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Abstract

The foundation of a railway track may be non-uniform due to a number of reasons and this area is currently
the subject of significant research. In this article, a new method has been developed for computing the
responses of railway tracks based on a non-uniform foundation subjected to moving forces. This method is
a coupling of an analytical model for the rail together with the sleepers and a finite element method for the
foundation. In steady-state, it is supposed that the responses are unchanged when the moving forces come
and go away from a larger interval of the railway track which contains a non-uniform zone. The dynamical
stiffness matrix (DSM) of the foundation is computed by the finite element method and it is transformed
to meet the steady state boundary condition. On the other hand, the rail together with the sleepers and
rail pads are modelled by a periodically supported beam subjected to moving forces. This analytical model
leads to a relation between the reactions forces and the displacements of the sleepers. This relation describes
also the degrees of freedom (DOFs) of the nodes of the foundation at the contact surfaces with the sleepers.
Then, a transformation technique has been developed in order to substitute the analytical relation into the
DSM. Finally, the responses have been computed by using the transformed DSM. This method is a coupling
of the analytical and numerical methods. Therefore, it has reduced all DOFs of the track components
(sleepers, rail, and rail pads) which gives a significant advantage in computational time.

Keywords: Railway track; transition zone; non-uniform foundation; periodically supported beam;
structural dynamics.

1. Introduction

The influence of a non-uniform foundation on the response of a railway track has been studied by
different methods including [1–6]. The most pressing difficulty of the numerical methods is that the rail
with its supports (sleepers) and the foundation are not of the same scale (the dimensions of foundation
is much larger than ones of sleepers and rails) which increases the degrees of freedom (DOF) and costs
computing time. Recently, some authors have developed different techniques to reduce the number of DOF.

This article presents a new model which is a coupling of analytical and numerical methods. When the
rail together with its supports is considered as a periodically supported beam, Hoang et al. [1, 7] proved a
relation between the support displacements and reaction forces in the steady state and this relation holds
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Figure 1: Coupling of analytical and numerical models

for all types of foundation. By using this analytical model, we can write this relation for all DOF at the
contact surfaces between the sleepers and the foundation. Then, this relation is substituted in the finite
element model of the foundation in order to get the dynamical response.

2. Formulations

Let us consider a railway track based on a visco-elastic foundation which contains a defect zone as shown
in Figure 1. In this model, we consider the rail as an infinite beam subjected to moving forces and the
sleepers are concentrated supports which are distributed periodically along the beam (the rail together with
its supports is called a periodically supported beam subjected to moving forces). Otherwise, the foundation
is a 2D visco-elastic mater which is modelled by the finite element method.

Nomenclature

u vector of nodal displacements
f vector of nodal forces
D dynamical stiffness matrix of the foundation

S denotes the foundation DOF at the contact surfaces with the sleepers

L denotes the foundation DOF at the left boundary

R denotes the foundation DOF at the right boundary

I denotes the other foundation DOF
ω angular frequency
Qe equivalent force of the periodically supported beam
Ke equivalent stiffness of the periodically supported beam

By using the finite element method we can obtain the following results from the dynamic equation of
the foundation

Mü(t) + Cu̇(t) + Ku(t) = F(t) (1)

where M,C and K are the mass, damping and stiffness matrices of the foundation, and u(t),F(t) are the
nodal displacements and forces. We can write the aforementioned equation in the frequency domain(

−ω2M + iωC + K
)
u(ω) = F(ω) (2)

or

D(ω)u(ω) = F(ω) (3)

where D(ω) = −ω2M + iωC + K is the dynamic stiffness matrix of the foundation.
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Figure 2: Nodal forces and displacement at sleeper contact surfaces

If we separate the inner and boundary DOF of the foundation, we can write

u =


uS
uL
uR
uI

 , F =


fS
fL
fR
0

 (4)

where S , L, R and I denote for the nodes in the different parts of the foundation as shown in Figure 1 (see
Table of nomenclature). Then, equation 3 can be rewritten as follows

DSS DSL DSR DSI

DLS DLL DLR DLI

DRS DRL DRR DRI

DIS DIL DIR DII




uS
uL
uR
uI

 =


fS
fL
fR
0

 (5)

In the steady state, we suppose that the defect zone is included in a sufficiently large interval of track so
that the dynamical responses are unchanged when the moving forces come and leave this interval but with
a delay which is equal to the time for the force to cover the length of the track interval (so-called the steady
state condition)

uR = uLei
ωL
v , fR = −fLei

ωL
v (6)

where L, v are the length of the interval and the moving force speed respectively.
By substituting equation 6 into equation 5 and transforming the rows and columns of the matrix D

corresponding to uL and uR, we can obtain the following result DSS D̃SL DSI

D̃LS D̃LL D̃LI

DIS D̃IL DII

 uS
uL
uI

 =

 fS
0
0

 (7)

where

D̃LL = DLL + DRR + ei
ωL
v DLR + e−i

ωL
v DRL

D̃SL = DSL + ei
ωL
v DSR, D̃IL = DIL + ei

ωL
v DIR

D̃LS = DLS + e−i
ωL
v DRS , D̃LI = DLI + e−i

ωL
v DRI

Equation 7 is a reduced form of the dynamic equation under the steady state condition. We need to
calculate the nodal forces fS at the contact surface between the sleepers and the foundation. We suppose
that the sleeper is rigid with one degree of freedom corresponding to its vertical displacement. Therefore,
all DOF of foundation at the contact surface with a sleeper have the same vertical displacement which is
equal to the sleeper displacement. For example, we denote w1, R1 the displacement and reaction force of
the sleeper S1 as shown in Figure 2, we have

∀i ∈ ∂S1 : ui = w1, and
∑
i

fi = −R1 (8)
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where ∂S1 is the contact surface between the sleeper S1 and the foundation. Therefore, if we denote dik the
rows of DSM corresponding to nodal force fi and dki the column of DSM corresponding to DOF ui, we have

fi =
∑
k

dikuk ∀i ∈ ∂S1 (9)

By combining equations 8 and 9, we have

−R1 =
∑
i∈∂S1

∑
k

dikuk =
∑
k

( ∑
i∈∂S1

dik

)
uk =

∑
k

d̃S1kuk (10)

where d̃S1k =
∑
i∈∂S1

dik. Thus, equation 10 defines a new row of DSM which is the sum of all rows
corresponding to the nodal force fi with i ∈ ∂S1.

In a similar way, we have

fk =
∑
i 6∈∂S1

dkiui +
∑
i∈∂S1

dkiui ∀k (11)

By substituting equation 8 into the aforementioned equation, we obtain

fk =
∑
i6∈∂S1

dkiui +

( ∑
i∈∂S1

dki

)
w1 =

∑
i 6∈∂S1

dkiui + d̃kS1w1 (12)

where d̃kS1
=
∑
i∈∂S1

dki. Hence, equation 12 defines a new column in DSM which is the sum of all column
corresponding to DOF ui with i ∈ ∂S1.

Therefore, we can replace rows and columns of DSM which correspond to DOF and nodal force at the
contact surface with each sleeper by theirs sums to obtain a new row and a new column which justify
equation 7 with DOF and nodal forces replaced by the sleeper displacement and contact force. In the other
way, if we denote wS = (w1 · · ·wN )

T
and Rs = (R1 · · ·RN )

T
the vectors of the displacements and reaction

forces of all sleepers, we can obtain the following result from equation 7 D∗SS D̃
∗
SL D∗SI

D̃
∗
LS D̃LL D̃LI

D∗IS D̃IL DII


 wS

uL
uI

 =

 −RS

0
0

 (13)

By substituting the second and third rows of the aforementioned equation into the first one, we can deduce

RS = −D̃SwS (14)

where

D̃S = D̃SS −
(
D̃
∗
SL D∗SI

)( D̃LL D̃LI

D̃IL DII

)−1(
D̃
∗
LS

D∗IS

)
(15)

On the other side, the beam and its supports is modelled as a periodically supported beam. This
analytical model permits to obtain a relation between the supports displacements and reaction forces by
using the beam dynamical equation and the steady state condition as follows (see [1])

CeR̃S = w̃S + we (16)

where R̃S and w̃S are the sleeper responses in the reference of the moving forces. That means R̃S =
T RS , w̃S = T wS , with T is transformation matrix of the two references which is given by

T = diag
(

eiω
a1
v eiω

a2
v · · · eiω

aN
v

)
(17)
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Table 1: Parameters of a railway track

Parameters Unit Value
Rail mass (ρS) kg/m 60
Rail stiffness (EI) MNm2 6.3
Train speed (v) km/h 160
Charge per wheel (Q) kN 100
Distance between sleepers (l) m 0.6
Sleeper width m 0.3
Mass density of foundation kg/m3 2 710
Young’s modulus of foundation GPa 50
Young’s modulus of defect zone GPa 1.0
Poisson’s coefficient of foundation 0.25

where ap is the coordinate of the sleeper p. The functions Ce,we are calculated by [1]

Ce =


η0 η1 · · · ηm−1

ηm−1 η0 · · · ηm−2
...
η1 η2 · · · η0

 , we =
1

vEI

K∑
j=1

Qje
−iωvDj(

ω
v

)4 − λ4


1
1
...
1

 (18)

where λ = 4

√
ρSω2

EI with ρ, S,E and I are the mass density, beam section, Young’s modulus and the inertia

of the rail, Qj , Dj are the loads and their relative distances as shown in Figure 1. The functions ηp
(0 ≤ p ≤ m− 1) depend only on the parameter of the beam and the moving forces as follows

ηp =
1

LEI

∑
n∈Z

ei2πn
p
m(

ω
v + 2πn

L

)4 − λ4 (19)

By substituting equation 16 into equation 14, we obtain

RS =
(
CeT + T D̃

−1
S

)−1
we (20)

Equation 20 permits to compute the sleeper response. Then, the foundation response can be obtained by
using this result and equation 13. We note that this model has the same number of DOF as the foundation.
Therefore, we can calculate the dynamic response of the railway track without involving DOF of the rail
and its supports in this model.

3. Example

Let us consider a railway track based on a 2D elastic foundation of depth h = 1.2m. This foundation
contain a defect zone of width a = 1.8m where the Young’s modulus is lower. We compute the response of
the track interval of length L = 10.2m which contains 17 sleeper spacing and the defect zone is at the center
subjected a moving load Q = 100kN as shown in Figure 1 and the railway track parameters are given in
Table 1.

In this example, we suppose that the nodes at the bottom boundary of the foundation are fixed. The mesh
is created with size of 0.2m with a bilinear plane strain quadrilateral element (type ’CPE4’ in ABAQUS)
with thickness equal to a half of the sleeper length. Each sleeper of width 0.3m covers 2 nodes of the
contact surface among 4 nodes corresponding to the sleeper spacing l = 0.6m. Figures 3 shows the response
of the sleepers in the frequency domain. The calculation is performed for the frequency [0 80Hz]. The
sleeper response in the time domain is calculated by the inverse Fourier transform and the results are shown
in Figure 4. We see that while the sleeper displacements increase in the defect zone, the reaction force
decreases. Moreover, the reaction force of the sleeper next to the defect zone increases.
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Figure 3: Response of sleepers
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Figure 4: Response of sleepers

4. Conclusion

A new method to calculate the response of a railway track has been developed by coupling analytical
and numerical methods. From the finite element model of the foundation, the dynamical stiffness matrix is
transformed to obtain a reduced DSM but this is a global matrix of the foundation together with the track.
Therefore, this method reduces the number of DOF in a significant way. In perspective, we can include the
finite elements of sleepers in the numerical model in order to analyse the dynamics of the sleepers together
with the foundation.
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