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Abstract

In this work we propose a numerical method for the calculation of resonant

frequencies of network resonators and we also present an optimization method

based on genetic algorithms to get targeted resonant frequencies of the network

resonators. We can optimize parameters of the network structure such as junc-

tion types and end positions. Experiments are conducted on optimized wooden

network resonators to validate the method. Good agreement is found between

the measured and targeted resonant frequencies. Applications to tire/road noise

are considered.

Keywords: Acoustic network resonator, End correction, Resonant frequency,

Optimization

1. Introduction

Tire treads and road textures in the contact zones between tires and roads

can be considered as acoustic network resonators. Consequently, the acoustic

fields around the tire/road systems are influenced by network resonances. These

network resonances in the contact zone in Fig.1 are seen as one of the noise5

enhancement mechanisms in [1]. Since the network resonators in the contact

zone have large influence on the acoustic fields around their resonant frequencies,

the network resonators should be investigated in detail. First studies of some
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simple acoustic resonators are reviewed as follows.

Figure 1: Network resonators in the contact zone between a tire and a road

Besides porous materials and perforated panels, narrow quarter-wave tube10

resonators are also widely used for the sound absorption in a wall or panel for

a narrow frequency band based on the resonance of air inside the tube and the

viscous shear and thermal conductivity losses on the tube walls. The model

by Zwikker and Kosten [2] for wave propagation in cylindrical tubes included

the viscosity and thermal conductivity. Tijdeman [3] proved that this model15

is complete and accurate for both narrow and wide tubes. Eerden [4] studied

the influence of the viscous and thermal conductivity losses on the absorption

coefficient and concluded that the viscothermal effects cannot be neglected if

the resonators are used for sound absorption because they result in energy being

dissipated and the effective speed of sound inside the tube can be considerably20

reduced. Around the resonant frequencies, we can see a maximum sound absorp-

tion. The theory and applications of quarter-wave resonators are summarized

in [5].

The quarter-wave tube has an open and a closed end, but resonators with

two open ends can also be used for the sound absorption, especially for the case25

where air needs to be transported through walls or one needs to see through

the wall. Eerden [4] studied this case, and concluded that at low frequencies

(f < 2000Hz) the waves propagating in the resonator are not absorbed at

the end but are reflected back into the resonator due to the mass reactance at

the free end. For higher frequencies (2000− 10000Hz) the waves are absorbed30

due to radiation into infinity. In order to create broadband sound absorption,

coupled tube resonators with different cross-sectional areas and lengths can be
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applied. The mechanism for the broadband absorption is that the sound energy

is dissipated by the viscothermal effects and the incident waves are cancelled

due to the broadband resonance of air in the coupled resonators.35

Helmholtz resonators (HRs) are also used to control the noise inside enclo-

sures in many studies. Helmholtz resonators can be considered as a mass-spring

system. The spring stiffness is represented by the volume of air and the mass

is given by the small column of vibrating air in a perforation of the panel. The

energy can be dissipated by the vibrating air and the porous material placed40

in the volume. See [6, 7, 8, 9, 10] for different applications of these Helmholtz

resonators to noise reduction. More specifically T-shaped acoustic resonators

can be seen in many studies for noise control in small enclosures, see for instance

[11, 12, 13, 14, 15, 16] for models and experimental results on these resonators.

If we are interested more specifically in tire noise, today the noise due to the45

vibrations of a rolling tire can be calculated with convincing accuracy. However,

air pumping is not understood very well. In [17] Hayden described the air

movement in the contact zone between a rolling tire and a road. Air is squeezed

out when the treads at the entrance of the contact zone are compressed on the

road surface, and flows into the voids when the treads lift up from the road50

surface. Daffayet et al. [18] measured the pressure in cylindrical cavities over

which a smooth tire rolled. They assumed that the noise is generated by opening

and closing the cavities in the contact zone. Ronneberger [19] thought that air

was displaced by the changing gaps between the tire and road surfaces, because

the treads are deformed by road roughness. These sources are located in the55

contact zone between the tire and the road and the sound is modified by the

horn effect.

Horn effect is an essential noise enhancement mechanism. The tire/road sys-

tem can be seen as a horn-like structure. The surfaces of the tire and the road

constitute horns in front of and behind the contact zone. The noise generated in60

the contact zone is amplified by the multiple reflections between the tire surface

and the road surface which are acoustically reflecting surfaces. The amplifica-

tion of the horn effect reaches up to 10 to 20dB in the results of previous studies,
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where the road and the tire are modeled with smooth surfaces. A first attempt

at an analytical description of the horn effect was made by Ronneberger [20].65

Kropp et al. [21] suggested a theoretical model based on multipole synthesis.

The model can provide a reasonable prediction of noise levels at mid and high

frequencies for a tire placed on a hard surface. However, it overestimates the

horn amplification effect at low frequencies. Graf et al. [22, 23] first investigated

experimentally the horn amplification of sound generated by a simple acoustic70

source. The boundary element method is then shown to give predictions. The

dependence of the horn-effect on different geometrical parameters is also inves-

tigated both through experiments and boundary element calculations. It shows

that for the intermediate frequency range the BEM provides an excellent tool

to calculate the horn effect for practical geometries. The aim of the work by75

Anfosso et al. [24, 25] is also to predict the amplification due to horn effect.

Sound pressure amplification of a 2D infinite rigid cylinder is obtained using the

analytical approach based on modal decomposition of sound pressure. It gives

quick and accurate results, but is limited to simple geometrical configurations

and purely reflecting properties of boundaries. In [26] Fadavi et al deal with80

the horn effect using a 3D cylinder tire model. The sound pressure and sound

amplification are calculated in the space around the 3D tire model using the

Boundary Element Method. The influence of different parameters such as the

position and size of the source are studied in terms of amplification and sound

pressure spectrums. All these studies are made for smooth roads and tires and85

do not take into account the real geometry of the tire or the road.

In this work, we want to estimate the influence of non smooth geometries

on the horn effet. For this, we focus on network resonators and use several

assumptions for the networks. There are only right-angled junctions in the net-

works. The pipes in the networks have the same cross-section. The networks90

could have open or closed ends. For the open ends, end corrections depend on

flange shapes. So, first, methods for the calculation of end corrections will be

introduced in section 2. Next, in section 3, a numerical method for the calcu-

lation of resonant frequencies of network resonators will be developed. Then,
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in section 4 an optimization method will be proposed to get the targeted reso-95

nant frequencies. Some examples of the application of the optimization method

are shown in section 5 while comparisons with experimental measurements are

given in section 6. Last some conclusions will be given.

2. Determination of end corrections

The length is an important parameter for calculating the resonant frequen-100

cies of a network with open ends. A short distance should be added to each

end of the network to get precise results. This short distance is called the end

correction, which makes each straight part of the network a little longer than

its physical length.

From the perspective of waves, standing waves occur during the network105

resonances. The sound waves are reflecting at open ends, which are not perfectly

at the end sections of the network, but at small distances (end corrections)

outside the network.

The end corrections of the network open ends can be obtained from the

radiation impedances which have small but finite values by (1) from [27].

δ̃ = Re[k−1 arctan(
−Zr

iρc
)] (1)

The upper script ∼ means that it is a frequency-dependent quantity. Here only

the real part of the end correction is considered, which is the most useful in110

the present study. To estimate the end corrections of the network, the radiation

impedances of the open ends should be calculated first by the impedance transfer

equation of an acoustic transmission line (2) from [27], because Zr cannot be

calculated or measured directly at the pipe end.

Zr = −iρc tan[arctan(
−Zl

iρc
)− kl] (2)

Zl is the impedance at an abscissa x = −l, i.e., at a distance l from the open115

end. It can be calculated as Dalmont did using a BEM numerical method [27].

Equation (2) means that the radiation impedance can be obtained from

the case where Zl is an input impedance of a pipe of length l. Then the end
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corrections can be obtained by (1). The values of end corrections depend on

flange shapes. An open pipe end with different flange shapes has different end120

corrections. In this section, end corrections of a network with complex flanges

are calculated by Dalmont’s methods or by the BEM. The flanges are a round

surface and a plane surface (see Fig.2), which will be used in section 4. The

network is shown in red. Some pipes are identified by the numbers one to three

shown in green.125

Figure 2: A network (in red) between a round surface and a rigid plane surface

Only the end corrections of longitudinal pipes will be discussed. For trans-

verse pipes they can be calculated approximately by Dalmont’s fit formula (3)

for rectangular flanges because the flange of transverse ends is flat.

δsq = δsq∞ +
asq
bsq

(δsq0 − δsq∞) + 0.057
asq
bsq

[1− (
asq
bsq

)5]aeff (3)

with δsq∞ = 0.811aeff and δsq0 = 0.597aeff , in which aeff = 2asq/
√
π. Here,

2bsq is the flange width, respectively. bsq is the shorter one of the two distances
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between the transverse end and the sides AD or BC in Fig.2 for which the value

of bsq for pipe number 2 is shown. 2asq = 0.009m is the pipe width which is

small and not shown in the figure.130

The longitudinal pipes at different positions have different shapes and di-

mensions of the flanges. Although their ends may not be in the middle of the

flanges, in the interest of simplicity they are approximately assumed in the mid-

dle of the flanges. The round surface in Fig.2 is a cylinder. In the contact zone,

the cylinder surface is flat.135

(a) (b)

Figure 3: (a) Half a mesh of the boundary element model of a rectangular tube with a

cylindrical flange; (b) Details of the mesh of the tube.

In order to calculate the end corrections of longitudinal pipes, half a cylinder

is meshed for BEM, which is shown in Fig.3a and 3b. This is a longitudinal

pipe, like pipe 1 in Fig.2, but located at the center of the contact zone. Since the

plane surface is rigid, it can be considered as a symmetric plane. A symmetric

plane of the cylinder exists, so only half of the cylinder is meshed. The radius140

of the cylinder is 0.27m. The half pipe has rectangular cross-section with area

of 0.0045m × 0.009m. The length is 0.1m. It has an open end and a closed

end which has a unit velocity as boundary condition. The base surface behind

the piston is modelled as flat to reduce the elements because the flange shape
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behind the piston has no influence on the end correction of the open end of this145

pipe. It has a very small impedance which is used to minimize the reflections.

Other parts of the model are rigid.

The acoustic pressure at the central node of the closed end is calculated by a

BEM software. This software was developped by the authors and some details on

the formulation which has been used can be found in [28]. For the computations150

in this article, first order elements of triangular or quadrangular shapes were

used. The number of nodes was approximatly 1600 and the number of elements

2900. This was found sufficient for the frequency band which is studied in the

following.

The acoustic velocity at the closed end of the pipe is unity, so the impedance155

of the piston is obtained. Then the radiation impedance is calculated from this

impedance by equation (2).
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Figure 4: End corrections of longitudinal pipes with cylindrical flanges of different widths

within 2000Hz (ka < 0.23).

The end corrections of the longitudinal pipe for cylinders of different widths

are shown in Fig.4 for ka < 0.23, and the frequency interval is 200Hz. They are

obtained by BEM as no analytical formula can be used in this case. For each

width of the cylinder, the end corrections are frequency-dependent, but their

standard deviations are very small (see Fig.5), which indicates that they tend

to be very close to the mean values. The standard deviation is calculated by
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Figure 5: Standard deviations and mean values of end corrections of longitudinal pipes with

cylindrical flanges of different widths.

equation (4). So the mean values of end corrections for each width in Fig.5 are

used to get a fit formula of end corrections (5), in which w is half of the width.

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (4)

with µ = 1
N

N∑
i=1

xi, where xi is the end correction at each frequency and N is

the number of frequencies calculated.

δ = 0.00808 + 0.22128w − 3.72112w2 + 19.80897w3 (5)

This fit formula will be used in section 4. The same procedure can be used to

get fit formulas for other pipes and flanges of different shapes and dimensions.

3. Calculation of resonant frequencies160

In the network, there are columns of air. Waves traveling in air will reflect

back when they reach the end. A standing wave is created at the resonant

frequency of the network. An open network will resonate if there is an anti-

node at each open end. These anti-nodes are places where there are maximum

velocities and minimum pressures (p = 0). However, these zero pressures are165

not at the physical ends of the network as they are altered by their contacts

with air. In fact they are at the end correction positions of the network.
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Knowing the resonant frequencies of the network is essential. The network

has a great influence on the exterior acoustic field around the resonant fre-

quencies, and at other frequencies there is no change of acoustic pressure. In170

order to calculate this influence the resonant frequencies should be estimated

first, otherwise all the frequencies should be calculated and it leads to large

computations.

There are analytical solutions for simple pipes such as a straight pipe, a

T-shaped pipe and so on. However, numerical methods should be adopted in175

order to get the resonant frequencies of complex networks. It is assumed that

there is a plane wave in the straight parts of the network for the cross-sections

are quite small compared to the wavelengths.

Merkli [11] proposed a simple model to calculate the resonant frequencies

of a T-shaped resonator by using the wave propagation theory. In this model,180

end corrections for open ends should be considered. Besides, the end correction

of each branch at the junction position should also be included in the model.

So for each open branch, the effective length includes the physical length of the

branch, the end correction at the junction position and the end correction of the

open end. Dalmont’s [27] methods and results can be used for the calculations185

of the open end corrections. With his methods, the open end flanges could have

any shape and dimension. The end corrections at the junction position can be

calculated with the model of Li [12].

Theoretically, Merkli’s model can be applied to other cases such as a L-

shaped junction pipe, a cross junction pipe or a network. However before esti-190

mating the resonant frequencies, the end corrections of branches at the junction

positions should be calculated precisely. Existing models can only give approx-

imate estimations of these interior end corrections. If we use Merkli’s model

to calculate the resonant frequencies of a network, there will be large errors

due to the approximate interior end corrections. In order to avoid using these195

interior corrections, numerical methods should be adopted for the calculation of

the resonant frequencies.

The resonant frequencies can be obtained by solving an eigenvalue problem
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(6) of an undamped finite element model.

(K − ω2M)φ = 0 (6)

K is the stiffness matrix, M is the mass matrix, ω = 2πf and φ is the eigenvec-

tor.

Finite element software Abaqus is chosen to perform the resonant frequencies200

extraction procedure, which is a linear perturbation procedure. The networks

have open ends. The impedance boundary conditions cannot be applied to these

ends in Abaqus. So their end corrections should be taken into account in the

models. The branches with open ends in finite element models are created longer

than their physical lengths. Since at the resonant frequencies the pressures205

are zero at the end correction positions, zero pressure boundary conditions are

applied. The other boundary conditions are rigid. The values of these end

corrections for open ends are computed by relation (5). Then the network with

corrected lengths for the open ends is meshed.

For a 2D network whose junctions and branches are in the same plane,210

an automatic calculation procedure can be implemented to get the resonant

frequencies. Abaqus GUI will generate an input file ’*.inp’ which is sent to the

processor while running a simulation. A simple case of a straight pipe is solved

to get the ’*.inp’ file which can be modified for complex networks. In this file,

the straight pipe mesh information is deleted, then mesh information of the215

network to be solved is added. New node and element sets are defined for the

zero pressure boundary conditions. The other parts of this file keep the same

data as before.

Since 2D meshes are quite easy to get, Matlab is used to create the mesh

information for the network, and the node and element sets for the boundary220

conditions. The other information from the old file of straight pipe is written

into the new ’*.inp’ file by Matlab as well.

The automatic procedure for calculating the resonant frequencies of 2D net-

works is: create the ’*.inp’ by Matlab, submit it to Abaqus by commands in

Matlab, and then post-process the Abaqus output script in Matlab. This Mat-225
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lab programme is named as ’2DNRF’ (for 2D Network Resonance Frequency),

which will be used in section 4.

4. Optimization of network structures

The value and number of resonant frequencies vary according to the net-

work structures. Because of this dependence, it should be possible to find the230

wanted resonant frequencies or a maximum number of resonant frequencies by

optimizing the network structure.

The parameters that describe a network are the number and positions of

ends, junction types, junction positions and pipe cross-sections. In this work

there are only longitudinal and transverse pipes in a network, so the junction235

positions depend on the end positions. If the end positions are known, the

junction positions are known. The 2D network considered in this work consists

of the three types of junctions shown in Fig.6a-6c.

(a) (b) (c)

Figure 6: (a) T junction with left branch; (b) T junction with right branch; (c) Cross junction

Different networks can be formed by using different parameters. Their res-

onant frequencies can be estimated by the finite element method 2DNRF pro-240

posed before. By changing the parameters, networks with the wanted resonant

frequencies or a maximum number of resonant frequencies can be found. Op-

timization methods should be adopted to optimize the parameters. Genetic

algorithm (GA) is used for this purpose in this article but other optimization

methods such as Simulated Annealing could also be used.245
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The chromosome representations should be decided first. GAs operate on a

number of potential solutions, called a population of chromosomes, consisting of

some encoding of the network parameter set. The binary and integer chromo-

some representations are used. For a network each parameter of junction type is

encoded as an integer in 0, 1 or 2 which represent the junction types in Fig.6a-250

6c, and the other parameters of network dimensions (such as end positions,

cross-sections and so on) are encoded as binary strings.

Then the initial population can be generated by using a random number

generator. There are two parts in a population, a binary part of network di-

mensions and an integer part of junction types. We can create a random binary255

matrix of size Nind × Lind for the parameters of network dimensions, where

Nind specifies the number of individuals and Lind the length of the individuals.

For the parameters of junction types, we can give an integer (0, 1 and 2) matrix

of size Nind×Lindjun where Lindjun is the number of junctions. By combining

these two matrices, the initial population is obtained.

Figure 7: An example of network for the chromosome representation

260

Here is an example of an individual in a population of networks

[

m︷ ︸︸ ︷
0100...1111, 0101...0101︸ ︷︷ ︸

l

, ......, 0101....0111,

n︷ ︸︸ ︷
2, 1, 0, ......, 1, 0, 2] network i (7)

This is the chromosome representation of the network in Fig.7. The network

has 3 rows and 4 columns. In the first part of the chromosome, there are m
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dimension parameters and each one has l binary strings which can be converted

to a real value. So there are m real values, and for this network m is 8. We

specify the boundary of the network, so the open ends move only on this bound-265

ary and along with the junctions. Therefore, we only need to generate the real

values for the coordinates of the junctions and the cross sectional area of the

network. Since we use the same cross section for the network, only one real

value is needed for the area. The other seven real values represent the positions

of the three rows and four columns which determine the coordinates of the junc-270

tions. In the second part of the individual there are n = 12 junctions and each

integer represents the junction type. If this population consists of k networks,

its chromosome representation is a k × (m+ n) matrix.

The purpose of this work is to find the wanted resonant frequencies or as

many resonant frequencies as possible by designing and optimizing the network.

The 2D FEM, implemented in the MATLAB code 2DNRF proposed before, has

been used for estimating values of fr and the number of resonant frequencies

of a network. If fw is the wanted resonant frequency and there are several

resonant frequencies fr1, fr2, ... for the network i, the objective function for the

first purpose is given by

ObjV1(xi) = min(|fr1 − fw|, |fr2 − fw|, ...) (8)

where xi is the chromosome of network i.

If the purpose is to find as many resonant frequencies as possible, the objec-

tive function is the number of resonant frequencies. A minus sign is added to

get a minimization problem. One has

ObjV2(xi) = −count(fr1, fr2, ...) (9)

We can minimize the two objective functions, which only depends on the pa-275

rameters of the network (dimensions and junction types).

For the minimization problem, the most fit individuals have the lowest nu-

merical values of the associated objective function. The raw objective values in

equation (8) or (9) are usually only used as an intermediate stage in determining

the relative performance of individuals. The fitness function is normally used to280
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transform the objective function value into a measure of relative fitness. Here,

individuals are assigned a fitness according to the rank of their raw objective

values in the population rather than the raw performance.

A population is first initialized and then improved through repetitive applica-

tion of the mutation, crossover and selection operators. This process is repeated285

until a fixed number of generations has been reached. If we are not satisfied with

the results, we can adjust the specified parameters of GA or networks and then

run the optimization program again until we get targeted resonant frequencies.

5. Design examples

In order to illustrate that GA works for the optimization of 2D networks290

and that the resonant frequencies can be obtained by the GA process, some

examples are given.

All the dimension parameters of the network can be optimized within given

ranges during the GA process, but for the sake of simplicity some of them are

specified. The network to be optimized in this section has 14 open ends and 12295

junctions. The junction positions are arranged in four columns and three rows,

and their coordinates depend on end coordinates. In Fig.8 there is an example

of networks generated randomly in the first generation of the GA procedure. In

Fig.8 we can see 14 positions for the open ends, but the network has 12 open

ends due to the junction types. The circles represent the junction positions.300

Three types of junctions introduced before can be seen in this example. They

are T junction with left branch, T junction with right branch and cross junction.

The corrections of open ends can be obtained by the methods introduced

before. If the ends are closed, there is no need to add end corrections to the

original pipe lengths.305

5.1. Unflanged networks

In this example there is no flange, so the end corrections, 0.001684m, can be

calculated by equation (10) which is from paper [27].

δsq0 = 0.597aeff (10)
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Figure 8: An example of networks generated randomly in the first generation of the GA

procedure

with aeff = 2asq/
√
π where 2asq is the pipe width.

Transverse (x axis) and some of longitudinal coordinates of the ends are

given in table 1. The other longitudinal coordinates of the ends vary within the

ranges which are shown in table 1 as well. The pipe cross-sections are the same,310

0.005m × 0.005m. Boundary conditions p = 0 should be applied to the open

ends, where p is the acoustic pressure.

Table 1: Coordinates of central points of open ends of a unflanged network

End x(m) y(m) End x(m) y(m)

1 0.0475 −0.051684 8 −0.0475 0.051684

2 0.0325 −0.051684 9 −0.0325 0.051684

3 −0.0325 −0.051684 10 0.0325 0.051684

4 −0.0475 −0.051684 11 0.0475 0.051684

5 −0.076684 [−0.0475,−0.015] 12 0.076684 [0.015, 0.0475]

6 −0.076684 [−0.01, 0.01] 13 0.076684 [−0.01, 0.01]

7 −0.076684 [0.015, 0.0475] 14 0.076684 [−0.0475,−0.015]

By giving the GA parameters, such as the number of individuals, the gen-

eration gap, the maximum number of generations and the wanted resonant
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frequencies, and running the GA program once, an optimal network can be315

found. This network has the closest resonant frequency to the targeted reso-

nant frequency. The GA parameters should be adjusted for each case to obtain

acceptable results.

Table 2: Results for the targeted resonant frequencies

Case Targeted(Hz) Obtained(Hz) Error(%)

1 1250 1254 0.32

2 1400 1400 0

3 1600 1590 0.625

In table 2, the wanted resonant frequencies are obtained by optimizing the

network structure and the maximum error is less than 1%. The network struc-320

tures can be seen in Fig.9a-9c. Besides the resonant frequencies shown in table

2, these three networks have other resonant frequencies within 2000Hz. They

are 1926Hz in case 1, 1976Hz in case 2 and 1947Hz in case 3.

In Fig.10 we can see the minimum difference between the targeted frequency

1400Hz and the resonant frequencies of individuals in each generation in GA325

procedure. In the first generation the difference is 259.52Hz. From the second

generation it becomes 6.93Hz. In the 7th generation a very good result is

found. The difference between its resonant frequency and the targeted frequency

1400Hz is 0.22Hz. The number of individuals in each generation used in the

GA procedure is 1000. This leads to a computing time of about two hours to330

get the final result by the GA algorithm.

5.2. Flanged networks

In this example the network is between the cylinder and the plane surface

used in section 2. The calculations of open end corrections are presented before.

The end corrections of longitudinal open ends can be calculated by formula (5).335

For the transverse ends their corrections, 0.0054m, 0.0057m, and 0.0054m, are

given by formula (3).
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(a) (b)

(c)

Figure 9: (a) Network with the resonant frequency 1254Hz; (b) Network with the resonant

frequency 1400Hz; (c) Network with the resonant frequency 1590Hz.

Longitudinal and some transverse coordinates of the ends are given in table

3. The other transverse coordinates vary within the ranges which are shown

in table 3. The pipe cross-sections are the same, 0.009m × 0.009m. Boundary340

conditions p = 0 should be applied to the open ends, where p is the acoustic

pressure. In table 3, EC means the value of longitudinal end correction, which

can be calculated by formula (5).

In this section we try to get networks with the maximum number of reso-

nant frequencies within the frequency range 0 − 2000Hz. With the dimension345

parameters of networks given before, networks with as many resonant frequen-
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Figure 10: The minimum difference between the targeted frequency 1400Hz and the resonant

frequencies of individuals in each generation in the GA procedure

cies as possible will be searched by GA. The networks of interest have repeated

junctions in the longitudinal direction (y axis in Fig.8). It means that in each

column of the network in Fig.8 the junctions should be the same.

(a) (b)

Figure 11: (a) Network 1; (b) Network 2.

By changing the GA parameters and running the GA program several times,350

four resonant frequencies at most within 0 − 2000Hz are found. There are

2 networks with 4 resonant frequencies, and they are shown in Fig.11a and

Fig.11b. The resonant frequencies are shown in table 4. It was found that

different runs of the software lead to networks with quite similar structures but
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Table 3: Coordinates of central points of open ends of the network between a cylinder and a

plane surface

End x(m) y(m) End x(m) y(m)

1 [0.042, 0.0705] −0.05− EC 8 [−0.0705,−0.042] 0.05 + EC

2 [0.0045, 0.033] −0.05− EC 9 [−0.033,−0.0045] 0.05 + EC

3 [−0.033,−0.0045] −0.05− EC 10 [0.0045, 0.033] 0.05 + EC

4 [−0.0705,−0.042] −0.05− EC 11 [0.042, 0.0705] 0.05 + EC

5 −0.0804 −0.03333 12 0.0804 0.03333

6 −0.0807 0 13 0.0807 0

7 −0.0804 0.03333 14 0.0804 −0.03333

Table 4: Networks with four resonant frequencies

Resonant frequency 1st 2nd 3rd 4th

Network1 1055Hz 1797Hz 1799Hz 1929Hz

Network2 1201Hz 1799Hz 1890Hz 1989Hz

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2

3

4

5

m
ax

im
um

 n
um

be
r o

f r
es

on
an

t f
re

qu
en

ci
es

generations

Figure 12: The maximum number of resonant frequencies for each generation in the GA

procedure

with slightly different coordinates of the junctions.355

In Fig.12, the maximum number of resonant frequencies of a network in

the first generation is 3. It changes to 4 in the 8th generation and then keeps
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the same value until the end of the GA procedure. Since we are interested in

periodic networks, only networks with repeated junctions could be generated in

each generation. So the number of individuals in each generation is just 30.360

From the above examples one can conclude that the GA process developed

before is suitable for the optimization and design of networks. Once the ranges

of dimension parameters of networks are given, networks with targeted resonant

frequencies can be found. The design examples will be validated by measure-

ments in section 6.365

6. Experimental validation

Wooden networks are built and measured in order to validate the optimiza-

tion in section 5. First a network without flange is measured. This network

is optimized and built to target the resonant frequency 1400Hz. Then a net-

work between a cylinder and a plane surface is built and measured to search 4370

resonant frequencies predicted in section 4.

6.1. Unflanged network

An unflanged network in Fig.13a is measured in order to validate the opti-

mization. The network in Fig.13a is built with wood. A speaker and a micro-

phone are put near the open ends in Fig.13a. The optimized network is a 2D375

network, so the depth is not given in the optimization. In the experiments, the

depth that we use is 0.01m.

The SPL obtained by the microphone is shown in Fig.13b. We can see a deep

valley at frequency 1370Hz which is close to the targeted resonant frequency

1400Hz. So the GA optimization procedure developed before can give the380

resonant frequencies that we want.

6.2. Flanged network

The network between the cylinder and the plane surface is optimized in

section 5.2. The acoustic fields of network 1 in Fig.11a are calculated and
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Figure 13: (a) Optimized wooden network with the resonant frequency 1400Hz; (b) Measured

SPL for the optimized wooden network with the resonant frequency 1400Hz.

measured in order to validate the GA optimization methods. When we measure385

the case without network, we close the pipe ends in Fig.14b with woods.

In our calculations, a dimensionless point source is used, and it has been

assumed omni-directional. The general tendencies and frequency-dependant

variations of the sound pressure will be compared between the predicted and

measured results. Such comparisons are very common and widely used in pre-390

vious studies such as in [29] and [14]. So it is not necessary to use a omni-

directional source in our experiments. A numerical signal is generated and then

sent to a real loudspeaker. This is the source used in these experiments. Its

dimensions are 0.12m× 0.12m× 0.12m.

The radius and width of the cylinder are 0.27m and 0.15m. Its location395

can be seen in the sketch of the experimental setup Fig.14a. Sweep signals

within 2000Hz are generated by a generator. The center of the speaker is at

(1m, 0m, 0.06m). The microphone is at (0.1m, 0m, 0.005m).

The predicted results are shown in Fig.15a. The resonant frequencies of this

optimized network are given in section 5.2, which are 1055Hz, 1797Hz, 1799Hz400

and 1929Hz. The second and the third resonant frequencies are very close, so

just one extremum can be seen around 1800Hz in Fig.15a, where we can see

two other extrema around 1055Hz and 1929Hz.
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(a)
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Figure 14: (a) Sketch of experimental setup; (b) An optimized network between a cylinder

and a plane surface.
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Figure 15: (a) Predicted results of an optimized network between a cylinder and a plane

surface; (b) Measured results of an optimized network between a cylinder and a plane surface.

The measured results are given in Fig.15b, where the variations of SPL are

similar to the predicted results in Fig.15a. Around the wanted resonant frequen-405

cies, reductions of the measured SPL are close to reductions of the predicted
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SPL. The lower dip in the experimental curve compared to the computation can

be explained by the damping in the system coming for instance from the wood

material. From the predicted and measured SPL we can see that the optimized

wooden network has the resonant frequencies that we want.410

7. Conclusions

A numerical method for the calculation of resonant frequencies of network

resonators has been proposed. Based on this numerical method, an optimiza-

tion method using genetic algorithm is developed in order to get the targeted

resonant frequencies of the network resonators. The optimization method is val-415

idated by experiments of design examples of wooden network resonators. The

measured resonant frequencies of the optimized network resonators agree well

with the targeted resonant frequencies. The good agreements also prove that

the end corrections are estimated correctly.

Tire treads and road textures in the contact zones between tires and roads420

can be considered as networks. The network resonance is an important mech-

anism of the tire/road noise. With the methods proposed in this work, it is

possible to investigate the influence of these networks on the tire/road noise

and to design tire treads and road textures.

For a real tire the method could be applied by first estimating the end cor-425

rections of the pipe. This will need a fine mesh of the tire surface and potentially

large computations but efficient methods such as BEM based on Fast Multipole

Methods could help to get results in a reasonable time. Computations of res-

onant frequencies of the network in the contact zone should be done without

too much difficulties. The method can also be applied to estimate the influence430

of the road surface of the acoustic radiation. This needs to describe the road

asperities and to mesh a part of the road in the boundary element model.
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