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Abstract

A new iteration method for nonlinear vibrations has been developed by de-

composing the periodic solution in two parts corresponding to low and high

harmonics. For a nonlinear forced oscillator, the iteration schema is proposed

with different formulations for these two parts. Then, the schema is deduced by

using the harmonic balance technique. This method has proven to converge to

the periodic solutions provided that a convergence condition is satisfied. The

convergence is also demonstrated analytically for linear oscillators. Moreover,

the new method has been applied to Duffing oscillators as an example. The

numerical results show that each iteration schema converges in a domain of the

excitation frequency and it can converge to different solutions of the nonlinear

oscillator.

Keywords: Forced nonlinear oscillator, harmonic balance method, iteration

procedure, Duffing oscillator.

1. Introduction

The harmonic balance method (HBM) has many applications in nonlinear

dynamics. The original principle of this method is to express the periodic so-

lution in terms of Fourier series with limited numbers of harmonics and to

substitute this expression to the dynamic equation in order to find out balance5
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of all harmonics. A typical difficulty of this method is linked to the dependence

of the quality of the approach on the way to carry enough terms in the solution

and check the order of the coefficients for all the neglected harmonics [1, 2].

Some alternative techniques based on HBM have been developed in order

to solve this difficulty. The Galerkin procedure [3–6] was used to calculate10

incrementally the Fourier coefficients of the classical HBM. Another technique

called the iteration procedures were presented by Mickens [7, 8] and applied to

different kinds of non-linearities [9, 10]. The high dimensional harmonic balance

(HDHB) was developed by Hall et al. [11]. This method is based on a constant

Fourier transformation matrix which is an approximation of the matrix related15

to the non-linearity deduced from the classical HBM. This method has some

advantages in calculation in case of high dimension, but it can lead to non-

physical solutions [12–14]. Recently, other new methods based on HBM were

developed by Cochelin et al. [15–17] and Ju et al. [18–20].

In this paper, we propose a new method for forced nonlinear oscillators based20

on the iteration procedures and HBM. The existing methods propose to use the

same iteration schema for all harmonics. This new method provides different

schemas which adapt to the frequency of the force. By decomposing the pe-

riodical solution in low and high harmonic components, an iteration schema

is presented and then developed by using HBM. The schemas are proved to25

converge to the periodic solution, provided that a sufficient condition is satis-

fied. Thus, the harmonic decomposition is a new way to build iteration schemas

which could be applied to other problems using HMB (e.g. the high dimensional

problems). Moreover, this method is demonstrated to converge to the analytic

solution of a linear oscillator and it is applied to a forced Duffing oscillator. The30

numerical results show that each iteration schema converges in each range of the

excitation frequency and it can converge to different solutions of the oscillator.
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2. Iteration schemas

Let’s consider a forced nonlinear oscillator given by

d2u

dt2
+ βu̇ + ω2

0u+ f(u, u̇) = A cosΩt (1)

where f(u, u̇) is a nonlinear function. This equation is rewritten to read

d2u

dt2
+Ω2u = (Ω2 − ω2

0)u− βu̇− f(u, u̇) +A cosΩt ≡ G(u, u̇) (2)

A classical iteration schema is often proposed as follows

d2uk+1

dt2
+Ω2uk+1 = L(G(ui, u̇j)i,j≤k) (3)

where L is a linear form which is chosen for each functionG(u, u̇) in order to meet

the convergence. Now we will build a different iteration schema by considering

the periodic solution defined by series {qnk}, {pnk} (with 1 ≤ n ≤ N) as follows

uNk(t) =
q0k
2

+

N
∑

n=1

qnk cosnΩt+ pnk sinnΩt (4)

For each N (0 ≤ N ≤ N), we decompose uNk into two terms which corre-

spond to low and high harmonics as follows35

Xk(t) =
q0k
2

+

N
∑

n=1

qnk cosnΩt+ pnk sinnΩt (5)

Yk(t) =

N
∑

n=N+1

qnk cosnΩt+ pnk sinnΩt (6)

uNk(t) = Xk(t) + Yk(t) (7)

Then, the proposed iteration schema is

d2Yk+1

dt2
+ βẊk+1 + ω2

0Xk+1 =A cosΩt− f(uNk, u̇Nk)

−
d2Xk

dt2
− βẎk − ω2

0Yk

(8)

Here, we take the initial values (i.e. k = 1) by qn1 = pn1 = 0. Now we will

develop this schema by using the harmonic balance technique. By performing

3
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the Fourier series development of equation (8), we obtain the following results

1

T

∫ T

0

(

d2Yk+1

dt2
+ βẊk+1 + ω2

0Xk+1

)

cosnΩt dt = Aδ1n − Cnk

−
1

T

∫ T

0

(

d2Xk

dt2
+ βẎk + ω2

0Yk

)

cosnΩt dt

(9)

1

T

∫ T

0

(

d2Yk+1

dt2
+ βẊk+1 + ω2

0Xk+1

)

sinnΩt dt = −Snk

−
1

T

∫ T

0

(

d2Xk

dt2
+ βẎk + ω2

0Yk

)

sinnΩt dt

(10)

where T = 2π
Ω ; δ1n = 1 if n = 1 and δ1n = 0 if other. Cnk,Snk are the Fourier

coefficients of f(uNk, u̇Nk)


















Cnk =
2

T

∫ T

0

f(uNk, u̇Nk) cosnΩtdt

Snk =
2

T

∫ T

0

f(uNk, u̇Nk) sinnΩtdt

(11)

Thereafter, by substituting equations (5) and (6) into equations (9) and (10),

we obtain40

For n = 0

ω2
0q0(k+1) = −C0k

For 0 < n ≤ N

βnΩpn(k+1) + ω2
0qn(k+1) = Aδn1 − Cnk + n2Ω2qnk

−βnΩqn(k+1) + ω2
0pn(k+1) = −Snk + n2Ω2pnk

For N < n ≤ N

−n2Ω2qn(k+1) = Aδ1n − Cnk − ω2
0qnk − βnΩpnk

−n2Ω2pn(k+1) = −Snk − ω2
0pnk + βnΩqnk

Finally, we have deduced the iteration schema (8) to the results in Table 1

where {pnk}, {qnk} are represented as recurrent sequences. By taking the initial

values (pn1 = qn1 = 0), we can compute these series for a number of iteration

K to get the solution of equation (1). Here, we have one iteration schema

4
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corresponding to each value of N . In the next section, we will prove that these45

schemas converge to the periodic solution of equation (1) if a sufficient condition

is satisfied.

Table 1: Frequency dependent iteration schema

n = 0 qn(k+1) = −
C0k
ω2
0

; pn(k+1) = 0

0 < n ≤ N

pn(k+1) =
n2Ω2(βnΩqnk + ω2

0pnk)

(βnΩ)2 + ω4
0

−
βnΩCnk + ω2

0Snk + βnΩAδn1
(βnΩ)2 + ω4

0

qn(k+1) =
n2Ω2(−βnΩpnk + ω2

0qnk)

(βnΩ)2 + ω4
0

+
βnΩSnk − ω2

0Cnk + ω2
0Aδn1

(βnΩ)2 + ω4
0

N < n ≤ N
qn(k+1) =

ω2
0

n2Ω2
qnk +

β

nΩ
pnk +

Cnk
n2Ω2

−
Aδn1
n2Ω2

pn(k+1) =
ω2
0

n2Ω2
pnk −

β

nΩ
qnk +

Snk

n2Ω2

3. Sufficient condition of convergence

Lemma: If f ∈ C1 and if the series of functions {uNk} defined by equation

(4) and the schema in Table 1 is uniformly convergent when N, k tends to50

infinity, their limit is a periodic solution of equation (1).

Demonstration: Suppose that uNk(t) converges uniformly to u(t). We

have to prove that

(i) u(t) is periodic of period T

(ii) u(t) is a solution of equation (1).55

We prove (i) by contrary. Suppose that it exists τ such that |u(τ) − u(τ +

T )| = a > 0. Because uNk(t) is uniformly convergent, for 0 < 2ǫ < a it exists

M,K such that ∀N > M, k > K we have

|uNk(τ)− u(τ)| < ǫ

|uNk(τ + T )− u(τ + T )| < ǫ

In addition, we have uNk(τ) = uNk(τ + T ). Thus

a = |u(τ)− u(τ + T )| ≤ |uNk(τ) − u(τ)|+ |uNk(τ) − u(τ + T )| < 2ǫ

5
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The last inequality cannot be true because 2ǫ < a. By consequence, u(t) is

periodic.60

To prove (ii), it is sufficient to show that ∀ǫ > 0, ∃M ′,K ′ such that

|üNk + ω2
0uNk + f(uNk, u̇Nk)−K cosΩt| < Cǫ ∀N > M ′, k > K ′ (12)

where C is a constant.

By using the triangular inequality, we have

∣

∣üN(k+1) + ω2
0uN(k+1) + f(uN(k+1), u̇N(k+1))− Γ cosΩt

∣

∣ ≤ ω2
0 |Yk+1 − Yk|

+ β
∣

∣

∣
Ẏk+1 − Ẏk

∣

∣

∣
+

∣

∣

∣

∣

d2

dt2
(Xk+1 −Xk)

∣

∣

∣

∣

+
∣

∣f
(

uN(k+1), u̇N(k+1)

)

− f(uNk, u̇Nk)
∣

∣

+

∣

∣

∣

∣

d2

dt2
(Yk+1 +Xk) + β(Ẋ(k+1) + Ẏk) + ω2

0(Xk+1 + Yk) + f(uNk, u̇Nk)−A cosΩt

∣

∣

∣

∣

We note fa, fb, fc, fd and fe the five terms of the last inequality, that means

fa =ω2
0 |Yk+1 − Yk|

fb =β
∣

∣

∣
Ẏk+1 − Ẏk

∣

∣

∣

fc =

∣

∣

∣

∣

d2

dt2
(Xk+1 −Xk)

∣

∣

∣

∣

fd =
∣

∣f
(

uN(k+1), u̇N(k+1)

)

− f(uNk, u̇Nk)
∣

∣

fe =

∣

∣

∣

∣

d2

dt2
(Yk+1 +Xk) + β(Ẋ(k+1) + Ẏk)

+ω2
0(Xk+1 + Yk) + f(uNk, u̇Nk)−A cosΩt

∣

∣

In order to prove (12), we have to prove that fa, fb, ..., fe are measured by ǫ.

Because uNk is uniformly convergent, it is clear that fa is measured by ǫ.

To prove that fb and fc are measured by ǫ, it is sufficient, for example, to take

the definition of Xmk from equation (5) with remark that65

fc =

∣

∣

∣

∣

d2

dt2
(X(k+1) −Xk)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

n=1

n2Ω2
[

(pn(k+1) − pnk) sinnΩt+ (qn(k+1) − qnk) cosnΩt
]

∣

∣

∣

∣

∣

≤
m
∑

n=1

n2Ω2
(∣

∣pn(k+1) − pnk
∣

∣+
∣

∣qn(k+1) − qnk
∣

∣

)

6
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As the series {uNk} converge uniformly, the series pnk, qnk are uniformly con-

vergent when k tends to infinity. Thus, fb and fc are measured by ǫ.

In order to measure fd, we use a following property: for f ∈ C1, it exists

C such that |f(u)− f(ũ)| ≤ Cǫ when |u − ũ| < ǫ. As the series uNk converges

uniformly, we can chose k large enough for |uN(k+1)−uNk| < ǫ. By consequence,70

fd is measured by ǫ.

For fe, by using the iteration schema in Table 1, we obtain

∣

∣

∣

∣

d2

dt2
(Y(k+1) +Xk) + Ω2(X(k+1) −Xk) + ω2

0uNk + f(uNk, u̇Nk)−A cosΩt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f(umk, u̇mk)−

(

C0k
2

+

m
∑

n=1

Cnk cosnΩt+ Snk sinnΩt

)∣

∣

∣

∣

∣

Thus, fe is exactly the difference between the function f(uNk, u̇Nk) and its

Fourier series development. Because uNk is periodic and bounded, f(uNk, u̇Nk)

is also periodic and bounded. Thus, this difference is measured by ǫ when N

is large enough. Therefore, the five terms are measured by ǫ, and the lemma is75

proved.

4. Examples

4.1. Linear oscillator

We consider a forced linear oscillator, i.e. f(u, u̇) = 0. The iteration schema

in Table 1 becomes

n = 0 q0(k+1) = 0

1 ≤ n ≤ N pn(k+1) =
n2Ω2(βnΩqnk + ω2

0pnk)

(βnΩ)2 + ω4
0

+
βnΩAδn1

(βnΩ)2 + ω4
0

qn(k+1) =
n2Ω2(−βnΩpnk + ω2

0qnk)

(βnΩ)2 + ω4
0

+
ω2
0Aδn1

(βnΩ)2 + ω4
0

N ≤ n ≤ N qn(k+1) =
ω2
0

n2Ω2
qnk +

β

nΩ
pnk −

Aδn1
n2Ω2

pn(k+1) =
ω2
0

n2Ω2
pnk −

β

nΩ
qnk

We will prove that when the schema converges, its limit is the analytic solution.

7
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Case N = 080

For n ≥ 2, we have

qn(k+1) + ipn(k+1) =

(

ω2
0

n2Ω2
−

iβ

nΩ

)

(qnk + ipnk)

qn(k+1) − ipn(k+1) =

(

ω2
0

n2Ω2
+

iβ

nΩ

)

(qnk − ipnk)

The last equations define two geometrical sequences and they converge if and

only if
∣

∣

∣

ω2

0

n2Ω2 + iβ
nΩ

∣

∣

∣
< 1; their limits are zeros (i.e., qnk, pnk → 0 when k → ∞).

For n = 1, we have

q1(k+1) + ip1(k+1) −A1 =

(

ω2
0

Ω2
−

iβ

Ω

)

(q1k + ip1k −A1)

q1(k+1) − ip1(k+1) −A2 =

(

ω2
0

Ω2
+

iβ

Ω

)

(q1k − ip1k −A2)

(13)

where A1 = −A/
(

Ω2 − ω2
0 + iβΩ

)

and A2 = −A/
(

Ω2 − ω2
0 − iβΩ

)

. The last

equations define also two geometrical sequences which converge to zeros with

the same condition for n ≥ 2. By consequence, the limits of {q1k} and {p1k}

are














q1 =
(ω2

0 − Ω2)A

(ω2
0 − Ω2)2 + (βΩ)2

p1 =
βΩA

(ω2
0 − Ω2)2 + (βΩ)2

(14)

Equation (14) is exactly the analytic solution of the forced linear oscillator.

Thus, the sufficient condition is thus justified in this case. In addition, equa-

tion (13) shows that the schema converges linearly and the convergence rate is

calculated by

µ =

∣

∣

∣

∣

ω2
0

Ω2
+

iβ

Ω

∣

∣

∣

∣

(15)

The condition of the convergence µ < 1 can be rewritten as Ω4 − ω4
0 > (βΩ)2.

It means that Ω is larger than the resonance frequency of the oscillator Ωr.

Case N = 185

For n ≥ 2, we have the same results with the previous case, i.e., qnk, pnk → 0

when k → ∞ if and only if
∣

∣

∣

ω2

0

n2Ω2 + iβ
nΩ

∣

∣

∣
< 1 for n ≥ 2 .

8
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For n = 1, we have

q1(k+1) + ip1(k+1) −A1 =
Ω2

−iβΩ+ ω2
0

(q1k + ip1k −A1)

q1(k+1) − ip1(k+1) −A2 =
Ω2

iβΩ+ ω2
0

(q1k − ip1k −A2)

We see that the last two equations define also two geometrical sequences which

converge if and only if
∣

∣

∣

Ω2

iβΩ+ω2

0

∣

∣

∣
< 1. The condition of convergence for n = 1

and n ≥ 2 of the schema can be rewritten as follows











Ω4 − ω4
0 < (βΩ)2

16Ω4 − ω4
0 > 4(βΩ)2

(16)

We deduce that the iteration schema N = 1 converges linearly when Ω is smaller

than the resonance frequency and the convergence rate is

µ =

∣

∣

∣

∣

Ω2

iβΩ + ω2
0

∣

∣

∣

∣

(17)

Case N ≥ 2

Similarly, the schema converges linearly to the analytic solution if and only

if










N 4Ω4 − ω4
0 < (βNΩ)2

(N + 1)4Ω4 − ω4
0 > (β(N + 1)Ω)2

(18)

Remark: From equations (13) and (17), when Ω ≃ Ωr, the convergence rate

µ can be approached by

µ ≃

(

1−
∆Ω

Ωr

)2

(19)

where ∆Ω = |Ω− Ωr|. It means that µK ≃ 1− 2K∆Ω
Ωr

. Thus, the number of

iteration can be estimated by K ∼ 1
2

Ωr

∆Ω .90

Numerical example

The iteration method is used for a forced linear oscillator with ω0 = 1, A =

1. Figure 1 shows the amplitude A =
√

q21 + p21 in function of the excitation

frequency Ω with different values of the damping coefficient β. Here, we take

9
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the number of harmonics N = 3 and the number of iteration K = 300 for all95

frequencies Ω. The figure shows that the iteration method converges to the

analytic solution. Particularly, the schema with N = 0 is convergent for low

frequency Ω and the schema with N = 1 is convergent for high frequency Ω.

This numerical result agrees well with the previous demonstration.

Frequency Ω

0.5 1 1.5 2 2.5

A
m
p
li
tu
d
e
A

0

1

2

3

4

N = 0
N = 1
Analytic

β = 0.3

β = 0.7

β = 1

Figure 1: Forced linear oscillator by analytic and iteration methods

4.2. Duffing oscillator100

Let’s consider another example, a forced Duffing oscillator. This oscillator

has many applications in physics and it can be described by

ü+ βu̇+ u+ εu3 = A cosΩt (20)

When ε is small, the perturbation techniques [1, 21] can be applied for this

oscillator. This technique demonstrates that the periodical solution depends on

the frequency Ω by

A2

{

β2Ω2 +

(

1− Ω2 +
3

4
εA2

)2
}

= A2, tanϑ =
βΩ

1− ω2 + 3
4εA

2
(21)

where A =
√

q21 + p21 is the amplitude and tanϑ = p1/q1 is the phase of the

first harmonic.

Figure 2 shows the numerical results with different N for a forced Duffing

oscillator with parameters ω = 1, β = 0.1, ε = 0.01 and A = 1. In this example,

10
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we take the number of harmonics N = 7 et the number of iteration K = 200105

for all frequencies Ω. Here, the schema is considered to converge when the

amplitude of the last iteration changes less than 1%. We see that each iteration

schema converges in each frequency domain of Ω. Particularly, in the domain

I, two schemas converges to two different solutions, and in domain II, different

schemas converge to the same solution.

Frequency Ω

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
m
p
li
tu
d
e
A

0

2

4

6

8

10

N = 0
N = 1
N = 2
N = 3
PT

II I

Figure 2: Forced Duffing oscillator by the perturbation technique (PT) and the iteration

method. Parameter: ω = 1, β = 0.1, ε = 0.01 and A = 1

110

Figure 3 shows the results for the Duffing oscillator with different nonlinear

parameter ε. We see that the schema N = 0 converges for high frequency Ω

and the schema N = 1 converges for low frequency Ω. There is no schema of

Table 1 converge to the unstable solution of the Duffing oscillator.

In order to estimate the convergence rate of the schemas, the numerical error

of equation (20) is calculated by

O(ε) = max |ü+ βu̇+ u+ εu3 −A cosΩt|

where u(t) is the numerical result in each iteration. Figure 4 shows the error115

versus the number of iteration for the Duffing oscillator with ε = 0.01, N = 10

and K = 1000. We can see that the schemas converge in logarithmic scale of the

number of iteration. Moreover, when the frequency Ω approaches the resonance

frequency (green cycle markers), the convergence is relatively slow.
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Frequency Ω
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Figure 3: Forced Duffing oscillator by the perturbation technique (PT) and the iteration

method
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Figure 4: Numerical error in each iteration with the schema N = 0 (triangle) and N = 1

(cycle) for the Duffing oscillator

.

5. Conclusion120

When the periodic solution of a dynamical system is decomposed into two

parts corresponding low and high harmonics, we can propose an iteration schema

with different formulations for the two parts. This decomposition can be built

to adapt the system in term of convergence. The application for forced Duff-

ing oscillators show that each schema converges in each range of the excitation125

frequency and we can reach different solutions by using different schema.
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