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Abstract: While sailing offwind, the trimmer typically adjusts the downwind sail “on the verge of luff-

ing”, occasionally letting the luff of the sail flap. Due to the unsteadiness of the spinnaker itself, main-

taining the luff on the verge of luffing requires continual adjustments. The propulsive force generated

by the offwind sail depends on this trimming and is highly fluctuating. During a flapping sequence, the

aerodynamic load can fluctuate by 50% of the average load. On a J/80 class yacht, we simultane-

ously measured time-resolved pressures on the spinnaker, aerodynamic loads, boat data and wind

data. Significant spatio-temporal patterns were detected in the pressure distribution. In this paper

we present averages and main fluctuations of pressure distributions and of load coefficients for dif-

ferent apparent wind angles as well as a refined analysis of pressure fluctuations, using the Proper

Orthogonal Decomposition (POD) method. POD shows that pressure fluctuations due to luffing of

the spinnaker can be well represented by only one proper mode related to a unique spatial pressure

pattern and a dynamic behavior evolving with the Apparent Wind Angles. The time evolution of this

proper mode is highly correlated with load fluctuations. Moreover, POD can be employed to filter the

measured pressures more efficiently than basic filters. The reconstruction using the first few modes

makes it possible to restrict the flapping analysis to the most energetic part of the signal and remove

insignificant variations and noises. This might be helpful for comparison with other measurements

and numerical simulations.

Keywords: full scale experiment, instrumented boat, spinnaker, fluid structure interaction, POD, un-

steady



NOMENCLATURE

a(t) Mode time coefficient (also called expansion coefficient ) of POD mode

CF Load coefficient ( F
1
2 ρ S AWS2 ) [-]

Cxy(τ) Normalised inter-correlation function of temporal signals x(t) and y(t)
fr Reduced frequency (fs

√
S

AWS
)

fs Pseudo frequency of mode time coefficient [Hz]

S Spinnaker surface area [68m2]

U(x, t) Input data of POD mode varying in space and time

∆CP Differential pressure coefficient (Pleeward−Pwindward
1
2 ρ AWS2 ) [-]

∆P Differential pressure (Pleeward − Pwindward) [Pa]

µx or µy Mean function of signals x and y used in the inter-correlation function

ρ Density of air [1.25 kg/m3]

ϕ(x) Spatial mode of POD

AWA Apparent Wind Angle [°]

AWS Apparent Wind Speed [m/s]

BS Boat Speed [m/s]

IQR Inter Quartile Range (Q3-Q1)

Q1 First Quartile

Q3 Third Quartile

POD Proper Orthogonal Decomposition

TWS True Wind Speed [m/s]

INTRODUCTION

In research and development in sail aerodynamics, full-scale testing, wind tunnel testing and

numerical simulation have always been complementary. Numerical simulations contribute to

efficiently investigating different designs without the cost of creating sails (Chapin et al., 2011;

Ranzenbach et al., 2013; Durand et al., 2014; Viola et al., 2015). Nowadays, advanced com-

putational resources have enhanced numerical simulation and have allowed coupling of fluid

and structural solvers to create Fluid-Structure Interaction simulations (Renzsch and Graf,

2010; Chapin et al., 2011; Lombardi et al., 2012; Ranzenbach et al., 2013; Trimarchi et al.,

2013; Augier et al., 2014; Durand et al., 2014). However, wind tunnel testing and full-scale

testing are required for comparison and validation (Hansen et al., 2002; Viola and Flay, 2011;

Renzsch and Graf, 2013). Wind tunnel testing has the advantage of being in a controlled en-

vironment where a balance can be used to measure the forces created by the sails on the

boat frame (Flay, 1996; Zasso et al., 2005; Graf and Müller, 2009; Campbell, 2014b). These

results can easily be used to create a Velocity Prediction Program (Le Pelley and Richards,

2011; Campbell, 2014a). Nevertheless with wind tunnel testing, some rules of similitude are

violated such as the Reynolds number, the ratio of fabric weight to wind pressure, or the ratio

of membrane stress to wind pressure. Full-Scale testing does not have these issues, and

contributes in the determination of yacht performance in real sailing conditions. These ex-

periments require complex set-up in a harsh environment but actual aerodynamic loads can

be assessed in a variety of ways. Sail boat dynamometers (Herman, 1989; Hochkirch and

Brandt, 1999; Masuyama, 2014) measured forces from upwind sails transmitted to the boat

frame. Fossati et al., (2015) created a sail boat dynamometer with the possibility of mea-

suring aerodynamic forces of downwind sails. Augier et al., (2012) carried out experiments

where loads on the rigging lines and sails were measured. They contributed to a better un-

derstanding of the interaction between the wind, the rigging and the sails. Le Pelley et al.,



(2015) measured the forces and the directions on the three corners of spinnakers. Viola and

Flay, (2010), Le Pelley et al., (2012), Lozej et al., (2012), and Motta et al., (2014) measured

pressures on sails for upwind and downwind sails.

Downwind sails however aremore complex to study than upwind sails mainly due to their non-

developable 3D shape with highly cambered sections and massively detached flow around a

thin and very flexible membrane. Due to the dynamic behavior of this unsteady fluid-structure

interaction, the pressures on the sail vary quickly. Even in stable conditions, offwind sails

have an inherent unsteadiness. One key feature of spinnaker unsteadiness comes from

the flapping at the leading edge, also called luffing. We have previously investigated pres-

sure evolution during luffing (Deparday et al., 2014; Motta et al., 2015). In Deparday et al.,

(2014), we showed an example where the flapping of spinnaker creates pressure peaks at

the leading edge increasing the aerodynamic force dynamically by 50%. Due to the non-

stationarity of the environment while sailing, spatio-temporal pressure data are complex to

analyze and therefore to simulate. However significant and different spatio-temporal pat-

terns can be spotted (Motta et al., 2015) and might be produced by different physical causes

(Fluid-Structure Interaction, wind variations, boat motions, etc.). In this paper we present

an approach to decompose complex pressure evolutions into simpler modes. It would then

allow easier analysis and comparison with simulations.

This paper presents results of full-scale experiments of an instrumented J/80 class yacht in

offwind conditions were loads, pressures on the spinnaker, boat and wind data were mea-

sured. After describing the experimental apparatus, average and fluctuations of pressures

and loads are presented. The next section is the use of the Proper Orthogonal Decom-

position (POD) method on pressures to create a simpler model of the complex variations

of pressure distribution in time. We then show that the method also helps to highlight the

correlation between the main evolution of pressures and the variations of loads.

EXPERIMENTAL SETUP

An instrumented J/80 class sailing yacht, an 8 meter one-design cruiser racer is used during

these experiments. A tri-radial asymmetrical spinnaker with a surface area of about 68m2

with a 12meter long rounded luff is hoisted as well as amainsail of 17m2. Boat and wind data,

loads on the standing rigging and on the sails are recorded. Pressure taps, developed by the

Yacht Research Unit at the University of Auckland are stuck on the spinnaker to acquire the

dynamic pressure distribution. They are synchronizedwith the other data using an acquisition

software, RTMaps developed by Intempora which receives every signal at its own rate and

timestamped them “on the flow”. A resampling is applied during the post processing to obtain

synchronous data for easier analysis. Figure 1 shows the arrangement of all the sensors set

onboard.

This setup for downwind navigation is a further development of the experimental system

described in Augier et al., (2012) which was used for measurements in upwind navigation.

Loads

The standing rigging (shrouds, forestay and backstay) is fitted with custom-made turnbuckles

and shackles equipped with strain gages. The running rigging (the corners of the mainsail

and of the spinnaker head, tack and clew) is also equipped with instrumented shackles. For

the standing rigging and the mainsail the sensors are connected to a load acquisition system

Spider8 from HBM. Voltages are received from all strain gages and amplified. They are then

converted in digital data at a rate of 25Hz. Thereafter they are transferred to the real-time

acquisition software, RTMaps. Due to the high displacements of the spinnaker (in the order of
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Figure 1. General arrangement of the experimental set-up on the J/80. 16 load sensors (green

discs), 44 pressure taps (red circles), and wind and boat sensors (blue squares).

magnitude of 1 to 5 meters for the spinnaker used in these experiments), the instrumented

shackles on the three corners of the spinnaker communicate wirelessly to the acquisition

system. The clew sensor is connected via a wire running along the foot of the sail to a small

box located near the tack point of the spinnaker (see figure 2). This box contains two strain

gage amplifiers, one for the tack sensor and one for the clew. A microcontroller receives and

transmits data at a sampling frequency of 25Hz to the receiver inside the boat via a wireless

and low consumption ZigBee network. Another box is located at the head position for the

head-instrumented shackle. The delay between the transmission and reception of data is

insignificant compared to dynamics in sailing.

The errors of measurement are less than 2% of the measurement range (10 000N for the

shrouds, forestay and for the mainsail sheet, 5000N for the backstay and other instrumented

shackles on the mainsail and spinnaker).

Pressures on spinnaker

On the spinnaker, 44 low-range differential pressure sensors (Honeywell XSCL04DC) are

located on the surface along 4 horizontal stripes: at 1/4, 1/2, 3/4 and 7/8 height of the spin-

naker from the foot (see figures 1 and 2). 12 transducers are used on each of the first 3

stripes and 8 for the top one. There is a higher concentration of pressure taps near the lead-

ing edge to be able to record potential leading edge suction peaks. These sensors measure

a difference of pressure between the suction side and the pressure side using the piezore-

sistive effect. There is no need for a measure of a reference pressure, a complicated task in

full-scale experiments. The sensors are stuck on one side (at the pressure side when sailing
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Figure 2. Photograph of the spinnaker tack. A©: tack shackle wired to the acquisition box. B©:

wire running along the foot from the clew shackle to acquisition box. C©: Acquisition box with

strain gauge amplifiers, a microcontroller, a wireless transmitter and a battery.

on portside tack) and are positioned facing 2mm-diameter holes in the sail to measure the

pressure jump across the sail without significant air leak. Punctured light sail cloth patches

are applied on the pressure taps to improve the aerodynamic profile of the sensors. This

custom-built pressure system was designed by the Yacht Research Unit at the University

of Auckland. These pressure transducers are connected by wires to the receiver inside the

boat and thus are synchronized with the other data. The pressure sensors have a sampling

frequency of approximatively 10Hz with a maximum range of ±1 kPa and a resolution of

0.5Pa. The pressure acquisition system is further described in Motta et al., 2014.

Procedure

Sea trials were performed in the bay of Brest, France, offshore from Ecole Navale. During

these experiments the weather conditions were stable:

• average true wind speed: 6m/s (12 kn)

• gust: 8m/s (16 kn)

• wind direction: 270° (westerly wind). Stable. Flat water.

Even in conditions considered as “stable” (with no gust, no wind shift, on flat water and fixed

trimming), offwind sails have an inherent unsteadiness, like luffing (flapping at the leading

edge). To keep a “stable condition”, defined by the mean of low standard deviation of the

AWA (<4°) and the AWS (< 0.1 AWS ), a standard procedure must be followed.

Wind is considered as the only input control of the sailing yacht system. The trim and the

helm are adjusted as a function of the wind direction and force. The trimmer adjusted the

spinnaker at the optimum trim (i.e. on the verge of luffing at the leading edge) and the

helmsman kept the apparent wind angle as constant as possible. Trimmer and helmsman

were held constant for all the trials. Aerodynamic loads are considered as an output, a

response to the environmental conditions.

At full-scale, wind variations cannot be controlled. In order to analyze the intrinsic dynamics of

flapping, and not the dynamics of the onset wind flow, “stable” periods are defined according

to a “stable” wind that is quantified as follows:



• The standard deviation of the AWA during the “stable” period should not be larger than

a certain threshold: standard deviation(AWA) < thresAWA.

• The standard deviation of the AWS during the “stable” period should not be larger than

a fraction of the time-averaged AWS: standard deviation(AWS) < thresAWS 〈AWS〉.
• The “stable” period should last a defined minimum of time: ∆t > threstime.

The thresholds used are: 
thresAWA = 4°

thresAWS = 0.1 〈AWS〉
threstime = 5 s

These criteria make it possible to find enough periods for comparison where the conditions

do not change too much. The periods were extended in time as long as these criteria were

met. In the end, a large range of AWA (between 55° and 140°) is covered by the “stable” pe-

riods found, with a certain redundancy for most of the AWA. Each stable period is processed

individually.

AVERAGES AND FLUCTUATIONS

Pressures

The average pressure distribution and loads are compared according to the apparent wind

angle. A large range of apparent wind angles (AWA) was found in a rather constant true wind

speed (TWS) between 5.8m/s and 7.1m/s (11.2 kn to 13.8 kn). The apparent wind angle is

measured at the mast head. One should be aware this measurement is affected by the twist

of the wind, the upwash effect from the sails and the heel.

To display the pressure distribution on the whole sail from discrete measurement points, a

linear Radial Basis Function interpolation was used. On following figures where the pressure

distribution is displayed on the spinnaker and blue crosses show where the pressure mea-

surement sensors were located on the sail. Thus pressures at those blue crosses are actual

measured values, whereas the pressure distribution is interpolated between the stripes and

pressure taps. With no information on the sail boundaries, values at the top (above the stripe

at 7/8 of the height) and at the bottom (below the stripe at 1/4 of the height) were extrapo-

lated. The shapes used to display the pressure distributions come from other experiments

with the same spinnaker where photogrammetric measurements were carried out to acquire

the flying shapes (Deparday et al., 2016).

Time-Averaged pressure distributions for similar apparent wind angles have good repeata-

bility. Moreover, the pressure distribution evolves clearly with the AWA. Figure 3a presents

3 characteristic pressure spatial distributions at 66°, 118° and 140°. It shows the coefficient

of the difference of pressure as commonly defined in aerodynamics:

∆CP = Pleeward − Pwindward
1
2ρ(AWS)2 .

At tight angles such as AWA 66°, a bulb of a high suction is found at the leading edge in the

top half of the spinnaker (∆CP ≈ −3) which produces high aerodynamic force. ∆CP on the

rest of the sail is around -2 increasing to -1/-0.5 at the trailing edge.

At AWA around 110°-120°, the area where the peak of suction occurs is smaller located about

half of the spinnaker height, and the absolute value is lower. On the rest of the spinnaker,

the pressure coefficient is rather constant around -1.5 and increasing to -0.5 at the trailing
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Figure 3. Pressure distributions, time average pressure coefficient ∆CP (a) and the fluctua-

tions (b) for 3 typical AWA (66°, 118°, 140°). Blue crosses show the positions of the pressure

taps.

edge.

At AWA 140°, the decrease of suction is even more visible on the whole sail with almost

no suction peak at the leading edge and with a reduction of |∆CP | along the flow up to a

positive ∆CP at the trailing edge, even at the actual measured points. A positive pressure

coefficient means a collapse of the sail at the trailing edge and thus an unstable flying shape.

This is consistent with what the authors have noticed during experiments: at large AWA, the

spinnaker starts collapsing first at the leech and not at the luff. However, the time averaged

differential pressure measured near the leech is around 4Pa, which is in the uncertainty of

the pressure measurement system. Hence these positive differential pressure values might

be slightly negative in reality or are compensated by the tension on the sail.



When the AWA is increased, not only is there a clear decrease of absolute differential pres-

sure coefficient (from -3 down to 0 about), but also a decrease in the AWS (from 7m/s to

3.5m/s about). So the absolute values of ∆P decrease even more dramatically: at tight

AWA, around 65°, the order of magnitude of the differential pressure is −40Pa, and only

−4Pa at large AWA (–)around 140°).

Figure 3b shows the standard deviation for the corresponding AWA. The standard deviation

on the whole sail is interpolated from the standard deviations calculated on the pressure taps

only. Higher standard deviations mean bigger variations of pressure during a “stable” period.

Despite a clear difference for the pressure distribution on the whole spinnaker depending on

the AWA, pressure variations during the “stable” periods have similar spatial patterns. Strong

variations are found at the leading edge, around 1, on the whole height for 66° and 118° while

the rest of the spinnaker has a standard deviation of about 0.2. However, while the order

of magnitude of standard deviation of ∆CP is similar for every AWA, the relative variation

of pressures compared with the average pressure coefficient varies. Variations are more

significant for large AWA (around 120°-140°) than for tight AWA. For tight AWA, the stan-

dard deviation is around 30Pa (75% of the average pressure). For large AWA, the standard

deviation is around 8Pa (2 times larger than the average pressures).

Loads

Figure 4 displays the load coefficients on the three corners of the spinnaker according to the

apparent wind angle:

CF = Load
1
2ρ S(AWS)2 (1)

where S is the sail area of the spinnaker.

In figure 4, only “stable” periods of 10 seconds minimum are taken. Even though the periods

chosen are “stable”, loads can vary significantly. Therefore each period for a specific average

apparent wind angle is displayed as a box plot. The central red mark is the median, and the

edges of the box are the lower and upper quartile. The lower quartile (Q1) splits off the lowest

25% of data from the highest 75%. The upper quartile (Q3) splits off the highest 25% of loads

from the lowest 75%. The box represents the interquartile range (IQR = Q3 –Q1). It contains

50% of the loads recorded during one “stable” period. The whiskers show the maximum and

minimum loads recorded.

Figure 4 also shows the general trend of the load coefficients on the three corners according

to the apparent wind angle. Head and tack have similar evolution with a decrease especially

between 110° and 140° respectively from 0.8 to 0.5 and from 0.7 to 0.3 for the median load

coefficients, whereas the clew load coefficient is approximatively constant around 0.4. As

explained previously, when the AWA is increased, the AWS decreases. At the clew, the

absolute loads decrease mostly due to the decrease of the AWS, whereas at the tack and

head, the absolute loads decrease even more significantly. To confirm this, figure 5 displays

the evolution of load coefficient using the True Wind Speed (TWS) for the non-dimensional

coefficient:

CF = Load
1
2ρ S(TWS)2 for figure 5 only. (2)
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Figure 4. Boxplot for load coefficients CF at the three corners of the spinnaker for different

AWA. Central red mark is the median, the box represent the interquartile range between the

lower and upper quartiles. It contains 50% of the loads. The upper and lower whiskers indicate

the minimum and maximum values.
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Figure 5. Boxplot for load coefficients CF with the TWS as reference at the three corners of the

spinnaker for different AWA. Central redmark is themedian, the box represent the interquartile

range between the lower and upper quartiles. It contains 50%of the loads. The upper and lower

whiskers indicate the minimum and maximum values.



with the TWS formula from Fossati, (2009):

TWS =
√

(AWS cos(AWA) − BS)2 + (AWS sin(AWA)cos(heel))2
(3)

TWS is rather constant for every AWA (around 12 kn). A higher change is noticed when the

AWA is increased for the head and tack loads than for the clew load which varies a little.

To analyze variations of load coefficients from an aerodynamic point of view the AWS is used

for the nondimensional coefficient CF . Q3 can be seen as an arbitrary separation between

the small variations of loads around the median (inside the IQR) and the peaks of loads (in

the top quarter). In figure 4, the IQR has the same relative range for every AWA, between

0% and +10% of the median for the most loaded corners (head and tack) and between -5%

and +5% of the median for the clew. Since the IQR is relatively constant and small, one can

conclude that for every AWA, without taking into account peaks of loads, the averaged load

coefficient is rather stable and varies slightly.

For the most loaded corners (head and tack) the upper whisker (maximum load) is about

20% higher than the median for tight angles (AWA < 100°) and 30% for large angles

(AWA > 120°). For the clew point the upper whisker is always about 15% higher than

the median for all AWA. Relative variations of loads seem fairly constant for every AWA, and

slightly bigger for large AWA at the head and tack points.

It is interesting to note that most variations of loads are present at the head and tack, the

closest points of the leading edge where the highest variations of pressure occur. At the

clew, the relative variation of loads is smaller.

The variations of loads and pressures are unsteady even during “stable” periods. However

specific patterns might be spotted and might be linked to different causes. The yacht motion

and its influence on the apparent wind (pitching and rolling of the boat), gusts (pure aero-

dynamic cause), vortex shedding, or a change of the spinnaker shape as luffing (unsteady

fluid-structure interaction) could make the spinnaker forces vary. Therefore, we would like

to extract patterns in order to decompose complex pressure evolutions into simpler modes.

These pressure modes could help to describe a temporal global behavior in a better way

than analyzing each pressure sensor signal, and could be correlated with other recorded

data. We decided to use the Proper Orthogonal Decomposition method to characterize the

spatial pattern of pressure variations.

DECOMPOSITION INTO MODES

Proper Orthogonal Decomposition method

The Proper Orthogonal Decomposition (POD) (also called Principal Component Analysis,

PCA) is based on the Karhunen-Loeve expansion. It was first introduced in the context of

Fluid Mechanics by Lumley, (1967). The input data U(x, t) (in our case ∆CP (x, t) ) can be

expanded into orthogonal basis functions φi(x) with time coefficient an(t):

U(x, t) =
∑

n

an(t) · φn(x) (4)



As proper modes are derived from the data itself (data driven decomposition), there is no

need of a-priori knowledge or education scheme. Moreover, each basis function has its own

unique amount of fluctuation energy. These functions are statistically optimal in the least

mean-square sense. As a result, fluctuation energy drops down quickly which means a low

number of modes is needed in the expansion to reproduce the main variations of the field.

POD is a powerful tool for generating lower dimensional models of dynamical systems.

Most of the time, POD is used on the fluctuations of the input data only. After subtracting the

average component (seen as the zeroth mode) from the data, a matrix U is created as a set

of N observations (commonly called snapshots) of M records. Each column contains all fluc-

tuating input data (M values) from a specific snapshot and each row contains all snapshots

(N snapshots) from a specific measurement point.

U =


u11 u12 · · · u1N

u21 u22 · · · u2N
...

. . .
. . .

...

uM1 uM2 · · · uMN

 (5)

Then the auto covariance matrix C (MxM) is calculated as:

C = U ∗ UT

because M >> N . We have M = 44 measurement points and N ≈ 20000. However in fluid
mechanics, it is common to have N >> M when using PIV or CFD results for example. For

those cases the so-called “Snapshot POD” introduced first by Sirovich, (1987) is used. For

our experiments, the “Direct POD” has been applied. The corresponding eigenvalue problem

of the auto covariance matrix is solved:

C ∗ Φ = λ ∗ Φ (6)

The eigenvectors Φ(i) are the POD modes. POD modes are sorted in descending order

according to their corresponding eigenvalue λ(i) which represent their energy. The POD

mode with the highest corresponding eigenvalue is mode 1. The expansion coefficient (or

mode time coefficient) is calculated as follows:

a = UT ∗ Φ (7)

POD results

The following results are for a “stable” period with an average AWA of 69°, but are repre-

sentative to what we have observed for different periods at different AWA. This point will be

discussed further in the article. Figure 6 shows the energy distribution for each POD mode.



The first mode contains almost 45% of the fluctuation energy. Mode 2 and 3 represent only

15% each, and most of the time other modes have less than 5% of the fluctuation energy. It

is clear that the first mode is dominant compared to the others.
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Figure 6. Energy distribution of the fluctuations for the first 10 modes for AWA 69°.

The pressure distribution evolution can be simplified by taking only the first terms of the

expansion. The reconstruction using the first modes allows us to keep only the most ener-

getic part of the signal and to remove insignificant variations and noise. The precision of the

reconstruction has been calculated according to the number of modes. With mode 0 (the

average) and mode 1, 85% of the signal is already reconstructed. With 3 modes, the error

of reconstruction of the pressure signals is 10%. About 10 modes are required to achieve a

reconstruction with less than 5% difference.
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Figure 7. First 3 spatial orthogonal modes from POD method for AWA 69°. Mode 1 is the most

energetic mode.



Figure 7 presents the first 3 modes. The scale value is arbitrary. To represent a fluctuation

of Cp, they must be multiplied by the corresponding mode time coefficient depending on the

time (which can be positive or negative, presented in figure 9). Mode 1 has a bulb of pressure

on the top half of the spinnaker at the leading edge and a smaller bulb of opposite sign on

the bottom half height of the spinnaker. Mode 2 is similar to the standard deviation pattern

presented before. Mode 3 and further modes display smaller coherent patterns and may

change with the period used.

Table 1. Energy distribution of the fluctuations for the first 10 modes for different AWA.

Modes 66 deg 98 deg 120 deg 140 deg

1 43% 46% 45% 45%

2 21% 16% 19% 15%

3 8% 9% 10% 11%

4 7% 6% 6% 7%

5 4% 5% 3% 5%

6 3% 4% 3% 3%

7 2% 3% 2% 2%

8 2% 2% 2% 2%

9 2% 2% 2% 2%

10 1% 1% 1% 1%

Table 1 shows the energy distribution for different “stable” periods at different AWA. The ratio

of energy of each mode number is rather constant for every AWA. Moreover, each mode

number has a similar pattern of pressure distribution, even though mode 2 and mode 3 are

inverted in a few cases.

To comparemodes, themaximum value of time coefficient is taken to bemultiplied by the spa-

tial mode: max(a1(t)) · φ1(x). Maximum value of time coefficient is used since we want to an-

alyze and compare dominant variations. Moreover, by mathematical definition: ∀n, an(t) = 0
and thus is irrelevant to be used for comparison. Maximum values of mode 1 for different

AWA are presented in figure 8 at 4 different stripes where the pressures are measured (1/4,

1/2, 3/4, 7/8 height of the spinnaker). Differential pressure coefficients have comparable evo-

lution along the curve for every AWA, except that |∆CP | on the bottom half is slightly smaller

for deeper AWA. The bulb of suction at the leading edge at 7/8 and 3/4 of the spinnaker

height is always present and a smaller bulb of positive ∆CP at 1/2 and 1/4 height is also

spotted. Even if the POD method is a data driven decomposition (i.e. modes are derived

from the data itself), there is a good repeatability of PODmodes for “stable” periods when the

spinnaker has a fixed trim. Moreover mode 1, which plays an important role in the fluctuation

of pressures, could be defined as a unique mode whatever the AWA.

POD modes evolve in time. When the time coefficient of a corresponding mode is at an

extremum, the corresponding mode is then predominant. Analyzing time coefficients would

then help to link pressure variations with other recorded data.

Figure 9 shows the evolution of the time coefficient for the first 3 modes. Amplitudes of mode

1 are larger than the other modes as expected due to the larger energy it possesses. Mode

1 and mode 2 are slightly correlated with a shift between them. A typical pseudo period for

mode 1 stands out for this AWA 69°. Furthermore, for different “stable” periods, at differ-

ent AWA (not displayed here), similar variations of the temporal coefficient of mode 1 are

detected. The dynamics vary with the AWA. A pseudo-period is determined, and the corre-

sponding pseudo-frequency fs is displayed in figure 10 (left) according to the corresponding
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Figure 9. Time coefficient an(t) for the first three modes for AWA 69°.

average AWS of the “stable” period. The reduced frequency fr shown in figure 10 (right) is

calculated as follows:

fr = fs

√
S

AWS
(8)

with S the sail area, thus
√

S = 8.3m.

When the AWA is increased, the typical pseudo frequency of the time coefficient of mode

1 is reduced proportionally. A linear interpolation passing through the origin can be plotted,

hence there is a constant interpolated reduced frequency. There is a linear dependence of

the pseudo-frequencies with the AWS. This demonstrates that mode 1 is mostly driven by

aerodynamic phenomena and not by mechanical resonance of the rigging or of the mem-

brane of the sail.

In conclusion, the spatial pattern of mode 1 does not change with the AWA, but only the

temporal dynamics with an increase of the pseudo-period when the AWA increases (hence

when the AWS decreases).

Application of the POD method on a specific period of flappings

Table 2 presents the cross-correlation of all data measured for the specific period presented

in Deparday et al., (2014) where loads and flapping were strongly correlated. The normal-

ized cross-correlation is calculated with the time coefficients of the first three modes. Cross

correlation between two signals X and Y is defined as follow:

Cxy(τ) = E [(X(t2) − µX(t2)) − (Y (t1) − µY (t1))] (9)

where E [·] is the expected value operator, τ = t2 −t1 is the shift applied between two signals.

µX and µY are the mean functions.

The cross correlation matrix is calculated to determine the correlations of every signal with
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Figure 10. Pseudo-frequency (left) and reduced frequency (right) of the time coefficient of the

first POD mode (blue dots) for different AWA as a function of the AWS. A linear interpolations

fit the experimental data.

Table 2. Cross-correlation between different signals recorded during experiments, and first

3 modes of the POD. Correlation values (and their corresponding colors) vary between 0 (in

white) meaning no correlation and 1 (in red), same dynamics.
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forestay 1.00 0.58 0.62 0.63 0.78 0.59 0.59 0.59 0.65 0.62 0.59 0.60 0.69 0.51 0.73 0.59 0.40

backstay 0.58 1.00 0.88 0.92 0.62 0.96 0.95 0.93 0.91 0.66 0.45 0.58 0.61 0.75 0.58 0.49 0.57

V1 windw’d 0.62 0.88 1.00 0.99 0.79 0.94 0.94 0.94 0.85 0.66 0.41 0.48 0.61 0.68 0.63 0.50 0.44

D1 windw’d 0.63 0.92 0.99 1.00 0.79 0.95 0.95 0.95 0.88 0.68 0.41 0.54 0.61 0.71 0.63 0.54 0.46

D1 leew’d 0.78 0.62 0.79 0.79 1.00 0.69 0.70 0.76 0.66 0.53 0.52 0.49 0.52 0.65 0.60 0.54 0.44

Head 0.59 0.96 0.94 0.95 0.69 1.00 1.00 0.98 0.90 0.63 0.47 0.58 0.57 0.71 0.63 0.53 0.57

Tack 0.59 0.95 0.94 0.95 0.70 1.00 1.00 0.98 0.88 0.61 0.45 0.54 0.55 0.71 0.62 0.51 0.58

Clew 0.59 0.93 0.94 0.95 0.76 0.98 0.98 1.00 0.85 0.65 0.44 0.63 0.58 0.70 0.67 0.61 0.60

mode 1 0.65 0.91 0.85 0.88 0.66 0.90 0.88 0.85 1.00 0.72 0.43 0.52 0.63 0.74 0.54 0.47 0.38

mode 2 0.62 0.66 0.66 0.68 0.53 0.63 0.61 0.65 0.72 1.00 0.46 0.64 0.84 0.60 0.68 0.48 0.29

mode 3 0.59 0.45 0.41 0.41 0.52 0.47 0.45 0.44 0.43 0.46 1.00 0.66 0.41 0.45 0.56 0.75 0.51

roll 0.60 0.58 0.48 0.54 0.49 0.58 0.54 0.63 0.52 0.64 0.66 1.00 0.83 0.83 0.77 0.88 0.47

pitch 0.69 0.61 0.61 0.61 0.52 0.57 0.55 0.58 0.63 0.84 0.41 0.83 1.00 0.76 0.85 0.68 0.28

yaw 0.51 0.75 0.68 0.71 0.65 0.71 0.71 0.70 0.74 0.60 0.45 0.83 0.76 1.00 0.66 0.56 0.46

AWA 0.73 0.58 0.63 0.63 0.60 0.63 0.62 0.67 0.54 0.68 0.56 0.77 0.85 0.66 1.00 0.58 0.52

AWS 0.59 0.49 0.50 0.54 0.54 0.53 0.51 0.61 0.47 0.48 0.75 0.88 0.68 0.56 0.58 1.00 0.50

BS 0.40 0.57 0.44 0.46 0.44 0.57 0.58 0.60 0.38 0.29 0.51 0.47 0.28 0.46 0.52 0.50 1.00



each other. The values are between 0 when not correlated at all (in white in the table)and

1 when signals have the same dynamics (in red in the table). Colors in Table 2 highlight

the correlations between experimental data. The diagonal represents the auto-correlation of

every signal.

A very strong correlation is present between the loads except with the forestay and the shroud

D1 leeward as they are not loaded and slack. The time coefficient of mode 1 is also well cor-

related with the loads (around 0.9). There is no delay between mode 1 and the spinnaker

aerodynamic loads, and the spinnaker aerodynamic loads are 0.1 s in advance of the stand-

ing rigging loads. In this case the pressure evolution is instantaneously transmitted to the

corners of the spinnaker which then transmit this increase of loads to the shrouds and back-

stay. Mode 1 is a good parameter to define peaks of loads due to flapping of the spinnaker.

Here mode 2 is reasonably correlated with mode 1 with a coefficient of 0.72. The shift be-

tween the two modes is 0.4 s. For this “stable” period, the pseudo-period is around 1.5 s.

The average shift between the two time coefficients is therefore about a quarter of a pseudo-

period (0.4/1.5 = 0.27). The average shift calculated is indeed between the phase shift

measured at the maxima of the modes (1/6-1/5 of a pseudo period) and at the phase shift

found at their minima (1/3-1/2 of a pseudo period). This pseudo-period corresponds to what

was presented in Deparday et al., (2014). To describe the expansion of the high suction to-

wards the leading edge and the propagation of the flapping, as presented in Deparday et al.,

(2014), the addition of mode 2 is necessary.

Loads are also slightly correlated with the yaw. The shift between the two signals is about

1 second in advance for the loads. A peak of aerodynamic loads might modify the aero-

dynamic center of effort and thus change the equilibrium of the sailing yacht and make the

course vary.

In conclusion, the POD method makes it possible to describe a global temporal behavior of

pressures in a better way than analyzing each pressure sensor signal. It can be compared

as a unique signal with the other measurement data. It confirms that flapping prevails in the

fluctuations of the corner loads.

CONCLUSIONS

Full-Scale experiments were carried out on an instrumented J/80 sailing yacht where loads,

pressure distribution on the spinnaker, boat and wind data were measured at different down-

wind angles. We show pressure coefficients and load coefficients decrease when the AWA is

increased, whereas variations of load and pressure coefficients are mainly constant. There-

fore variations relative to the average loads or pressures are bigger for larger AWA. Moreover

we found that most of the pressure and load variations are mainly at the luff for every AWA.

This paper presented a way to characterize the pressure evolution due to flapping. A POD

analysis has been used on pressure signals in order to identify the most energetic patterns.

Mode 1 which represents almost half of the fluctuation energy describes well the flapping

of the luff. The spatial pattern of mode 1 of the differential pressure coefficients does not

change with the AWA. It can be represented as a unique spatial pattern for all AWA. The

variations of pressures due to the flapping are therefore proportional to the square of the

AWS. Furthermore, the dynamics of POD mode 1 evolves with the AWA. For each AWA, a

typical pseudo-period is noticed. It decreases linearly with the AWS. It proves the flapping

phenomenon is not a random fluctuation but is an almost periodical behavior, an intrinsic

instability of the spinnaker in certain conditions.

The addition of mode 2 is necessary to describe the propagation of this flapping at a different



height of the sail and the expansion of the high suction towards the leading edge.

POD enables the characterisation of a global unsteady behavior instead of analyzing all local

pressure time series. It shows sail designers where the highest variations of pressure occur

when flapping. Furthermore, the first modes allow reconstruction of a signal with the main

variations (i.e. with the most energetic part) and remove noises. Therefore comparison with

other measurements or numerical simulations is simplified.
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