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Abstract: The frequency response function is a quantitative measure used in structural analysis
and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of
substructures, also called cells, must be considered, which will lead to a high amount of computational
time. In this paper, the recursive method, a finite element method, is used for computing the frequency
response function, independent of the number of cells with much lesser time costs. The fundamental
principle is eliminating the internal degrees of freedom that are at the interface between a cell and its
succeeding one. The method is applied solely for free (no load) nodes. Based on the boundary and
interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products
and inverses resulting with a dimension the same as that for one cell. The recursive method is
demonstrated on periodic structures (cranes and buildings) under harmonic vibrations. The method
yielded a satisfying time decrease with a maximum time ratio of 1

18 and a percentage difference of
19%, in comparison with the conventional finite element method. Close values were attained at low
and very high frequencies; the analysis is supported for two types of materials (steel and plastic).
The method maintained its efficiency with a high number of forces, excluding the case when all of
the nodes are under loads.

Keywords: finite element analysis; recursive method; periodic structures; harmonic vibrations

1. Introduction

The study of structural dynamics is essential for understanding and evaluating the performance of
any engineering structure. Most structures vibrate. In operation, all machines, vehicles and buildings
are subjected to dynamic forces that cause vibrations. Very often, the vibrations have to be investigated
because they may cause an immediate problem. Whatever the reason, we need to quantify the
structural response in some way, so that its implication on factors such as performance and fatigue
can be evaluated. The frequency response function (FRF) will then be considered. These structures
may have a uniform geometry or a periodic one. The frequency response function has acquired much
consideration for high frequencies, since at small values, the system can be analyzed statically. Getting
this function for the structures and system mentioned under a high range of angular frequencies
will lead to a large amount of computation time, since solving for the displacement vector requires
inversing the dynamic stiffness matrix at each angular frequency. As the number of substructures,
also called cells, increases the computational cost increases. Hence, the approach emphasized in this
research presents a solution for this time issue.

Various methods were inspected to determine the frequency response for one-dimensional
structures and their behavior as assembled for a two-dimensional element as a truss or frame. Original
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numerical approaches were done by Dong and Aalami [1,2] to estimate the deformations on each point
on the cross-section by finite element analysis (conventional FEM).

One approach for structural analysis is the spectral finite element method (SFEM) that was mainly
used by Finnveden [3,4]. It considers general uniform structures with complex cross-sections and
handles all types of boundary conditions. The displacements in the cross-section are described by
the finite element method (FEM), while ordinary differential equations for 2D structures will express
the variation along the axis of symmetry (x-axis) with a solution of the form ejkxU(y, z), where y and
z are cross-sectional coordinates. A similar approach as SFEM called the dynamic stiffness method
(DSM) is notably efficient for the study of excited structures under high frequencies [5]. It provides
an economical solution with a much higher accuracy, since it divides the member into distinct elements.
Both methods include similar steps till the extent of obtaining the dynamic stiffness matrix. DSM
defines a relationship between the nodal displacement and forces of the element using shape functions,
in order to derive the dynamic stiffness matrix; whereas the SFEM uses the virtual work method to
obtain the stiffness matrix, and the dynamic matrix will have a more laborious presentation, being
a function of the wave number. Structures made of plates and shells were examined by the SFEM
approach by Nilsson [6]. Birgersson [7–9] studied plane wave and fluid structure interaction. Gry and
Gavric [10,11] applied similar approaches for the detection of wave propagation on rails, where
they calculated the relative dispersion relations. Similar techniques were interpreted by Bartoli and
Marzani [12,13] for the purpose of computing the dispersion relations for damped structures of
arbitrary cross-sections and with symmetric elements.

Duhamel et al. [14] established a combined method between wave and finite element approaches
for investigating periodic structures; it has an advantage over the SFEM by its ease of operations
for complex geometries and scattered materials. Lee et al. [15] utilized a compounded method
using finite element and boundary element (FEBE) methods for studying periodic structures
meshed non-periodically.

Reduced order models (ROMs) are mainly mathematically-inexpensive methods for solving
complex and large-scale dynamic problems by decreasing the model’s degrees of freedom. It gathers
the system’s responses under excitations, providing near real-life analysis, however with low accuracy.
ROM was applied on mistuned bladed disks by Castanier et al. [16] for capturing localized modes
and producing low order models with modest memory storage; it calculated relatively acceptable
results in comparison with FEM. The method was later improved by employing the Craig–Bampton
component mode synthesis (CMS), which is an ROM-based technique yielding better mode accuracy;
it required that at least one subspace iteration is executed (Bathe et al. [17]). CMS was then applied by
Zhou et al. [18] on dynamics analysis using non-uniform rational B-spline (NURBS) finite elements
to generate appropriate constructions of interfaced substructures. The method obtained a complete
structural model consistent with the original model.

Duhamel [19,20] analyzed the frequency response by the recursive method (RM), on waveguide
structures, as beams, plates and tires. The beam was divided into two substructures. As the division
number increases, a higher accuracy in the frequency response is obtained. He also studied some
plates excited in the mid x and y positions. A simply supported plate is meshed, and then, its mass and
stiffness matrices are extracted from ABAQUS and then inserted in MATLAB to obtain the frequency
response using the method studied. A similar method aiming to reduce the number of degrees of
freedom under zero forces called the Guyan method is commonly used; however, it had been employed
mainly for static analysis. Further, it neglects the inertia at the omitted DOF, hence being obsolete for
structures of high mass to stiffness ratios [21].

The paper provides a computational solving method for periodic structures that cannot be
designed as waveguides, where the recursive method is studied for its efficiency. The recursive method
tends to ease the study of finite element analysis for complex structures. It is a computational method
that computes the global dynamic stiffness matrix by products and inverses of matrices, resulting with
the same dimension as that of one cell. For a complex cross-section, the structure is sectioned and
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modeled in the conventional finite element software and then post-processed in MATLAB. RM tends
to eliminate any degrees of freedom (DOF) on the nodes that are not under study. Thus, a structure of
two elements can be examined as one, on account of omitting the DOF at the boundaries between two
consecutive cells, if there were no internal loads.

Two applications were examined under the illustrated method. The first application is where
the RM is applied on 1D bar structures and demonstrating their manner as assembled in a crane
under harmonic and seismic loadings. The crane will be dealt with as a truss. A real-life example will
be considered, with a conservative number of elements. For the second application, the RM will be
applied on a building modeled as a frame. The seismic load will be designed as harmonic displacement
at its base end. The truss and the frame are considered as 2D periodic structures.

Modal analysis is used to assess the dynamic properties of a structure by assessing the natural
frequencies and their corresponding mode shapes. It was employed to determine the range of
frequencies to be examined. FEM works on the full modes when computing the FRF, while RM
will only work on the modes that include the studied nodes. For example, in the presented study,
the structure has no internal nodes for examination; hence, RM will consider the first mode only with
the two end nodes. Using the recursive method, a few computations are needed for finding a close
response compared to the number of computations used in the finite element analysis.

2. Recursive Method

2.1. Review

The recursive method is used to calculate the forced response of various types of structures,
which might lead to a high consumption of computation. This method is used to compute the general
dynamic stiffness matrix with a much lower amount of computational time. Generally, the recursive
method is a purely computational method, which computes the global dynamic stiffness matrix by
products and inverses of matrices with the same dimensions as the dynamic stiffness matrix of a cell.

For a complex cross-section, the structure is sectioned and modeled in the conventional finite
element software (ANSYS). Then, the mass, stiffness and damping matrices are extracted from ANSYS.

These matrices will be post-processed to give the dynamic stiffness matrix of the section under
study, after which, the global dynamic stiffness matrix of the whole structure will be figured from
the recursive method. It will be obtained by means of products and inverses of the matrices with the
dimension equal to that of the dynamic stiffness matrix of the section. This method tends to eliminate
any degrees of freedom (DOF) on the nodes that are not under study. Thus, a structure of two elements
can be examined as one, on account of omitting the DOF at the boundaries between two consecutive
cells, if there were no internal loads. In general, this method is applicable and effective when the
structure is not under a large number of forces.

The periodic structure that is divided into N cells is considered. The problem studied is under
a point force excitation, having a response u. Following is a demonstration for the recursive method,
numerically [14].

2.2. Behavior of One Cell

First, consider a one-cell element. The discrete dynamic stiffness matrix of a cell for
a time-dependent e−iωt is given by: (

K− iωC−ω2M
)

q = f , (1)

where i =
√
−1, ω is the angular frequency, K is the stiffness matrix, C is the damping matrix, M is the

mass matrix, q is the displacement vector and f is the loading vector.
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Thus, the dynamic stiffness matrix is:

D̃ = K− iωC−ω2M. (2)

Decomposing the degrees of freedom into the boundary (B) and interior (I), the resulting dynamic
equation is: [

D̃BB D̃BI
D̃IB D̃I I

][
qB
qI

]
=

[
fB
0

]
. (3)

Then, eliminate the second row of Equation (3):

D̃IBqB + D̃I IqI = 0,
qI = −D̃−1

I I D̃IBqB.
(4)

The first row in Equation (3) will be:

fB = (D̃BB − D̃BI D̃−1
I I D̃IB)qB. (5)

Thus, boundary conditions are only considered in the study. These conditions can be decomposed
into left (L) and right (R) for the relative nodes.

Equation (5) becomes:[
fL
fR

]
=

[
D(1)

LL D(1)
LR

D(1)
RL D(1)

RR

][
qL
qR

]
= D(1)

[
qL
qR

]
, (6)

where D(1) is the dynamic stiffness matrix of a single cell.
Since matrices K, C and M are symmetric, matrix D(1) will also be symmetric.

2.3. Behavior of Two Cells

For the assembly of two cells, consider the dynamic stiffness matrices A and B for Cell 1 and
Cell 2, respectively, as shown in Figure 1. The dynamic stiffness matrix is now denoted with D(2),
which relates the DOF between the two sides (left and right). The dynamic stiffness matrix of the
structure is calculated using: f1

f2

f3

 =

 ALL ALR 0
ARL ARR + BLL BLR

0 BRL BRR


 q1

q2

q3

, (7)

since the interior side is taken with free loading f2 = 0. Thus, solving for the second row in the matrix:

q2 = −(ARR + BLL)
−1(ARLq1 + BLRq3). (8)

The global dynamic stiffness matrix will then be:[
f1

f3

]
=

[
ALL − (ARR + BLL)

−1 ARL −ALR(ARR + BLL)
−1BLR

−BRL(ARR + BLL)
−1 ARL BRR − BRL(ARR + BLL)

−1BRL

]
[

q1

q3

]
=

[
D(2)

LL D(2)
LR

D(2)
RL D(2)

RR

][
q1

q3

]
= D(2)

[
q1

q3

]
,

(9)

where D(2) is the dynamic stiffness matrix of the two cells’ structure.
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Since matrices A and B are symmetric, matrix D(2) will also be symmetric. Therefore, we can write:

D(2) = {A, B}. (10)Computation 2017, 5, 1 5 of 18 
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Figure 1. Two-cell element.

2.4. General Case

Consider now a general case of a structure made of N cells, where it is under no load at its
internal nodes. Denote its total dynamic stiffness matrix as D(N). Note that the structure is periodic
and is isotropic. Firstly, consider a structure with identical cells; omit the internal degrees of freedom
that are under no load. As stated in the foregoing method, the element of two cells is subsequently
modeled as one cell. Hence, the current one-cell element will be assembled with a one-cell element
that was previously a two-cell element. Proceeding with the N-cell structure, the outcome is a one-cell
element that holds the nodes that are of interest for the assessment. For no restriction on the number
of cells, the procedure is computed for log2N steps. This accustomed number of steps will have
a high effectiveness on saving the number of computations, when comparing with the conventional
finite element analysis; since it is no longer required for the global assembly of the whole structure.
The complete analysis is reviewed in Figure 2.
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Figure 2. Element assembly in the recursive method.

In case the number of cells was not as a power of two, a binary representation will be used to
model the system. For example, for N number of cells where N is not equal to a number with a power
of two, it can be written in binary representation as N = 11 = 1011b.

The system is solved as follows:

• Calculate the dynamic stiffness matrix for a structure of eight cells, decomposing them into four
of two cells each.

• The studied structure is then assembled with a structure of two cells, studied previously.
• The resulting matrix is assembled with a structure of one cell.

This approach can be resumed by:

D(11) =
{{

D(8), D(2)
}

, D(1)
}

. (11)

This method provides an easy approach for the computations of a structure with a large number
of cells under harmonic vibrations. After applying the force and displacement boundary conditions,
the response for the node subjected to forced vibrations is studied and detected for the frequency
response function.
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3. Applications

Periodic structures were examined in this paper. For the first application, 1D bar structures are
assembled in a crane. Excitation and seismic loading will be examined on cranes, where it will be
dealt with as a truss. On the other hand, the application of the recursive method will be on 2D frame,
where a harmonic displacement is loaded at its base nodes (model of seismic load). The frame is
considered as a 2D periodic structure.

After computing the FRF conventionally (using harmonic analysis in ANSYS), the response will be
compared to that determined from the recursive method. Note that a FULL analysis method was used
in ANSYS, where it uses the full system’s matrices for computing the response; this will lead to a more
comprehensive and detailed approach. RM is defined by a self-written MATLAB code where it takes
the K, M and C matrices of a one cell from ANSYS for the frame structure. However, these matrices
will be calculated manually for the truss application. Then, the matrices will be assembled reaching N
cells, recursively. The dynamic stiffness matrix will be obtained by products and inverses of matrices
with the same dimension as the dynamic stiffness matrix of one cell. Nodes that are under no load or
not under study will be omitted using this method. Hence, internal degrees of freedom between the
adjacent cells will be removed using the RM.

3.1. Truss Application

A truss is an element structure consisting of two or more bar elements, connected to each other
by pins, by which each pin will support rotations around its axis only. Cranes are modeled as a truss,
where this will be studied under forced vibrations and seismic loading. A freestanding crane is
considered as a periodic structure where the repeated cell is shown in Figure 3. The global nodes are
numbered as in the displayed order in ANSYS.
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The bar elements will differ by their cross-sectional areas, since the vertical bars hold larger
loads; then, its cross-sectional area is larger than those of the horizontal and inclined bars. Hence,
each element is oriented differently relative to the global coordinate system.

The element equation is expressed as:

[Ke
+ iωCe −ω2Me

] [∆e
]
= [Fe

], (12)

where i =
√
−1, ω is the angular velocity, Ke is the local stiffness matrix, Ce is the local damping matrix,

Me is the local mass matrix, ∆e is the local displacement vector and Fe is the local loading vector.
The truss element will have two degrees of freedom (DOF) at each node: translations in the nodal

x and y directions.
The bar element under study is a steel bar with characteristics represented in Table 1.
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Table 1. Bar element characteristics.

Young’s Modulus of Elasticity E = 200 GPa
Density ρ = 7800 kg

m3

Damping Ratio ζ = 0.004 [22]
Larger Cross-Sectional Area A1 = 0.001175 m2

Smaller Cross-Sectional Area A2 = 2.91× 10−4 m2

Length for the Vertical and Horizontal Bars, Respectively l = 1.5− 2 m

Referenced to real-life applications, freestanding tower cranes with fixed foundations and no
undercarriage supports are modeled as cranes with the repeated cell mentioned before, and they are
only repeated 16 times with a total length of 53.65 m, including the foundation height. All dimensions
are assumed relative to actual values.

Both types of loadings will be applied to the same crane structure presented, with the same
repeated cell and type of material employed. Hence, the structures relative to the two different
loadings will have equal stiffness, mass and damping matrices. The dynamic stiffness matrix is
obtained due to the discussed approach, without the need for global assembly.

3.1.1. Truss under Forced Vibration at the Last Node

Ce is taken for two different types of damping:

• Rayleigh damping:
Ce

= αKe
+ βMe, (13)

where α and β are calculated from the natural frequencies and the relative damping ratio.
The natural frequencies taken are the first two natural frequencies, with their relative mode
shapes shown in Figure 4; determined by modal analysis. The damping ratio for steel material
used in a footbridge damping is ζ = 0.004 [22].

• Hysteretic damping:

The dynamic stiffness matrix is demonstrated as:

De = (1 + 0.01 ∗ i)Ke −ω2Me. (14)
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The crane interpreted is illustrated in Figure 5. The last nodes of interest are under harmonic
vibrations for F = F0e−iωt, where F0 = 1 N. The fixed foundation will remove the degrees of freedom
on the first two nodes in the global system, and the matrix is assembled upon a relationship between
a cell and its consecutive one. The periodic structure is computed under a range of driving frequencies,
for the purpose of estimating the frequency response function at the excited node.
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3.1.2. Truss under Seismic Load

The truss application is applied under a second type of loading for the investigation of the
frequency response function under a range of frequencies. The crane structure will be studied under
hysteretic damping solely, represented by the previously shown dynamic stiffness matrix (14). The first
two nodes are subjected to seismic load, which is modeled as a harmonic displacement of d = d0e−iωt,
where d0 = 0.01 m on the base of the structure, as shown in Figure 6.
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3.2. Frame Application under Seismic Load

Frames are structures that have a combination of beams resisting loads. Such structures are
modeled to overcome large moments developed due to the applied loading. The connected node
acquires three DOF, preventing displacement in the y-direction and rotations in the x- and z-direction.
A building under seismic load is modeled as a frame. Timoshenko beams will be studied, having
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four degrees of freedom. The cross-sectional dimensions of all frame elements and the repeated cell
are illustrated in Figures 7 and 8, respectively. The cell will be repeated 16 times with a total length
of 48 m.
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Frame analysis for the local element is similar to the truss element. Stiffness and mass matrices
(Ke and Me) are found from the ANSYS program, and the damping matrix (Ce) is established using
hysteretic damping, as mentioned for the truss; where the dynamic stiffness matrix is represented as:

De = (1 + 0.01 ∗ i)Ke −ω2Me (15)

The beam used is made up of steel with a modulus of elasticity and density similar to that of
the bar element; where Young’s modulus of elasticity is E = 200 GPa and the density is ρ = 7800 kg

m3 .
The nodes at the base are under a harmonic displacement of d = d0e−iωt, where d0 = 0.01 m, as shown
in Figure 9. The periodic structure will be examined for a range of frequencies for computing the
frequency response function.
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4. Results

The FRF obtained from the recursive method will be compared to that using a conventional finite
element program (ANSYS). The elapsed time for each application is measured and collated between
the FEM and RM. The PC machine utilized for finite element analysis runs on an Intel Core i7-4500U
with a clk (clock) speed of 2.40 GHz and 8.00 GB of RAM.

4.1. Truss Application under Forced Vibration

The results for the crane structure made up of 16 repeated cells under Rayleigh damping is
demonstrated in Figure 10, and a zoomed-in presentation was done to illustrate the difference in
achieving close results between low and high frequencies. The results represent the variation of the
modulus of displacement logarithmically with respect to the range of frequencies for the last node,
excited under harmonic forced vibration.
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Figure 11 illustrates the normalized percentage error between the RM and FEM methods in the
low and high frequencies domains, evaluating approximate low frequencies as values less than 50 Hz.
In the low frequency domain, the structure most likely behaves as in the static equilibrium, where the
effect of the driving frequencies is still minimal on the response (low effect as if ω = 0). The evaluated
percentages were very small for f < 50 Hz. However, for f > 50 Hz, the structure is most likely
showing dynamic behavior. High frequencies will estimate a larger percentage range since then, the
effect of ω2 becomes recognizable and influential, increasing the mass effect Ke − ω2Me. Very high
frequencies estimated better results since beyond that for cases where the structure’s properties (mass
and stiffness) are high (complete structure estimated recursively), the inverse of the dynamic stiffness
matrix will result in closer FRF. The response under hysteretic damping is shown in Figure 12.
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The difference in the elapsed time for each method is presented in Table 2. The time elapsed for
getting the frequency response in both damping cases is much higher using the finite element method
than that of the recursive method. The finite element analysis took approximately 18-times more than
the recursive method. Larger time differences between the two damping types are anticipated to be
calculated for more complex structures where the number of DOF is very large.

Table 2. Time comparison between the two methods, for the truss application under forced vibrations.

Method
Elapsed Time (s)

Time Ratio
Rayleigh Damping Hysteretic Damping

RM 0.618 0.638 tRM
tFEM

=̃ 1
18FEM 11.26 11.43
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More high frequency peaks are shown for hysteretic damping, due to its complete material
dependency. The peaks are caused by imperfections in material elasticity, in which the reaction of the
material to changes is dependent on its past reactions to change.

4.2. Truss Application under Seismic Load

The frequency response function found from the recursive method using hysteretic damping will
be compared to that using the conventional finite element program (ANSYS), and the results are shown
in Figure 13. The values calculated demonstrate the variation of the displacement under a range of
frequencies for the first node that is applied to harmonic displacement. Hysteretic damping is known
to be completely material dependent. This is due to some imperfection of the elasticity of the material,
in which the reaction of the material to changes is dependent on its past reactions to change.
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The time ratio calculated between the two methods is approximately 1:22, as in Table 3.
The calculated elapsed time shows that the finite element method took approximately 22-times more
than the recursive method to compute the FRF for the crane structure under hysteretic damping.

Table 3. Time comparison between the two methods, for the truss application under seismic load.

Method Elapsed Time (s) Time Ratio

RM 0.505 tRM
tFEM

=̃ 1
22FEM 11.08

4.3. Frame Application under Seismic Load

The results found using the recursive method and the conventional finite element software
(ANSYS) for determining the frequency response function are presented in Figure 14. It displays the
logarithmic varying displacement of the first bottom node that is excited under harmonic displacement.
The modulus of displacement is studied for a range of frequencies.

The time ratio calculated between two methods is approximately 1/31.6, as shown in Table 4.
The measured time elapsed for the two comparing methods reveals that the FEM took approximately
32-times more than the RM to compute the FRF for the frame structure under seismic load.
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Table 4. Time comparison between the two methods for the frame application.

Method Elapsed Time (s) Time Ratio

RM 2.078 tRM
tFEM

=̃ 1
31.6FEM 65.80

4.4. Analysis

4.4.1. Periodic Structures Having Steel Material

The results for the two different applications under harmonic vibrations showed that RM
calculated values are close, but slightly higher than the values of the FEM. For low and high
frequencies, the modulus of displacement of the RM showed nearer values than at frequencies that
cannot be considered as high. Note that the finite element analysis was taken as the reference method.
The percentage difference between the two approaches for the two applications is established in Table 5.

Rayleigh damping is defined as the type of damping that is frequency dependent, and it
depends on the natural frequencies for defining its equation. However, hysteretic damping is
a material-dependent type of damping; thus, it has the advantage of minimizing the effect of the
driving frequency on the response. These two types of damping were studied on the truss application
under forced excitations, solely. The graph relative to the Rayleigh damping demonstrates that the
response was damped at lower frequency than that of the other type of damping.

Table 5. Percentage difference.

Type of
Application Type of Loading Type of Damping Range of

Frequency Studied
Percentage
Difference

Crane Forced vibrations
Rayleigh damping 1:1:700 17.519%

Hysteretic damping 1:1:700 11.783%
Harmonic displacement Hysteretic damping 1:1:700 12.544%

Building Harmonic displacement Hysteretic damping 1:1:2000 18.920%

The maximum natural frequency is defined as the greatest value of the frequency that can
illustrate a physical understanding of the structure’s response via the mode shape demonstrated
by modal analysis. Further, this value of the natural frequency will determine the maximum range
of frequencies to be examined. Concerning the truss structure, for natural frequencies greater than
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f nT = 133.63 Hz, the crane structure could not be interpreted physically. Nevertheless, for the frame
structure, the maximum natural frequency was f nF = 33.135 Hz, beyond which it will not acquire
major interest. The mode shapes relative to these frequencies are observed in Figure 15. Hence, the
range of frequencies considered for both applications compensates for this frequency and beyond.
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frequency for the truss application of f nT = 133.63 Hz; (b) the mode shape for the frame application of
f nF = 33.135 Hz .

The modulus of displacement at the excited node for the truss application under forced vibrations
was examined upon altering the repeated cell, leading to a change in the total number of cells used. RM
was studied when enlarging the repeated cell, by making the new total number of cells as Nnew = Nold

2 ,
where Nold is the total number of cells in the previous step. Hence, Nnew will initially be 16. The study
was done at the most critical case, resonance, where the driving frequencies are equal to the natural
frequencies of the structure. This is demonstrated in Figure 16, and the results are presented in Table 6,
where it represents the modulus of displacement in the x-direction for the studied node. This test was
applied on the two applications (truss and frame) under the studied types of loadings, and they all
evaluated the same analysis. The table showed that the response is not affected by the number of cells
used, as long as the same structure is studied. The structure is the same when changing the repeated
cell, since the total number of the cells was modified correspondingly.

Table 6. The modulus of displacement in the x-direction for the excited node under three different
natural frequencies, for a truss application under forced vibrations.

# of Repeating
Times

Mode Shape #3
f = 13.994 Hz

Mode Shape #7
f = 44.4651 Hz

Mode Shape #14
f = 105.294 Hz

Displacement
(m)

Elapsed
Time (s)

Displacement
(m)

Elapsed
Time (s)

Displacement
(m)

Elapsed
Time (s)

16 3.29 × 10−5 0.008694 2.63 × 10−6 0.008967 4.50 × 10−7 0.008403
8 3.29 × 10−5 0.008946 2.63 × 10−6 0.008710 4.50 × 10−7 0.008837
4 3.29 × 10−5 0.008666 2.63 × 10−6 0.009064 4.50 × 10−7 0.008530
2 3.29 × 10−5 0.008368 2.63 × 10−6 0.008437 4.50 × 10−7 0.008868
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Mode Shape #3 
f = 13.994 Hz 

Mode Shape #7
f = 44.4651 Hz 

Mode Shape #14 
f = 105.294 Hz 

Displacement 
(m) 

Elapsed 
Time (s) 

Displacement 
(m) 

Elapsed 
Time (s) 

Displacement 
(m) 

Elapsed 
Time (s) 
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8 3.29 ×	10  0.008946 2.63 × 10 0.008710 4.50 ×	10  0.008837
4 3.29 ×	10  0.008666 2.63 × 10  0.009064 4.50 ×		10  0.008530 
2 3.29 ×	10  0.008368 2.63 × 10 0.008437 4.50 × 10  0.008868
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modulus of elasticity of = 3.4	GPa	and a density of 	 = 1330	  for the two applications under 
forced excitation and seismic loading. The results are shown in Table 7. The values measured had 
the same inspection, determining the acceptance of the analysis deduced, by which for low and high 
driving frequencies, the response was more acceptable than intermediate frequencies in comparison 
with FEM. The percentage difference between the two approaches for the two applications when 
PVC material is assigned are established in Table 8. The table shows that the measured elapsed time 
for the FEM took approximately 22× more time than the RM to compute the FRF for the truss 
structure under the two types of loadings. Moreover, FEM consumed a high amount of time in the 
computations during the implementations of the frame structure under seismic load, where it took 
150× more time than the RM to compute the FRF. 

Table 7. The modulus of displacement in the x-direction for the excited node under three different 
natural frequencies, for a truss application under forced vibrations, upon assignment of PVC. 

# of 
Repeating 

Times 

Mode Shape #3 
f = 4.4185 Hz 

Mode Shape #7
f = 14.0399 Hz 

Mode Shape #14 
f = 33.2466 Hz 

Displacement 
(m) 

Elapsed Time 
(s) 

Displacement 
(m) 

Elapsed Time 
(s) 

Displacement 
(m) 

Elapsed 
Time (s) 

16 1.94 ×	10  0.008859 1.55 × 10  0.009104 2.65 ×	10  0.009558 
8 1.94 ×	10  0.008405 1.55 × 10  0.009659 2.65 ×	10  0.010223 
4 1.94 ×	10  0.008891 1.55 × 10  0.008590 2.65 ×	10  0.013492 
2 1.94 ×	10  0.008651 1.55 × 10  0.008518 2.65 ×	10  0.008253 

Figure 16. The repeated cells are presented where: (a) the new repeated cell is double the previous
one and it is repeated eight times; (b) the new repeated cell consists of four-times the old cell, and it is
repeated four times; (c) the cell will be repeated two times.

4.4.2. Periodic Structures Having Plastic Material

This was also investigated for a plastic material (PVC: polyvinyl chloride) having Young’s
modulus of elasticity of E = 3.4 GPa and a density of ρ = 1330 kg

m3 for the two applications under
forced excitation and seismic loading. The results are shown in Table 7. The values measured had
the same inspection, determining the acceptance of the analysis deduced, by which for low and high
driving frequencies, the response was more acceptable than intermediate frequencies in comparison
with FEM. The percentage difference between the two approaches for the two applications when PVC
material is assigned are established in Table 8. The table shows that the measured elapsed time for
the FEM took approximately 22×more time than the RM to compute the FRF for the truss structure
under the two types of loadings. Moreover, FEM consumed a high amount of time in the computations
during the implementations of the frame structure under seismic load, where it took 150×more time
than the RM to compute the FRF.

Table 7. The modulus of displacement in the x-direction for the excited node under three different
natural frequencies, for a truss application under forced vibrations, upon assignment of PVC.

# of Repeating
Times

Mode Shape #3
f = 4.4185 Hz

Mode Shape #7
f = 14.0399 Hz

Mode Shape #14
f = 33.2466 Hz

Displacement
(m)

Elapsed
Time (s)

Displacement
(m)

Elapsed
Time (s)

Displacement
(m)

Elapsed
Time (s)

16 1.94 × 10−3 0.008859 1.55 × 10−4 0.009104 2.65 × 10−5 0.009558
8 1.94 × 10−3 0.008405 1.55 × 10−4 0.009659 2.65 × 10−5 0.010223
4 1.94 × 10−3 0.008891 1.55 × 10−4 0.008590 2.65 × 10−5 0.013492
2 1.94 × 10−3 0.008651 1.55 × 10−4 0.008518 2.65 × 10−5 0.008253
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Table 8. Percentage difference for the PVC material.

Type of
Application

Type of
Loading

Type of
Damping

Time Elapsed (s) Time Ratio
( tRM

tFEM
)

Range of Frequency
Studied (Hz)

Percentage
DifferenceFEM RM

Crane
Forced

vibrations
Hysteretic
damping 12.64 0.572 =̃ 1

22 1:700 3.3584%

Harmonic
displacement

Hysteretic
damping 11.03 0.509 =̃ 1

22 1:700 17.4930%

Building Harmonic
displacement

Hysteretic
damping 86.34 0.575 =̃ 1

151 1:800 14.3027%

4.4.3. The Effect of the Number of Forces Applied

The first study on the crane included behavioral examination of the excited node under forced
vibrations. Loads were applied on one node exclusively. This section includes studying the
effectiveness of this approach for periodic structures under a large number of forces. The effect
of the number of forces is investigated in three different cases, in an increasing order of multiplying
by two. A force is added at the mid-span of the truss structure in addition to the load exerted at its
top. Then, the number of loads increases to four, after applying two excitations at 1

4 L and 3
4 L. Further

increasing includes the addition of four more forces, resulting in a periodic structure applied to eight
loads that are equal in magnitude and uniformly distanced. Table 9 presents the resultant outcomes
for the relevant test.

Table 9. Results upon adding different numbers of forces distributed equally over the periodic structure.

# of Forces
Added

Elapsed Time (s)
Time Ratio tRM

tFEM

Range of Frequency
Studied (Hz)

Range of Percentage
DifferenceFEM RM

2 70.70 0.6680 =̃ 1
106 1:1:700 9 ≤ %E ≤ 12

4 84.46 0.4909 =̃ 1
172 1:1:700 8 ≤ %E ≤ 10

8 73.85 0.6727 =̃ 1
110 1:1:700 9 ≤ %E ≤ 11

The elapsed times consumed by the FEM and the RM are displayed and compared; the time ratio
shows the high efficacy of applying this method on a high number of forces. The percentage difference
was measured at each excited node, and the results show a low difference between the two methods.
However, there were two excited nodes that showed a high difference upon interpretations. The two
nodes are the last excited node when four forces were applied, and the other is the mid-excited node
upon eight force excitations, where the percentage difference exceeded 50%. Farther studies should be
employed to illustrate a relation between the numbers of forces that can be applied with the length
of the periodic structure, while maintaining significant effectiveness. Supplementary expectations
are that when the forces are engaged with every node, the method will not be feasible for calculating
the frequency response function, since the advantage of removing the internal nodes recursively will
be obsolete.

5. Conclusions

In this paper, a further study was done on structures that cannot be designed as waveguides.
Cranes and buildings were modeled as trusses and frames, respectively, under various loading.
Trusses and frames have in their structural composition the inability to guide waves along their
longitudinal axis. Waveguides are used in various types of applications and have different methods
for accurate computations. However, structures that are not considered as waveguides consume
various applications, as well, but there are no different numerical methods for easier, faster and
precise computations.
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The recursive method is an approach used for calculating the frequency response function of
general periodic structures. In spite of the element’s complexity, a recursive method can be employed
on all types of periodic structures, as long as the internal nodes are under no load. For finding
a satisfying result, a high number of cells must be considered, which will lead to a large number of
computations. This method provides a solution close to that obtained from the reference method
(FEM), and it decreases the time consumption. The time consumed for a steel material was observed
to a have a range of ratios between 1:18 and 1:31, depending on the type of cells and the load exerted.
Displacement values were nearer to that of the finite element method at low and very high frequencies.
The percentage difference for the structures studied under various types of loading does not exceed
19%. Nevertheless, different materials were studied to have further support of the analysis. The plastic
material had much lower time ratios, in the range between 1:22 and 1:151, while the relative percentage
difference did not exceed 17%. This difference is due to the inverse of the dynamic stiffness matrix,
which will lead to a slight numerical difference between the finite element method and the recursive
method. Upon varying the number of forces, the time ratio lied in the range of 1:106 till 1:172, with a low
percentage difference.

Future examinations include studying the effectiveness of this approach for periodic structures
under a large number of forces. Expectations are that when the forces are engaged with every node,
the method will not be feasible for calculating the frequency response function, since the advantage of
removing the internal nodes recursively will be obsolete. Further studies include the types of cells to be
repeated and the effect on the frequency response function. Moreover, a more applicable solution may
be calculated by changing the type of element from linear to quadratic; therefore, vibrations at internal
nodes can be computed. Otherwise, an element with a greater mesh size should be examined, since the
increase in the mesh size will display the response for the internal nodes. The effect of the frequency
on the modulus of displacement will be also inspected, and more complex periodic structures will be
interpreted. Unsteady states in heat transfer problems may be evaluated for complex fin geometries.
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