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Abstract

This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of
proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of
which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific
instance of variable selection. The originality is that the proteins are not investigated one after the other but the best
partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the
proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting,
and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior
probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the
so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that
relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model
accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a
covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes
into account the technical variabilities that may significantly impact the observed concentrations. The main
contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form
expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy
case. The methods are numerically assessed and compared to the state-of-the-art methods (t test, LASSO,
Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass
spectrometry in selected reaction monitoring mode.

Keywords: Variable selection, Model selection, Optimal decision, Bayesian approach, Evidence, Hierarchical model,
Proteomics, Biomarker

1 Introduction
It is now generally recognized that protein expression
analysis is crucial in explaining the changes that occur
as a part of disease pathogenesis [1, 2]. In this context,
recent advances in mass spectrometry (MS) technologies
have facilitated the investigation of proteins over a wide
range of molecular weights in small biological specimens
from blood or urine samples, for instance. Notably, MS
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in selected reaction monitoring (SRM) mode has demon-
strated its ability to quantify clinical biomarkers in patient
sera [3, 4]. Consequently, a large amount of research has
been generated in proteomics based on data such as pro-
tein mass spectral intensities or protein concentrations
obtained from the spectra. Specifically, the focus is on
the selection (or discovery) of the “signature profiles,” the
so-called biomarkers. They represent, for instance, indi-
cators of normal versus pathogenic biological processes,
or positive versus negative pharmacological responses to
therapeutic intervention.
Critical to the identification of biomarkers are: (1) the

biological variability, i.e., the random variations of the
concentrations of proteins between individuals sharing
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the same biological status [5], and (2) the technical vari-
ability, which originates from the imperfections of the
measurement process used to obtain the concentrations.
Failing to address both of these variabilities within a
technique for biomarker identification may significantly
impair its performance by resulting in erroneous decision.
Furthermore, since the complexity of a status is unlikely

to be manifested through the changes in the character-
istics of just one protein, it has generally been acknowl-
edged that a set of proteins should be considered [5–8].
An additional difficulty is that they are possibly corre-
lated, imposing the use of multivariate models to account
for all the data simultaneously. These aforementioned
issues pose significant challenges in developing efficient
and robust statistical techniques for the identification of
biomarkers.
The paper tackles the problem of biomarker identifi-

cation by adopting a Bayesian approach to propose the
selection of the optimal set of variables. By providing an
elegant andmathematically rigorous framework for incor-
porating the data and the prior information within a joint
probabilistic model, the Bayesian setting allows straight-
forward modeling of both the technical and the biological
variabilities of the data.
The remainder of the paper is organized as follows.

Section 2 summarizes the state-of-the-art variable selec-
tion methods, discusses their main challenges, and out-
lines our principal contributions. Section 3 presents the
proposed formulation within the Bayesian framework, the
proposed models for the data, and the decision strategy.
Section 4 describes the data used in the numerical evalu-
ations, together with the results and their analysis. Finally,
conclusions are drawn in Section 5. A detailed description
of the model and the derivation of the analytic solution is
provided in Appendix.

2 Related work
The identification of biomarkers for diagnosis or prog-
nosis can be classically formulated as a variable selection
problem, and this problem has been paid a lot of attention
as a specific instance of model choice. Various method-
ologies exist that can be broadly classified in two cate-
gories: the frequentist hypothesis testing and the Bayesian
decision-making.
Frequentist hypothesis testing consists in deciding

between two statements, classically referred to as the
null and the alternative hypotheses, by comparing a func-
tion of the observed data to a threshold. The reader
is invited to consult [9] for a comprehensive overview.
Two closely related methods have been proposed. On
the one hand, Neyman-Pearson tests are designed to
ensure the so-called type I error. On the other hand,
p values focus on how strongly the data reject the null
hypothesis H0 by evaluating the probability of obtaining

a value as extreme as the observed one given H0 is true.
In biomarker discovery, a popular approach consists in
testing a mean difference between the case and the neg-
ative controlled populations using the classical Students’
t test or its variants [7]. The latter is a statistical hypoth-
esis test which indicates whether the difference between
two group means most likely reflects that they are sam-
ples of two different populations or, on the contrary, is
merely explained by the sampling fluctuation. However, as
the number of candidate biomarkers increases, multiple
hypothesis testing is required resulting in a higher com-
putational cost which may become prohibitive [10]. A first
solution is to perform univariate tests for each protein.
This procedure requires an adapted control of the rate

of type I errors in this particular setting where multiple
hypothesis tests are conducted simultaneously. Two types
of procedures were proposed for this purpose, namely the
so-called family wise error rate or the false discovery rate
[11, 12]. A common criticism of frequentist approaches is
that they fail to take into account prior information about
the problem at hand such as interdependencies between
the different variables.
For a large number of candidate variables, regres-

sion analysis [13] provides an alternative to the above-
mentioned methods. The principle is to assume that a
given outcome is related to a linear combination of a
set of explanatory variables called the predictors. In pro-
teomics, logistic regression models are considered that
express the probability to have a disease as a function of
the protein abundances [14–16]. Then, variable selection
is classically performed using stepwise procedures that
consists in successively adding or removing predictors,
estimating the regression coefficients, and evaluating the
goodness of fit of the subsequent model. Different crite-
ria can be considered such as the R-squared, the adjusted
R-squared, or the Akaike Information Criterion [17, 18].
Such techniques are referred to as backward elimination
and forward selection, respectively [13]. However, these
selection procedures are prone to overfitting and the vari-
ance of the parameter estimates becomes high in the
presence of correlated predictors. Regularizationmethods
alleviate these difficulties by considering the minimum of
a penalized least squares error as estimate. Since the Ridge
regression in 1970 [19], several algorithms have been pro-
posed that differ between one another with respect to
the considered penalization of the regression parameters.
The well-known LASSO [20] considers a L1-norm penalty
and has the advantage of directly removing irrelevant
predictors by shrinking their coefficients to zero. More
recently, the elastic net [21] which combines the advan-
tages of the Ridge and LASSO regressions has been pro-
posed. In the presence of correlated variables, it outper-
forms LASSO by favoring the selection of sets of variables.
A comparison between these methods in application to
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genome selection is presented in [22]. Although widely
used, regression analysis is based on an ad hoc model
that may not reflect the physical nature of the observed
data. Further, it does not explicitly accommodate cor-
relations between the candidate biomarkers as well as
measurement errors.
The Bayesian framework offers an alternative formu-

lation of model selection. The candidate models are
assigned prior probabilities that are combined with the
likelihood function to yield the so-called posterior proba-
bility. The latter summarizes all the available information
to make the decision. In this context, deciding in favor
of the a posteriori most probable model is optimal in the
sense that it minimizes the risk associated to the 0/1 cost-
function. There have been a lot of debates over the use
of Bayesian techniques in place of frequentist approaches,
but they do not address exactly the same question. Fre-
quentist methods are designed to test the departure of
the data from a pre-defined null hypothesis. In contrast,
Bayesian selection procedures evaluate the plausibility of
a given hypothesis given a set of candidate hypotheses
hence are conveniently well-suited to multiple hypothe-
ses testing. Thus, non-nested models can be compared
in a straightforward manner. Another fundamental dif-
ference is the treatment of unknown model parameters.
In the frequentist approach, they are classically replaced
by estimates whereas in the Bayesian formulation, they
are integrated. The latter procedure has the advantage of
automatically penalizing complex models, as discussed in
[23], but often leads to intractable calculations. An addi-
tional advantage is that correlations between the model
variables can be easily accounted for in the design of
the prior distributions. As for the integration over the
unknown parameters, several solutions have been devel-
oped. The Laplace approximation of the integrand leads to
the well-known Bayesian information criterion (BIC). As
an alternative, numerical integrations can be performed
based on stochastic sampling techniques such as Markov
Chain Monte Carlo (MCMC) methods [24]. Either across
or within model-based techniques can be considered. In
the first case, the model index is sampled jointly with
the parameters conditionally upon the observations. A
well-known algorithm is the Reversible-Jump MCMC but
moves between the different parameter spaces are dif-
ficult to design. In the second case, posterior samples
of the parameters are generated conditionally upon each
candidate model and then used to evaluate the inte-
grated likelihood, also called evidence [25]. Nevertheless,
the harmonic mean-based estimator exhibits instabilities
[26]. Applications of theMCMCBayesian model selection
methods in genomics can be found in [27, 28].
In this paper, a Bayesian setting is adopted to iden-

tify a set of protein biomarkers from experimental data
consisting of measured protein concentrations and the

associated biological statuses of a population of indi-
viduals. The novelty is that the decision is not made
protein by protein. As an alternative, the problem is for-
mulated as directly finding the best partition of the list
of proteins into two subsets, namely discriminant and
non-discriminant, in the sense that it yields the highest
posterior probability. Regardless of their discriminative
power, the proteins are assumed Gaussian distributed.
However, for the subset of biomarkers, the parameters of
the Gaussian distribution take different values depend-
ing on the biological status whereas this is not the case
for the second subset of proteins. The preliminary version
of this hierarchical model has been presented in [29]. Its
advantages are threefold. First, it is not based on an ad
hoc explanatory model unlike regression analysis. Second,
the proteins within a given group are assumed a priori
correlated and the dependency structure is integrated out
along with the remainder of the unknown model parame-
ters so that only the protein partition is estimated. Thus,
our approach intrinsically takes into account correlations
between the candidate biomarkers. Third, by choosing
appropriate conjugate prior distributions for the parame-
ters, the model evidences can be calculated in closed form
and there is no need to resort to computationally extensive
numerical techniques. Finally, we show that our hierarchi-
cal model can be easily extended to address errors in the
measured concentrations.

3 Problem formulation, proposedmodels, and
methods

To formulate the biomarker selection problem and con-
struct its solution in the proposed framework, we first
introduce the basic modeling for the relevant quan-
tities/variables at hand: the biological status, protein
concentrations, number of individuals,. . . including the
descriptions of the considered observation models.

Distribution for status and concentration Regarding
the biological status, it is denoted by b and takes two
values,H and P , for healthy and pathological. It is conve-
niently described by a Bernoulli random variable B with
parameter p

B|p ∼ B(b ; p) . (1)

Regarding the proteins, let us note P is their number and
x ∈ R

P is the collection of their concentrations. Each pro-
tein can be discriminant or non-discriminant and then
accordingly labeled by + or −. The vector x+ and x−,
with sizes P+ and P− (we have P = P+ + P−), stand
for the respective concentrations. Otherwise, within the
P proteins, there are 2P possible partitions referred to
as δ ∈ {+,−}P since each protein can be discriminant
and non-discriminant. Following the clinically observed
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behavior, from a probabilistic standpoint, the concentra-
tions are described by normal distributions in order to
account for biological variabilities within the populations.
Specifically, for the non-discriminant proteins, the con-
centration vector x− is modeled by a unique multivariate
normal distribution with common parameters (mC ,�C)

regardless the biological status:

X−|mC ,�C ∼ N (x−;mC ,�C) . (2)

On the other hand, for discriminant ones, the concentra-
tion vector x+ is modeled, conditionally on status b, by
a multivariate normal distribution with mean and preci-
sion (mH,�H) and (mP ,�P) for healthy and pathological,
respectively:

{
X+|b = P , δ,mP ,�P ∼ N

(
x+ ; mP ,�P

)
,

X+|b = H, δ,mH,�H ∼ N
(
x+ ; mH,�H

)
.

(3)

Marginally, the concentrations of discriminant proteins
are distributed according to a mixture of two Gaussian
distributions

X+|p,mP ,�P ,mH,�H ∼ pN
(
x+;mH,�H

)
+ (1 − p)N

(
x+;mP ,�P

)
.

In addition, it is assumed that X+ and X− are condition-
ally independent.
The parameters of the distributions are collected in the

vector θ = [
mP ,�P ,mH,�H,mC ,�C , p

]
considered as

unknown. It is important to keep inmind that the quantity
of interest is the partition δ.

Distribution for the individuals The total number of
individual isN and (xn, bn) is the nth concentration vector
and status. They are modeled as independent condition-
ally on θ . Let us denote x (size P × N) as the matrix of
concentrations and b (size N) as the vector of biological
statuses. Also, let IH and IP be the subsets of indices
for healthy and pathological individuals, respectively, and
NH,NP their cardinality. For notational convenience, we
introduce: NC = NH + NP and IC = IP ∪ IH (where
NC = N and IC = {1, 2, . . . ,N}).
Given the models (1) for the status and (2)–(3) for the

non-discriminant and the discriminant proteins, based on
the assumptions that X+

n and X−
n are conditionally uncor-

related and that the individual concentrations are also
conditionally independent, the distribution of the concen-
trations and status (x, b), given the unknown parameters θ

and partition δ, is:

fX,B|�,�(x, b|θ , δ) (4)

=
∏
n

fX,B|�,� (xn, bn|θ , δ)

=
∏
n

fX|B,�,� (xn|bn, θ , δ) PB|� (bn|θ)

=
∏
n∈IP

N
(
x+
n ;mP ,�P

)
×
∏

n∈IH
N
(
x+
n ;mH,�H

) ∏
n∈IC

N
(
x−
n ;mC ,�C

)
×
∏
n∈IC

PB|�(bn|θ)

It can be seen (see Appendix 1) that the exponential
arguments of the Gaussian distributions in the first three
factors can be reformulated based on the empirical means
and covariances for each index set IP , IH, and IC . The
result is shown here only for the first factor:∏
n∈IP

N
(
x+
n ;mP ,�P

) = (2π)−P+NP/2|�P |N/2 (5)

exp
[
−NP

2
Tr
(
�P
[
R̄+
P + (x̄+

P − mP
) (
x̄+
P − mP

)t])]

where x̄+
P and R̄+

P are the empirical mean and covariance
of the x+

n for the individuals n ∈ IP . Moreover, regarding
the probability for the statuses, we have:∏

n∈IC
PB|�(bn|θ) = pNP (1 − p)NH

that is only based on the size of each index set IP and IH.

Observations Given the previously described concentra-
tions, the proposed developments include two cases for
the observation model:

1. In the first one, the concentrations xn are directly
observed.

2. The second one accounts for noise: observations
write yn = xn + εn, where εn is modeled as a
zero-mean Gaussian vector with precision �ε .

Both of them account for biological variabilities and the
latter also includes technological variabilities that arise
from both the functioning of the measurement system
itself and the post-processing of the spectra. Thesemodels
are referred to as “noiseless model” and “noisy model”. The
corresponding variable selection methods are respectively
presented in Sections 3.1 and 3.2.

Prior distributions The choice of the prior distribu-
tion for the unknown parameters is important. First of
all, it must allow us to account for available information
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(e.g., nominal values and uncertainties, strong uncertain-
ties,. . . ). Second, it should also enable analytical calcula-
tions or numerical computations. To this end, the prior
density is chosen as a separable prior distribution, i.e., for
the noiseless case

π�|�(θ |δ) =πP (mP ,�P |δ) πH (mH,�H|δ)
πC (mC ,�C |δ) πP(p) (6)

for (mP ,�P), (mH,�H), (mC ,�C), and p. For the noisy
case, in addition, we have a factor π(�ε) for �ε inde-
pendent from the other variables. Regarding these five
variables individually, the choice is driven by a conjugation
principle [30]:

• The probability p is assumed a Beta distributed
variable with parameter (a, b).

• The (m×,�×) are assumed to be Normal-Wishart
NW distributed with parameters (μ×, η×,�×, ν×),
for × ∈ {P ,H, C}. See Appendix 2.

• The precision �ε is under a Wishart distribution with
parameters (�ε , νε). See Appendix 2.

In the subsequent developments, we proceed with the
calculation of the posterior probability for the partitions
δ in the two cases: noiseless concentrations in Section 3.1
and noisy concentrations in Section 3.2. One of the nov-
elty is an explicit analytical result for the noiseless case and
a precise approximation for the noisy case.

3.1 Selection using the noiseless data
Optimal decision-maker The question of the paper is
the one of the identification of a set of discriminant pro-
teins, and it amounts to making a decision regarding the
partition δ. To build an optimal decision-maker, a binary
loss is considered that assigns a null loss to the correct
decision and a unitary loss to the incorrect decisions. The
risk is the mean loss over the models δ, the data (x, b),
and the unknown parameters θ . The optimal decision-
maker is defined as the risk minimizer, and it is known
to be the one that selects the most a posteriori probable
model. It should be noted that alternative loss functions
could be chosen, for instance, one that would penalize
differently erroneous partitions depending on the num-
ber of biomarkers properly identified. In this case, the
decision would still be based on the posterior probabil-
ities but with a different rule. However, our choice not
only leads to a simple identification procedure but also
naturally prevents overfitting.
Thus, the point is to calculate the posterior probability

P�|X,B(δ|x, b) for each candidate model δ. It is carried out
using the Bayes rule as:

P�|X,B(δ|x, b) = P(� = δ) fX,B|�(x, b|δ)∑
δ P(� = δ) fX,B|�(x, b|δ) (7)

and it crucially depends on the so-called evidence

fX,B|�(x, b|δ) =
∫

θ

fX,B,�|�(x, b, θ |δ) dθ

which can be rewritten by factorization

fX,B|�(x, b|δ) =
∫

θ

π�|�(θ |δ) fX,B|�,�(x, b|θ , δ) dθ . (8)

This calculation is the main difficulty of the paper and
more generally in variable and model selection.
In order to carry out this calculation, let us note that

the likelihood fX,B|�,�(x, b|θ , δ) factorizes (see Eq. (4)) and
that the prior π�|�(θ |δ) also factorizes (see Eq. (6)). So,
we have:

fX,B|�(x, b|δ) =
∫

θ

NW(mP ,�P) NW(mH,�H)

NW(mC ,�C) πP(p)∏
n∈IP

N
(
x+
n ;mP ,�P

) ∏
n∈IH

N
(
x+
n ;mH,�H

)
∏
n∈IC

N
(
x−
n ;mC ,�C

) ∏
n∈IC

PB|�(bn|θ) dθ

that can itself be factorized in four integrals: three
w.r.t. the couple of variable regarding the concentrations
(mP ,�P), (mH,�H), (mC ,�C) and one w.r.t. the preva-
lence p:

fX,B|�(x, b|δ) = I+
P (x) I+

H(x) I−
C (x) J (b)

where the integrals w.r.t. them×,�× read

I�×(x) =
∫
m×,�×

NW(m×,�×)
∏
n∈I×

N (x�
n;m×,�×)

dm× d�× ,
(9)

with × ∈ {P ,H, C} and � ∈ {+,−} and the integral w.r.t. p
reads

J (b) =
∫
p
πP(p)

∏
n∈IC

PB|�(bn|θ) dp .

As far as the three integrals I�× are concerned, the cal-
culations are founded on the reduced form (5) for the
likelihood (including empirical means and variances) and
on the Normal-Wishart prior (23) in Appendix 2 for the
(m×,�×). Practically, thanks to the conjugacy property,
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the integrand in (9) involves the posterior for (m×,�×)

which is Normal-Wishart with parameters

ν
�pst
× = ν× + N×

η
�pst
× = η× + N×

μ
�pst
× = (

N×x̄�× + η×μ×
)
/(N× + η×)(

�
�pst
×
)−1 = (�×)−1 + N×R̄�× + N×η×

(
μ× − x̄�×

)
× (μ× − x̄�×

)t
/ (N× + η×)

where “pst” stands for posterior. The finalization of the
development relies on the fact that the Normal-Wishart
density sums to one: without effective complicate cal-
culus, this yields the result as the ratio of normaliation
constants

I�× = KNW�pst
×

KNW�pri
×

where KNW is the normalizing constant of the Normal-
Wishart density given by (24) in Appendix 2 and where
“pri/pst” stands for “prior/posterior”.
As a whole, the analytical calculation of the integral

in (8) is possible and yields:

fX,B|�(x, b|δ) ∝ KNW+pst
P

KNW+pri
P

KNW+pst
H

KNW+pri
H

KNW−pst
C

KNW−pri
C

(10)

rendering the usually complex calculations of the evi-
dences straightforward.
Assuming that all candidate models are equally a priori

probable, from Eq. (7), the posterior probability across the
2P models can be inferred. The selected model is the one
which maximizes this probability. It should be noted that
if prior information is available such as protein-to-protein
interactions (PPI’s), it can be taken into account by assign-
ing a higher probability to partitions wherein the related
proteins are in the same subset (either discriminant or
not). In Eq. (10), the normalizing constants for the pos-
terior distributions depend on the empirical covariance
matrices of the population of individuals for the discrimi-
nant proteins and the non-discriminant ones, respectively.
Their computation is expensive. However, it suffices to
compute once the full covariance matrix for all the pro-
teins and then remove the appropriate raws and columns
for the 2P configurations to be tested.

3.2 Selection using noisy data
The model presented above assumes that the concen-
trations are directly observed. Although this assumption
leads to closed-form expressions of the posterior proba-
bilities, it may be too simplifying. In practice, the concen-
trations are known up to an uncertainty and this section
extends the above-detailed developments to account for

these uncertainties. However, this comes at the price
of intractable calculations, and to overcome this diffi-
culty, we propose a suitable approximation. As introduced
above, the measured concentrations are modeled as yn =
xn+εn where εn is a zero-mean Gaussian vector with pre-
cision �ε , therefore yn|xn ∼ N (xn; 0,�ε). Similarly to the
previous section, the vectors of observed concentrations
are stacked in a matrix y of dimension P×N . To select the
most probable model, the evidence fY ,B|�(y, b|δ) must be
calculated for each candidate model (it was fX,B|�(x, b|δ)
for the noiseless model). The difficulty is that the calcula-
tion of evidence requires not only the marginalization of
the model parameters but also of the true concentrations.
Furthermore, the precision �ε is assumed unknown and
must also be marginalized. For notational convenience,
we state: θ̃ = [θ ,�ε] as an extended vector of unknown
parameters.
By taking into account the conditional independencies,

the evidence can be expressed as:

fY ,B|�(y, b|δ) =
∫
x

∫
θ̃

∏
n∈IC

N (yn; xn,�ε)

∏
n∈IP

N
(
x+
n ;mP ,�P

) ∏
n∈IH

N
(
x+
n ;mH,�H

)
∏
n∈IC

N
(
x−
n ;mC ,�C

) ∏
n∈IC

PB|�(bn|θ)

π
�̃

(
θ̃ |δ
)
dθ̃ dx

(11)

This multiple integral can be handled in several man-
ners. We propose to first perform integration with respect
to θ̃ and then to integrate the result with respect to x;
hence, Eq. (11) can be rewritten as:

fY ,B|�(y, b|δ) =
∫
x
Iε(x) I+

P (x) I+
H(x) I−

C (x) dx

where

Iε(x) =
∫

�ε

W(�ε)
∏
n∈IC

N (yn; xn,�ε) d�ε (12)

and in the same manner as previously

I�×(x) =
∫
m×,�×

NW(m×,�×)
∏
n∈I×

N
(
x�
n;m×,�×

)
dm× d�×

(13)

with × ∈ {P ,H, C} and � ∈ {+,−}. The integrals (12) and
(13) can be calculated analytically.
On the one hand, the integrand of (12) can be rewrit-

ten, up to a proportionality constant, as the distribution
of the precision matrix �ε conditionally upon y and x.
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This distribution is Wishart with parameters
(
ν
pst
ε ,�pst

ε

)
expressed as:⎧⎪⎨
⎪⎩

ν
pst
ε = ν

pri
ε + NC(

�
pst
ε

)−1 =
(
�

pri
ε

)−1 +
NC∑
n=1

(yn − xn)(yn − xn)t.

Then, (12) can be re-arranged as:

Iε(x) = KWpst
ε

KWpri
ε

(2π)−NCP/2 (14)

= TP,N
(
x; νpriε + 1 − P, y,

(
�

pri
ε

)−1
, IN
)

where KW�
ε is the normalization constant of the Wishart

distribution and TP,N (T ; q,M,	,
) denote the matrix t-
distribution of parameters q, M, 	, and 
, for a matrix
T of dimensions P × N . The expression is recalled in the
“Matrix variate t-distribution” section of Appendix 2.
On the other hand, the integrals I�× can be computed

in the same manner as in the previous section using the
conjugation property for the couples (m×,�×). Thus, we
have:

I�×(x) = (2π)−N×P�/2 KNW�pst
×

KNW�pri
×

(15)

with KNW�pst
× and KNW�pri

× the normalization con-
stants of the prior and posterior Normal-Wishart distri-
butions for (m×,�×), respectively.
In (11), the result of the first integration with respect to

θ̃ does not yield an expression that can be integrated ana-
lytically w.r.t. x. To address this issue, we propose to take
advantage of the fact that a matrix variate t-distribution
TP,N (T ; q,M,	,
) tends to a Gaussian distribution when
the degrees of freedom parameter q tends to infinity.
In a first step, for a high enough value of νpriε , (14) can be

approximated as:

Iε(x) �
∏
n∈IC

N
(
xn; yn,�

pri
ε

(
ν
pri
ε + 1 − P

))
.

In a second step, the integrals I�× can also be approxi-
mated by Gaussian distributions although not directly. For
this purpose, we focus on the factor of (15) that depends
on the true concentration vectors:

I�×(x) = C�×
∣∣∣(��×

)−1 + N×R̄�× + N×η×
(
μ× − x̄�×

)
× (μ× − x̄�×

)t
/ (N× + η×)

∣∣∣−ν
pst
× /2

(16)

where C�× is a proportionality constant.
Contrary to (14), the expression (16) does not cor-

respond to a standard probability density function. To
make the calculations tractable, we propose to replace
the empirical means of the true concentrations x̄�× by

their approximated values computed from the measured
concentrations ȳ�×. By developing the expression of the
empirical covariance matrix in (16), it ensues:

I�×(x) � C�×

∣∣∣∣∣∣��× +
∑
n∈I×

(
x�
n − ȳ�×

) (
x�
n − ȳ�×

)t∣∣∣∣∣∣
−ν

pst
× /2

= C�×
∣∣∣��×

∣∣∣−ν
pst
× /2

∣∣∣ IP + (��×
)−1
(
x�

× − ȳ�

×
)

×
(
x�

× − ȳ�

×
)∣∣∣−ν

pst
× /2

,

∝ TP,N
(
x�

×; ν
�pst
× + 1 − P�, ȳ�

×,�
�×, IN

)

where��× = (��×
)−1 + N×η×

(
μ× − x̄�×

) (
μ× − x̄�×

)t
(N×

+ η×) and ȳ�

× is a matrix of dimensions P� × N× whose
columns are all equal to the empirical mean ȳ�×. Then,
provided ν

pri
× is high enough, we can also approximate this

matrix variate t-distribution by a Gaussian distribution as
for (12):

I�×(x) ∝
∏

n∈I×
N
(
x�
n; ȳ�×,��×/

(
ν
pri
× − P� + 1

))
The performed approximations allow us to express the

integrand of the evidence (11) as a product of Gaussian
distributions for the true concentration vectors. In this
case, the integration can be carried out analytically. By
treating separately pathological and healthy individuals,
we finally obtain the following expression of the evidence:

fY ,B|�(y, b|δ) �
(

η
+pri
P η

+pri
H

η
pst
P η

pst
H

)P+ (
η

+pri
C

η
pst
C

)P−

×
∣∣∣�pri

P �+
p

∣∣∣−ν
pri
P
∣∣∣�pri

H �+
H

∣∣∣−ν
pri
H

×
∣∣∣�pri

C �+
C

∣∣∣−ν
pri
C

× |	P |−1/2 |	H|−1/2

exp
(
−Tr

(
	−1

P R̄y
P + 	−1

H R̄y
H

)
/2
)

(17)

In this expression, R̄y
P and R̄y

H are the empirical covari-
ance matrices of the measured concentration vectors for
the pathological and healthy individuals, respectively. As
for 	H and 	P , they are defined as:

	× = �−1
ε

ν
pri
ε + 1 − P

+ blkdiag
[

�+×
ν
pri
× + 1 − P+ ,

�C

ν
pri
C + 1 − P−

]

with × ∈ {P ,H} and blkdiag(A,B) the block-diagonal
matrix with diagonal elements A and B.
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4 Numerical evaluation
To assess the performance of the proposed method, we
have performed extensive numerical experiments using
both simulated and real data. They include comparisons
with other methods for biomarker identification, namely:

1. The t test [31], which consists in comparing the
means of each protein concentrations between the
two cohorts,H andP . If the null hypothesis, standing
for the mean equality, is rejected, then the protein is
declared as a biomarker. The type I error, denoted as
α, corresponds to the incorrect rejection of a true null
hypothesis. Its value is used to set the t test decision
threshold. In this paper, it is not necessary to adjust
the type I errors to account for multivariate effects.
The reason is that, for fair comparison purposes, we
directly select the setting that leads to the best
performance of the test regarding our criterion. This
point is commented in Section 4.1 and Fig. 2.

2. The LASSOmethod [20], based on a linear regression
model in which the explanatory variables are the
protein concentrations x, while the response variables
are the biological statuses b. The LASSO method
estimates the coefficients of the model by minimizing
the sum of the squared errors, with a L1-norm
penalty. Then, a protein is selected as a biomarker if
the value of the coefficient corresponding to its
concentration is different from zero. This method
introduces a regularization parameter denoted λ.

3. The Bhattacharyya distance [32] is a measure of
similarity between two probability distributions and
by extension between two populations of individuals
[32]. For two multivariate normal distributions with
respective mean and covariance matrix (μ1,	1) and
(μ2,	2), it is given by:

Db = 1
8
(μ1 − μ2)

T	−1(μ1 − μ2)
T + 1

2

log
(

det(	)√
det(	1)det(	2)

)

with 	 = (	1 + 	2)/2.
In the sequel, the Bhattacharyya distance is
calculated for each protein by replacing the true
mean and covariance matrix by their empirical
estimates. The protein is declared as discriminant if
the distance is greater than a fixed threshold denoted
t. The algorithm is referred to as Bha-distance.

4. The FOHSIC algorithm as introduced in [33]. It
performs feature selection based on the
Hilbert-Schmidt Independence Criterion (HSIC).
The authors propose an unbiased estimator of HSIC
and then, assuming the number of significant
features is set a priori, use a forward procedure to

select them. In our context, the significant features
are the biomarkers.

In this section, we refer to the method from Section 3.1
as the Bayesian Model Selection with Analytical Solu-
tion for Noiseless Data (BMS-AS-D) method, while to the
method from Section 3.2 as the Bayesian Model Selec-
tion with Analytical Solution for Noisy data (BMS-AS-N)
method.
Crucial to our approach is the choice of the param-

eters of the Normal-Wishart densities (ν×, η×,μ×,�×)

for × ∈ {P ,H, C}. They are referred to as the hyperpa-
rameters since the evidence (10) depends on them. In a
non-informative case, the values of these hyperparame-
ters are chosen to be (0, 0, 0,∞), while the proportionality
coefficient in (10) has an undetermined form. As an alter-
native, to tune the parameters, we propose to use a poorly
informative prior based on expert knowledge1 about the
corresponding variables (e.g., the values in μg/ml). To this
end, we take advantage of the expression of the prior
mean and the covariance for (m×,�×) as a function of the
hyperparameters:

E(�×) = ν×�× (18)
E(m×) = μ× (19)
V (m×) = �−1× /

[
η×
(
ν× − P∗ − 1

)]
(20)

cov
(
�
i,j
× ,�k,l

×
)

= ν×
(
�il×�

jk
× + �ik×�

jl
×
)
, (21)

where the superscripts i, j denote the entry (i, j) of the
matrices, E(·) and V (·) refer to the expectation and the
covariance matrix of a vector, respectively, while cov(·, ·)
stands for the covariance between two random variables.
We also recall that ∗ ∈ {+,−, “ "} depending whether
the discriminant/non-discriminant subsets of proteins are
considered or the whole set. As a consequence, the prior
parameters (ν×, η×,μ×,�×) can be calculated from (18)
to (21) and substituted in (10). Although our choice of
prior is not non-informative in the strict sense, it is vague
enough so as not to impact biomarker detection. This
issue is investigated in the next subsection.
Finally, to calculate (17) in the noisy case, additional

hyperparameters for theWishart probability density func-
tion of the noise precision matrix have to be tuned. They
are chosen such that E(�ε) = ν

pri
ε �

pri
ε and that the ele-

ments of the covariance matrix satisfy cov
(
�
i,j
ε ,�k,l

ε

)
=

ν
pri
ε

(
�

pri,il
ε �

pri,jk
ε + �

pri,ik
ε �

pri,jl
ε

)
. Therefore, by account-

ing for real-life orders of magnitudes of �ε , the prior
parameters

(
ν
pri
ε ,�pri

ε

)
can be calculated and substituted

in the probability (10).
In the next sections, we present the results of the numer-

ical evaluations of the proposed methods using both
simulated and real data.
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4.1 Evaluation using simulated data
4.1.1 Description of the simulated data and performance

index
We consider the concentrations of a list of P proteins for a
group which comprises NH healthy and NP pathological
individuals, respectively, with NH + NP = N . The possi-
ble partitions for discriminant/non-discriminant proteins
thus amount to 2P and they are referred to as true models.
For each true model, Nr = 105 data realizations are simu-
lated, hence the total number of realizations equals Nr 2P.
On the one hand, the noiseless data comprise the biolog-

ical statuses bn and the actual protein concentrations xn of
the N individuals and are generated as follows. The bio-
logical statuses are sampled from the Bernoulli distribu-
tion of parameter p, where p is assumed Beta distributed
of parameters a = 1 and b = 1, which corresponds to
a uniform distribution. The concentrations of the subset
of discriminant proteins are generated from the Gaus-
sian distributions, N

(
x+
n ;mH,�H

)
or N

(
x+
n ;mP ,�P

)
,

depending on the simulated biological status. The sub-
set of non-discriminant proteins are sampled from
N
(
x−
n ;mC ,�C

)
. The parameters (m×,�×), where × ∈

{P ,H, C}, are distributed according to the Normal-
Wishart distribution NW(ν×, η×,μ×,�×). The orders
of magnitudes for (m×,�×) are specified as: E(m×) =
1031P∗ , V (m×) = 104 IP∗ , E(�×) = 103 IP∗ , V (�×) =
104 IP∗ , where 1P∗ denotes a vector of size P∗ whose ele-
ments are all equal to 1 and IP∗ is the identity matrix of
size P∗. The same order of magnitude is considered for
healthy, pathological, and common parameters, that is to
say × ∈ {H,P , C}. These a priori information are used to
tune the hyperparameters as given by (18)–(21).
On the other hand, the noisy data include the biological

statuses bn and the observed protein concentrations yn for
n = 1, 2 . . .N . The protein concentrations xn are gener-
ated as in the case of the noiseless observations by using
the same hyperparameter setting. As for the noise εn, it
is sampled as a zero-mean multivariate Gaussian random
vector with precision matrix �ε . The latter is generated
from a Wishart density with parameters

(
ν
pri
ε ,�pri

ε

)
. In

order to determine these hyperparameters, the a priori
information is specified as: E(�ε) = 10−2 IP , V (�ε) =
10−5 IP . Note here that �ε measures the precision (inverse
variance), thus the lower �ε is, the stronger the noise is.
For each data set, the posterior probability is computed

for all possible partitions according to (10) or (17) for the
BMS-AS-D and BMS-AS-N methods, respectively. Then,
the most probable partition is selected.
The performance is measured in terms of the error rate

τ , defined as:

τ(%) =
⎛
⎝ 2P∑

i=1
Ei/
(
Nr × 2P

)⎞⎠× 100

where Ei is the number of realizations of the ith partition
for which the selected model is different from the true
one. It should be noted that the usual type I and type II
errors apply when the biomarker identification is made
protein after protein but they are not relevant here, since
the proteins are addressed as a whole. Indeed, as under-
lined in Section 3, the proposed Bayesian formulation
relies on a different paradigm than the existing methods:
any wrong or correct decision regards the list of proteins
as a whole (and not protein-wise). Furthermore, the pro-
posed approach minimizes a global risk and cannot be
directly related to a given false discovery rate. It ensues
that τ , which encompasses all types of errors, appears as a
suitable criterion to measure the performance.

4.1.2 Results for the noiselessmodel
First of all, we investigate the sensitivity of the error rate
τ(%) to the hyperparameter tuning. In Fig. 1, we plot the
latter as a function of the considered variance V (m×) in
Eqs. (18)–(21). We can observe that provided the variance
is chosen superior to a given threshold, it has no impact
on the biomarker detection performance. This is the case
for our settings.
Before going further in analyzing the performance, it

should be noted that the t test, the LASSO, and the Bat-
tacharyya distance all require the setting of a parameter:
the type I error α, the regularization parameter λ, and the
threshold t, respectively. So as not to favor our approach,
we have run all the algorithms for different values of these
parameters and we have selected the best one (in order
to get the lowest error rate). Such a procedure cannot
be applied on real data, but it allows us to compare the
proposed method to the best version of the alternative
approaches. The results are given in Fig. 2 for the t test
and the LASSO.
The performance of the BMS-AS-D method has first

been evaluated as a function of the number of proteins and
results are shown in Table 1. The superior performance

Fig. 1 The mean is fixed, and different values of the variance are
considered. P = 3, N = 103, Nr = 105
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Fig. 2 Error rate τ(%) for the t test with different values of the type I error (left) and for the LASSO with different values of λ (right)

of the BMS-AS-D method with respect to the t test is
expected since the BMS-AS-D makes a decision jointly
across all the proteins while accounting for all possible
correlations between them. This issue is not addressed
within the t test which is univariate, i.e., each protein is
tested separately. The same observation can be made for
the Bhattacharyya distance. Indeed, the error rate of the
t test and the Bhattacharyya distance are very close. As
for the superiority of the BMS-AS-D method over the
LASSO, it is due to the fact that the latter makes the
assumption of an arbitrary linear regression relationship
between the biological statuses and the protein concentra-
tions. Moreover, the difference in performance increases
with the number of proteins, since the possibility of cor-
relation increases. Indeed, in the presence of correlated
variables, the number of significant variables is known to
be over-estimated with the LASSO algorithm. This fact
confirms the relevance of the BMS-AS-D method which
can accommodate correlations between the variables.
Regarding the number of individuals, Table 2 shows

that, as expected, the performance of all the meth-
ods improves as the number of considered individuals
increases. In particular, the better performance of the
BMS-AS-D method is explained by the reduced variance
of the protein concentration posterior distribution for a
large number of individuals. Furthermore, the BMS-AS-
D method outperforms the t test, the LASSO and the
Bhattacharyya distance, regardless the number of individ-
uals. Finally, even if the number of configurations to be

Table 1 Noiseless data: τ (%) for different value of P, N = 1000

P 1 2 3 4

Best t test 0.2555 0.4025 0.471 0.5209

Best LASSO 0.3185 4.865 14.207 27.2655

Best Bha-distance 0.2245 0.3743 0.4496 0.5008

BMS-AS-D 0.0935 0.1434 0.1563 0.1616

tested increases exponentially with the number of pro-
teins, the computational cost is kept reasonable owing to
the analytical expression of the posterior probabilities for
the different partitions.
Last but not the least, our method can also be run for a

fixed number of biomarkers as it is the case of many cur-
rent feature identification algorithms such as the FOHSIC.
Only the partitions with the proper number of biomark-
ers are studied, which amounts to assigning a null prior
probability to the others.When the number of biomarkers
is chosen as M ≤ P, the number of posterior probabili-
ties to compute is limited to CM

P instead of 2P. Under this
assumption, the performance of the BMS-AS-D is com-
pared to that of the FOHSIC in the Tables 3, 4, 5 and 6.
To run the algorithm with large P (≥ 8), the number of
realizations is reduced to 103.
As shown in Tables 3, 5, and 6, the BMS-AS-D algorithm

outperforms the FOHSIC one. This is explained by the
fact that the BMS-AS-D algorithm makes a multivariate
decision on the whole set of proteins, while the FOHSIC
uses a forward procedure which can lead to error accumu-
lation. Indeed, if any detected biomarker in the sequence
is false, then the final selected model is bound to be erro-
neous. Furthermore, the BMS-AS-D is also faster than the
FOHSIC, as illustrated in Table 4. More precisely, Table 5
shows the error rate τ for the FOHSIC and the Bayesian
algorithm for P = 8 and different number of biomarkers.
Conversely, the results proposed in Table 6 are obtained
with the number of biomarkers fixed to M = 4 while

Table 2 Noiseless data: τ (%) for different values of N, P = 3

N 100 500 1000

t test 4.041 0.8938 0.471

LASSO 20.5541 15.9870 14.207

Best Bha-distance 3.6970 0.8194 0.4496

BMS-AS-D 1.71 0.32 0.1563
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Table 3 τ (%) N = 1000 and P = 3

Number of biomarkers 2

BMS-AS-D 0.0723

FOHSIC 0.2907

the number of proteins P is varied. As expected, the per-
formance of the FOHSIC algorithm is degraded when
increasing the number of proteins while the opposite is
observed for the BMS-AS-D. Thus, even for large P, the
Bayesian algorithm outperforms the FOHSIC.

4.1.3 Results for the noisymodel
The performance of the BMS-AS-N and the BMS-AS-D
algorithms is first studied as a function of the number of
proteins P and the number of individuals N, for a fixed
noise level. Then, the BMS-AS-N and the BMS-AS-D
methods are compared for different noise conditions.
Table 7 reports the error rate τ (%) for the BMS-AS-N

and the BMS-AS-D methods. The value of the error rate
for the BMS-AS-D method is increased as compared to
the results given in Table 1. This is due to the fact that the
BMS-AS-D relies on a noiseless model, i.e., it processes
the noisy data as if they were noiseless protein concentra-
tions. That is why this result is expected, especially given
the specified severe noise conditions

(
E(�ε) = 10−2 IP

)
.

As a consequence, the performance of the BMS-AS-N
method is significantly better than the BMS-AS-D one.
Also, the difference in performance increases with the
number of proteins, since for large sets of proteins, the
number of candidate models increases and the estimation
becomes more difficult.
The performance of the BMS-AS-Nmethod is also eval-

uated for several numbers of individuals: N = 100, 500,
and 1000. Table 8 shows the results where it can be
observed that for N = 100, the error rate is higher; how-
ever, it does not exceed 13%. For the BMS-AS-D method,
the results are even poorer because of the impact of the
noise on smaller sample sizes.
To assess the importance of taking into account the

noise in the model, the respective performances of the
BMS-AS-D and the BMS-AS-N methods are also com-
pared for different noise levels. We recall that the former
is designed from the noiseless data model, while the lat-
ter specifically addresses the noisy data model. The noise
power is measured by the mean value of the noise vari-
ance E(�ε), which is varied in the simulations. Table 9

Table 4 Execution time for one simulation N = 1000 and P = 3

Number of biomarkers 2

BMS-AS-D 0.202 s

FOHSIC 0.732 s

Table 5 τ (%) for P = 8, Nr = 103, and N = 500

M: 4 6

BMS-AS-D 0.3014 0.2107

FOHSIC 0.8271 0.9107

shows the error rate for both methods as a function of
this parameter: The BMS-AS-N method always outper-
forms the BMS-AS-D one. In the absence of noise, the
BMS-AS-N method becomes equivalent to the optimal
noiseless method. These results confirm the relevance of
the method, especially for high noise levels.
As a conclusion, the results confirm the good perfor-

mance of the proposed BMS-AS-N method which is also
not too computationally intensive by means of the analyt-
ical approximation of the posterior probabilities.

4.2 Evaluation using the real data
The primary goal of this paper was to present a novel
methodology for biomarker identification that relaxes
classical simplifying assumptions on the data model and
then to evaluate it on simulated data. Nevertheless, we
had at our disposal a batch of real data2 and we used
it to carry out a preliminary study of the BMS-AS-N
method. The data are composed of 206 samples: 105 with
the status H (including 76 patients from blood donors
and 29 with negative colonoscopy), 101 with malignant
tumor3, i.e. with status P . The latter are structured as
follows: 24 patients in the ‘stage one’ of the cancer, 26
patients in the ‘stage two’, 23 patients in the ‘stage three’, 25
patients in the ‘stage four’, and three missing values. The
protein concentrations are obtained using the Bayesian
inversion method developed in [34] from measurements
of SRM spectra according to the methodology described
in [35]. For each sample, the concentrations of 21 proteins
are measured (14-3-3 protein sigma; 78-kDa glucose-
regulated protein; protein S100-A11; calmodulin; calreti-
culin; peptidyl-prolyl cis-trans isomerase A; defensin-5;
defensin-6; heat shock cognate 71 kDa protein; fatty acid-
binding protein, intestinal; fatty acid-binding protein,
liver (LFABP); stress-70 protein, mitochondrial; protein
disulfide-isomerase (PDI); protein disulfide-isomerase A6
(PDIA6); phosphoglycerate kinase 1; retinol-binding pro-
tein 4; peroxiredoxin 5, mitochondrial; protein S100-A14;
triosephosphate isomerase; villin-1 (Villin); Vimentin).
Only one of the proteins in the sample, named LFABP,
was previously identified by SRM as a biomarker [36]. To

Table 6 τ (%)M = 4, Nr = 103, and N = 500

P 8 12

BMS-AS-D 0.3014 0.1818

FOHSIC 0.8271 0.8103
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Table 7 Noisy data: τ (%) for different values of P, N = 1000

P 1 2 3 4

BMS-AS-D 16.82 32.784 48.740 63.686

BMS-AS-N 1.38 2.682 4.158 5.698

calculate the hyperparameters (18)–(21), empirical orders
of magnitudes for (m×,�×) (e.g., μg/ml) are used as spec-
ified: E(m×) = 1021P∗ , V (m×) = 103 IP∗ , E(�×) =
103 IP∗ , V (�×) = 10 IP∗ .
For this data set, the posterior probability is com-

puted for each of the 221 possible partitions according
to (17) for the BMS-AS-N methods. Table 10 presents
the four most probable partitions, with their probabilities.
By far, the most probable partition (probability 0.9986)
is: LFAPB is discriminant and the remaining 20 proteins
are non-discriminant. The second most probable par-
tition is: the whole set of protein is non-discriminant
(probability 0.001361). The third and the fourth ones
select two discriminant proteins and the 19 other are
non-discriminant: (LFABP , Villin) and (LFABP , PDIA6),
with probability smaller than 10−6. As a conclusion, the
proteins are all declared as non-discriminant, except the
LFAPB. This study confirms that our method correctly
identifies the valid biomarker.
Despite the large number of models to compare (about

two millions candidate models), the computation time is
just 1 h. This short computation time is made possible
by the analytical calculation of the posterior probabil-
ity, avoiding the use of extensive numerical integration
methods such as for instance MCMC algorithms [24].

5 Synthesis and perspectives
Biomarker discovery is a challenging task of the utmost
interest for the diagnosis and prognosis of diseases.
This paper presents a statistical approach based on vari-
able selection. It is developed in a Bayesian framework
that relies on an optimal strategy, i.e., the minimiza-
tion of an error risk. Given P candidate proteins, the
proposed procedure compares the probability of the 2P
partitions (subset of discriminant versus subset of non-
discriminant proteins). The most a posteriori probable
partition is finally retained and thus defines the selected
variables. The main difficulty is the required integra-
tion with respect to all the unknown model parameters.
An important contribution is to provide a closed-form
expression of the probabilities for noiseless observations

Table 8 Noisy data: τ (%) for different valued of N, P = 3

N 100 500 1000

BMS-AS-D 86.850 71.615 48.740

BMS-AS-N 12.477 5.781 4.158

Table 9 τ (%) for N = 1000, P = 3

E(�ε)(×IP) 10−2 10−1 1 10 102

BMS-AS-D 48.740 12.304 3.064 0.813 0.291

BMS-AS-N 4.158 1.395 0.567 0.303 0.220

and a sensible approximation for noisy observations. The
proposed method proved to be well-suited for variable
selection in a complex context. Its effectiveness is assessed
by a theoretical characterization and numerical studies
(on simulated and real data) which are in accordance
with the theoretical optimality. Furthermore, the pro-
posed method compares favorably with the t test, the
LASSO, the Battacharrya distance, and the FOHSIC.
From a methodological standpoint, several perspectives

can be considered. Regarding the concentrations, non-
Gaussian distributions, e.g., Gamma or Wishart models,
could be relevant. Regarding the status, a possible devel-
opment could account for possible errors in the given
status. In this case, an additional level should be appended
to the hierarchical Bayesian model. It would include a
prior probability for an erroneous status.
As for the applicative perspectives, we plan to fur-

ther take advantage of the performance of the method
in other clinical data sets or in other biomedical fields
(e.g., genomics, transcriptomics. . . ). In addition, we also
intend to make use of the method in other domains,
for instance, in astrophysics (identification of pertinent
features in order to classify galaxies), or for complex struc-
tures and industrial processes (identification of indicators
for detection and diagnosis of damages or faults, analysis
of fatigue and aging prevention,. . . ).

Endnotes
1 The knowledge about orders of magnitudes of the con-

centration values is acquired from the real data set pro-
vided by bioMérieux (Technology Research Department),
France.

2 SRM measurements provided by bioMérieux (Tech-
nology Research Department), France

3 colorectal cancer

Appendix 1

Reduction of the concentration distribution
This section explains how the exponential arguments of
the Gaussian distributions in (4) can be reformulated

Table 10 The four most probable partitions, for real data P = 21

Declared
biomarker

LFABP No
biomarker

LFABP and
Villin

LFAPB and
PDIA6

Probability 9.986 ×
10−1

1.361 ×
10−3

9.762 ×
10−7

8.297 ×
10−7
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based on the empirical means and covariances of the
concentrations, yielding relation (5). We have:
∏

n∈IP

N
(
x+
n ;mP ,�P

) =
∏

n∈IP

(2π)−P+/2|�P |1/2

exp
[− (xn − mP )t �P (xn − mP ) /2

]
= (2π)−P+NP /2|�P |NP /2

exp

⎡
⎣−

∑
n∈IP

(xn − mP )t �P (xn − mP ) /2

⎤
⎦

The idea is to re-arrange the sum in the exponential as
a function of the empirical mean x̄+

P and the empirical
variance R̄+

P . To this end, for the sake of calculation sim-
plicity, we can write: xn − mP = (xn − x̄+

P
)− (x̄+

P − mP
)

and develop the sum of product. Then, using the fact that
utMu = Tr

(
utMu

) = Tr
(
Muut

)
, the product is written

as function of empirical mean and variance

∏
n∈IP

N
(
x+
n ;mP ,�P

) = (2π)−P+NP/2|�P |N/2

exp
[
−NP

2
Tr
(
�P

[
R̄+
P + (x̄+

P − mP
) (
x̄+
P − mP

)t])]
(22)

which allows easier handling of the Normal-Wishart prior.

Appendix 2
Wishart, Normal-Wishart, andmatrix variate t-distribution
Wishart
TheWishart density probability function for a P×Pmatrix
� is driven by two parameters: a degree of freedom ν

(real and larger than P − 1) and a matrix � (positive and
definite) referred to as the scale matrix. It reads

W(� ; �, ν) = KW−1 det [�](ν−P−1)/2

exp
[−Tr

[
��−1] /2]

The normalizing constant KW depends on ν and �:

KW = KW(ν,�) = 2νP/2 det [�]ν/2 γP(ν/2)

where γP is the P-dimensional Gamma function.

Normal-Wishart
For a couple (m,�), where m is a P-dimensional vector
and � a P × P matrix, the Normal-Wishart density is
controled by four parameters ν, η,μ,�. It reads:

NW(m,� ; ν, η,μ,�) = KNW−1 det [�](ν−P)/2

exp
[− [Tr [��−1]

+η(m − μ)t�(m − μ)
]
/2
]
(23)

and the normalizing constant is:

KNW = KNW(ν, η,μ,�) = (2π)P/2 2νP/2 η−P/2

det [�]ν/2 γP(ν/2) ,
(24)

and it does not depend onμ (that is a position parameter).

Matrix variate t-distribution
The randommatrix T of dimension (P×N) is said to have
a matrix variate t-distribution with parameters M,	,
,
and q if its probability density function is given by

TP,N (q,M, q	,
) = γP
([
q + N + P − 1

]
/2
)

γP
([
P + p − 1

]
/2
) π−NP/2

|	|−N/2 |
|−P/2 |IP + 	−1(T − M)


−1(T − M)t|−[q+N+P−1]/2

where T andM are P×N matrices, 
 and 	 are positive-
definite matrices with respective sizes N × N and P × P
and q > 0.
When q tends to infinity, the distribution of T tends to a

Gaussian distribution with meanM and covariance	⊗


that is to sayN (T ; M,	 ⊗ 
), where ⊗ is the Kronecker
product.
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