the time and the velocity information to

improve the detection results. For example, superim-

posed signals of a motion artifact and an embolus can

be better separated in the time-frequency domain, be-

cause the motion is composed of lower frequencies than

the embolus [4, 26]. The proposed method is able to de-

tect emboli from long time-course outpatient acquired

signals. It covers both the detection of HITS (or po-

tential emboli signal extraction) and the classification

of extracted signals (or artifacts removal). Our proce-

dure is composed of three main steps. Firstly, the max-

imum instantaneous velocity of the blood flow is de-

termined; it gives the time-frequency area containing

the blood flow. This determination is achieved using a

robust segmentation approach based on the likelihood

method. Then, a method based on spectral kurtosis is

implemented to estimate the average magnitude onto

the previous detected blood flow area, and determine

the HITS threshold. Secondly, relevant parameters for

removing artifacts from detected HITS are investigated.

Finally, the remaining HITS are projected onto a fea-

ture space for the classification of emboli and artifacts

using support vector machines (SVM).

This paper is organized as follows. Section 2 is de-

voted to the problem statement. Section 3 describes our

proposed approach, including the detection of HITS,

processing, and classification tools. Section 4 demon-

strates and discusses the emboli detection performance

on real data from patients. Conclusions on the work are

then made in Section 5.

2 Problem statement

After analyzing the literature [3, 26, 2] and our database

of outpatient transcranial Doppler monitoring, the dif-

ference of emboli and artifacts are hierarchically given

by the following line:

1. emboli frequency components are in the range of

those of the blood flow;

2. emboli have intense magnitude value;

3. emboli are unidirectional or non-symmetrical;

4. emboli appear at most two times in a period of 0.5

second;

5. emboli have large surface of bounding-boxes and

large number of connected intense values in the time-

frequency representation;

6. emboli ratio of the frequency spreading over the du-

ration is high.

Figures 1a and 1b show the quadrature transcranial

Doppler signals of an embolus and an artifact respec-

tively, while Figures 1c and 1d display the spectrograms

of these events. As previously mentioned in [2], these

gures show that using both the time and velocity in-

formation, rather than using only the time information

(audio samples), gives better results in the separation

of the symmetrical artifacts and emboli.

Spectrograms show two image parts, the first of

which is composed of background noise. It is present

in both the positive and negative velocity (outside area

Ω1 in Figures 1c and 1d). The second part is the blood

flow, which is a non-stationary signal and is present in

the positive velocity (see Ω1 in Figures 1c and 1d). An

embolus is represented by HITS visible in only the sec-

ond part (the blood flow), while an artifact may be vis-

ible outside of the blood flow area, in the time-velocity

image.

The problem of emboli detection can therefore be

split into two main parts. The first part, called the HITS

detection, consists of separating HITS from the blood

flow. It can be mathematically formulated according to

the following lines. The model of the Doppler signal of

blood flow (without HITS) in the time-velocity domain

is

s(n, k) =

{
ξ(n, k) if (n, k) ∈ Ω1

ε(n, k) if (n, k) ∈ Ω0
, (1)
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(a) An embolus signal. (b) An artifact signal.

(c) Spectrogram of the embolus in Figure 1a. (d) Spectrogram of the artifact in Figure 1b.

Fig. 1: Example of HITS representations.

and the model of the Doppler signal of blood flow in

the time-velocity domain when HITS arise is

s(n, k) =

{
γ(n, k) + ξ(n, k) if (n, k) ∈ Ω1

ε(n, k) if (n, k) ∈ Ω0
, (2)

where n is the time index, k is the velocity index, s(n, k)

is the short-time Fourier transform (STFT), {ε(n, k)} is

a random variable sequence of unknown law, {ξ(n, k)}
is assumed to be a sequence of independent identically
distributed (i.i.d) circular complex Gaussian variables

with zero mean and unknown variance σ2, and γ(n, k)

is the STFT of HITS. Sets Ω1 and Ω0 are respectively

given by

Ω1 = {(n, k) | 1 ≤ n ≤ Ne, K0 ≤ k ≤ V (n)} ,
Ω0 = {(n, k) | 1 ≤ n ≤ Ne, V (n) < k ≤ Ke} ,

(3)

where K0 is the cut-off frequency index of a high-pass

filter applied to the data to remove the DC compo-

nent, Ne is the index of rows related to the considered

signal duration, Ke is the columns index for the max-

imum detectable velocity (related to the pulse repeti-

tion frequency), and V is the unknown mapping char-

acterizing the maximum instantaneous velocity of the

blood flow. Detection of HITS is equivalent to deciding

if γ(n, k) = 0 or not, i.e, to deciding one the true model

between (1) and (2).

The second main sub-problem consists of classifying

the detected HITS into artifacts and emboli groups.

3 Proposed method

3.1 Procedure description

As outlined in Figure 2, the major steps of our proposed

method are as follows.

– Detection of HITS. This is achieved through three

sequential steps:
1. Segmentation of the time-frequency representa-

tion into two areas by using the likelihood method.

The First area is the blood flow part called Ω1

and the second one is outside area Ω1 (i.e., the

background noise part). This is equivalent to the

estimation of the maximum instantaneous veloc-

ity of the blood flow.

2. Estimation of the average blood flow magnitude

from the part Ω1 despite the presence of em-

boli and artifacts using the spectral kurtosis ap-

proach.

3. Detection of HITS by applying the Neyman-Pearson

method on the average blood flow magnitude.

– Analysis of detected HITS and removal of several

artifacts: some characteristics such as the symmetry,

bounding-box surface, and the number of intense

magnitude points, are evaluated for HITS and used

to eliminate artifacts.

– Extraction of features and classification of the re-

maining HITS into emboli and artifacts groups.
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Fig. 2: The framework of the emboli detection process.

3.2 Detection of HITS

3.2.1 Estimation of the maximum instantaneous

velocity

This step is essential to achieve a correct detection of

HITS in 3.2.2. Let us define the time-velocity image by

Ω. Our contour detection method is based on the popu-

lar likelihood approach [23], which outperforms several

approaches based on the maximization of two density

function distances [24]. It is briefly explained as follows.

The separation of Ω into two separate areas Ω0 and Ω1

such as Ω = Ω0

⋃
Ω1 can be done by testing two sta-

tistical hypotheses. Let us define V as

V : {1, · · · , Ne} −→ {K0, · · · ,Ke}

such as the set C = {(n, V (n)) , n ∈ {1, · · · , Ne}} is

the boundary between Ω0 and Ω1. Let us assume that

XS(n, k) is the sequence of independent random vari-

ables generating pixel values S(n, k) where S(n, k) =

|s(n, k)|2 and |·| means the modulus . The two statisti-

cal hypotheses to test are

H0 = {XS(n, k) ∼ P0, ∀(n, k) ∈ Ω0

⋃
Ω1}

vs

H1 =

{
XS(n, k) ∼ P1, ∀(n, k) ∈ Ω1

XS(n, k) ∼ P0, ∀(n, k) ∈ Ω0

} , (4)

where Pl for l ∈ {0, 1} are two different cumulative

distribution functions. Hypothesis H0 supposes that all

pixels derive from a common law P0 and H1 supposes

that pixels of area Ω0 and Ω1 derive from two distinct

laws P0 and P1. The log-likelihood ratio LL of this

statistical test depends on the curve V , and is defined

by

LL(V ) = ln


∏

(n,k)∈Ω1

f1(S(n, k))
∏

(n,k)∈Ω0

f0(S(n, k))

∏
(n,k)∈Ω0

⋃
Ω1

f0(S(n, k))

,
(5)

where fl is the probability density function (pdf) of

Pl for l ∈ {0, 1}. From (1) and (2), no assumption is

made about the background noise probability law P0.

Thus, our approach is non-parametric. The pdf is then

computed using a priori Parzen estimates [21].

The contour detection can be performed by initial-

izing the boundary C, and maximizing LL for all the

possible values of the boundary. In practice, the contour

is built at each period corresponding to a time-sample

of the time-velocity image. Then, a regularization term

inspired by [6] is added to LL before the maximization:

RT (V ) = α

√
1 + [V (n− 1)− V (n)]

2
,

where V (n− 1) is the previous determined ordinate

belonging to the maximum instantaneous velocity, V (n)

is the tested current ordinate, and α is a tuning param-

eter. The goal of this term is to avoid likely outliers. In

summary, our boundary determination method is re-

cursive and given by

C
{(

n, V̂ (n)
)
N0≤n≤Ne

| V̂ = arg max
V

[LL(V )−RT (V )]

}
,

(6)

where N0 is the number of pixels used for the algorithm

initialization. The curve smoothing is achieved using a

moving average filter.

The estimation of the maximum instantaneous ve-

locity delimits the blood flow part Ω1. Then, the next

paragraph is dedicated to the determination of the av-

erage blood flow magnitude from this part Ω1.
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3.2.2 Blood flow magnitude estimation

Emboli are defined as HITS, and detection of them is

difficult because it requires knowledge of the blood flow

magnitude, i.e, the blood flow magnitude in absence of

HITS. The main difficulty is to know whether the con-

sidered signal (or a part) contains HITS. To avoid this

difficulty, a spectral kurtosis approach [18] is proposed.

The spectral kurtosis approach is used on the selected

part of the time-velocity image which is located between

the index K0 and the maximum instantaneous velocity.

HITS are of short duration with respect to the ac-

quired Doppler signal. From (1) and (2), this implies

that γ(n, k) = 0 for almost all values of (n, k). Thus, as

is mentioned in [18], for the smallest values of |s(n, k)|,
the distribution of s(n, k) is close to that of the circular

complex Gaussian variable ξ(n, k).

Under these conditions, the spectral kurtosis ap-

proach can separate HITS from the blood flow mag-

nitude. Let us briefly present the spectral kurtosis ap-

proach. When an energy detector is used to detect HITS,

thresholding of the energy means thresholding of the

spectrogram. Removing points greater than a thresh-

old h gives a truncated complex Gaussian variable Zh
depending on σ and h [18]. The spectral kurtosis SKσ,h

of Zh is defined by

SKσ,h = E(|Zh|4)/E2(|Zh|2)− 2, (7)

where E means the expectation. It follows that

SKσ,h =

(
exp

{
(hσ )2

}
− 1
) (

2(hσ )2 − (hσ )4
)
− 2(hσ )4(

exp
{

(hσ )2
}
− 1− (hσ )2

)2 .

(8)

From (8), it is clear that the spectral kurtosis depends

only on the normalized threshold hn = h/σ and that it

is an invertible function. There is therefore an unique

hn(κ) such as

SK1,hn(κ) = κ. (9)

The value of hn(κ) is approximated by numerically in-

verting (8). However, using (7), it is possible to find the

non-normalized threshold h(κ), such that the spectral

kurtosis of the points smaller than h(κ) is equal to the

value κ:

SKσ,h(κ) = κ. (10)

The variance estimator σ̂2
κ of blood flow in the STFT

domain is then

σ̂2
κ = [h(κ)/hn(κ)]

2
. (11)

This variance is also an estimation of the blood flow

magnitude and depends on κ. Empirically, the value

of σ̂2
κ for κ = (−0.3) has been found to be the most

relevant in terms of bias and variance [18].

3.2.3 HITS threshold selection

HITS are detected as events whose spectrogram val-

ues S(n, k) exceed a prescribed threshold. Because the

STFT of blood flow is assumed to follow a Gaussian

law, the spectrogram values S(n, k) follow a chi-squared

distribution. Thus, for a given value pfa of false alarm

probability (pfa), the optimal threshold h1 is obtained

from the uniformly most powerful test [19]:

h1 = σ̂2
−0.3 ln

{
p−1fa

}
. (12)

Remark 1

After thresholding the time-velocity image, the sets of

connected pixels whose values exceed h1 together form

one event.

3.3 Processing of HITS

In the remainder part of this paper, HITS are normal-

ized by σ̂2
−0.3 in order to reduce their dependency to

patients.

3.3.1 Removal of symmetrical HITS

As Remark 1, HITS are composed of connected pix-

els whose values exceed the threshold h1 in the positive

part of frequencies also called the flow (or forward flow)

part. For all the HITS, the symmetrical location of con-

nected pixels in the flow with respect to the abscissa,

i.e., in the negative part of frequencies also called the

back-flow (or reverse flow) is also considered. The aver-

age of pixel intensities or magnitudes in the flow and the

back-flow are respectively called Sf and Sbf . Each high

intensity event (an artifact or an embolus) corresponds

to one value of Sf and Sbf . For artifacts, the distribu-

tion of the average magnitude ratio of the flow over the

back-flow is bimodal. The first mode (small values of

the ratio) is composed of symmetrical or bidirectional

artifacts [3] such as the voice artifact in Figure 1d. The

second mode (large values of the ratio) is composed of

non-symmetrical artifacts such as electrical artifacts or

high intensities due to the stochastic nature of the blood

flow. In practice, the artifacts distribution is not known

for a patient; although the distribution of HITS (em-

boli and artifacts) is known. The distribution of HITS is

also bimodal because emboli belong to only the second
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Fig. 3: Distribution of the average intensity ratio of the

flow over the back-flow for patient No.1.

mode as it is shown in Figure 3. The plotted distribu-

tions are for the patient No.1. A statistical threshold h2
for separating both the modes can be determined using

the well-known Otsu algorithm [20]. Then, the rule for

removing symmetrical HITS is then given by

– if 10 log 10(Sf/Sbf ) ≤ h2, HITS are considered as

an artifact and removed;

– if 10 log 10(Sf/Sbf ) > h2, HITS are kept and their

group membership will be defined later.

3.3.2 Reduction of the number of HITS

After removing symmetrical artifacts, the remaining

HITS are largely composed of blood flow magnitude

(due to the stochastic nature of blood flow and the

long duration of acquired signals) exceeding the pre-

scribed threshold h1. It is obvious that when an embo-

lus arises, its signal is superimposed on the blood flow

signal. Therefore, considering short time periods where

the signal holds stationary, intense peaks are likely to

be emboli, while the others are likely to be blood-flow

outliers. After analyzing the database, we note that for

the duration corresponding to half cardiac cycle, fewer

than two emboli are present. Accordingly, only the two

greatest HITS (w.r.t the magnitude) will be kept, and

all the others will be removed at each considered win-

dow of a size approximating half cardiac cycle.

3.3.3 Removal of HITS for small bounding-box

surfaces

The determination of the size of the bounding-box re-

quired to encompass HITS is not a trivial problem. To

solve this problem, several pfa are empirically tested.

Figure 4 shows bounding-boxes with respect to three

pfa. For the first of these (pfa = 10−10), the thresh-

old h1 is high and the bounding-box is small w.r.t the

considered embolus spectrogram. This results in only a

small part of the visible embolus being detected. The

Fig. 4: Bounding-boxes for three values of pfa.

bounding-box for pfa = 10−1 is obviously too large,

while the bounding-box for pfa = 10−3 is visually the

most appropriate for this embolus. This value is con-

firmed by the analysis of other HITS, and is there-

fore used throughout this paper. After determination

of the bounding-box, HITS appearing at the same time

(i.e., their bounding-box durations overlap) are con-

catenated. This avoids the confusing situation where

two separated HITS are associated with the same de-

tection time. In analyzing the pdf for the bounding-box

surfaces of HITS, we noted that it is bimodal. Most

of the emboli present with large values of bounding-

box surfaces, whereas several artifacts (outliers of the

blood flow magnitude) present with small values. This

is why HITS with a bounding-box surface less than a

determined threshold h3 are removed. The separation

threshold h3 is also given by the Otsu algorithm.

3.3.4 Removal of HITS with a low pixel number

Several artifacts composed of aggregated high-magnitude

blood flow have large bounding-box surfaces, and the

previous technique fails to remove them. Nevertheless,

counting the number of intense magnitudes in each

bounding-box enables them to be identified and deleted.

We also noted that the pdf of the intense magnitudes

has a bimodal nature. Emboli generally have more in-

tense magnitudes than the remaining artifacts. In this

case, the Otsu method gives a threshold h4 for removing

these artifacts.

Remark 2 In order to avoid patient dependence on cal-

culated values, the procedures described in the part

3.3.3 and 3.3.4 are normalized using the average of the

maximum instantaneous velocity.

In brief, our proposed HITS processing procedure is

given by algorithm 1.
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Algorithm 1 HITS processing

1: Detect HITS (3.2.3).
2: Remove duplicate HITS.
3: Calculate for any HITS Sf and Sr, the respective average

normalized magnitude in flow and back-flow (3.3.1).
4: Remove HITS if 10 log 10(Sf/Sbf ) ≤ h2 (3.3.1).
5: Keep only the two highest HITS (3.3.2).
6: Determine appropriate HITS bounding-boxes (3.3.3).
7: Concatenate HITS appearing at the same time (3.3.3).
8: Remove HITS if the bounding-box surface is less than h3

(3.3.3).
9: Remove HITS if the number of intense magnitudes is

fewer than h4 (3.3.4).

3.4 HITS decision

3.4.1 Feature extraction

The analysis of several time-velocity images shows that

most emboli are of short duration, with a spread of ve-

locities. This implies that the ratio of height over width

for the bounding-boxes is large, whereas for several ar-

tifacts, this ratio is small. Additionally, when the ratio

of height over width for a detected embolus is small, its

magnitude is traditionally higher than the other HITS.

The two dimensional space formed by the magnitude

and the ratio of height over width is then selected as

a feature space. The projections of HITS can be sepa-

rated in this space, and this will be performed in the

next paragraph.

3.4.2 Weighting of the SVM for classification

In machine learning domain, several methods exist for

separating data. For labeled data, the SVM can achieve

excellent performance according to [5]. Traditionally,

SVM have been used to separate two groups. The prin-

ciple is to maximize the separation margin; the margin

being the distance between the closest observations of

the two groups. Consider a given training set

{x`, y`}1≤`≤N with the observation x` ∈ Rd and the

class variable y` ∈ {−1, 1}. Suppose that data are lin-

early separable, i.e, there exists a linear classifier(w,w0)

such as

{
〈w, x`〉+ w0 ≥ +1 if y` = +1

〈w, x`〉+ w0 ≤ −1 if y` = −1
, (13)

where 〈, 〉 is the dot product. The problem of finding the

separator which maximizes the margin is equivalent to :

min
w,w0

1

2
〈w,w〉

constraint to y`(〈w, x`〉+ w0) ≥ 1, 1 ≤ ` ≤ N.
(14)

Generally, data are not linearly separable. The trick

is to project them onto a high-dimensional feature space

using a non-linear map ψ(·), such that the projections

are linearly separable. Therefore, slack variables µ` ≥ 0

are introduced to solve the problem. The optimization

problem becomes

min
w,w0,µ`

1

2
〈w,w〉+ C

N∑
`=1

µ`

such that

{
y`(〈w,ψ (x`)〉+ w0) > 1− µ`
µ` ≥ 0

,

(15)

where C is a positive constant determining the SVM

tolerance of the poorly separated observations. Pass-

ing by the dual form of (15), the calculation of pro-

jections ψ(x), ∀x is needless; only the computation of〈
ψ(x

′
), ψ(x)

〉
, ∀(x′

, x) is required [11]. Thanks to Mer-

cers condition [17], the latter dot product, which often

requires a lot of computational resources, is replaced

by the calculation of a kernel K(x
′
, x). Traditionally, a

Gaussian kernel is used.

When the ratio of observations number r between

the positive (y` = 1) and negative (y` = −1) training

groups is far from one, the SVM separator is biased, and

it is close to the group containing most of the observa-

tions. This is why, authors in [11] use C+ = rC
r+1 and

C− = C
r+1 for the positive and negative group respec-

tively, instead of C. In order to render C+ and C− more

flexible, and to then improve the detection performance

on our database, we propose using C+ =
(

r
r+1

)β
C

and C− =
(

1
r+1

)β
C instead of their previous defini-

tions. The parameters β and C, and the Gaussian ker-

nel width, are determined by a 10-fold cross validation

procedure.

4 Experimental results and discussion

4.1 Data description

Our database is composed of outpatient acquired sig-

nals from twelve patients with a carotid stenosis. A

carotid stenosis is a narrowing or blockage of the carotid

arteries due to an accumulation of organic or mineral

material. It is a dangerous illness, as some aggregated

materials may break off, move to cerebral arteries, and

block them, thus causing a stroke. In the monitoring

analyzed in this study, the following TCDX parameters

were used. The pulse repetition frequency (PRF) was

between 4 and 5 kHz. The emitted waves had a cen-

tral frequency equal to 1.5 MHz and lasted 10 s. The
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received signals were demodulated at the emitted sig-

nal frequency by a quadrature demodulation leading to

two channel signals. The labeling of emboli is achieved

by two experts belonging to the Atys Medical company.

The first expert detected emboli from the acquired pa-

tient data, and the second expert validated or not the

emboli detected by the first expert. Table 1 shows the

number of detected emboli by this labeling procedure.

4.2 Comparison of emboli detection performance

In this section, we compare the performance of our pro-

posed emboli detector with that of the Naive Bayes

(N-Bayes) investigated in [13] and the MI-HDMR in-

troduced in [12]. These latter algorithms have recently

been described, and they outperform several other short-

time HITS classifiers. Therefore, it is of interest to know

their performance on long-duration outpatient data ac-

quired from the portable Doppler device.

The MI-HDMR and N-Bayes algorithms parameters

for all patients were as follows. Training used 192 sig-

nals (blood flow, artifacts and emboli) of size 1 s from

five patients. For testing, patient signals were split into

windows of 1 s, with 50% overlap. The mother wavelet

was the eighth-order Daubechies wavelet and the max-

imum used scale was eight. The training step used sig-

nals originating from five different patients.

For all the patients, the remaining parameters used

for our algorithm were as follows. The STFT used 128

points, and the Blackman window had a 91% overlap.

The tuning parameter α, the number of initial pixels

N0, and the cut-off frequency for determining the max-

imum instantaneous velocity were 0.5, 100 pixels, and

150 Hz respectively. For HITS detection, the sliding

window in the time-velocity domain was 1 s, with a 50%

overlap. The appropriate pfa for the HITS bounding-

box was fixed to pfa = 10−3 before calculating h3 and

h4.

Thresholds h2, h3 and h4 for removal of artifacts,

were automatically evaluated through the Otsu method.

Table 2 shows example values with pfa = 10−6.

The exact number of artifacts for the MI-HDMR

and the N-Bayes, and their emboli detection probabili-

ties are known. Nevertheless, it is not easy to calibrate

our method to have exactly the same number of arti-

facts or the same emboli detection probability than the

MI-HDMR and N-Bayes methods. In order to make a

comparison, we proceeded as follows. An emboli detec-

tion is achieved either by the N-Bayes or by the MI-

HDMR method. For our method, a list of pfa values

is selected and detection is achieved for each pfa value

into the list. This gives an invertible performance curve

Fig. 5: Algorithm performances evolution for patient

No.4

for our method showing the number of artifacts as a

function of the emboli detection probability (see for ex-

ample, the HITS detection and classification curves in

Figure 5). Then, our method can give the number of

artifacts related to the same value of the emboli detec-

tion probability given either by the N-Bayes or by the

MI-HDMR method. The comparison of the number of

artifacts between the N-Bayes and our method for all

patients is shown in Table 3., and the comparison be-

tween the MI-HDMR and our method is shown in Table

4

From the previous pfa list, Figure 5 shows an exam-

ple of curves at each step of our algorithm. Considering

all patients, between the first step (HITS detection) and

last step (HITS classification) of our algorithm, the ar-

tifacts predicted as emboli were reduced by 92%. The

reduction of artifacts for our method comparatively to

N-Bayes and MI-HDMR are respectively 35% and 82%.

4.3 Discussion

Thresholds h1 to h4 are automatically calculated by our

algorithm, with h1 taking several values for the same

patient, depending on the current sliding window. It is

therefore adaptive to any increase or decrease in the

signal amplitude during monitoring. The variation of

thresholds h2 to h4 in Table 2 are due to the fact that

the acquired patient signals are very different. In old

patients, bone calcification is greater, and the received

flow signal is lower than in younger patients. The values

of h3 and h4 in dB are negative because of the normal-

ization explained in Remark 2.

Because our database contains outpatient data sig-

nals, several artifacts (motion and voice) are present
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Table 1: Database description.

Patients No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12
Signals duration (s) 323 480 157 1620 3921 5995 111 4541 3377 3571 601 300
Number of emboli 65 16 36 26 5 18 28 8 3 23 43 29

Table 2: Thresholds for artifact removal procedure.

Patients No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12
h2 in dB 25 34 41 43 46 25 21 24 27 32 31 31
h3 in dB -8 -8.1 -6.8 -6.2 -7.7 -9.7 -8.12 -10.35 -4.32 -18.10 -1.78 -3.6
h4 in dB -19.6 -25.5 -26.6 -25.2 -27.7 -28.7 -21.13 -17.96 -10.90 -24.29 -11.67 -16.47

Table 3: Comparative detection performance of N-Bayes and our method.

Patient No.
Method 1 2 3 4 5 6 7 8 9 10 11 12

% of emboli N-Bayes 44.61 62.5 66.67 61.53 100 50 60.71 87.5 100 91.3 86.04 44.82
detected

Number of N-Bayes 25.3 20.8 35.2 28.8 9.1 41.7 18.4 26.1 24.6 32.1 60.9 22
artifacts Ours: 1st step 55 16.4 37.5 138.4 20 37.3 203.82 147.29 258.46 542.52 275.89 225.37
per min Ours: 6th step 1.76 0.11 1.15 1.02 0.08 0.08 0 4.2 103.44 16.7 43.22 22.96

Table 4: Comparative detection performance of MI-HDMR and our method.

Patient No.
Method 1 2 3 4 5 6 7 8 9 10 11 12

% of emboli MI-HDMR 18.5 31.2 55.6 73.1 60 33.3 39.3 62.5 33.3 87 48.8 6.9
detected

Number of MI-HDMR 17.46 23.88 19.87 31.37 26.17 17.45 17.29 37.59 16 39.28 21.76 8
artifacts Ours: 1st step 22.75 8.2 31.2 168.8 12 24.9 131.9 105.4 86.2 473.9 113.4 13.9
per min Ours: 6th step 0.74 0.06 0.64 2.07 0.05 0.06 0 3 10.19 16.85 13.29 10.2

most of the time. For example, patient No.4 talks very

long time during the monitoring (75% of the monitor-

ing duration). This causes very high number of artifacts

than several others monitored patients. It therefore fol-

lows that when an embolus occurs, its signal is close to

some artifact signals.

Tables 3 and 4 show the performance of our method,

and those of two previous methods for emboli detection:

the N-Bayes investigated in [13] and the MI-HDMR in-

troduced in [12]. The major difference of our method

than the N-Bayes and the MI-HDMR is the using of fea-

tures from time-frequency representation for artifacts

rejection. Indeed, the MI-HDMR algorithm and the N-

Bayes aforementioned use the EBR (embolus to blood

ratio) parameter and time and frequency features sepa-

rately for deleting artifacts. Nevertheless, these time or

frequency features are not easy to estimate properly be-

cause of the proximity of artifacts (voice and motion for

example) and emboli most of the time. Our algorithm

enables the separation of emboli from most of the voice

and motion artifacts using a two-dimensional space: the

time-frequency representation. In fact, these artifacts

are of low frequency than emboli. Moreover, although

emboli and artifacts signals are close or superimposed,

they can still be separated by time-frequency features

based on events shape such as bounding-box surface,

ratio of frequency spreading over the duration.

With consideration of all the patients, a compar-

ison of the first step of our algorithm with N-Bayes

and MI-HDMR shows that without an appropriate ar-

tifacts removal step, the N-bayes and the MI-HDMR

perform better on average (respectively 83% and 56%

fewer artifacts) than our algorithm. Nevertheless, after

appropriate processing, our algorithm performs better

on average than the N-Bayes and the MI-HDMR (re-

spectively 35% and 82% fewer artifacts).This demon-

strates the importance of our artifacts removal proce-

dure for outpatient data monitoring. Additionally, all

the parameter values of our algorithm are automati-

cally estimated. This makes our algorithm more robust

to patient-specific differences.
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For the same number of detected emboli, the arti-

facts wrongly predicted as emboli from patients are dif-

ferent. This can be explained by the difference in EBR,

and the number or type of artifacts present before de-

tection. Figure 5 shows that our algorithm steps are

adapted to removal of artifacts. From step one to four,

the number of artifacts, decreases substantially while

the number of detected emboli is almost the same. Step

four is sometimes above step five, meaning that no or-

der can rationally be given between artifacts removal

w.r.t the bounding-box surfaces, and artifacts removal

w.r.t the number of intense magnitudes belonging to

bounding-boxes. Indeed, both these steps are comple-

mentary.

In practice, four our method, it is not yet possible

to fix the tolerated number of artifacts/min before de-

tection. One way to overcome this limitation would be

to propose a list of pfa values, and to take the HITS

detection result relative to the pfa value closest to, but

below, this tolerated number of artifacts/min.

5 Conclusion

This paper proposes an automatic algorithm (i.e, not

operator-dependent) for emboli detection adapted to

the long duration of outpatient data monitoring from

a new miniaturized and portable transcranial Doppler

ultrasound device. The originality is the procedure for

removing artifacts, which generally come from the pa-

tients voice and motion. Our detection is achieved in

the time-frequency domain. The main steps can be de-

scribed as follows. Firstly, the background noise is re-

duced, then the blood flow magnitude is estimated and

high-intensity transient signals (HITS) are detected. Fi-

nally, artifacts are suppressed from detected HITS by a

combination of magnitude and duration and frequency

and time-frequency shape (bounding-box) parameters.

Considering the long duration of outpatient signal mon-

itoring, the percentage of artifacts predicted as emboli

was considerably reduced (by 92% for some detection

parameters) between the first and the last step of our

algorithm. This means that our procedure is adapted

to this kind of signal.

Future work should test this algorithm on a larger

set of data, and classify detected emboli into solid and

gaseous groups to satisfy a medical requirement.
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d’acoustique, WCU 2003, pp 1101–1104
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ceived his Ph.D degree in statis-

tical modeling from the Universit

de Technologie de Troyes, in 2013.

In 2014, He worked on prognos-

tics and health management. He is

currently post-doc and his research

interests are time-frequency anal-

ysis, statistical signal processing,

machine learning and edge detec-

tion at CREATIS, INSA Lyon, France.

Bruno Sciolla received his

Ph.D in theoretical physics from

the University of Paris-Sud, in

2012. Until 2014, he has conducted

research in statistical physics of

quantum systems, specifically the

theory of ultracold atoms as a

research fellow in the University

of Geneva, Switzerland and in

the University of Bonn, Germany.

Since 2014 his research focuses on

medical image processing, in particular image segmen-

tation, motion estimation, and machine learning at

CREATIS, INSA Lyon, France.

Fabien Millioz graduated from
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