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Abstract — Accurate computations of turbulent flows using the Large-Eddy Simulation (LES) technique
with an appropriate SubFilter Scale (SFS) model require low artificial dissipation such that the physical
energy cascade process is not perturbed by numerical artifacts. To realize this in practical simulations,
energy-conserving numerical schemes and high-quality computational grids are needed. If unstructured
meshes are used, the latter requirement often makes grid generation for complex geometries very difficult.
Structured Cartesian grids offer the advantage that uncertainties in mesh quality are reduced to choosing
appropriate resolution. However, two intrinsic challenges of the structured approach are local mesh
refinement and representation of complex geometries. In this work, the effectiveness of numerical methods
which can be expected to reduce both drawbacks is assessed in engine flows, using a multi-physics inhouse
code. The overset grid approach is utilized to arbitrarily combine grid patches of different spacing to a flow
domain of complex shape during mesh generation. Walls are handled by an Immersed Boundary (IB)
method, which is combined with a wall function to treat underresolved boundary layers. A statistically
stationary Spark Ignition (SI) engine port flow is simulated at Reynolds numbers typical for engine
operation. Good agreement of computed and measured integral flow quantities like overall pressure loss
and tumble number is found. A comparison of simulated velocity fields to Particle Image Velocimetry (PIV)
measurement data concludes the validation of the enhanced numerical framework for both mean velocity
and turbulent fluctuations. The performance of two SFS models, the dynamic Smagorinsky model with
Lagrangian averaging along pathlines and the coherent structure model, is tested on different grids.
Sensitivity of pressure loss and tumble ratio to the wall treatment and mesh refinement is presented. It is
shown that increased wall friction introduced by applying a wall model is overcompensated by some
secondary effects, which lead to an overall reduction of pressure loss in the investigated engine geometry.
Finally, dynamics of the statistically stationary valve jets are analyzed using Proper Orthogonal
Decomposition (POD). Two distinct flow patterns are identified and the relevance for Cycle-to-Cycle
Variations (CCV) is discussed.

INTRODUCTION (RANS) approach, since mixing fields can be computed

with high accuracy. This capability is particularly
For many practical combustion systems, LES of turbulent  interesting for stochastic effects that are relevant, for
reacting flows seems to be an attractive technique  instance, for emissions formation or abnormal combustion
compared with the Reynolds-Averaged Navier-Stokes  phenomena. Recently, special interest has been attributed to
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CCV in SI engines [1]. Although LES is a suitable tool to
predict these effects, fully reactive and even motored
simulations over multiple cycles which achieve reasonable
agreement with experimental data, are still scarce. Possible
reasons are the challenges associated with performing
accurate LES of high Reynolds number flows in the
presence of complex geometries and moving walls.

The discrete representation of complex geometries
can be naturally accomplished with unstructured grids.
This approach is realized in the AVBP code, which has
been used in several engine studies, e.g. [2-4]. Another
well-known example is the OpenFoam code, which has
been used to carry out engine LES more recently [5].
However, meshing efforts are usually non-trivial. On the
other hand, some engine LES studies have been
performed based on structured Cartesian grids [6—8].
Major advantages of this approach are applicability of
higher order numerical methods, reduced uncertainty
with respect to LES mesh quality, insignificant meshing
effort and computational performance. However, intrin-
sic challenges are the treatment of complex-shaped walls
and local mesh refinement. For the former, commonly
used techniques are IB or Cut Cell methods [9]. Due to
the wide range of Reynolds numbers present throughout
the engine simulation domain, it is desirable to vary the
grid spacing and make LES more affordable. Cartesian
grid refinement can be realized by overset or Chimera
methods [10], or block-structured Adaptive Mesh
Refinement (AMR) [11].

In this work, the efficacy of such approaches for LES on
Cartesian grids is investigated in engine flows. Compared to
a previous study [7], an IB and an overset grid method have
been introduced into an inhouse code. Numerical accuracy
near the walls has been improved and a wall function has
been coupled to the IB method. The overset grid method is
verified on a simple flow problem with analytic solution. For
validation, an engine flowbench configuration is considered
as representative test case for intake stroke flow conditions.
The absence of moving walls reduces the computational cost
to obtain in-cylinder flow statistics and simplifies the
analysis of complex dependencies between flow features in
the intake port and further downstream. Hence, it is a
suitable case to evaluate the effects of different combina-
tions of numerical methods and grid resolutions on the flow
field.

The paper is organized as follows. First, the governing
equations and baseline numerical framework are described.
Second, recent enhancements in terms of wall treatment
and mesh refinement are discussed and verified. Third,
validation results and sensitivities for different SFS
models, grid resolutions and numerical methods are
discussed. Finally, dynamic behavior of the valve jets is
analyzed.
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1 COMPUTATIONAL FRAMEWORK
1.1 Governing Equations

Typical Mach numbers during intake stroke suggest the
occurrence of compressibility effects, i.e. the computational
framework should be suitable for at least weakly compress-
ible flows. Here, the fully compressible Navier-Stokes
equations are solved:
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where the viscous stress tensor is given by
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Here, constant molecular viscosity @ is considered a
reasonable approximation for the flow configurations
discussed below.

The energy variable used in this work is total energy
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where the thermal conductivity A is computed from the
molecular viscosity, assuming Pr=0.7.

The system of equations is closed by using the ideal gas
law as equation of state:

P=pZp (5)
For this study, calorically perfect gas is assumed, i.e.
specific heat capacities are constant in all simulations.

1.2 Numerical Methods

In the following, discretization schemes and boundary
conditions for the solution of the governing equations are
described. Within this work, an existing numerical framework
has been extended by three methods. First, the spatial filtering
scheme [12], which removes numerical artifacts from the
solution, has been modified according to [13]. Consequently,
interior and near-boundary points are filtered with the same
order of accuracy. Second, an overset grid method has been
introduced. Third, an immersed boundary method [14] was
added to represent the geometry. All methods have, but are not
limited to, second-order accuracy.
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1.2.1 Discretization

The Navier-Stokes equations are discretized by second-
order finite difference schemes on a staggered mesh as
described in [15]. Metrics operators at interior points do
satisfy discrete conservation of mass, momentum, and
kinetic energy, while at boundaries, only primary conserva-
tion is achieved. For the energy equation, a third-order
accurate Weighted Essentially Non-Oscillatory (WENO)
scheme [16] is utilized. To avoid inconsistencies between
discrete mass conservation and scalar convection, which
may result from combinations of higher-order finite
difference and upwind-biased schemes, a finite-volume
mass flux is used in the continuity and scalar transport
equations [17].

The non-dissipative nature of the spatial discretization
used for the Navier-Stokes equations may require additional
procedures to remove spurious oscillations from the
solution. Such numerical artifacts might result from finite
errors due to explicit time integration of the continuity
equation in compressible flows, reduced accuracy near
boundaries, discretization errors on non-uniform grids, or
dispersive errors. These ‘wiggles’ can be eliminated by
locally dissipative numerical schemes, explicitly adding
artificial dissipation to the governing equations in parts of
the domain, or applying low-pass filters to the solution as a
post-processing step [18,19]. Effective sensors for high-
frequency modes are required for the former two
approaches, particularly when turbulent flow structures
are to be retained. If low-pass filters with sharp spectral cut-
off properties are applied, sensors may not be needed. In this
work, sixth-order-accurate spectral-like filters according to
[13] are used for engine-type flows.

For time integration, an explicit scheme based on a second-
order-accurate, low-dissipation and low-dispersion Runge-
Kutta (LDDRK) method is used [20]. In these types of
schemes, the coefficients are optimized to reduce the
dissipation and dispersion errors in acoustic wave propagation
calculations. This allows for larger time steps than in classical
Runge-Kutta methods to achieve the same accuracy. LDDRK
schemes typically require a larger number of stages than the
order of accuracy might indicate. Due to this property, such
schemes can be implemented with low-storage requirements
[21], which is an attractive feature for LES since computa-
tional performance of fluid dynamics applications is mostly
bound by memory bandwidth [22]. In all compressible flow
simulations discussed below, the second-order-accurate five-
stage scheme (LDD25) [21] is used.

1.2.2 Immersed Boundary Method

In the present work, the Immersed Boundary-Approximated
Domain Method (IB-ADM) as proposed by Kang et al. [14]
has been integrated into the inhouse code. The basic concept
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of enforcing the velocity boundary condition at the actual
geometric location of the interface follows the work of
Fadlun et al. [23]. In this approach, the discretized equations
in the direct vicinity of the immersed boundary are replaced
by appropriate numerical boundary conditions, which are
interpolated from the near-wall flow solution and the known
physical boundary conditions on the immersed interface.
This discrete forcing by direct boundary condition imposi-
tion from reconstruction eliminates stability issues encoun-
tered when continuous or feedback forcing methods are
applied to rigid interfaces [9]. An example of the
approximated fluid domain where the governing equations
are solved is given in Figure 1 for a curved immersed
boundary. In this work, simple linear interpolation is used,
unless a velocity boundary condition is provided from the
wall model (Sect. 1.4.1).

Challenges related to mass conservation arise when
boundary conditions are imposed at the closest grid point on
the fluid side of the immersed interface. In order to only
solve the governing equations on the fluid side of the
immersed boundary, and avoid complex treatment to enforce
continuity locally in cells crossed by the interface [24],
global mass conservation across the whole boundary is used
as additional constraint:

/1*” (,ou) d4 = /Fib (,ou) d4. (6)

This is incorporated into the face-velocity bo_lgldary
condition as follows. First, a temporary velocity u,,, is
computed by interpolation from Ny, fluid points to the
numerical boundary location I',, using the velocity of the
immersed boundary. Second, a correction is applied to
the interpolation coefficients 7;{,’,,,, which are functions of
the local immersed boundary geometry and velocities. The
final velocity boundary condition at each face m is computed
in a local coordinate system, centered on the immersed

boundary (no summation over repeated indices):
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The correction to the interpolation weights A_a)k_m is obtained
by solving a constrained least square problem to minimize the
amount of correction. Note that this redistributes the error in
U,,, over the numerical boundary I',. In flowbench
simulations discussed below, the mass flux error to be
compensated at each valve was found to be on the order of one
percent of the mass flow passing the valve. After applying the
correction procedure once, the mass flux error was reduced

below 10, which could be further decreased by repeated
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Figure 1

Approximated flow domain with immersed boundary.

execution. Grid refinement can be used to reduce the amount
of correction according to the order of accuracy of the chosen
interpolation scheme.

In compressible flow simulations with Neumann bound-
ary conditions for temperature and density, over-heating or
over-cooling effects were observed in some cases near the
immersed boundary. Locally, both variables were found to
diverge into opposite directions, while maintaining constant
pressure. To address this issue, the isobaric fix proposed by
Fedkiw et al. [25] is used to calculate temperature and
density at the numerical boundary.

1.2.3 Overset Grid Method

The method can be structured into several interdependent
procedures. These are, in execution order, overset grid
generation and definition of inter-grid boundaries, hole
cutting, inter-grid interpolation and communication setup,
as well as coupled time integration. Each step is described in
the following.

Cartesian grids are fully parameterized by the bounding
box dimension and the grid point distribution in each of the
three coordinate directions, which makes grid generation
very simple and time-efficient. As pre-processing step, the
user first defines a background mesh for the entire flow
domain, which can, but does not need to be generated.
Overset grids can be defined in arbitrary locations by
respective bounding boxes and a refinement/coarsening
factor relative to the background mesh. In this way, the flow
domain can be composed of a chain of overlapping grids and
the base grid can be omitted, if desired. Grid overlap is
automatically adjusted. Currently, all grids need to have the
same orientation in the global coordinate system. To reduce
interpolation errors and for ease of use, integer numbers are
used as refinement factors in the present work.

Thus far, Cartesian blocks have been defined without
considering the complex geometry. The employed IB
method requires a procedure that tags all cells on the fluid
side of the actual wall geometry, which is imported into the
inhouse code in STereoLithography (STL) format. Cells cut
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Figure 2

Overset grid for boundary layer refinement in an intake port.

by the geometry are identified by ray tracing, which is
conceptually similar to the work in [26]. For this operation,
grid and triangulated geometry are mapped to integer space
which avoids precision-related ambiguities [27] and
increases efficiency. Usage of Alternating Digital Trees
(ADT) [28] further speeds up the intersection search, which
is a desirable feature when applied to handle moving
boundaries in the flow solver. The raytracing method is very
robust since it is capable of representing the shell of even
very thin geometry objects on the grid.

A three-dimensional stair-step representation of the actual
geometry is determined with a flood-fill procedure, starting
from user-defined material points on each grid. This
geometry recognition approach can be efficiently employed
to generate refined boundary layer grids with minimum user
input, i.e. specification of the desired wall and refinement
layer thickness (Fig. 2).

During the pre-processing step, inter-grid coupling
boundaries are defined as requested by the user. Finally,
the parallel block decomposition as presented in [7], can be
applied to all overset grids independently for different
numbers of processors to conclude the pre-processing step.

In the flow solver, it is desirable to integrate the
discretized equations on the finest available overset grid,
with minimum mesh overlap. To accomplish this, holes are
cut into coarse mesh regions. The cutting procedure is
initiated by comparing resolutions of all available grids at
each inter-grid coupling boundary. On the finest mesh, the
inhouse code internally creates an STL representation of the
shape of the coupling boundary, but offset towards the fluid
side by a user-prescribed number of overlap cells. This
internal geometry object needs to be made invisible to the
fine mesh, but visible to all coarser meshes. Then, the
geometry recognition procedure described in the previous
paragraph can be utilized to cut holes into the mesh and
create additional inter-grid coupling boundaries.
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The overlap distance separates locations where interpo-
lation from the coarse to the fine and from the fine to the
coarse grid solution is performed. For small overlap, the
value interpolated onto one grid appears in the interpolation
stencil for the other grid. In such a case, a coupled system
needs to be solved which is called implicit interpolation [29].
In this work, grid overlap is chosen sufficiently large so the
interpolation is solely explicit.

Once all inter-grid coupling boundaries are geometrically
defined, adjacent fringe or target points need to be identified
in the hole or outer region, where the standard discretization
schemes need information from other grids. The actual
fringe point number and position depends on the spatial
scheme and storage location of each variable. On the
staggered mesh with different numerical schemes for
velocities and scalars, four different sets of target points
need to be considered. For each fringe point, an efficient
point searching algorithm based on ADT finds the
corresponding location on the donor or source grid, from
which the flow solution is to be interpolated. At these donor
points, interpolation weights are precomputed during
initialization or, for moving boundaries and translated grids,
before every time step. Arbitrary order of the polynomial-
based interpolation scheme can be requested by the user.
According to [29], the order should be one order higher than
the order of the spatial discretization scheme.

During time integration with an explicit method, the
major differences compared to a single-grid solver are
additional interpolation and communication procedures to
be executed after the intra-grid updates of variables across
processors. One simplification introduced for computational
efficiency concerns the dynamic procedure to compute eddy
viscosity and diffusivity. To avoid communication of
velocity and scalar gradients at inter-grid coupling
boundaries before the test filter is applied, Neumann
boundary condition is assumed for the gradients. Effects
on the SFS model results are expected to be very small.
Currently, equations on all grids are integrated with the same
time step size, which will be changed in the future.

1.3 Boundary Conditions

At open boundaries, i.e. where mass flux can enter or leave
the flow domain, Navier-Stokes Characteristic Boundary
Conditions (NSCBC) in three-dimensional formulation [30]
are applied. At inlets, no artificial turbulence is introduced,
but a mean velocity profile is used as relaxation target. At
outlet boundaries, local reverse flow is enabled by switching
to the inlet NSCBC formulation in computational cells
where mass flux into the domain occurs.
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1.4 Physical Models

Details of the recent implementation of a wall model are
given below, followed by a brief summary of the SFS
models used for the computations of engine port flows.

1.4.1 Wall Model

Due to the high Reynolds numbers expected in engine
flows, it is not feasible to fully resolve the boundary layers,
even with local mesh refinement. For explicit time
marching schemes, the time step would become prohibi-
tively small. Hence, wall models are needed to account for
the correct shear stress. While this applies to computations
on both body-fitted and non-body-conforming grids, the
latter approach is even more dependent on a wall function,
if a boundary condition away from the wall needs to be
known. In the present work, the IB method provides the
near-wall velocity by linear interpolation. In regions of
developed turbulent flow, the velocity estimate is replaced
by log-law-based interpolation, as described in [31].
Underresolved velocity gradients, and accordingly under-
predicted wall shear, are compensated by a model viscosity
applied to the first cells off the boundary. Two modifica-
tions to the model have been introduced within this study.
First, instead of using the instantaneous off-wall velocity to
predict the wall shear stress from the log-law, the time-
averaged velocity field is used. This seems more
meaningful from a physical point of view and is favourable
in terms of robustness, as mentioned in [32]. For transient
flows, the time-averaging can be replaced by a time-
filtering procedure, as suggested by [33]. The second
modification concerns situations, where the boundary
location needs to be prescribed at a location inside the
viscous sublayer. Since the eddy-viscosity-based model is
not applicable to such cases [31] and the actual wall
distance is rather small, a model designed for body-fitted
grids [32] is locally used.

To validate the wall model in a canonical flow
configuration, turbulent channel flows at Re,=2000 were
computed and compared against Direct Numerical Simula-
tion (DNS) data [34]. In this case, the immersed boundary
object representing the physical wall Iy, is parallel to the
approximated boundary I",. The distance between Iy, and
I, was varied between y" =0 (body-fitted) and y" =50. In
Figure 3, mean and Root Mean Square (RMS) values of the
streamwise velocity component are plotted as function of
wall distance. Except for the first cell next to I",, the results
are in very good agreement with the DNS data, irrespective
of the distance to ;.
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Mean streamwise velocity (top) and streamwise velocity
fluctuation (bottom) as function of wall distance.

1.4.2 SFS Models

In this study, two eddy-viscosity-based SFS models are tested
in engine-type flows. The baseline model employed is the
dynamic Smagorinsky model with Lagrangian averaging
(DSML) along particle trajectories [35]. A comprehensive
overview [36] of several SFS models with respect to the
mathematical and physical nature of the Navier-Stokes
equations has shown that the DSM features multiple desirable
properties from a theoretical point of view. Here, the DSML is
compared against the more recent coherent structure
Smagorinsky model (CSM) [37]. To the author's knowledge,
this comparison has not been done for practical applications.

Both approaches eliminate one of the key shortcomings of
the static Smagorinsky model [38], namely the flow-problem-
dependent selection of a constant model parameter. Instead,
the extended models determine the subfilter length scale from
local resolved scales. However, the considerations for
deriving the two models are quite different. While the
dynamic procedure is based on a complex test filter operation
and scale similarity assumption, the CSM utilizes a correlation
between the second invariant Q of the velocity gradient tensor
and turbulent kinetic energy dissipation. Although this
correlation is rather weak for LES, promising results for
canonical flows were reported [37, 39]. A major advantage of
the CSM is its simplicity, since the calculation of the local
model parameter only requires the vorticity vector as well as
velocity strain rate and in fact, the resulting parameter is well-
bounded. Consequently, an averaging procedure, required for
the dynamic Smagorinsky model is not needed. It can be
shown that both models are in some respect conceptually
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similar. While the CSM employs the second, the DSM actually
utilizes the third invariant of the velocity gradient tensor to
compute the model parameter which has a similar distribution
in turbulent shear flows according to [40]. Both models
implicitly recover the correct near-wall behavior and give zero
eddy viscosity in the limit of laminar flows.

Regarding the eddy diffusivity of the energy variable, the
dynamic procedure [41] is utilized in all LES cases
discussed below.

2 OVERSET GRID METHOD VERIFICATION

Verification of the overset grid method is performed on a
simple two-dimensional isentropic vortex advection prob-
lem. The analytic solution is given by:

Lholi(-G) o

o
p= M (11)

Local coordinates with respect to the vortex core are
defined by x = (x —x0 — Ux-t), = (y —y,), and the
radius as 2 =%>+7?. The radius where maximum/
minimum velocities occur is denoted R, while S is the
vortex strength. Vortex convection is determined by U,
which is obtained from a prescribed freestream Mach
number Ma,,. Equations (8)—(11) are equivalent to the test
case used in [42], if Ma2, = 1/y.

Verification simulations are computed on a streamwise-
periodic domain of length 15R. In spanwise direction, the
analytic solution is prescribed in distance +5R from the
centerline. Two equidistant grid spacings are considered, R/
Ax =25 for the coarser, and R/Ax =50 for the finer meshes.
The freestream Mach number is set to 0.2, while the vortex
strength is chosen as 8= 1.0. Results are obtained after one
cycle, i.e. (+Us)/R=15.

2.1 Numerical Accuracy

Consistent numerical accuracy of all methods is important to
obtain a smooth spatial error distribution and avoid that the
solution is polluted locally. In the following, results from the
inviscid vortex problem computed on a coarse mesh, an
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Figure 4

Overset grid setup and initial pressure field for accuracy test.
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Infinity error norm after one cycle (not normalized).

overall refined mesh, and a coarse background mesh with
refinement along the centerline using overset grids, are
discussed. The latter case is sketched in Figure 4. After the
vortex has traveled through the periodic domain back to its
initial location, the flow field is compared to the analytic
solution. Using the infinity norm L, allows to identify even
small local errors. In Figure 5, the error norms for the velocity
and energy variables are plotted on logarithmic scale. Note
that for the coarse resolution, all data is obtained from the same
simulation. Lines drawn to the single grid and overset grid
solutions, respectively, almost perfectly overlap. Since the
errors have not been normalized by the respective flow
variable, the offset between the lines should be ignored. The
slopes prove second order accuracy of the overset grid method.

2.2 Vortex Preservation

To assess numerical dissipation and dispersion as flow
structures cross an inter-grid coupling boundary, the overset
mesh is placed as shown in Figure 6. This allows the inviscid
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Figure 6

Overset grid setup and initial pressure field for vorticity test.
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Vorticity along the centerline after one cycle.

vortex to be passed from the coarse to the fine mesh and back
during one cycle. The overset grid is again refined by a factor
of two. In this grid arrangement, coupling the solutions of all
staggered flow variables across domains requires interpola-
tion with coefficients different from unity. After one cycle,
the vortex shape should be in good agreement with the
analytical solution. This is confirmed by the vorticity
contour plotted along the centerline in Figure 7.

2.3 Conservation

Although interpolation methods exist which enforce at least
primary conservation, formal accuracy is often considered
sufficient for flows without discontinuities, if density-based
solvers are used [43]. For the vortex advection test
considered in the previous section, the domain-integrated
mass, normalized by initial mass is given in Figure 8 as
function of time. The maximum error is on the order of
(2 x 10~°). With respect to kinetic energy, a slight increase
is observed as the vortex passes the refined grid (Fig. 9).
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Kinetic energy in flow domain, normalized by initial value.

Interestingly, the initial value is almost perfectly recovered
when the vortex arrives back on the base grid. This may
indicate that the observed rise in integrated kinetic energy
is caused by directly computing the discrete sum on grids
with different resolution, instead of applying a spatial filter
before. Still, the maximum error is on the order of
(4 x 10~°) which appears reasonably accurate. A modified
overset grid location such that grid vertices do not coincide
with the background mesh changed this result by up to
(2x107).

2.4 Computational Efficiency

One of the major advantages of applying overset grids to
practical applications like engine flows, is the ability to
afford high spatial resolution only in regions where the
solution accuracy can significantly improve and therefore
get computational savings as compared to overall refined
grids. This requires an efficient implementation, since
additional procedures are needed to couple solutions on
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composite grids. For the cases used to test accuracy in
Section 2.1, measured wall times normalized by the fine
single-grid value are summarized in Figure 10. As expected,
the coarse-grid solution is approximately four times cheaper
than the one computed on the fine grid. The overset grid case
reduces the time to solution by more than 30%, while
achieving the same accuracy. By normalizing the measured
wall time with the number of computational cells, the
overhead needed for inter-grid coupling can be estimated.
For this case, the composite grid solver only takes about 5%
longer per cell, than the single domain solution.

The overset grid method integrated into the inhouse code
within this work has been verified and validated for a simple
test problem. Computational efficiency of the implementa-
tion suggests application to more complex flow problems.

3 COMPUTATION OF INTERNAL COMBUSTION
ENGINE PORT FLOWS

3.1 Engine Specification

The engine under investigation of in-cylinder flow is a
single-cylinder 4-valve SI engine. Engine specifications are
given in Table 1.

3.2 Experimental Procedure

Stereoscopic particle image velocimetry (SPIV) measure-
ments were conducted in a flowbench test rig for a given valve
lift to obtain LES validation data (Fig. 11). The intake air-flow
is guided through turbulence correction filters in order to
smooth the turbulent flow produced by typical fan blades.
Large plenums mounted upstream of the port and downstream
of the cylinder liner damp out pressure fluctuations. For the
coordinate system definition, refer to Figure 11. Measurement
planes perpendicular to the cylinder axis are located at
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TABLE 1

Engine specification.

Engine type 4-Valve SI Engine

Bore diameter (B) 81 mm
Stroke 96.922 mm
Intake valve diameter 30 mm

Fuel supply Port fuel injection

ﬂow

measurement plane

Figure 11

Experimental setup for PIV measurements.

z=—B/3,z=—B/2,and z= —2/3B below the fire deck (z=0).
Three velocity components are measured by PIV in these
planes. A laser beam is formed to a light sheet and the particles
are illuminated by a double-pulsed Ng: YAG laser (New Wave
Solo PIV III-15) for a short time interval (3—6 ws). The
scattered light is captured onto consecutive frames of two high
speed digital CCD cameras with a resolution of 1600 x 1200
pixels and a frame rate of 10 Hz. From the movement of
particles the velocity vectors are calculated by Direct Cross
Correlation method (DCC) using the software FtrPIV
(Flowtech Research Inc.). In this study, an interrogation area
size of 33 x 33 pixels with an overlap of 16 x 16 pixels was
used. The total interrogation area is 100 x 75 pixels (=1600/
16 x 1200/16). This resolves the velocity field within
113.978 x 85.479 mm> with a spatial resolution of
1.14 mm. During a SPIV recording, 1000 double-framed
images were acquired for successive statistical analysis. Such
measurement was performed at valve lifts from 1 mm to
10 mm in 1 mm intervals. For each condition, the mass flow
rate was adjusted so that the pressure difference between inlet
(P1) and atmospheric outlet (P2) of the flow domain is
5.88 kPa. To calculate the tumble ratio from the velocity
vectors in a single plane, the AVL approach described in [44]
was employed.
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TABLE 2
Simulation setup summary.
Simulation setup summary.
Grid Case Description
Neen =3035M  Lift/Axpin = 32
DSML Dyn. Smag.
CSM Coherent Struct.
DSML-NW No Wall Func.
Neen =46.43 M Lift/Axp, = 32
DSML-F Dyn. Smag.

Neen = 11.75M  Lift/Axpin = 16
DSML-C Dyn. Smag.
CSM-C Coherent Struct.
DSML-PRV-C  Prev. Methods

3.3 Simulation Setup

Simulations for 8 mm valve lift are carried out on a flow
domain spanning from a location just downstream of the
inlet plenum, down to 2.68 below the fire deck, which is
1.25B upstream of the outlet plenum. Different combina-
tions of equidistant grids with either 16 or 32 cells per valve
lift are considered. Regions near the inlet and outlet
boundaries are always discretized with the coarse mesh,
while a refined overset grid is used in the port and upper
cylinder region for some cases. Single-grid setups are
entirely discretized with coarse cells (case names ending
with ‘-C”, cf. Tab. 2). Overset grids overlap by five (coarse)
grid cells, without a background mesh being present over the
full flow domain. A summary of all simulations performed is
given in Table 2.

Non-reflecting boundary conditions are used at both inlet
and outlet. Total pressure and total temperature are
prescribed at the inlet, while the static pressure according
to the measurement is set as target value at the outlet.
Regarding the wall model, due to the underlying assumption
of fully developed turbulent boundary layer, the model may
not be applicable in all parts of the domain. Here, it is
applied to the port and valves, while other wall boundaries
are handled by the standard IB method. Heat transfer is
assumed to be negligible at near-atmospheric conditions.

Two different SFS models are employed. The baseline case
in focus for most of the analyses, is computed with the DSML.
For comparison, other cases have been run with the CSM.
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Figure 13

Mean and RMS of the vertical velocity component for different
sampling times (DSML).

The time step in all simulations is limited by a constant
stability ~ limit  Courant-Friedrichs—Lewy  Number,
CFL=2.0. Once the flow field has reached steady state,
statistics are sampled for 40 ms, which is approximately 3.5
times the duration a fluid particle needs to travel from the
inlet to the outlet boundary.
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Figure 14

Instantaneous local Reynolds number in cut plane through
valve center axis, based on length scale from indicated cross
section (DSML-F).

3.3.1 Paradllel Performance

Discretization of complex-shaped flow domains with
Cartesian grids may lead to a large number of solid cells,
which can reduce computational efficiency. Hence, the
parallel partitioning algorithm needs to balance the amount
of active and inactive cells on each processor. In this work,
the efficient block decomposition based on a reduced
Cartesian communicator which was previously utilized for
single-grid simulations [7], is applied to each overset mesh
separately. While the overset grid method introduces
additional interpolation and communication efforts, it can
be effectively used to cluster more processors in physical
regions of high computational load and improve the overall
load balance of the simulation. Representing the engine
geometry by compact, concatenated grid patches, may also
lead to a smaller number of solid cells as compared to flow
domains discretized by a single mesh. For the same number
of fluid cells per processor, the fraction of solid cells is
reduced from 43.3 for Case DSML-C, to 36.6% for Case
DSML. In Figure 12, strong scaling results are given for both
simulation setups. For each point on the two different
x-axes, the number of fluid cells per partition is the same in
the single- and the multi-domain simulation. It can be
concluded that the scaling behavior of both cases is very
similar. To compute 40 ms simulation time, Case DSML-C
needs less than two days on 400 processors.

3.3.2 Convergence of Statistics

Velocity mean and RMS values are computed after every
time step. To demonstrate that the sampling time is
sufficiently long to obtain converged statistics, mean and
RMS of the vertical velocity component, sampled over
different intervals are shown in Figure 13. The data is plotted
along a line located at z = —B/2, perpendicular to the tumble
rotation y-axis. Mean velocities mostly collapse to the same
curve, except for a region 0 <x < 15mm, where longer
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Figure 15

Instantaneous Mach number in cut plane through valve center
axis (DSML-F).
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Figure 16

Instantaneous total pressure in cut plane through valve center
axis (DSML-F).

simulation times would still change the result. This location
is actually very close to the tumble vortex center, as will be
shown below. Away from the vortex core, RMS values are
well converged while in the center, the agreement of the
curves is still reasonable. Since overall trends in all curves
are very similar, a significant benefit from even longer run
times cannot be expected.

3.4 Overall Flow Field Characterization

This section is intended to give a broad idea of the physical
flow regimes and bulk flow features. Non-dimensional
numbers are evaluated from instantaneous realizations to
highlight the quality and resolution of the LES results. In
Figure 14, the local Reynolds number is plotted on a cut
plane through the valve center axis. Note that an arbitrary
length scale obtained from the sketched cross section in the
horizontal port section has been used. Since the port
diameter reduces towards the valves, the actual Reynolds
number can be smaller than the color scale may indicate. For
8 mm valve lift and the considered pressure gradient, the
typical Reynolds numbers are on the order of 100,000.
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Figure 17

Streamlines

computed from
and measurement plane, colored by vertical velocity
component (DSML).

average velocity field

The second important dimensionless quantity discussed
in the following is the Mach number. For inert ideal gases, it
is approximately proportional to the velocity magnitude.
Accordingly, we expect maximum Mach numbers in the
smallest cross section, which is typically the valve gap.
Inside that region, values beyond 0.4 can be observed in
Figure 15. Consequently, compressibility effects cannot be
neglected. In the colour map, small flow structures on the
order of the grid spacing can be seen, which is a feature of
LES with accurate numerical schemes.

A common quantity of interest in engine intake port
design is the overall pressure loss until the flow enters the
cylinder. In general, pressure losses can be classified into
linear losses, caused by viscous friction, and singular or
local losses. The latter may particularly occur in complex
wall-bounded flows due to flow separation and formation of
recirculation bubbles [45]. To estimate the main reason for
losses in the present study, the same cut plane as before is
colored by total pressure (Fig. 16). Although there is a small
separation zone at the bottom side of the port, right after the
first bend, it is obvious that the main decrease in pressure
occurs very locally in the direct vicinity of the valve. Wall
friction does not seem to reduce the total pressure
significantly as the flow approaches the valves. However,
there might be a secondary effect, since the velocity profile
just upstream of the valve stem might be affected by wall
friction and can alter the large singular losses, which occur
as the flow passes the valves.

To visualize the in-cylinder flow field, streamlines
computed from the time-averaged velocity data are depicted
in Figure 17. Color contours represent the vertical velocity
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Figure 18

Instantaneous mass flows at inlet and outlet boundary for case
DSML, normalized by experimental value.

component, red color means upward motion. For the high-
tumble engine concept subject to the present analysis, the
majority of the inlet mass flow passes over the valves and
forms a very strong recirculation, even without being
redirected by a piston surface. A complex flow pattern is
formed by the interaction of the upward tumble flow and the
downward flow which directly enters the cylinder from
underneath the valves. Figure 17 also shows one of the
measurement planes to establish a link between the local
validation data discussed below, and the bulk flow. For the
coordinate system definition, the reader is referred to the
lower left hand side of the figure.

3.5 LES Validation

Engine LES should provide both, reliable prediction of overall
flow quantities such as pressure loss or tumble ratio, and accurate
in-cylinder flow (and mixing) fields. In the following, the
computational framework is validated in these two respects.

3.5.1 Integral Flow Quantities

In order to assess the agreement between computed and
measured pressure loss in the present configuration with
prescribed pressures at inlet and outlet of the flow domain,
mass flows obtained from the LES and the flowbench test rig
can be compared. While for the measurement, three time-
averaged data points are available, Figure 18 shows the mass
flow time history at both boundaries in the LES, normalized
by the experimental mean value. Note that due to the
NSCBC formulation applied (Sect. 1.3), boundary pressures
are not strictly enforced, but used as relaxation targets to
achieve at least partially reflecting properties. Hence, the
mass flow can fluctuate to some extent, which is quantified
by a normalized RMS value of 1.3% for the inlet and 3.8%
for the outlet boundary, respectively. The mean mass flow is
overpredicted by 3.2%. It is worth noting that increasing the
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Instantaneous and time-averaged tumble ratios for case DSML,
normalized by experimental value.

order of the near-wall filtering operation from the method
described in [12] to one-sided, higher order operators as
proposed in [13], cf. Section 1.2.1, eliminated a systematic
overprediction of the pressure loss from the flowbench
simulations. In fact, the slight underprediction observed here
can be attributed to several simplifications in the simulation
setup. The effect of omitting the outlet plenum will be
investigated in the future.

A first quantitative comparison of the in-cylinder flow can
be achieved by analyzing the tumble ratio. It is defined as the
ratio of the vortex angular velocity and a characteristic
engine angular velocity, which is proportional to the vertical
convective flow. All required flow variables to quantify
tumble motion are evaluated in the measurement plane
located at z= —B/2. In Figure 19, the time histories of tumble
ratio calculated from the instantaneous and time-mean LES
velocity fields (Case DSML) are normalized by the value
obtained from ensemble-averaged PIV velocity data. LES
variables are continuously averaged over the simulation
time, i.e. when the ‘Time Avg.’-line approaches a constant
value, statistics are converged. At the end of the simulation,
the tumble ratio is underpredicted by 2.5%. Since parts of the
strongly recirculating flow approach the outlet boundary at
the bottom of the cylinder, adding the outlet plenum may
affect the tumble results.

Considering the simplifications made for computational
efficiency in the present model, the agreement in both
integral flow quantities can be considered good. How the
wall treatment and mesh refinement affect the results, will be
discussed in more detail in Section 3.7.

3.5.2 Local Velocity Field

For a more detailed validation of the in-cylinder flow field,
data from three measurement planes are available in the
present study. A qualitative comparison of the vertical
velocity component (z-direction) presented in Figure 20
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Vertical velocity component in plane at z=—B/2, LES case
DSML (left) and PIV data (right).
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Figure 21

Instantaneous (LES) and mean z-velocity at z=—BJ/2,
y=%20 mm.

suggests reasonable agreement. To make the analysis more
quantitative, data interpolated along three distinct lines
normal to the tumble vortex rotation axis, located in the
symmetry plane and underneath each valve's center axis
(Fig. 20), is used in this work. The cylinder axis is located at
x=0mm, Intake Valves (IV) are located at x < 0 mm, the
closed Exhaust Valves (EV) are positioned in the region
x>0mm. For brevity, only the mid-measurement plane
located at z = —B/2 and off-center lines will be discussed for
Case DSML in the following. The central line will be focus
of analysis in Section 3.6.1.

We begin the quantitative discussion with the vertical
velocity component, which is by far largest in magnitude.
Since the engine geometry is symmetric, mean data from the
two off-center lines are plotted in Figure 21 for both LES and
PIV. Instantaneous velocities from 625 realizations of the
computed flow field are depicted in grey color. With respect to
the experimental data (red symbols), it is obvious that mean
velocities at the two locations differ by up to 30% in the high-
velocity region, which can be due to flow instabilities,
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Figure 22

Instantaneous (LES) and mean y-velocity at z=—B/2,
y =420 mm.

experimental error or other reasons. A RANS simulation of
this configuration actually predicted symmetric velocity
fields. Regarding the general velocity distribution, very strong
downward flow is present near the liner wall at the exhaust
side. The tumble recirculation caused upward flow on the left
hand side of the cylinder axis, where the intake valves are
located. Overall, the LES mean velocity results are in good
agreement with the experimental data, but the discrepancy
between the two LES lines occurs at a different location than in
the measurement. Interestingly, the deviations are of similar
magnitudes in both datasets. Longer averaging time is not
expected to remove the asymmetry from the LES data, as
discussed in Section 3.3.2. Close to the liner wall on the
exhaust side, the computed velocity magnitude rapidly
decreases, but there are no measurement points to validate
the near-wall behavior of the numerical solution. Since there is
very good agreement at the first experimental data point off the
wall, the standard IB interpolation applied at the cylinder walls
is considered to be a good approximation.

In Figure 22, the mean velocity in tumble rotation (y) axis
direction is depicted. From the experimental results it can be
concluded that on the intake side (x < 0 mm) liner wall, i.e.
where the mean flow recirculates upward, transverse
velocities are near zero which indicates a well-formed tumble
vortex. Towards the cylinder axis, the y-velocity component
increases beyond the magnitude of the vertical velocity and
forms a net flow towards the center plane. The largest
magnitudes are observed near the exhaust-side (x > 0 mm)
liner wall, where the strong downward flow is directed towards
the symmetry plane by the curvature of the liner walls. As the
computed instantaneous data indicate, single flow realizations
may differ significantly from the described trends in the mean
flow. The time-averaged LES results reproduce the measured
values well, except for the liner wall on the right, where
velocity magnitudes are underpredicted.
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Figure 23

Instantaneous (LES) and mean x-velocity at z=—B/2,
y=220 mm.
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Figure 24

z-velocity RMS at z=—B/2, y=+20 mm.

The horizontal tumble plane velocity (x-direction) is overall
smallest in magnitude (Fig. 23). In the recirculation region
(x < 0 mm), there is almost no flow in this direction. On the
exhaust side, the x-velocity is mostly negative, indicating flow
towards the intake side. Only in the direct vicinity of the liner,
flow still approaches the wall. The computed magnitudes in
the mean match the experiment quite well. However, a more
intense mean flow towards the intake side is observed near the
cylinder axis, which could be due to a too high vertical tumble
vortex position or mismatch in bulk vortex shape.

To assess the ability of the numerical framework to predict
velocity fluctuations, RMS values will be discussed in the
following. In Figure 24, fluctuations in the vertical velocity
component are shown along the two off-center lines.
Maximum values occur on the exhaust side in the region of
high-momentum flow, as expected. However, in this data set,
the observed asymmetry is actually most severe. The
measurement shows high fluctuations near the intake side
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Figure 25

y-velocity RMS at z=—B/2, y=+20 mm.
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Figure 26

x-velocity RMS at z= —B/2, y =420 mm.

liner wall for one of the two lines as well. In this region, the
downward flow from the intake valve along the (left) liner wall
interacts with the tumble vortex and may form a very unstable
stagnation flow which might cause the large RMS values. In
the LES data, fluctuations of very similar magnitudes are
found, but the overall distribution seems to be shifted to the
left. On the intake side, lower fluctuations compared to the PIV
data are predicted for one of the two analysis lines.

In direction of the tumble rotation axis ()), maximum
RMS values are of similar order and occur in the same region
as the fluctuations in vertical direction, cf. Figure 25. If this
agreement is due to a motion of the high-velocity jet
tangential to the wall or, due to the presence of highly
intermittent turbulent flow structures, or both, is difficult to
conclude. Agreement between simulation and experiment is
overall very good. Near the cylinder axis, the LES
overpredicts the measured fluctuations in one of the two
analysis locations.
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Mass flow computed with different grids and SFS models,
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Tumble ratio computed with different grids and SFS models,
normalized by experimental value.

Fluctuations in the x-velocity component (Fig. 26) are
most intense on the exhaust side near the center axis, where
mean flow towards the intake side exists. LES results are
found to be in good agreement with the measurement, except
for some overprediction of the RMS on the intake side in one
of the two off-center lines.

Quantitative analysis of the in-cylinder velocity field has
shown good agreement between LES and PIV results.
However, the match is not equally well in all locations which
might be due to slightly different tumble vortex locations.
Since the flow field is very complex and the free
recirculating flow forms several stagnation regions which
are unstable by nature, validation of the numerical
framework can be considered successful, given the overall
agreement in both mean and RMS velocities.

3.6 Robustness

A required property of LES for practical applications is the
reproducibility of results for different grids and model
combinations. This will be investigated in the following.
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Mean z-velocity at z=—B/2, y=0mm.
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Figure 30
Mean y-velocity at z=—B/2, y=0mm.

3.6.1 SFS Model and Grid Resolution

The same simulation performed for validation purposes and
discussed in Section 3.5.2 has been repeated on different grids
with all parameters being the same, except for the subfilter eddy
viscosity model. In fact, results from the baseline Case DSML
computed using the dynamic Smagorinsky model with
Lagrangian averaging along particle trajectories [35], are
compared to simulation data obtained using the coherent
structure model [37], Case CSM. For a summary of the two
concepts, the reader is referred to Section 1.4.2. Since a priori,
none of the two models can be expected to perform better,
sensitivity of the LES solution will be discussed in the following.
The overall effect of an SFS model on the LES solution is grid-
dependent. Hence, it seems appropriate to perform the
comparison on different grids as well. Note that the purpose
of the parameter variation is not to identify optimal settings, but
to understand sensitivities for the given simulation setup.

As before, the analysis starts with integral quantities. In
Figure 27, averaged mass flows from different LES setups,
normalized by the experimental value, are plotted for direct
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Figure 31

Mean x-velocity at z=—B/2, y=0mm.
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z-velocity RMS at z=—B/2, y=0mm.

comparison. Since the overall pressure loss is governed by
singular losses in the valve region, and less dependent on
wall friction, both different grid resolution and SFS stresses
may have an effect. To quantify the former, Cases DSML and
DSML-C, as well as CSM and CSM-C can show the effect of
refining the port and upper cylinder region by a factor of two
(Table 2). The observed difference accounts for 2—-3%,
which seems reasonable. Comparatively small is the effect
of the SFS model on the same grid, while higher resolution
seems to increase the sensitivity.

The mass flow distribution over the valve curtain surface
as well as the interaction of the unsteady high-Reynolds
number flow with the valves affect the intake jet and
consequently the tumble vortex. Accordingly, grid resolu-
tion and SFS models can alter the tumble ratio. Since the
tumble ratio takes into account the convective flow, it
should be independent of the actual mass flow. This is
confirmed by comparing Cases DSML-C and CSM-C in
Figures 27 and 28, respectively. While the mass flow is not
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y-velocity RMS at z=—B/2, y=0mm.
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Figure 34
x-velocity RMS at z=—B/2, y=0mm.

affected by the SGS model, the tumble ratio is changed by
3.8%. On the refined grid, the SFS model affects the tumble
vortex slightly less. Increased tumble ratios by approxi-
mately 5% are observed on the overall coarse as compared
to the refined grid.

To show that placing a fine/coarse inter-grid coupling
boundary in the tumble region does not significantly change
the results, the boundary was moved from z= —0.3B for the
baseline case (DSML) to z=—B for Case DSML-F, cf.
Table 2. From Figures 27 and 28 it can be concluded that the
effect is indeed minor.

For the quantitative comparison of velocity data, the
discussion is limited to the variation of SFS models on the
refined grid, since no systematic difference between
solutions computed with and without grid refinement was
found. Different to the discussion in Section 3.5.2, velocity
data interpolated to a line perpendicular to the tumble axis,
but this time located in the symmetry plane (Fig. 14), is used.
Considering the mean vertical velocity component (z)
plotted in Figure 29, the experimental data are very similar
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Figure 35

Isocontour Iy = 0.8 in symmetry- and valve axis center planes.

to the off-center analysis lines discussed before. Also in this
location, the LES results from the baseline Case DSML are
in very good agreement with the measurement. The CSM
simulation overall predicts the mean z-velocity similarly
well, except for a region on the exhaust side, close to the
cylinder axis where the change in sign is shifted to the left.
This is due to a slight offset in tumble vortex location
towards the intake side, as will be shown later. Note that in
this region, results may slightly change if the averaging time
is increased (Sect. 3.3.2).

For symmetry reasons, the mean y-velocity is expected to
be close to zero in the stagnation plane, which is confirmed by
Figure 30. Both simulations reproduce the measured dataset
reasonably well. Locally, the CSM model shows larger
discrepancy which again is most pronounced near x =8 mm.

Regarding the tumble plane horizontal (x) velocity
component (Fig. 31), peak magnitudes are slightly higher
than in the off-center analysis line locations, which can be
explained by flow stagnation in y-direction. While the
DSML predicts the measured velocity distribution quite
well, the CSM again gives larger mismatch around x = 8 mm
and near the exhaust-side liner wall.

Velocity fluctuations for the z-, y- and x-velocities are
plotted in Figures 32-34, respectively. Overall, maximum
velocity RMS values along the center line are smaller than
in the off-center locations which is likely due to the absence
of the primary jets directly penetrating into the cylinder
from the valves. Instead in the symmetry plane, the conical
jets form a stagnation flow which penetrates downwards.
Similar maximum RMS values are found in all three
velocity components and all in the same region close to the
exhaust side liner wall. The general agreement of
numerical and experimental data is good and mostly
similar for both SFS models. Again, the central region
close to x=8mm has consistently higher velocity
fluctuations in the case computed with CSM. However,
it should be noted that even longer sampling times for the
statistics may change the RMS values in x-, y- and z-
direction in the region of 0 <x < 15 mm by up to 0.5, 1.7
and 1.3 m/s, respectively.
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Mean velocity magnitude and z-RMS along streamline.

To estimate tumble vortex position, the I'; vortex
identification criterion [46] applicable to two-dimensional
flows has been computed in three tumble cut planes located at
the same y-locations as the line data discussed previously, cf.
Figure 35. Note that the analysis is strictly valid if the plane-
normal velocity component is zero or at least constant, which
can be assumed for the symmetry plane. For the comparison,
the characteristic vortex length has been set to B/4 and the
resulting Iy fields have been rescaled such that the global
maximum is equal to unity in both cases. The tumble vortex
core can then be identified by I'y = 1. In Figure 35, the iso-
contours for I'; = 0.8, computed from the mean velocity field,
are shown. For orientation purposes, the line at z= —B/2 as
well as the cylinder axis and the x=8 mm location are
highlighted in the center plane. Obviously, the vortex cores
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Mass flow and tumble ratio computed with and without wall
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Mass flow and tumble ratio computed with different methods
and models, normalized by experimental values.

computed with different SFS models differ by approximately
5 mm, which explains the discrepancies in the velocity field
mentioned above. Interestingly, the predicted vortex cores at
y=—20 mm (background) are in good agreement while there
is an apparent offset at y =20 mm (foreground).

To give an impression of the differences in the results of the
two LES in the region upstream of the tumble vortex, a
location with similar discrepancies between the two SFS
models as at (x=8 mm, y =0, z= —B/2) was identified in the
z=—B/3 plane. Upstream of that location, a streamline was
computed for the DSML data set. The velocity field computed
with the CSM has been interpolated to that streamline. In
Figure 36, mean velocity magnitude and RMS of the z-
velocity are plotted along the streamline length. On the right-
hand-side axis, the relative difference between the curves is
quantified. Regarding the mean velocity, the two solutions are
very similar along the intake port. As the flow passes the valve,
the curves differ locally by up to 5%. Major discrepancies
seem to exist inside the cylinder, but are very likely due to
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different vortex locations. Accordingly, the maximum relative
offset of more than 30% should not be given too much
importance, since the flow fields can still be qualitatively very
similar.

Similar conclusions can be drawn from the fluctuations in
vertical velocity (Fig. 36). Although the relative difference
upstream of the sharp bend in the port is high, it should be
noted that the RMS values are close to zero in that region. More
significant variations begin to exist locally near the valve and
in the cylinder. However, small offsets in bulk flow structures
may cause these differences. Therefore, the performance of
both models throughout the flow domain can be considered
very similar.

3.7 Sensitivities

Although the quantitative influence of various numerical
methods and physical models on the LES result might be
case-specific, some trends should be applicable to engine
port flows in general. For brevity, only integral flow
quantities are considered below.

3.7.1 Effect of Wall Model

The wall model provides the velocity boundary condition to
the IB method in the portregion and at the valves, as well as the
shear stress through a model viscosity. In Figure 37, results
from the baseline case (DSML) are compared to a simulation
without wall model, but standard IB interpolation (DSML-
NW). As mentioned before, the overall loss in total pressure is
not governed by wall friction. In fact, the increased wall
friction provided by the model is over-compensated by some
secondary effects, likely due to the modified velocity profile
upstream of the valves. However, the effect accounts for less
than 5% increase in mass flow. More profound is the effect of
the wall model on tumble ratio. The mass flow distribution
across the valves is changed such that the tumble ratio
increases by 25%. Therefore, we consider the wall model an
indispensable component of a numerical framework for
simulation of SI engine port flows.

3.7.2 Combined Effects

To quantify the effects of all methods and models
implemented into the numerical framework as part of this
study, results computed without enhanced near-wall
filtering (Sect. 1.2), IB method (Sect. 1.2.2), wall model
(Sect. 1.4.1) and overset grids (Sect. 1.2.3), Case DSML-
PRV-C, are compared to the baseline case in Figure 38. It is
obvious that previously, both integral flow measures were
significantly underpredicted. With the extended frame-
work, mass flow is increased by 12% and tumble ratio by
31%, respectively. Regarding the overset grid method, for
the mesh spacings considered in this study, refinement does
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Streamlines colored by velocity RMS vector magnitude.

not significantly improve the results. However, it can be
employed in the future to locally coarsen the mesh for
computational efficiency. Systematic errors in the wall
treatment have been eliminated, but careful reassessment of
remaining discrepancies is necessary to identify short-
comings in the simulation setup.

3.8 Valve Jet Dynamics

One of the major advantages of LES is the ability to capture
local unsteady effects. Since fluctuations in the conical
valve jet are considered as one possible cause of CCV in SI
engines [47], it seems meaningful to investigate inflow
dynamics in a flowbench configuration. For a qualitative
identification of most intermittent regions, the magnitude
of the RMS velocity vector can be considered. In Figure 39,
streamlines computed from the mean velocity field are
colored by the RMS magnitude. The 30 m/s isosurface is
sketched to mark the highly fluctuating zone. As the flow
penetrates downward into the cylinder, the RMS values
decrease. In the regions where a jet interacts with the liner
walls or with the other jet, fluctuations seem to exist until
further downstream. Note that the RMS does not allow to
distinguish between turbulent velocity fluctuations and
intermittent motion of bulk flow structures.

For a more quantitative analysis, decomposing the
velocity field into spatial and temporal modes can be very
useful. Proper Orthogonal Decomposition (POD) [48] is
employed on a subsection of the domain (Fig. 40). For Case
DSML-F, a total number of 625 realizations have been
sampled over 40 ms simulation time and are used for the
analysis. In Figure 41, the kinetic energy fraction of the first
20 modes, sorted by energy content, is depicted. Since the
first mode corresponds to the mean flow, the kinetic energy is
dominant compared to the dynamic modes. Regarding the
latter, the energy content decreases very gradually and it is
difficult to make a clear distinction into more and less
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Figure 40

Streamlines computed from basis function of mode 1, and
vectors with magnitude of at least 50% of the basis-function-
maximum for POD modes 2-6, colored by angular deviation
from mean streamline (LES on full geometry).

important modes, just by the relative contribution to total
kinetic energy. In the following, modes two to six are
arbitrarily selected for visualization.

In Figure 40, the basis function of the first mode is
represented by streamlines. For the higher modes, only
vectors with more than 50% of the maximum magnitude in
each mode are plotted as arrows. The color scale indicates
the angle between the basis function vector of mode one, i.e.
the average flow direction, and the respective dynamic mode
direction. Note that the vector length has no meaning. It
seems that most of the arrows are clustered near the
symmetry plane and are mostly oriented in the transverse
direction. This may indicate that the flow dynamics are
governed by the interaction of the two valve jets, similar as
previously observed in a different engine geometry [49]. The
regions of high velocity RMS near the liner walls in
Figure 39, are not represented by any of the first six modes.
However, some of the selected modes do contribute to flow
dynamics downstream of the wvalve stem. Although
directions of these modes deviate less from the bulk flow
direction than in the symmetry plane, it is difficult to draw a
strong conclusion on the more critical region for in-cylinder
flows in this geometry. Still, kinetic energies contained in the
first modes are very similar. Typical frequencies of the
visualized modes are on the order of 3000 Hz. Assuming
sufficiently large valve lifts for a duration of 125 degrees
crank angle in an engine operated at 3000 rpm, approxi-
mately 20 periods of the considered POD modes would
occur. Under the assumption that similar flow dynamics
develop in the running engine, these modes might be
relevant for CCV.

To eliminate the effect of the flow instability in the
symmetry plane, another LES has been performed. Instead
of using a mesh for the full engine geometry, only half of the
flow domain is considered. At the central plane, symmetry
boundary conditions are applied, imitating two perfectly
identical port flows and valve jets. Velocity fields have been
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Figure 42

Streamlines computed from basis function of mode 1, and
vectors with magnitude of at least 50% of the basis-function-
maximum for POD modes 2—6, colored by angular deviation
from mean streamline (LES on half geometry).

sampled with the same frequency as before. In Figure 42, the
upper 50% of kinetic energy in each of the modes two to six
are again visualized by vector arrows, this time computed
from the half-geometry results. The second mode still has
some transverse components, but does not only act in a small
region, as in the full geometry. Although a larger number of
modes is clustered in the valve wake, the fluctuations still
seem to mostly occur with smaller deviation from the mean
streamline direction.

To quantify this observation, the distributions of the
angles between basis function vectors and the time-averaged
streamlines from Figures 40 and 42 are plotted in Figure 43.
While results computed in the full engine geometry have a
bimodal distribution with peaks at 30 and 90°, two distinct
maxima can be identified at 17 and 38° in the half-geometry
LES data. Hence, dynamic modes which act perpendicular
to the mean flow direction seem to mostly exist in the
symmetry plane and occur much less frequently, if half of
the flow domain is omitted in the simulation. Which of the
two effects, the central plane transverse flow intermittency,
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Distribution of angle between time-averaged streamlines and
basis function vectors of POD modes 2—-6.

or pulsation of the bulk tumble flow are more important for
CCV, needs to be investigated in a similar LES study of a
running engine.

CONCLUSION

Challenges intrinsic to LES of wall-bounded flows in complex
geometries on Cartesian grids have been addressed by the
implementation of three numerical methods and a wall model
into an inhouse code. An overset grid approach has been
demonstrated to be accurate as well as efficient. The enhanced
numerical framework was successfully applied to simulate an
engine flowbench configuration. For prediction of integral
flow quantities like overall pressure loss and tumble ratio, the
enhanced wall treatment by a combination of an IB method,
higher-order filtering and a wall function, has been shown to be
crucial. Local mesh refinement can be used to reduce
computational cost. Parameter variations with three different
grids and two SFS models have proven robustness of the
simulation setup. All five simulations reproduced measured
integral flow numbers within a deviation of 5%. The
computed velocity field was validated against PIV measure-
ment data. Good agreement in mean and RMS velocities was
observed. Direct comparison between two SFS models, the
DSML and CSM has shown very similar performance. Due to
its simplicity, the CSM seems an attractive alternative for
engine flows. Valve jet dynamics have been analyzed by
means of POD. Highly unsteady flow motion has been
identified in transverse direction in the symmetry plane, and
more towards streamwise direction in the valve wake. If
similar effects occur during engine operation, needs to be
investigated in further studies. The enhanced numerical
framework is currently being extended to moving geometries
and will be used to compute motored and fired engine
operation in the near future.
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