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A new iteration method for nonlinear vibrations has been developed by decomposing the periodic solution in two parts corresponding to low and high harmonics. For a nonlinear forced oscillator, the iteration schema is proposed with different formulations for these two parts. Then, the schema is deduced by using the harmonic balance technique. This method has proven to converge to the periodic solutions provided that a convergence condition is satisfied. The convergence is also demonstrated analytically for linear oscillators. Moreover, the new method has been applied to Duffing oscillators as an example. The numerical results show that each iteration schema converges in a domain of the excitation frequency and it can converge to different solutions of the nonlinear oscillator.

Introduction

The harmonic balance method (HBM) has many applications in nonlinear dynamics. The original principle of this method is to express the periodic solution in terms of Fourier series with limited numbers of harmonics and to substitute this expression to the dynamic equation in order to find out balance 5 of all harmonics. A typical difficulty of this method is linked to the dependence of the quality of the approach on the way to carry enough terms in the solution and check the order of the coefficients for all the neglected harmonics [START_REF] Nayfeh | Nonlinear Oscillations[END_REF][START_REF] Mickens | Comments on the method of harmonic balance[END_REF]. Some alternative techniques based on HBM have been developed in order to solve this difficulty. The Galerkin procedure [START_REF] Urabe | Periodic solutions of differential systems, Galerkin's procedure and the method of averaging[END_REF][START_REF] Urabe | Numerical computation of nonlinear forced oscillations by Galerkin's procedure[END_REF][START_REF] Ling | Fast galerkin method and its application to determine periodic solutions of non-linear oscillators[END_REF][START_REF] Van Dooren | Period doubling solutions in the Duffing oscillator: A Galerkin approach[END_REF] was used to calculate 10 incrementally the Fourier coefficients of the classical HBM. Another technique called the iteration procedures were presented by Mickens [START_REF] Mickens | A generalization of the method of harmonic balance[END_REF][START_REF] Mickens | Iteration procedure for determining approximate solutions to non-linear oscillator equations[END_REF] and applied to different kinds of non-linearities [START_REF] Mickens | A generalized iteration procedure for calculating approxima[END_REF][START_REF] Mickens | Harmonic balance and iteration calculations of periodic solutions to ÿ + y -1 = 0[END_REF]. The high dimensional harmonic balance (HDHB) was developed by Hall et al. [START_REF] Hall | Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[END_REF]. This method is based on a constant Fourier transformation matrix which is an approximation of the matrix related 15 to the non-linearity deduced from the classical HBM. This method has some advantages in calculation in case of high dimension, but it can lead to nonphysical solutions [START_REF] Liu | A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator[END_REF][START_REF] Liu | A novel harmonic balance analysis for the Van Der Pol oscillator[END_REF][START_REF] Labryer | A harmonic balance approach for large-scale prob-165 lems in nonlinear structural dynamics[END_REF]. Recently, other new methods based on HBM were developed by Cochelin et al. [START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF][START_REF] Karkar | A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities[END_REF][START_REF] Karkar | A comparative study of the harmonic 175 balance method and the orthogonal collocation method on stiff nonlinear systems[END_REF] and Ju et al. [START_REF] Ju | Global residue harmonic balance method to periodic solutions of a class of strongly nonlinear oscillators[END_REF][START_REF] Ju | Global residue harmonic balance method for large-amplitude oscillations of a nonlinear system[END_REF][START_REF] Ju | Global residue harmonic balance method for HelmholtzDuffing oscillator[END_REF].

In this paper, we propose a new method for forced nonlinear oscillators based 20 on the iteration procedures and HBM. The existing methods propose to use the same iteration schema for all harmonics. This new method provides different schemas which adapt to the frequency of the force. By decomposing the periodical solution in low and high harmonic components, an iteration schema is presented and then developed by using HBM. The schemas are proved to 25 converge to the periodic solution, provided that a sufficient condition is satisfied. Thus, the harmonic decomposition is a new way to build iteration schemas which could be applied to other problems using HMB (e.g. the high dimensional problems). Moreover, this method is demonstrated to converge to the analytic solution of a linear oscillator and it is applied to a forced Duffing oscillator. The 30 numerical results show that each iteration schema converges in each range of the excitation frequency and it can converge to different solutions of the oscillator.

Iteration schemas

Let's consider a forced nonlinear oscillator given by

d 2 u dt 2 + β u + ω 2 0 u + f (u, u) = A cos Ωt (1)
where f (u, u) is a nonlinear function. This equation is rewritten to read

d 2 u dt 2 + Ω 2 u = (Ω 2 -ω 2 0 )u -β u -f (u, u) + A cos Ωt ≡ G(u, u) (2) 
A classical iteration schema is often proposed as follows

d 2 u k+1 dt 2 + Ω 2 u k+1 = L(G(u i , uj ) i,j≤k ) (3) 
where L is a linear form which is chosen for each function G(u, u) in order to meet the convergence. Now we will build a different iteration schema by considering the periodic solution defined by series {q nk }, {p nk } (with 1 ≤ n ≤ N ) as follows

u N k (t) = q 0k 2 + N n=1 q nk cos nΩt + p nk sin nΩt (4) 
For each N (0 ≤ N ≤ N ), we decompose u N k into two terms which correspond to low and high harmonics as follows

35 X k (t) = q 0k 2 + N n=1 q nk cos nΩt + p nk sin nΩt (5) 
Y k (t) = N n=N +1 q nk cos nΩt + p nk sin nΩt (6) u N k (t) = X k (t) + Y k (t) (7) 
Then, the proposed iteration schema is

d 2 Y k+1 dt 2 + β Ẋk+1 + ω 2 0 X k+1 =A cos Ωt -f (u N k , uNk ) - d 2 X k dt 2 -β Ẏk -ω 2 0 Y k (8) 
Here, we take the initial values (i.e. k = 1) by q n1 = p n1 = 0. Now we will develop this schema by using the harmonic balance technique. By performing the Fourier series development of equation ( 8), we obtain the following results

1 T T 0 d 2 Y k+1 dt 2 + β Ẋk+1 + ω 2 0 X k+1 cos nΩt dt = Aδ 1n -C nk - 1 T T 0 d 2 X k dt 2 + β Ẏk + ω 2 0 Y k cos nΩt dt (9) 1 T T 0 d 2 Y k+1 dt 2 + β Ẋk+1 + ω 2 0 X k+1 sin nΩt dt = -S nk - 1 T T 0 d 2 X k dt 2 + β Ẏk + ω 2 0 Y k sin nΩt dt ( 10 
)
where

T = 2π Ω ; δ 1n = 1 if n = 1 and δ 1n = 0 if other. C nk , S nk are the Fourier coefficients of f (u N k , uNk )          C nk = 2 T T 0 f (u N k , uNk ) cos nΩtdt S nk = 2 T T 0 f (u N k , uNk ) sin nΩtdt (11) 
Thereafter, by substituting equations ( 5) and ( 6) into equations ( 9) and ( 10), we obtain 40

For n = 0

ω 2 0 q 0(k+1) = -C 0k For 0 < n ≤ N βnΩp n(k+1) + ω 2 0 q n(k+1) = Aδ n1 -C nk + n 2 Ω 2 q nk -βnΩq n(k+1) + ω 2 0 p n(k+1) = -S nk + n 2 Ω 2 p nk For N < n ≤ N -n 2 Ω 2 q n(k+1) = Aδ 1n -C nk -ω 2 0 q nk -βnΩp nk -n 2 Ω 2 p n(k+1) = -S nk -ω 2 0 p nk + βnΩq nk
Finally, we have deduced the iteration schema [START_REF] Mickens | Iteration procedure for determining approximate solutions to non-linear oscillator equations[END_REF] to the results in Table 1 where {p nk }, {q nk } are represented as recurrent sequences. By taking the initial values (p n1 = q n1 = 0), we can compute these series for a number of iteration K to get the solution of equation ( 1). Here, we have one iteration schema schemas converge to the periodic solution of equation ( 1) if a sufficient condition is satisfied. 

n = 0 q n(k+1) = - C 0k ω 2 0 ; p n(k+1) = 0 0 < n ≤ N p n(k+1) = n 2 Ω 2 (βnΩq nk + ω 2 0 p nk ) (βnΩ) 2 + ω 4 0 - βnΩC nk + ω 2 0 S nk + βnΩAδ n1 (βnΩ) 2 + ω 4 0 q n(k+1) = n 2 Ω 2 (-βnΩp nk + ω 2 0 q nk ) (βnΩ) 2 + ω 4 0 + βnΩS nk -ω 2 0 C nk + ω 2 0 Aδ n1 (βnΩ) 2 + ω 4 0 N < n ≤ N q n(k+1) = ω 2 0 n 2 Ω 2 q nk + β nΩ p nk + C nk n 2 Ω 2 - Aδ n1 n 2 Ω 2 p n(k+1) = ω 2 0 n 2 Ω 2 p nk - β nΩ q nk + S nk n 2 Ω 2

Sufficient condition of convergence

Lemma: If f ∈ C 1 and if the series of functions {u N k } defined by equation ( 4) and the schema in Table 1 is uniformly convergent when N, k tends to 50 infinity, their limit is a periodic solution of equation [START_REF] Nayfeh | Nonlinear Oscillations[END_REF].

Demonstration: Suppose that u N k (t) converges uniformly to u(t). We have to prove that (i) u(t) is periodic of period T (ii) u(t) is a solution of equation ( 1).
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We prove (i) by contrary. Suppose that it exists τ such that |u(τ

) -u(τ + T )| = a > 0. Because u N k (t) is uniformly convergent, for 0 < 2ǫ < a it exists M, K such that ∀N > M, k > K we have |u N k (τ ) -u(τ )| < ǫ |u N k (τ + T ) -u(τ + T )| < ǫ
In addition, we have

u N k (τ ) = u N k (τ + T ). Thus a = |u(τ ) -u(τ + T )| ≤ |u N k (τ ) -u(τ )| + |u N k (τ ) -u(τ + T )| < 2ǫ
The last inequality cannot be true because 2ǫ < a. By consequence, u(t) is periodic.
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To prove (ii), it is sufficient to show that ∀ǫ > 0, ∃M ′ , K ′ such that

|ü N k + ω 2 0 u N k + f (u N k , uNk ) -K cos Ωt| < Cǫ ∀N > M ′ , k > K ′ ( 12 
)
where C is a constant.

By using the triangular inequality, we have

üN(k+1) + ω 2 0 u N (k+1) + f (u N (k+1) , uN(k+1) ) -Γ cos Ωt ≤ ω 2 0 |Y k+1 -Y k | + β Ẏk+1 -Ẏk + d 2 dt 2 (X k+1 -X k ) + f u N (k+1) , uN(k+1) -f (u N k , uNk ) + d 2 dt 2 (Y k+1 + X k ) + β( Ẋ(k+1) + Ẏk ) + ω 2 0 (X k+1 + Y k ) + f (u N k , uNk ) -A cos Ωt
We note f a , f b , f c , f d and f e the five terms of the last inequality, that means

f a =ω 2 0 |Y k+1 -Y k | f b =β Ẏk+1 -Ẏk f c = d 2 dt 2 (X k+1 -X k ) f d = f u N (k+1) , uN(k+1) -f (u N k , uNk ) f e = d 2 dt 2 (Y k+1 + X k ) + β( Ẋ(k+1) + Ẏk ) +ω 2 0 (X k+1 + Y k ) + f (u N k , uNk ) -A cos Ωt
In order to prove [START_REF] Liu | A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator[END_REF], we have to prove that f a , f b , ..., f e are measured by ǫ.

Because u N k is uniformly convergent, it is clear that f a is measured by ǫ.

To prove that f b and f c are measured by ǫ, it is sufficient, for example, to take the definition of X mk from equation ( 5) with remark that

65 f c = d 2 dt 2 (X (k+1) -X k ) = m n=1 n 2 Ω 2 (p n(k+1) -p nk ) sin nΩt + (q n(k+1) -q nk ) cos nΩt ≤ m n=1 n 2 Ω 2 p n(k+1) -p nk + q n(k+1) -q nk
As the series {u N k } converge uniformly, the series p nk , q nk are uniformly convergent when k tends to infinity. Thus, f b and f c are measured by ǫ.

In order to measure f d , we use a following property: for f ∈ C 1 , it exists For f e , by using the iteration schema in Table 1, we obtain

C such that |f (u) -f ( 
d 2 dt 2 (Y (k+1) + X k ) + Ω 2 (X (k+1) -X k ) + ω 2 0 u N k + f (u N k , uNk ) -A cos Ωt = f (u mk , umk ) - C 0k 2 + m n=1 C nk cos nΩt + S nk sin nΩt
Thus, f e is exactly the difference between the function f (u N k , uNk ) and its Fourier series development. Because u N k is periodic and bounded, f (u N k , uNk ) is also periodic and bounded. Thus, this difference is measured by ǫ when N is large enough. Therefore, the five terms are measured by ǫ, and the lemma is 75 proved.

Examples

Linear oscillator

We consider a forced linear oscillator, i.e. f (u, u) = 0. The iteration schema in Table 1 becomes

n = 0 q 0(k+1) = 0 1 ≤ n ≤ N p n(k+1) = n 2 Ω 2 (βnΩq nk + ω 2 0 p nk ) (βnΩ) 2 + ω 4 0 + βnΩAδ n1 (βnΩ) 2 + ω 4 0 q n(k+1) = n 2 Ω 2 (-βnΩp nk + ω 2 0 q nk ) (βnΩ) 2 + ω 4 0 + ω 2 0 Aδ n1 (βnΩ) 2 + ω 4 0 N ≤ n ≤ N q n(k+1) = ω 2 0 n 2 Ω 2 q nk + β nΩ p nk - Aδ n1 n 2 Ω 2 p n(k+1) = ω 2 0 n 2 Ω 2 p nk - β nΩ q nk
We will prove that when the schema converges, its limit is the analytic solution.

Case N = 0 80

For n ≥ 2, we have

q n(k+1) + ip n(k+1) = ω 2 0 n 2 Ω 2 - iβ nΩ (q nk + ip nk ) q n(k+1) -ip n(k+1) = ω 2 0 n 2 Ω 2 + iβ nΩ (q nk -ip nk )
The last equations define two geometrical sequences and they converge if and only if

ω 2 0 n 2 Ω 2 + iβ nΩ < 1
; their limits are zeros (i.e., q nk , p nk → 0 when k → ∞). For n = 1, we have

q 1(k+1) + ip 1(k+1) -A 1 = ω 2 0 Ω 2 - iβ Ω (q 1k + ip 1k -A 1 ) q 1(k+1) -ip 1(k+1) -A 2 = ω 2 0 Ω 2 + iβ Ω (q 1k -ip 1k -A 2 ) ( 13 
)
where

A 1 = -A/ Ω 2 -ω 2 0 + iβΩ and A 2 = -A/ Ω 2 -ω 2 0 -iβΩ .
The last equations define also two geometrical sequences which converge to zeros with the same condition for n ≥ 2. By consequence, the limits of {q 1k } and {p 1k }

are        q 1 = (ω 2 0 -Ω 2 )A (ω 2 0 -Ω 2 ) 2 + (βΩ) 2 p 1 = βΩA (ω 2 0 -Ω 2 ) 2 + (βΩ) 2 (14) 
Equation ( 14) is exactly the analytic solution of the forced linear oscillator.

Thus, the sufficient condition is thus justified in this case. In addition, equation [START_REF] Liu | A novel harmonic balance analysis for the Van Der Pol oscillator[END_REF] shows that the schema converges linearly and the convergence rate is calculated by

µ = ω 2 0 Ω 2 + iβ Ω ( 15 
)
The condition of the convergence µ < 1 can be rewritten as Ω 4 ω 4 0 > (βΩ) 2 . It means that Ω is larger than the resonance frequency of the oscillator Ω r .

Case N = 1
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For n ≥ 2, we have the same results with the previous case, i.e., q nk , p nk → 0 when k → ∞ if and only if

ω 2 0 n 2 Ω 2 + iβ nΩ < 1 for n ≥ 2 .
8

For n = 1, we have

q 1(k+1) + ip 1(k+1) -A 1 = Ω 2 -iβΩ + ω 2 0 (q 1k + ip 1k -A 1 ) q 1(k+1) -ip 1(k+1) -A 2 = Ω 2 iβΩ + ω 2 0 (q 1k -ip 1k -A 2 )
We see that the last two equations define also two geometrical sequences which converge if and only if

Ω 2 iβΩ+ω 2 0 < 1. The condition of convergence for n = 1
and n ≥ 2 of the schema can be rewritten as follows

     Ω 4 -ω 4 0 < (βΩ) 2 16Ω 4 -ω 4 0 > 4(βΩ) 2 (16) 
We deduce that the iteration schema N = 1 converges linearly when Ω is smaller than the resonance frequency and the convergence rate is

µ = Ω 2 iβΩ + ω 2 0 (17) Case N ≥ 2
Similarly, the schema converges linearly to the analytic solution if and only

if      N 4 Ω 4 -ω 4 0 < (βN Ω) 2 (N + 1) 4 Ω 4 -ω 4 0 > (β(N + 1)Ω) 2 (18) 
Remark: From equations ( 13) and ( 17), when Ω ≃ Ω r , the convergence rate µ can be approached by

µ ≃ 1 - ∆Ω Ω r 2 (19) 
where

∆Ω = |Ω -Ω r |. It means that µ K ≃ 1 -2K ∆Ω Ωr .
Thus, the number of iteration can be estimated by K ∼ 1 2 Ωr ∆Ω .
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Numerical example

The iteration method is used for a forced linear oscillator with ω 0 = 1, A = 1. Figure 1 shows the amplitude A = q 2 1 + p 2 1 in function of the excitation frequency Ω with different values of the damping coefficient β. Here, we take 9 the number of harmonics N = 3 and the number of iteration K = 300 for all 95 frequencies Ω. The figure shows that the iteration method converges to the analytic solution. Particularly, the schema with N = 0 is convergent for low frequency Ω and the schema with N = 1 is convergent for high frequency Ω. This numerical result agrees well with the previous demonstration. Let's consider another example, a forced Duffing oscillator. This oscillator has many applications in physics and it can be described by

ü + β u + u + εu 3 = A cos Ωt ( 20 
)
When ε is small, the perturbation techniques [START_REF] Nayfeh | Nonlinear Oscillations[END_REF][START_REF] Nayfeh | Introduction to Perturbation techniques[END_REF] can be applied for this oscillator. This technique demonstrates that the periodical solution depends on the frequency Ω by

A 2 β 2 Ω 2 + 1 -Ω 2 + 3 4 εA 2 2 = A 2 , tan ϑ = βΩ 1 -ω 2 + 3 4 εA 2 (21) 
where A = q 2 1 + p 2 1 is the amplitude and tan ϑ = p 1 /q 1 is the phase of the first harmonic. In order to estimate the convergence rate of the schemas, the numerical error of equation ( 20) is calculated by

O(ε) = max |ü + β u + u + εu 3 -A cos Ωt|
where u(t) is the numerical result in each iteration. Figure 4 shows the error 115 versus the number of iteration for the Duffing oscillator with ε = 0.01, N = 10 and K = 1000. We can see that the schemas converge in logarithmic scale of the number of iteration. Moreover, when the frequency Ω approaches the resonance frequency (green cycle markers), the convergence is relatively slow. 

Conclusion 120

When the periodic solution of a dynamical system is decomposed into two parts corresponding low and high harmonics, we can propose an iteration schema with different formulations for the two parts. This decomposition can be built to adapt the system in term of convergence. The application for forced Duffing oscillators show that each schema converges in each range of the excitation 125 frequency and we can reach different solutions by using different schema.

  ũ)| ≤ Cǫ when |u -ũ| < ǫ. As the series u N k converges uniformly, we can chose k large enough for |u N (k+1) -u N k | < ǫ. By consequence, 70 f d is measured by ǫ.
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 11 Figure 1: Forced linear oscillator by analytic and iteration methods
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 2 Figure 2 shows the numerical results with different N for a forced Duffing oscillator with parameters ω = 1, β = 0.1, ε = 0.01 and A = 1. In this example,
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 213 Figure 2: Forced Duffing oscillator by the perturbation technique (PT) and the iteration method. Parameter: ω = 1, β = 0.1, ε = 0.01 and A = 1
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 34 Figure 3: Forced Duffing oscillator by the perturbation technique (PT) and the iteration method
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 1 Frequency dependent iteration schema

Table 1

 1 converge to the unstable solution of the Duffing oscillator.
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