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Abstract

We consider the three dimensional incompressible Navier-Stokes equa-
tions with non stationary source terms f chosen in a suitable space. We
prove the existence of Leray-Hopf weak solutions and that it is possible to
characterize (up to sub-sequences) their long-time averages, which satisfy
the Reynolds averaged equations, involving a Reynolds stress. Moreover,
we show that the turbulent dissipation is bounded by the sum of the
Reynolds stress work and of the external turbulent fluxes, without any
additional assumption, than that of dealing with Leray-Hopf weak solu-
tions.

Finally, in the last section we consider ensemble averages of solutions,
associated to a set of different forces and we prove that the fluctuations
continue to have a dissipative effect on the mean flow.
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1 Introduction

Let us consider the 3D homogeneous incompressible Navier-Stokes equations
(NSE in the sequel),

vt + (v · ∇) v − ν∆v +∇p = f in ]0,+∞[×Ω,

∇ · v = 0 in ]0,+∞[×Ω,

v = 0 on ]0,+∞[×Γ,

v(0,x) = v0(x) in Ω,

(1.1)

where Ω ⊂ R3 is a bounded Lipschitz domain, Γ = ∂Ω its boundary, v = v(t,x)
denotes the fluid velocity, p = p(t,x) the pressure, f = f(t,x) the external source
term, and (t,x) ∈]0,+∞[×Ω. The main aim of this paper is to study the long-
time averages of weak solutions to the NSE (1.1), namely

v(x) := lim
t→∞

Mt(v), where Mt(v) :=
1

t

∫ t

0

v(s,x) ds, (1.2)

when the source term f is time dependent, and to link it to the Reynolds aver-
aged equations (see (4.6) below). We also will consider the problem of ensemble
averages, which is closely related to long-time averages.

Long-time average for “tumultuous” flows, today turbulent flows, seem to
have been considered first by G. Stokes [28] and then by O. Reynolds [27]. The
idea is that steady-state turbulent flows are oscillating around a stationary flow,
which can be expressed through long-time averages. L. Prandtl used them to
introduce the legendary “Prandtl mixing length” (see [24] and in [25, Ch. 3,
Sec. 4]) to model a turbulent boundary layer over a plate. However, although
long-time averaging plays a central role in turbulence modeling (since it is nat-
ural as well as “ensemble averaging”) it is not clear whether the limit (1.2) is
well defined, or not.

The mathematical problem of properly defining long-time averages and to
investigate the connection with the Reynolds equations was already studied
before, but when the source term does not depend on time, namely f = f(x).

So far as we know, the first who considered this issue is C. Foias [11, Sec. 8],
when f ∈ H, where

H := {u ∈ L2(Ω)3 s.t. ∇ · u = 0, u · n = 0 on Γ}. (1.3)

Foias analysis is based on the notion of “statistical solution” introduced in [11,
Sec. 3] and he was able to prove that for any given Leray-Hopf solution v =
v(t,x) to (1.1) then:

- There exists v ∈ H, such that, up to a sub-sequence, Mt(v) → v in H as
t→∞;
- There is a stationary statistical solution µ to the NSE, which is a probability
measure on H, such that it holds v =

∫
H

w dµ(w);
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- There exists a random variable on (H,µ) called v′ (in the notation of Foias
called δv) such that

v′ =

∫
H

v′ dµ = 0 and ‖∇v′‖2 =

∫
H

‖∇v′‖2 dµ <∞,

such that (v,v′) is a solution to the Reynolds Equations given by (4.6) below. If
µ is a statistical solution, v′ is the random variable expressed by its probability
law,

Prob(v′ ∈ F ) = µ(v + F ), (1.4)

for any Borel set F ∈ H.
- According to our notations, the Reynolds stress σ(r) given by

∇ · σ(r) =

∫
H

∇ ·
[
(v − v)⊗ (v − v)

]
dµ(v),

is dissipative on the mean flow, which is one of the main challenges of such
analysis, because of the Boussinesq assumption (see in [7, Ch. 4, Sec. 4.4.3.1]).
In fact this is much more better, since Foias in [11, Sec. 8-2-a, Prop. 1, p. 99]
was able to prove that the turbulent dissipation ε is bounded by the work of the
Reynolds stress on the mean flow,

ε := ν‖∇v′‖2 ≤ (∇ · σ(r),v), (1.5)

where (·, ·) and ‖ . ‖ denote the standard L2(Ω) scalar product and norm, re-
spectively. (Sometimes norm is normalized by |Ω|, the measure of the domain,
but this is inessential). This analysis is partially reported in [12, Ch. 3, Sec. 3],
where the limit in (1.2) is replaced by the abstract Banach limit, but without
any link to the Reynolds equations and dissipation inequality such as (1.5).

The original Foias analysis is very deep and essential to the field. However,
it is worth noting that in this approach:

i) The natural time filter used to determine the Reynolds stress (initially sug-
gested by Prandtl, when the limit makes sense)

σ(r) = σ(r)(x) := lim
t→∞

1

t

∫ t

0

[(v − v)⊗ (v − v)](s,x) ds,

is replaced by an abstract probability measure that it is not possible to calculate
in practical simulations, although the ergodic assumption -which remains to be
proved- would mean that they coincide (see for instance Frisch [13]);

ii) The fluctuation given by (1.4), when the force is time independent, is a time
independent random variable, which may be questionable from the physical
point of view. In fact, when v is given by (1.2), one cannot conclude that this
v′ yields the Reynolds decomposition

v(t,x) = v(x) + v′(t,x),

in which the fluctuation is time dependent for a realistic non stationary flow.
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iii) Concerning items i) and ii) above, we can suggest that probably there are
still work to be done in the interesting field of statistical solutions, if one wants
to use this mathematical tool to face the tough closure problem in the Reynolds
equations, and apply to realistic problem. Moreover, the case of a time depen-
dent source term also remains to be considered in connection with the scope of
statistical solutions (see the warning in [11, Part I, Sec. 5, p. 313]).

Still in the case of a stationary source term, the long-time averaged prob-
lem has been also considered more recently in [21] and at the time the author
was not aware yet of the connection between time-averaging and statistical
solutions in Foias work. In [21], he studied the equation satisfies by Mt(v)
(see equations (5.1) below) for a Leray-Hopf weak solution of the NSE, and
he took the limit in this equation when the domain if of class C9/4,1 and
f = f(x) ∈ L5/4(Ω)3 ∩ V ′, where

V := {u ∈ H1
0 (Ω)3 s.t. ∇ · u = 0}, (1.6)

and V ′ denotes the dual space of V , with duality pairing < . , . >. The analysis
is based on the energy inequality, which yields a uniform estimate in time of the
L2 norm of v, and on a Lp-regularity result by Amrouche and Girault [1] about
the steady Stokes problems, valid in Ck,α domains. It is shown in [21] that there
exists σ(r) ∈ L5/3(Ω)9 and p ∈ W 1,5/4(Ω)/R such that, up to a sub-sequence,
when t→∞, Mt(v) converges to a field v ∈W2,5/4(Ω)3, which satisfies in the
sense of the distributions the closed Reynolds equations:

(v · ∇) v − ν∆v +∇p+∇ · σ(r) = f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ.

(1.7)

Moreover, it is also shown that σ(r) is dissipative on the mean flow, namely

0 ≤ (∇ · σ(r),v), (1.8)

which is weaker than (1.5).
The main part of the present study is in continuation of [21], bringing sub-

stantial improvements. The novelty is that we are considering time dependent
source terms f = f(t,x), which was never considered before for this problem,
up to our knowledge. Moreover, we do not need extra regularity assumption on
the domain Ω ⊂ R3 and on f . The first main result of this paper, Theorem 2.3
below, is close to that proved in [21]. Roughly speaking, we will show that
Mt(v) given by (1.2), converges to some v (up to sub-sequences) and that there
are p and σ(r) such that (1.7) holds, at least in D′(Ω), in which f is replaced by
f .

One key point is the determination of a suitable class for the source term.
Throughout the paper, we will take f : R+ → V ′, made of function for which
there is a constant C > 0 such that

∀ t ∈ R+

∫ t+1

t

‖f(s)‖2V ′ ds ≤ C.
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In this respect we observe our results improve the previous ones also in terms
of regularity of the force, not only because we consider a time-dependent one.
The main building block of our work is the derivation of a uniform estimate of
the L2 norm of v, for f as above (see (2.1) and its Corollary (2.2)). This allows
to prove the existence of a weak solution on [0,∞) to the NSE and to pass to
the limit in the equation satisfied by Mt(v), when t→∞.

Moreover, we are able to generalise Foias result (1.5) by proving that the
turbulent dissipation ε is bounded by the sum of the work of the Reynolds stress
on the mean flow and of the external turbulent fluxes, namely

ε = ν‖∇v′‖ ≤ (∇ · σ(r),v) +< f ′,v′ >, (1.9)

which is one of the main features of our result. Note that physically, it is
expected that (1.9) becomes an equality for strong solutions. Furthermore, we
also prove that when f is “attracted” (in some sense, see (2.5) below) by a

stationary force f̃ = f̃(x) as t→∞, then the turbulent fluxes < f ′,v′ > in (1.9)
vanish, so that (1.5) is restored. In particular, the question whether the stress
tensor σ(r) is dissipative remains an open problem for general unsteady f , as
those for which we still have global existence of weak solutions.

In the second part of the paper, we will also consider ensemble averages, often
used in practical experiments. This consists of considering n ∈ N realizations
of the flow, {v1, . . . ,vn} and to evaluate the arithmetic mean

〈v〉 :=
1

n

n∑
k=1

vk.

Layton considers such ensemble averages in [19], by introducing the correspond-
ing Reynolds stress, written as

R(v,v) = 〈v ⊗ v〉 − 〈v〉 ⊗ 〈v〉.

He shows that for a fixed stationary source term f and n strong solutions of
the NSE, then R(v,v) is dissipative on the ensemble average, in time average.
More specifically it holds

lim inf
t→∞

Mt[(∇ ·R(v,v), 〈v〉)] ≥ 0,

and to prove this inequality he first performs the ensemble average, then it takes
the long-time average.

In order to remove the additional assumption used in [19, 17] of having
strong solutions, we will carry out an approach very close, but in a reversed
order: We first take the long-time average of the realizations for a sequence of
time independent source terms {fk}k∈N. Then, we form the ensemble average

Sn :=
1

n

n∑
k=1

vk,
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where vk are weak solutions of the Reynolds equations. Under suitable (but
very light) regularity assumption about the fk’s, we show the convergence of
{Sn}n∈N to some 〈v〉 that satisfies the closed Reynolds equations, and such
that dissipativity still holds, that is

0 ≤ (∇ · 〈σ(r)〉, 〈v〉),

which holds for weak solutions (see the specific statement in Theorem 2.4).

Plan of the paper. The paper is organized as follows. We start by giving
in Sec. 2 the specific technical statements of the results we prove. Then, in
Sec. 3 we give some results about the functional spaces we are working with and
we prove in detail the main energy estimates (3.4) and (3.5) for source terms
f ∈ L2

uloc(R+, V
′), which yields an existence result of global weak solutions

to the NSE for such f . The Sec. 4 is devoted to the Reynolds problem and
the develop additional properties of the time average operator Mt. Finally, we
give the proofs of the two main results on time averages in Sec. 5 and Sec. 6,
respectively.

2 Main results

2.1 On the source term and an existence result

Since we aim to consider long-time averages for the NSE, we must consider
solutions which are global-in-time (defined for all positive times). Due to the
well-known open problems related to the NSE, this enforces us to restrict to
weak solutions. By using a most natural setting, we take the initial datum
v0 ∈ H, where H is defined by (1.3).

The classical Leray-Hopf results of existence (but without uniqueness) of a
global weak solution v to the NSE holds when f ∈ L2(R+;V ′), and the velocity
v satisfies

v ∈ L2(R+, V ) ∩ L∞(R+, H),

where V is defined by (1.6) and V ′ denotes its topological dual. We will also
denote by < , > the duality pairing1 between V ′ and V .

Source terms f ∈ L2(R+;V ′) verify
∫∞
t
‖f(s)‖2V ′ ds → 0 when t → +∞.

Therefore, a turbulent motion cannot be maintained for large t, which is not
relevant for our purpose. The choice adopted in the previous studies on Reynolds
equations was that of a constant force, and we also observe that many estimates
could have been easily extended to a uniformly bounded f ∈ L∞(R+;V ′. On
the other hand, we consider a broader class for the source terms. According to
the usual folklore in mathematical analysis, we decided to consider the space

1Generally speaking and when no risk of confusion occurs, we always denote by < , > the
duality pairing between any Banach space X and its dual X′, without mentioning explicitly
which spaces are involved.
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L2
uloc(R+;V ′) made of all strongly measurable vector fields f : R+ → V ′ such

that

‖f‖L2
uloc(R+;V ′) :=

[
sup
t≥0

∫ t+1

t

‖f(s)‖2V ′ ds
]1/2

< +∞.

We will see in the following, that the above space, which strictly contains both
L2(R+;V ′) and L∞(R+;V ′) is well suited for our framework. We will prove
the following existence result, in order to make the paper self-contained.

Theorem 2.1. Let v0 ∈ H, and let f ∈ L2
uloc(R+;V ′). Then, there exists a

weak solution v to the NSE (1.1) global-in-time, obtained by Galerkin approxi-
mations, such that

v ∈ L2
loc(R+;V ) ∩ L∞(R+;H),

and which satisfies for all t ≥ 0,

‖v(t)‖2 ≤ ‖v0‖2 +

(
3 +

CΩ

ν

)
F2

ν
, (2.1)

ν

∫ t

0

‖∇v(s)‖2ds ≤ ‖v0‖2 + ([t] + 1)
F2

ν
, (2.2)

where F := ‖f‖L2
uloc(R+;V ′).

Remark 2.2. The weak solution v shares most of the properties of the Leray-
Hopf weak solutions, with estimates valid for all positive times. Notice that we
do not know whether or not this solution is unique. Anyway, it will not get
“regular” as t→ +∞, which is the feature of interest for our study. As usual by
regular we mean that it does not necessarily have the L2-norm of the gradient
(locally) bounded, hence that it is not a strong solution.

2.2 Long-time averaging

This section is devoted to state the main results of the paper about long-time
and ensemble averages.

Theorem 2.3. Let be given v0 ∈ H, f ∈ L2
uloc(R+;V ′), and let v a global-in-

time weak solution to the NSE (1.1). Then, there exist

a) a sequence {tn}n∈N such that lim
n→∞

tn = +∞;

b) a vector field v ∈ V ;

c) vector field f ∈ V ′;

d) a vector field B ∈ L3/2(Ω)3;

e) a second order tensor field σ(r) ∈ L3(Ω)9;

such that it holds:
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i) when n→∞,

Mtn(v) ⇀ v in V,

Mtn(f) ⇀ f in V ′,

Mtn

(
(v · ∇) v

)
⇀ B in L3/2(Ω)3,

Mtn(v′ ⊗ v′) ⇀ σ(r) in L3(Ω)9;

Mtn(< f ,v >)→< f ,v > +< f ′,v′ >,

where v′ = v − v, and f ′ = f − f ;

ii) the closed Reynolds equations (2.3) holds true in the weak sense:
(v · ∇) v − ν∆v +∇p+∇ · σ(r) = f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ;

(2.3)

iii) the following equalities F = B− (v · ∇) v = ∇ · σ(r) are valid in D′(Ω);

iv) the following energy balance holds true

ν‖∇v‖2 +

∫
Ω

F · v dx =< f ,v >;

v) the turbulent dissipation ε is bounded by the sum of the work of the Reynolds
stress on the mean flow and the external turbulent fluxes,

ε = ν‖∇v′‖2 ≤
∫

Ω

(∇ · σ(r)) · v dx +< f ′,v′ >; (2.4)

vi) if in addition the source term f verifies:

∃ f̃ ∈ V ′, such that lim
t→+∞

∫ t+1

t

‖f(s)− f̃‖2V ′ ds = 0, (2.5)

then f = f̃ and < f ′,v′ > = 0; in particular, the Reynolds stress σ(r) is
dissipative in average, that is (1.8) holds true.

Our second result has to be compared with results in Layton et al. [18, 19],
where the long-time averages are taken for an ensemble of solutions.

Theorem 2.4. Let be given a sequence {fk}k∈N ⊂ Lq(Ω) converging weakly

to some 〈f〉 in Lq(Ω), with q > 6
5 and let {vk}k∈N be the associated long-time

average of velocities, whose existence has been proved in Theorem 2.3. Then,
the sequence of arithmetic averages of the long-time limits {〈v〉n}n∈N, defined
as

〈v〉n :=
1

n

n∑
k=1

vk,
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converges weakly, as n → +∞, in V to some 〈v〉, which satisfies the following
system of Reynolds type

(
〈v〉 · ∇

)
〈v〉 − ν∆〈v〉+∇〈p〉+∇ · 〈σ(r)〉 = 〈f〉 in Ω,

∇ · 〈v〉 = 0 in Ω,

〈v〉 = 0 on Γ,

where 〈σ(r)〉 is dissipative in average, that is more precisely

0 ≤ 1

|Ω|

∫
Ω

(
∇ · 〈σ(r)〉

)
· 〈v〉 dx.

In this case we do not have a sharp lower bound on the dissipation as in
Theorem 2.3, since here the averaging is completely different and the fluctuations
are not those emerging in long-time averaging. Nevertheless, the main statement
is in the same spirit of the first proved result.

3 Navier-Stokes equations with uniformly-local
source terms

This section is devoted to sketch a proof of Theorem 2.1. Most of the arguments
are quite standard and we will give appropriate references at each step, to focus
on what seems (at least to us) non-standard when f ∈ L2

uloc(R+;V ′); especially
the proof of the uniform L2-estimate (3.4), which is the building block for the
results of the present paper. Before doing this, we introduce the function spaces
we will use, and precisely define the notion of weak solutions we will deal with.

3.1 Functional setting

Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary ∂Ω. This is a sort
of minimal assumption of regularity on the domain, in order to have the usual
properties for Sobolev spaces and to characterize in a proper way divergence-
free vector fields in the context of Sobolev spaces, see for instance Constantin
and Foias [8], Galdi [14, 15], Girault and Raviart [16], Tartar [29].

We use the customary Lebesgue spaces (Lp(Ω), ‖ . ‖p) and Sobolev spaces
(W 1,p(Ω), ‖ . ‖1,p). For simplicity, we denote the L2-norm simply by ‖ . ‖ and we
write H1(Ω) := W 1,2(Ω). For a given sequence {xn}n∈N ⊂ X, where (X, ‖ . ‖X)
is Banach space, we denote by xn → x the strong convergence, while by xn ⇀ x
the weak one.

As usual in mathematical fluid dynamics, we use the following spaces

V = {ϕ ∈ D(Ω)3, ∇ ·ϕ = 0},
H =

{
v ∈ L2(Ω)3, ∇ · v = 0, v · n = 0 on Γ

}
,

V =
{
v ∈ H1

0 (Ω)3, ∇ · v = 0
}
,
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and we recall that V is dense in H and V for their respective topologies [16, 29].
Let (X, ‖ . ‖X) be a Banach space, we use the Bochner spaces Lp(I;X), for

I = [0, T ] (for some T > 0) or I = R+ equipped with the norm

‖u‖Lp(I;X) :=


(∫

I

‖u(s)‖pXds
) 1

p

for 1 ≤ p <∞,

ess sups∈I‖u(s)‖X for p = +∞.

The existence of weak solutions for the NSE (1.1) is generally proved in the
literature when v0 ∈ H and the source term f ∈ L2(I;V ′), or alternatively
when the source term is a given constant element of V ′. In order to study the
long-time behavior of weak solutions of the NSE (1.1), we aim to enlarge the
class of function spaces allowed for the source term f , to catch a more complex
behavior than that coming from constant external forces, as initially developed
in [21]. To do so, we deal with “uniformly-local” spaces, as defined below in the
most general setting.

Definition 3.1. Let be given p ∈ [1,+∞[. We define Lpuloc(R+;X) as the space
of strongly measurable functions f : R+ → X such that

‖f‖Lp
uloc(X) :=

[
sup
t≥0

∫ t+1

t

‖f(s)‖pXds
]1/p

< +∞.

It is easily checked that the spaces Lpuloc(R+;X) are Banach spaces strictly
containing both the constant X-valued functions, and also Lp(R+;X), as illus-
trated by the following elementary lemma.

Lemma 3.2. Let be given f ∈ C(R+;X) converging to a limit ` ∈ X, when
t→ +∞. Then, for any p ∈ [1,+∞[, we have that f ∈ Lpuloc(R+;X), and there
exists T > 0 such that

‖f‖Lp
uloc(X) ≤

[
sup

t∈[0,T+1]

‖f(t)‖pX + 2p−1(1 + ‖`‖X)p

] 1
p

.

Proof. As ` = lim
t→+∞

f(t), there exists T > 0 such that: ∀ t > T , ‖f(t)−`‖X ≤ 1.

In particular, it holds∫ t+1

t

‖f(s)‖pX ds ≤ 2p−1(1 + ‖`‖X)p for t > T,

while for all t ∈ [0, T ],∫ t+1

t

‖f(s)‖pX ds ≤ sup
t∈[0,T+1]

‖f(t)‖pX ,

hence the result.

However, it easy to find examples of discontinuous functions in Lpuloc(R+;X)
which are not converging when t → +∞, and which are not belonging to
Lp(R+;X).
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3.2 Weak solutions

There are many ways of defining weak solutions to the NSE (see also P.-L. Li-
ons [23]). Since we are considering the incompressible case, the pressure is
treated as a Lagrange multiplier. Following the pioneering idea developed by
J. Leray [20], the NSE are projected over spaces of divergence-free functions.
This is why when we talk about weak solutions the NSE, only the velocity v is
mentioned, not the pressure.

As in J.-L. Lions [22], we give the following definition of weak solution, see
also Temam [30, Ch. III].

Definition 3.3 (Weak solution). Given v0 ∈ H and f ∈ L2(I;V ′) we say that v
is a weak solution over the interval I = [0, T ] if the following items are fulfilled:

i) the vector field v has the following regularity properties

v ∈ L2(I;V ) ∩ L∞(I;H),

and is weakly continuous from I to H, while lim
t→0+

‖v(t)− v0‖H = 0;

ii) for all ϕ ∈ V,

d

dt

∫
Ω

v(t,x) ·ϕ(x) dx−
∫

Ω

v(t,x)⊗ v(t,x) : ∇ϕ(x) dx

+ ν

∫
Ω

∇v(t,x) : ∇ϕ(x) dx = < f(t),ϕ >,

holds true in D′(I);

iii) the energy inequality

d

dt

1

2
‖v(t)‖2 + ν‖∇v(t)‖2 ≤ < f(t),v(t) >, (3.1)

holds in D′(I), where we write v(t) instead of v(t, ·) for simplicity.

When f ∈ L2(0, T ;V ′) and v is a weak solution in I = [0, T ], and this holds
true for all T > 0, we speak of a “global-in-time solution”, or simply a “global
solution”. In particular, ii) is satisfied in the sense of D′(0,+∞).

There are several ways to prove the existence of (at least) a weak solution to
the NSE. Among them, in what follows, we will use the Faedo-Galerkin method.
Roughly speaking, let {ϕn}n∈N denote a Hilbert basis of V , and let, for n ∈ N,
Vn := span{ϕ1, · · · ,ϕn}. By assuming f ∈ L2(I;V ′), it can be proved by the
Cauchy-Lipschitz theorem (see [22]) the existence of a unique vn ∈ C1(I;Vn)
such that for all ϕk, with k = 1, . . . , n it holds

d

dt

∫
Ω

vn(t,x) ·ϕk(x) dx−
∫

Ω

vn(t,x)⊗ vn(t,x) : ∇ϕk(x) dx

+ ν

∫
Ω

∇vn(t,x) : ∇ϕk(x) dx = < f(t),ϕk >,

(3.2)

11



and which naturally satisfies the energy balance (equality)

d

dt

1

2
‖vn(t)‖2 + ν‖∇vn(t)‖2 = < f ,vn > . (3.3)

It can be also proved (always see again [22]) that from the sequence {vn}n∈N
one can extract a sub-sequence converging, in an appropriate sense, to a weak
solution to the NSE. When I = R+ we get a global solution.

However, if assume f ∈ L2
uloc(R+;V ′), the global result of existence does not

work so straightforward. Of course, for any given T > 0, we have

L2
uloc(R+;V ′)∣∣[0, T ]

↪→ L2([0, T ];V ′),

where L2
uloc(R+;V ′)|[0,T ] denotes the restriction of a function in L2

uloc(R+;V ′)
to [0, T ]. Therefore, no doubt that the construction above holds over any time-
interval [0, T ]. In such case letting T go to +∞ to get a global solution (with
some uniform control of the kinetic energy) is not obvious, and we do not know
any reference explicitly dealing with this issue, which deserves to be investigated
more carefully. This is the aim of the next subsection, where we prove the most
relevant a-priori estimates.

3.3 A priori estimates

Let be given f ∈ L2
uloc(R+;V ′), and let vn = v be the solution of the Galerkin

projection of the NSE over the finite dimensional space Vn. The function v
satisfies (3.2) and (3.3) (we do not write the subscript n ∈ N for simplicity), is
smooth, unique, and can be constructed by the Cauchy-Lipschitz principle over
any finite time interval [0, T ]. Hence, we observe that by uniqueness it can be
extended to R+. We then denote F := ‖f‖L2

uloc(R+;V ′) and then after a delicate
manipulation of the energy balance combined with the Poincaré inequality, we
get the following lemma.

Lemma 3.4. For all t ≥ 0 we have

‖v(t)‖2 ≤ ‖v0‖2 +

(
3 +

CΩ

ν

)
F2

ν
, (3.4)

as well as

ν

∫ t

0

‖∇v(s)‖2 ds ≤ ‖v0‖2 + ([t] + 1)
F2

ν
, (3.5)

where CΩ denotes the constant in the Poincaré inequality ‖u‖2 ≤ CΩ‖∇u‖2,
valid for all u ∈ V .

Proof. We focus on the proof of the a priori estimate (3.4), the estimate (3.5)
being a direct consequence of the energy balance. By the Young inequality we
deduce from the the energy inequality,

∀ ξ, τ ∈ R+ s.t. 0 ≤ ξ ≤ τ,

‖v(τ)‖2 + ν

∫ τ

ξ

‖∇v(s)‖2 ds ≤ ‖v(ξ)‖2 +
1

ν

∫ τ

ξ

‖f(s)‖2V ′ ds.

12



In particular, when 0 ≤ τ − ξ ≤ 1,

‖v(τ)‖2 + ν

∫ τ

ξ

‖∇v(s)‖2 ds ≤ ‖v(ξ)‖2 +
F2

ν
. (3.6)

From this point, we argue step by step. The case 0 ≤ t ≤ 1 is the first step,
which is straightforward. The second step is the heart of the proof. The issue
is that energy may increase, without control, when the time increases.

We will show that even if this happens, we can still keep the control on it,
thanks to (3.6). The last step is the concluding step, carried out by induction
on n writing t = τ + n, for τ ∈ [0, 1].

Step 1. t ∈ [0, 1]: take ξ = 0, t = τ ∈ [0, 1]. Then

‖v(t)‖2 ≤ ‖v0‖2 +
F2

ν
∀ t ∈ [0, 1].

Step 2. We show that the following implication holds true

‖v(t)‖ ≤ ‖v(t+ 1)‖ ⇒


‖v(t)‖ ≤

(
1 +

CΩ

ν

)
F2

ν
,

‖v(t+ 1)‖ ≤
(

2 +
CΩ

ν

)
F2

ν
.

In the following we will set

C2 :=

(
‖v0‖2 +

F2

ν

)
+

(
2 +

CΩ

ν

)
F2

ν
= ‖v0‖2 +

(
3 +

CΩ

ν

)
F2

ν
. (3.7)

Sub-Step 2.1. By the energy inequality with ξ = t, and τ = t+ 1, we have, by
using the hypothesis on the L2-norm at times t and t+ 1:

ν

∫ t+1

t

‖∇v(s)‖2 ds ≤ ‖v(t+ 1)‖2 − ‖v(t)‖2 + ν

∫ t+1

t

‖∇v(s)‖2 ds ≤ F
2

ν
.

Hence, by the Poincaré’s inequality:∫ t+1

t

‖v(s)‖2 ds ≤ CΩ

∫ t+1

t

‖∇v(s)‖2 ds ≤ CΩF2

ν2
, (3.8)

Sub-Step 2.2. Let be given ε > 0 and let ξ ∈ [t, t+ 1] be such that

‖v(ξ)‖2 < inf
s∈[t,t+1]

‖v(s)‖2 + ε ≤ ‖v(s)‖2 + ε ∀ s ∈ [t, t+ 1].

Let us write:

‖v(t)‖2 ≤ ‖v(t+ 1)‖2 = ‖v(t+ 1)‖2 − ‖v(ξ)‖2 + ‖v(ξ)‖2

= ‖v(t+ 1)‖2 − ‖v(ξ)‖2 +

∫ t+1

t

‖v(ξ)‖2 ds,

13



being the integration with respect to the s variable.
To estimate the right-hand side we use the energy inequality with τ = t+ 1

to get

‖v(t+ 1)‖2 − ‖v(ξ)‖2 ≤ F
2

ν
.

Moreover, using the estimate (3.8) we get,∫ t+1

t

‖v(ξ)‖2 ds ≤
∫ t+1

t

(‖v(s)‖2 + ε) ds ≤ CΩF2

ν2
+ ε,

therefore, letting ε→ 0 yields,

‖v(t)‖2 ≤
(

1 +
CΩ

ν

)
F2

ν
.

In addition, we get from the energy inequality

‖v(t+ 1)‖2 ≤ ‖v(t)‖2 +
F2

ν
≤
(

2 +
CΩ

ν

)
F2

ν
.

Step 3. Conclusion of the proof of (3.4). Any t ≥ 0 can be decomposed as

t = n+ τ, with n ∈ N and τ ∈ [0, 1[.

We argue by induction on n. If n = 0, estimate (3.4) has been proved in
Step 1. Assume that (3.4) is satisfied for t := n+ τ , for all n ≤ N that is,

‖v(n+ τ)‖ ≤ C n = 0, . . . , N,

where the constant C is defined by (3.7).
If ‖v(N + 1 + τ)‖ < ‖v(N + τ)‖, then (3.4) holds at the time t = N + 1 + τ , by
the inductive hypothesis.
If ‖v(N + τ)‖ ≤ ‖v(N + 1 + τ)‖, then the inequality (3.4) is satisfied by Step 2
for t = N + 1 + τ , ending the proof.

Once we have proved that the uniform (independent of n ∈ N) L2-estimate
is satisfied by the Galerkin approximate functions, it is rather classical to prove
that we can extract a sub-sequence that converges weakly∗ in L∞(0, T ;L2(Ω))
(for all positive T ) to a weak solution to the NSE, which inherits the same
bound. We refer to the references already mentioned for this point.

4 Reynolds decomposition and time-averaging

We sketch the standard routine, concerning time-averaging, when used in tur-
bulence modeling practice. In particular, we recall the Reynolds decomposition
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and the Reynolds rules. Then, we give a few technical properties of the time-
averaging operator Mt, defined by

Mt(ψ) :=
1

t

∫ t

0

ψ(s) ds,

for a given fixed time t > 0. We need to apply it not only to real functions of a
real variable, but also to Banach valued functions, hence we need to deal with
the Bochner integral.

Before all, we start with the following corollary of Bochner theorem (see
Yosida [31, p. 132]).

Lemma 4.1. Assume that, for some t > 0 we have ψ ∈ Lp([0, t];X) (namely ψ
is a Bochner p-summable function over [0, t], with values in the Banach space
X). Then, it holds

‖Mt(ψ)‖X ≤
1

t
1
p

‖ψ‖Lp([0,t];X). (4.1)

Estimate (4.1) is the building block to give a sense to the long-time average as

ψ := lim
t→∞

Mt(ψ), (4.2)

whenever the limit exists.
It is worth noting at this stage that the mapping µ behind the long-time

average, defined on the Borel sets of R+ by

A 7→ lim
t→+∞

1

t
λ(A ∩ [0, t]) := lim

t→+∞
Mt(1A) = µ(A),

where λ the Lebesgue measure, is not –strictly speaking– a probability measure
since it is not σ-additive2. Therefore, the quantity ψ is not rigorously a statistic,
even if practitioners could be tempted to write it (in a suggestive and evocative
meaningful way) as follows:

ψ(x) =

∫
R+

ψ(s,x) dµ(s).

4.1 General setup of turbulence modeling

We recall that Mt is a linear filtering operator which commutes with differen-
tiation with respect to the space variables (the so called Reynolds rules). In
particular, one has the following result (its proof is straightforward), which is
essential for our modeling process.

Lemma 4.2. Let be given ψ ∈ L1([0, T ],W 1,p(Ω)), then

DMt(ψ) = Mt(Dψ) ∀ t > 0,

for any first order differential operator D acting on the space variables x ∈ Ω.

2The mapping µ satisfies µ(A ∪B) = µ(A) + µ(B) for A ∩B = ∅ but, on the other hand,
we have

∑∞
n=0 µ([n, n+ 1[) = 0 6= 1 = µ(

⋃∞
n=0[n, n+ 1[).
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By denoting the long-time average of any field ψ by ψ as in (4.2), we consider
the fluctuations ψ′ around the mean value, given by the Reynolds decomposition

ψ := ψ + ψ′.

Observe that long-time averaging has many convenient formal mathematical
properties, recalled in the following.

Lemma 4.3. The following formal properties holds true, provided the long-time
averages do exist.

1. The “bar operator” preserves the no-slip boundary condition. In other
words, if ψ|Γ = 0, then ψ|Γ = 0;

2. Fluctuation are in the kernel of the bar operator, that is ψ′ = 0;

3. The bar operator is idempotent, that is ψ = ψ, which also yields ψ ϕ = ψϕ.

Accordingly, the velocity components can be decomposed in the Reynolds
decomposition as follows:

v(t,x) = v(x) + v′(t,x).

Let us determine (at least formally) the equation satisfied by v. To do so, we
use the above Reynolds rules to expand the nonlinear quadratic term into

v ⊗ v = v ⊗ v + v′ ⊗ v′, (4.3)

which follows by observing that v′ ⊗ v = v ⊗ v′ = 0.
The above rules allow us to prove the following result showing a certain

“orthogonality” between averages and fluctuations.

Lemma 4.4. Let be given a linear space X ⊆ L2(Ω) with a scalar product
( . , . ). Let in addition be given a function ψ : R+ → X such that ψ is well
defined. Then it follows that

(ψ′, ψ′) = (ψ,ψ)− (ψ,ψ),

provided all averages are well defined.

Proof. The proof follows by observing that ψ′ = ψ − ψ, hence

(ψ′, ψ′) = (ψ − ψ,ψ − ψ) = (ψ,ψ)− 2(ψ,ψ) + (ψ,ψ),

and by the Reynolds rules (ψ,ψ) = (ψ,ψ) and (ψ,ψ) = (ψ,ψ), from which is
follows the thesis.

In particular, we will use it for the V scalar product showing that

‖∇u′‖2 = ‖∇u‖2 − ‖∇u‖2, (4.4)

for u : R+ → V , such that the long-time average exists.
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Remark 4.5. Observe that, for weak solutions of the NSE v, the average
Mt(‖∇v‖2) is bounded uniformly, by the result of Theorem 2.1 and –up to sub-
sequences– some limit can be identified. Moreover, by using an argument similar
to Lemma 4.1 it follows that

‖Mt(∇v)‖2 ≤Mt(‖∇v‖2),

which show that (up to sub-sequences) also the second term from the right-hand
side can be properly defined. Consequently, also the average of the squared V -
norm of the fluctuations from the left-hand side is well defined by difference.

Long-time averaging applied to the Navier-Stokes equations (in a strong
formulation) gives the following “equilibrium problem” for the long-time average
v(x), 

−ν∆v +∇ · (v ⊗ v) +∇p = f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ,

(4.5)

which we will treat in the next section to make appear the closure problem.

4.2 Reynolds stress and Reynolds tensor

The first equation of system (4.5) can be rewritten also as follows (by using the
decomposition into averages and fluctuations)

− ν∆v +∇ · (v ⊗ v) +∇p = −∇ · (v′ ⊗ v′) + f , (4.6)

called the Reynolds equations. Beside convergence issues, a relevant point is
to characterize the average of product of fluctuations from the right-hand side,
which is the divergence of the so called Reynolds stress tensor, defined as follows

σ(r) = v′ ⊗ v′. (4.7)

The Boussinesq hypothesis, formalized in [5] (see also [7, Ch. 3 & 4], for a com-
prehensive and modern presentation) corresponds then to a closure hypothesis
with the following linear constitutive equation:

σ(r) = −νt
∇v +∇vT

2
+

2

3
k Id, (4.8)

where νt ≥ 0 is a scalar coefficient, called turbulent viscosity or eddy-viscosity
(sometimes called “effective viscosity”), and

k =
1

2
|v′|2,

is the turbulent kinetic energy, see [3, 7]. Formula (4.8) is a linear relation
between stress and strain tensors, and shares common formal points with the
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linear constitutive equation valid for Newtonian fluids. In particular, this as-
sumptions motivates the fact that σ(r) must be dissipative3 on the mean flow.
Some recent results in the numerical verification of the hypothesis can be found
in the special issue [4] dedicated to Boussinesq. Here, we show that, beside
the validity of the modeling assumption (4.8), the Reynolds stress tensor σ(r)

is dissipative, under minimal assumptions on the regularity of the data of the
problem.

4.3 Time-averaging of uniformly-local fields

We list in this section some technical properties of the operator Mt acting on
uniform-local fields, and the corresponding global weak solutions to the NSE.
The first result is the following

Lemma 4.6. Let 1 < p <∞ and let be given f ∈ Lpuloc(R+;X). Then

∀ t ≥ 1, ‖Mt(f)‖X ≤ 2‖f‖Lp
uloc(R+;X).

Proof. Applying (4.1) and some straightforward inequalities yields

‖Mt(f)‖X ≤
1

t

∫ t

0

‖f‖X ds ≤
1

t

∫ [t]+1

0

‖f‖X ds ≤
1

t

[t]∑
k=0

∫ k+1

k

‖f‖X ds.

Therefore by the Hölder inequality we get:

‖Mt(f)‖X ≤
1

t

[t]∑
k=0

(∫ k+1

k

‖f‖pX ds

)1/p(∫ k+1

k

1 ds

)1/p′

≤ [t] + 1

t
‖f‖p

Lp
uloc(X)

≤ 2‖f‖p
Lp

uloc(R+;X)
,

the last inequality being satisfied since [x]+1
x ≤ 2 is valid for all x ≥ 1.

In the next section, we will focus on the case p = 2 and X = V ′. We will
need the following result, which is a consequence of Lemma 3.4.

Lemma 4.7. Let be given v0 ∈ H, f ∈ L2
uloc(R+;V ′), and let v be a global weak

solution to the NSE corresponding to the above data. Then, we have, ∀ t ≥ 1,

Mt(‖∇v‖2) ≤ ‖v0‖2

νt
+ 2
F2

ν2
, (4.9)

Mt(‖f‖2V ′) ≤ 2F2, (4.10)

where F = ‖f‖L2
uloc(R+;V ′).

3The sign adopted in (4.7) is a convention consistent with our mathematical approach.
However, according to the analogy of the Reynolds stress with viscous forces, it is also common
to define it as σ(r) := −v′ ⊗ v′, which does not change anything.
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Proof. It suffices to divide estimate (3.5) by νt. Therefore, it follows that

1

t

∫ t

0

‖∇v(s)‖2 ds ≤ ‖v0‖2

νt
+ 2
F2

ν2
.

Estimate (4.10) is straightforward.

In particular the family {Mt(v)}t∈R+
is bounded in V . Therefore, we can

as of now state the following, which will be recalled in a more precise form in
the next sections.

Corollary 4.1. There exists v such that -up to a sub-sequence- Mt(v)→ v as
t→∞, in appropriate topologies.

The following result is a direct consequence of (4.9) and (4.10) combined
with Cauchy-Schwarz inequality.

Corollary 4.2. The family {Mt(< f ,v >)}t>0 is bounded uniformly in t, and
one has ∣∣Mt(< f ,v >)

∣∣ ≤ √2F
(
‖v0‖2

νt
+ 2
F2

ν2

) 1
2

. (4.11)

We finish this section with a last technical result, that we will need to prove
Item vi) of Theorem 2.3.

Lemma 4.8. Let 1 < p <∞ and let be given f ∈ Lpuloc(R+;X), which satisfies
in addition

∃ f̃ ∈ X, such that lim
t→+∞

∫ t+1

t

‖f(s)− f̃‖pX ds = 0. (4.12)

Then, we have

lim
t→+∞

1

t

∫ t

0

‖f(s)− f̃‖pX ds = 0. (4.13)

Moreover, Mt(f) weakly converges to f̃ in X when t→ +∞. In particular, we

have f̃ = f .

Proof. By the hypothesis (4.12), we have that

∀ ε > 0 ∃M ∈ N :

∫ t+1

t

‖f(s)− f̃‖pX ds <
ε

2
∀ t > M.

Hence, for t ≥M , then

1

t

∫ t

0

‖f(s)− f̃‖pX ds =
1

t

∫ M

0

‖f(s)− f̃‖pX ds+
1

t

∫ t

M

‖f(s)− f̃‖pX ds

≤ M

t

(
‖f‖p

Lp
uloc(X)

+ ‖f̃‖pX
)

+
[t] + 1−M

t

ε

2
.

19



It follows that one can choose M large enough such that

1

t

∫ t

0

‖f(s)− f̃‖pX ds < ε ∀ t > M,

hence, being this valid for arbitrary ε > 0, it follows (4.13).

It remains to prove the weak convergence of Mt(f) to f̃ ∈ X when t→ +∞.
To this end, let be given ϕ ∈ X ′. Then, we have

< ϕ,Mt(f) > − < ϕ, f̃ > =
1

t

∫ t

0

< ϕ, f(s)− f̃ > ds,

which leads to∣∣ < ϕ,Mt(f) > − < ϕ, f̃ >
∣∣ ≤ 1

t

∫ t

0

‖ϕ‖X′‖f(s)− f̃‖X ds,

and by Hölder inequality,∣∣∣< ϕ,Mt(f) > − < ϕ, f̃ >
∣∣∣ ≤ ‖ϕ‖X′ (1

t

∫ t

0

‖f(s)− f̃‖pX ds
) 1

p

,

yielding, by (4.13), to lim
t→+∞

< ϕ,Mt(f) > = < ϕ, f̃ >, hence concluding the

proof.

The following corollary definitively concludes Item vi) of Theorem 2.3.

Corollary 4.3. Let be given v0 ∈ H, f ∈ L2
uloc(R+;V ′) that satisfies (4.12),

and let v be a global weak solution to the NSE corresponding to the above
data. Moreover let v be such that lim

t→∞
Mtv = v in V (eventually up to a

sub-sequence), then
lim
t→∞

Mt(< f ,v >) =< f ,v > .

Proof. Let us write the following decomposition:

1

t

∫ t

0

< f ,v > ds =
1

t

∫ t

0

< f − f ,v > ds+
1

t

∫ t

0

< f ,v > ds.

On one hand since f ∈ V is independent of t, we obviously have

1

t

∫ t

0

< f ,v > ds→ < f ,v > .

On the other hand, we have also∣∣∣∣1t
∫ t

0

< f − f ,v > ds

∣∣∣∣ ≤ 1

t

∫ t

0

‖f − f‖V ′‖∇v‖ ds

≤
(

1

t

∫ t

0

‖f − f‖2V ′ ds
)1/2(

1

t

∫ t

0

‖∇v‖2 ds
)1/2

.

(4.14)

Combining (4.13) with (4.9) shows that the right-hand side in (4.14) vanishes
as t→∞.
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Remark 4.9. It is important to observe that

Mt

(
< f ,v >

)
→ < f ,v >,

is –in some sense– an assumption on the (long-time) behavior of the “covari-
ance” between the external force and the solution itself. Cf. Layton [19] for a
related result in the case of ensemble averages.

The control of the (average/expectation of) kinetic energy in terms of the
energy input is one of the remarkable features of classes of statistical solutions,
making the stochastic Navier-Stokes equations very appealing in this context.
See the review, with applications to the determination of the Lilly constant, in
Ref. [2]. See also [10].

5 Proof of Theorem 2.3

In all this section we have as before v0 ∈ H, f ∈ L2
uloc(R+;V ′), and v is a global

weak solution to the NSE (1.1) corresponding to the above data. We split the
proof of Theorem 2.3 into two steps. We first apply the operator Mt to the
NSE, then we extract sub-sequences and take the limit in the equations. In the
second step we make the identification with the Reynolds stress σ(r) and show
that it is dissipative in average, at least when f satisfies in addition (2.5).

5.1 Extracting sub-sequences

We set:
Vt(x) := Mt(v)(x).

Applying the operator Mt on the NSE we see that for almost all t ≥ 0 and for
all φφφ ∈ V , the field Vt is a weak solution of the following steady Stokes problem
(where t > 0 is simply a parameter)

ν

∫
Ω

∇Vt : ∇φφφdx +

∫
Ω

Mt((v · ∇) v) ·φφφdx = < Mt(f),φφφ >

+

∫
Ω

v0 − v(t)

t
·φφφdx.

(5.1)

The full justification of the equality (5.1) starting from the definition of global
weak solutions can be obtained by following a very well-known path used for
instance to show with a lemma by Hopf that Leray-Hopf weak solutions can
be re-defined on a set of zero Lebesgue measure in [0, t] in such a way that
v(s) ∈ H for all s ∈ [0, t], see for instance Galdi [14, Lemma 2.1]. In fact, by
following ideas developed among the others by Prodi [26], one can take χ[a,b]

the characteristic function of an interval [a, b] ⊂ R, and use as test function its
regularization multiplied by φφφ ∈ V . Passing to the limit as the regularization
parameter vanishes one gets (5.1).

The process of extracting sub-sequences, which is the core of the main result,
is reported in the following proposition.

21



Proposition 5.1. Let be given a global solution v to the NSE, corresponding
to the data v0 ∈ H and f ∈ L2

uloc(R+;V ′). Then, there exist

a) a sequence {tn}n∈N that goes to +∞ when n goes to +∞;

b) a vector field f ∈ V ′;

c) a vector field v ∈ V ;

d) a vector field B ∈ L3/2(Ω)3;

such that such that it holds when n→∞:

Mtn(f) ⇀ f in V ′,

Mtn(v) ⇀ v in V,

Mtn

(
(v · ∇) v

)
⇀ B in L3/2(Ω)3 ⊂ V ′,

and for all φφφ ∈ V

ν

∫
Ω

∇v : ∇φφφdx +

∫
Ω

B ·φφφdx = < f ,φφφ > . (5.2)

Moreover, by defining

F := B− (v · ∇) v ∈ L3/2(Ω)3, (5.3)

we can also rewrite (5.2) as follows

ν

∫
Ω

∇v : ∇φφφdx +

∫
Ω

(v · ∇) v ·φφφdx +

∫
Ω

F ·φφφdx = < f ,φφφ >; (5.4)

e) writing v′ = v − v, f ′ = f − f , we also have

Mtn(< f ,v >)→< f ,v > +< f ′,v′ >.

Proof of Proposition 5.1. As f ∈ L2(R+;V ′), we deduce from Lemma 4.6 that
{Mt(f)}t>0 is bounded in V ′. Hence, we can use weak pre-compactness of
bounded sets in the Hilbert space V ′ to infer the existence of tn and f ∈ V ′ such
that Mtn(f) ⇀ f in V ′. Next, estimate (4.9) from Lemma 4.7, combined with
estimate (4.1) from Lemma 4.1, leads to the bound

∃ c > 0 : ‖∇Mt(v)‖ = ‖Mt(∇v)‖ ≤ c ∀ t > 0,

proving (up to a the extraction of a further sub-sequence from {tn}, which we
call with the same name) that Mtn(v) ⇀ v in V ′.

Then, we observe that, if v ∈ L∞(0, T ;H)∩L2(0, T ;V ) by classical interpo-
lation

(v · ∇) v ∈ Lr(0, T ;Ls(Ω)) with
2

r
+

3

s
= 4, r ∈ [1, 2].
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In particular, we get

‖(v · ∇) v‖L3/2(Ω) ≤ ‖v‖L6‖∇v‖L2 ≤ CS‖∇v‖2,

where CS is the constant of the Sobolev embedding H1
0 (Ω) ↪→ L6(Ω). Hence,

by using the bounds (3.4)-(3.5) on the weak solution v we obtain that

∃ c : ‖Mt

(
(v · ∇) v)

)
‖L3/2(Ω) ≤ c, ∀ t > 0,

proving that, up to a further sub-sequence relabelled again as {tn},

Mtn

(
(v · ∇) v

)
⇀ B in L3/2(Ω)3,

for some vector field B ∈ L3/2(Ω)3.
Next, we use (3.4) which shows that∫

Ω

v0 − v(t)

t
·φφφdx→ 0 as t→ +∞.

Then, writing the weak formulation and by using the results of weak convergence
previously proved, we get (5.2). Then, the identity (5.4) comes simply from the
definition (5.3) of F.

It remains to prove the last item. We know from (4.11) that the sequence
{Mtn(< f ,v >)}n∈N is bounded in R. By extracting again a sub-sequence (still
denoted by {tn}n∈N), we can get a convergent sequence still denoted (after

relabelling) by {Mtn(< f ,v >)}n∈N, and let < f ,v > be its limit. Let us write
the decomposition

Mtn(< f ,v >)

=< f ,v > +Mtn(< f ′,v >) +Mtn(< f ,v′ >) +Mtn(< f ′,v′ >).
(5.5)

As Mtn(< f ′,v >) =< Mtn(f ′),v >, we deduce from the results above that
Mtn(< f ′,v >) → 0 as n → ∞. Similarly, we also have Mtn(< f ,v′ >) → 0.
Hence, we deduce from (5.5) that {Mtn(< f ′,v′ >)}n∈N is convergent, and if we
denote by < f ′,v′ > its limit, the following natural decomposition holds true:

< f ,v > =< f ,v > +< f ′,v′ >, (5.6)

concluding the proof.

5.2 Reynolds stress, energy balance and dissipation

In the first step we have identified a limit (v, f) for the time-averages of both
velocity and external force (v, f). We need now to recast this in the setting of the
Reynolds equations, in order to address the proof of the Boussinesq assumption.

Proof of Theorem 2.3. Beside the results in Proposition 5.1, in order to com-
plete the proof of Theorem 2.3, we have to prove the following facts:
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1) the proper identification of the limits with the Reynolds stress σ(r);

2) the energy balance for v;

3) to prove that (2.4) holds, namely

ε = ν‖∇v′‖2 ≤
∫

Ω

(∇ · σ(r)) · v dx +< f ′,v′ >.

We proceed in the same order.
Item 1. Since v ∈ L2(0, T ;V ) ⊂ L2(0, T ;L6(Ω)3), it follows that v ⊗ v ∈

L1(0, T ;L3(Ω)). Hence, the same argument as in the previous subsection shows
that (possibly up to the extraction of a further sub-sequence) there exists a
second order tensor θ ∈ L3(Ω)9 such that

Mtn(v ⊗ v) ⇀ θ in L3(Ω)9.

Let us set
σ(r) := θ − v ⊗ v.

Since the operatorMt commutes with the divergence operator, the equation (5.1)
becomes

ν

∫
Ω

∇Vt : ∇φφφdx−
∫

Ω

Mt(v ⊗ v) : ∇φφφdx = < Mt(f),φφφ >

+

∫
Ω

v0 − v(t)

t
·φφφdx.

(5.7)

Then, by taking the limit along the sequence tn → +∞ in (5.7), we get4 the
equality

F = ∇ · σ(r).

Item 2. We use v ∈ V in (2.3) as test function and we obtain the equality

ν‖∇v‖2 +

∫
Ω

(∇ · σ(r)) · v dx = < f ,v > . (5.8)

We observe that due to the absence of the time-variable the following identity
concerning the integral over the space variables is valid∫

Ω

(v · ∇) v · v dx =

∫
Ω

(v · ∇)
|v|2

2
dx = 0 ∀v ∈ V.

This is one of the main technical facts which are typical of the mathematical
analysis of the steady Navier-Stokes equations and which allow to give precise

4According to the formal decomposition (4.3), this suggests that Mtn (v′ ⊗ v′) → 0, pro-
vided that one is able to give a rigorous sense and sufficiently strong bounds on v′ ⊗ v′, for
the weak solution v.
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results for the averaged Reynolds equations. On the other hand, we recall that if
v(t,x) is a non-steady (Leray-Hopf) weak solution, then the space-time integral∫ T

0

∫
Ω

(v · ∇) v · v dx dt,

is not well defined and consequently the above integral vanishes only formally.

Item 3. From now, we assume that the assumption (2.5) in the statement
of Theorem 2.3 holds true. We integrate the energy inequality (3.1) between 0
and tn and we divide the result by tn > 0, which leads to

‖v(t)‖2

2tn
+

1

tn

∫ tn

0

‖∇v(s)‖2 ds ≤ ‖v0‖2

2tn
+

1

tn

∫ tn

0

< f ,v > ds. (5.9)

Recall that by Lemma 3.4

‖v(t)‖2

2t
→ 0 and

‖v0‖2

2t
→ 0 as t→ +∞.

Therefore, we take the limit in (5.9) and we use (5.6), which yields

ν‖∇v‖2 ≤ < f ,v > =< f ,v > +< f ′,v′ >.

By (5.8) we then have

ν‖∇v‖2 ≤ ν‖∇v‖2 +

∫
Ω

(∇ · σ(r)) · v dx + < f ′,v′ >,

which yields (2.4) by (4.4), concluding the proof.

6 On ensemble averages

In this section we show how to use the results of Theorem 2.3 to give new insight
to the analysis of ensemble averages of solutions. In this case we study suitable
averages of the long-time behavior and not the long-time behavior of statistics,
as in Layton [19].

Since we first take long-time limits and then we average the Reynolds equa-
tions, the initial datum is not so relevant. In fact due to the fact that it holds

‖v0‖2

t
→ 0 as t→ +∞,

then the mean v is not affected by the initial datum.
As claimed in the introduction, we consider now the problem of having sev-

eral external forces, say a whole family {fk}k∈N ⊂ V ′, all independent of time.
We can think as different experiments with slightly different external forces,
whose difference can be due to errors in measurement or in the uncertainty in-
trinsic in any measurement method. In particular, one can consider for a given
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force f and that {fk} will represent small oscillations around it, hence we can
freely assume that we have an uniform bound

∃C > 0 : ‖fk‖V ′ ≤ C ∀ k ∈ N. (6.1)

Having in mind this physical setting, we denote by vk ∈ V the long-time average
of the solution corresponding to the external force fk ∈ V ′ and, as explained
before (without loss of generality) to the initial datum v0 = 0. The vector

vk ∈ V satisfies for all φφφ ∈ V the following equivalent equalities for all k ∈ N

ν

∫
Ω

∇vk : ∇φφφdx +

∫
Ω

Bk ·φφφdx = < fk,φφφ >,

ν

∫
Ω

∇vk : ∇φφφdx +

∫
Ω

(vk · ∇) vk ·φφφdx +

∫
Ω

Fk ·φφφdx = < fk,φφφ >,

for appropriate Bk,Fk ∈ L3(Ω)3/2. Since both V and V ′ are Hilbert spaces, by
using (6.1) it follows that there exists 〈f〉 ∈ V ′ and a sub-sequence (still denoted
by {fk}) such that

fk ⇀ 〈f〉 in V ′.

Our intention is to characterize, if possible, the limit of {vk}k∈N. If the forces

are fluctuations around a mean value, then the field vk will remain bounded in
V , but possibly without converging to some limit. From an heuristic point of
view one can expect that averaging the sequence of velocities (which corresponds
to averaging the result over different realizations) one can identify a proper limit,
which retains the “average” effect of the flow.

Again, it comes into the system the main idea at the basis of Large Scale
methods: The average behavior of solutions seems the only quantity which can
be measured or simulated.

It is well-known that one of the most used summability technique is that of
Cesàro and consists in taking the mean values, hence we focus on the arithmetic
mean of time-averaged velocities

Sn :=
1

n

n∑
k=1

vk.

It is a basic calculus result that if a real sequence {xj}j∈N converges to x ∈ R,
then also its Cesàro mean Sn = 1

n

∑n
j=1 xj will converge to the same value x.

On the other hand, the converse is false; sufficient conditions on the sequence
{xj}j∈N implying that if the Cesàro mean converges, then the original sequence
converges, are known in literature as Tauberian theorems. This is a classical
topic in the study of divergent sequences/series. In the case of X-valued se-
quences {uk}k∈N (the space X being an infinite dimensional Banach space) one
has again that if a sequence converges strongly or weakly, then its Cesàro mean
will converge to the same value, strongly or weakly in X, respectively.

The fact that averaging generally improves the properties of a sequence, is
reflected also in the setting of Banach spaces even if with additional features
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coming into the theory. Two main results we will consider are two theorems
known as Banach-Saks and Banach-Mazur.

Banach and Saks originally in 1930 formulated the result in Lp(0, 1), but it
is valid in more general Banach spaces.

Theorem 6.1 (Banach-Saks). Let be given a bounded sequence {xj}j∈N in a
reflexive Banach space X. Then, there exists a sub-sequence {xjk}k∈N such that
the sequence {Sm}m∈N defined by

Sm :=
1

m

m∑
k=1

xjk ,

converges strongly in X.

The reader can observe that in some cases it is not needed to extract a sub-
sequence (think of any orthonormal set in an Hilbert space, which is weakly
converging to zero, and the Cesàro averages converge to zero strongly), but in
general one cannot infer that the averages of the full sequence converge strongly.
One sufficient condition is that of uniform weak convergence. We recall that
{xj} ⊂ X uniformly weakly converges to zero if for any ε > 0 there exists
j ∈ N, such that for all φ ∈ X ′, with ‖φ‖X′ ≤ 1, it holds true that

#
{
j ∈ N : |φ(xj)| ≥ ε

}
≤ j.

See also Brezis [6, p. 168].

Another way of improving the weak convergence to the strong one is by the
by the convex-combination theorem (cf. Yosida [31, p.120]).

Theorem 6.2 (Banach-Mazur). Let (X, ‖ . ‖X) be a Banach space and let
{xj} ⊂ X be a sequence such that xj ⇀ x as j → +∞.

Then, one can find for each n ∈ N, real coefficients {αnj }, for j = 1, . . . , n
such that

αnj ≥ 0 and

n∑
j=1

αnj = 1,

such that
n∑
j=1

αnj xj → x in X, as n→ +∞,

that is we can find a “convex combination” of {xj}, which strongly converges to
x ∈ X.

One basic point will be that of considering averages of the external forces,
which we will denote by 〈f〉n and considering the same averages of the solution
of the Reynolds equations 〈v〉n. They are both bounded and hence, weakly con-
verging (up to a sub-sequence) to 〈f〉 ∈ V ′ and 〈v〉 ∈ V , respectively. Then, in
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order to prove that the dissipativity is preserved one has to handle the following
limit of the products

lim
n→+∞

< 〈f〉n, 〈v〉n >,

which cannot be characterized, unless (at least) one of the two terms converges
strongly. This is why we have to use special means instead of the simple Cesàro
averages

The first result of this section is then the following:

Proposition 6.1. Let be given {fk}k∈N uniformly bounded in V ′. Then one can
find either a Banach-Saks sub-sequence or a convex combination of {vk}k∈N,
which are converging weakly to some 〈v〉 ∈ V , which satisfies a Reynolds sys-
tem (6.4), with an additional dissipative term.

Proof of Theorem 6.1. We define 〈f〉n and 〈v〉n to be either

〈f〉n :=
1

n

n∑
k=1

f jk and 〈v〉n :=
1

n

n∑
k=1

vjk ,

or alternatively

〈f〉n :=

n∑
j=1

αnj f j and 〈v〉n :=

n∑
j=1

αnj vj ,

where the sub-sequence {jk}k∈N or the coefficients {αnj }j, n∈N are chosen ac-
cordingly to the Banach-Saks of Banach-Mazur theorems in such a way that in
both cases

〈f〉n → 〈f〉 in V ′.

We define, accordingly to the same rules 〈B〉n, and we observe that, by
linearity, we have ∀n ∈ N

ν

∫
Ω

∇〈v〉n : ∇φφφdx +

∫
Ω

〈B〉n ·φφφdx = < 〈f〉n,φφφ > ∀φφφ ∈ V. (6.2)

Then, we can define 〈F〉n := 〈B〉n − (〈v〉n · ∇) 〈v〉n, to rewrite (6.2) also as
follows

ν

∫
Ω

∇〈v〉n : ∇φφφdx +

∫
Ω

(
〈v〉n · ∇

)
〈v〉n ·φφφdx +

∫
Ω

〈F〉n ·φφφdx = < 〈f〉n,φφφ > .

(6.3)
By the uniform bound on ‖fk‖V ′ and by results of Section 5.2 on the Reynolds
equations it follows that there exists C such that ‖vk‖V ≤ C, hence

‖〈v〉n‖V ≤ C ∀n ∈ N,

and we can suppose that (up to sub-sequences) we have weak convergence of
the convex combinations

〈v〉n ⇀ 〈v〉 in V,

〈B〉n ⇀ 〈B〉 in L3/2(Ω)3,

〈F〉n ⇀ 〈F〉 in L3/2(Ω)3,
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Hence, passing to the limit in (6.2), we obtain

ν

∫
Ω

∇〈v〉 : ∇φφφdx +

∫
Ω

〈B〉 ·φφφdx = < 〈f〉,φφφ > ∀φφφ ∈ V.

By the same reasoning used before we have, for 〈F〉 := 〈B〉 − (〈v〉 · ∇) 〈v〉,

ν

∫
Ω

∇〈v〉 : ∇φφφdx +

∫
Ω

(〈v〉 · ∇) 〈v〉 ·φφφdx +

∫
Ω

〈F〉 ·φφφdx = < 〈f〉,φφφ > . (6.4)

Then, if we take φφφ = 〈v〉 in (6.4) we obtain

ν‖∇〈v〉‖2 +

∫
Ω

〈F〉 · 〈v〉 dx = < 〈f〉, 〈v〉 > . (6.5)

On the other hand, if we take φφφ = 〈v〉n in (6.3) and by the result of the previous
section, we have

ν‖∇〈v〉n‖2 ≤ < 〈f〉n, 〈v〉n >,

hence passing to the limit, by using the strong convergence of 〈f〉n in V ′ and
the weak convergence of 〈v〉n in V we have

ν‖∇〈v〉‖2 ≤ lim inf
n→+∞

ν‖∇〈v〉n‖2 ≤ < 〈f〉, 〈v〉 > .

If we compare with (6.5) we have finally the dissipativity

1

|Ω|

∫
Ω

(∇ · 〈σ(r)〉) · 〈v〉 dx =
1

|Ω|

∫
Ω

〈F〉 · 〈v〉 dx ≥ 0,

that is a sort of ensemble/long-time Boussinesq hypothesis, cf. with the results
from Ref. [19, 18].

In the previous theorem, we have a result which does not concern directly
with the ensemble averages, but a selection of special coefficients is required.
This is not completely satisfactory from the point of view of the numerical
computations, where the full arithmetic mean should be considered. The main
result can be obtained at the price of a slight refinement on the hypotheses on
the external forces

To this end we recall a lemma, which is a sort of Rellich theorem in negative
spaces (see also Galdi [15, Thm. II.5.3] and Feireisl [9, Thm. 2.8]).

Lemma 6.3. Let Ω ⊂ Rn be bounded and let be given 1 < p < n. Let {fk}k∈N
be a sequence uniformly bounded in Lq(Ω) with q > (p∗)′, where p∗ = np

n−p is

the exponent in the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp

∗
(Ω). Then, there exists

a sub-sequence {fkm}m∈N and f ∈ Lq(Ω) such that

fkm ⇀ f in Lq(Ω),

fkm → f in W−1,p′(Ω),

or, in other words, the embedding Lq(Ω) ↪→↪→W−1,p′(Ω) is compact.
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We present the proof for the reader’s convenience.

Proof of Lemma 6.3. Since by hypothesis Lq(Ω) is reflexive, by the Banach-
Alaouglu-Bourbaki theorem we can find a sub-sequence fkm such that

fkm ⇀ f in Lq(Ω),

and by considering the sequence {fkm − f}m∈N we can suppose that f = 0. We
then observe that by the Sobolev embedding we have the continuous embeddings

W 1,p
0 (Ω) ↪→ Lp

∗
(Ω) ∼ L(p∗)′(Ω) ↪→ (W 1,p

0 (Ω))′ 'W−1,p′(Ω),

where Lp
∗
(Ω) ∼ L(p∗)′(Ω) is the duality identification, while the second one

(W 1,p
0 (Ω))′ ' W−1,p′(Ω) is the Lax isomorphism. This shows L(p∗)′(Ω) ⊆

W−1,p′(Ω).
Next, let be given a sequence {fkm} ⊂W−1,p′(Ω), then by reflexivity (since

1 < p <∞) there exists {φkm} ⊂W
1,p
0 (Ω) such that

‖fkm‖W−1,p′ (Ω) = fkm(φkm) = < fkm , φkm >,

with ‖φkm‖W 1,p
0 (Ω) = ‖∇φkm‖Lp(Ω) = 1.

Hence, by using the classical Rellich theorem, we can find a sub-sequence
{φkj}j∈N such that

φkj → φ in Lr(Ω) ∀ r < p∗.

In particular, we fix r = q′ (observe that q > (p∗)′ implies q′ < p∗) and we have

‖fkm‖W−1,p′ (Ω) = < fkm , φkm − φ > + < fkm , φ > .

The last term converges to zero, by the definition of weak convergence fkm ⇀ 0,
while the first one satisfies

|< fkm , φkm − φ >| ≤ ‖fkm‖W−1,p′‖φkm − φ‖W 1,p
0
,

and since ‖fkm‖W−1,p′ is uniformly bounded and ‖φkm − φ‖W 1,p
0

goes to zero,

then also this one vanishes as j → +∞.

Proof of Theorem 2.4. The proof of this theorem can be obtained by following
the same ideas of the Proposition 6.1. In fact, the main improvement is that the
weak convergence f j ⇀ 〈f〉 in Lq(Ω) implies (without extracting sub-sequences)
that

fk → f in V ′.

This follows since from any sub-sequence we can find a further sub-sequence
which is converging strongly, by Lemma 6.3. Then, by the weak convergence
of the original sequence, the limit is always the same and this implies that the
whole sequence {fk} strongly converges to its weak limit.
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Hence, we have

1

n

n∑
k=1

fk → f in V ′,

and then, since 〈v〉n ⇀ 〈v〉 in V , we can infer that

< 〈f〉n, 〈v〉n > = <
1

n

n∑
k=1

fk,
1

n

n∑
k=1

vk > → < 〈f〉, 〈v〉 >,

and the rest follows as in Proposition 6.1.
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