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Abstract

Rolling noise contributes significantly to the noise inside cars. This noise
comes from the tire/road contact and for low frequencies (0-400Hz), it is
mainly transmitted into the cabin through structural vibrations. Thus es-
timating this noise requires modelling the tire vibrations by taking into ac-
count the rotating effects and the contact with rough surfaces. Concerning
the model of rolling tire, a formulation of a deformable solid is constructed
by using an Arbitrary Lagrangian Eulerian approach. This formulation is
applied on a new simplified tire model which is a circular ring including
shear stresses and nonlinear effects due to the vehicle load. This model is
successfully validated by comparison with FEM results.
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1. Introduction

The interior noise of vehicles has an important source coming from tires
in the low frequency range, typically up to 400Hz. For these frequencies the
rolling noise is mainly due to tire vibrations. These vibrations are them-
selves created by the unsteady contact between road asperities and the tire
tread pattern. For predicting this noise generation an accurate tire model
is necessary. In the past, various tire models have been developed focusing
on different aspects of the problem.

A first class of models is the two and three-dimensional circular ring
models. For instance Böhm [1], Heckl [2] and Kropp [3] have modelled
the tread as a circular Euler-Bernoulli beam. Sidewalls are represented by
radial and tangential springs. This model takes into account the effect of the
internal pressure and is linear. These circular ring models are very useful for
analysing the radial vibrations of tires for low frequencies. In 2000, Périsse
[4] compared the computation of the velocity of a point on the ring with its
experimental value and showed a good agreement at low frequencies (below
400 Hz). Several authors developed circular ring models by adding the effect
of rotation, see for instance Meftah [5], Périsse [6] and Campanac [7, 8]. In
this case one can reproduce the phenomenon of splitting of modes depending
on the rotational speed. This property is also found in the work of Kim and
Bolton [9]. In addition, Huang [10] has analysed the rotating ring model
under a suspension system.

So, two-dimensional circular ring models allow the modelling of the dy-
namic behaviour of tires for low frequencies [0-400Hz]. Analytical transfer
functions can be obtained to deal with contact problems. To use these
models, it is necessary to identify some parameters (stiffness of the spring,
bending stiffness ...). However, these two-dimensional circular ring models
do not allow observing out of plane modes (toggle mode). That is why
Eichler [11] and Gipser [12] enriched a circular model by adding a lateral
stiffness to the tread and a model of rigid rim. All these models are linear
and do not allow to consider, for instance, the influence of the vehicle load
or nonlinear material behaviours on tire vibrations.

For higher frequencies, one needs other approaches. In 2003, Muggleton
[13] modelled a tire using two orthotropic plates in traction. The tread is
represented by a plate and the sidewalls are replaced by two plates. Hamet
[14] has analysed the vibrations of a tire under a point force applied at
the centre of the plate. This allows the construction of Green’s functions
of the tire used to treat the contact problem. Both models of Hamet [14]
and Muggleton [13] do not take into account the effect of the curvature of
the tire. Another model with two plates has been developed by Pinnington
[15, 16, 17]. His model takes into account the curvature of the tire. The
effect of the curvature of the tire is to couple the radial and circumferential
movements and normal and tangential forces in all the vibratory responses of
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the tire. The dynamic equations of the tread are written for one-dimensional
waves propagating around the belt and a standing wave through the tread.
The effects of curvature, shear stiffness, inertia of rotation, stress, rotation
velocity and the air pressure are included. The two-dimensional Mindlin
plate is used to formulate this model. It is applicable to a wide band of
frequencies [0-3 kHz]. The difficulty of the model is still the determination
of the parameters of the tread and the sidewalls. Kim and Bolton [18] have
also proposed a model of rotating cylindrical shell. Similarly, based on the
analytical model developed by Kropp, Wullens and Kropp [19] analysed the
vibration field of a tire and the Doppler effect due to the rotation.

Because of the complexity of the tire geometry and the heterogeneous
materials from which it is made, an analytical model cannot completely
describe the vibrations of the tire. Moreover, the coupling between the
air cavity and the tread is difficult to describe analytically. Therefore it is
necessary to build numerical models of the whole set, tire / wheel / cavity,
for predicting the vibratory responses of a tire. For example, one can cite the
models of Takagi [20], Narasimha [21], Richards [22] and Cho [23]. Taking
into account the different materials of the layers of the tire, Takagi [20] used
two-dimensional finite elements. The behaviour of materials is assumed
linear and the tire pressure and the rotation are taken into account. This
model is valid in the frequency range [0-250 Hz].

Regarding the three-dimensional numerical models, Fadavi [24] and Brink-
meier [25] used Abaqus to model a tire. The properties of the model are
identified by experimental measurements. The carcass and sidewalls are
described by transverse isotropic materials. The rubber of the pads is de-
scribed by a hyper-elastic material and the contact with the road is taken
into account. This model is valid up to 1500 Hz. Narasimha [21] also mod-
elled a smooth tire in contact with an obstacle and Richards [22] modelled
the tire air cavity. The coupling between the fluid and the structure is in-
cluded in the model. So by comparing with measurements, one sees that
the model is valid up to 400Hz. Another possibility is to use waveguides
as in Waki [26] or Duhamel [27, 28]. In this case only a small section of
the tire needs to be computed which saves a lot of computational resources
for medium and high frequencies. More precisely, concerning the coupling
with the fluid, one has to consider the coupling with the internal fluid in the
cavity between the tire and the wheel for loaded or unloaded tires leading to
first resonances slightly above 200 Hz as measured and modelled for instance
in [29, 30, 31]. This point will not be considered in this article as it has been
well studied in these articles. Similarly no coupling with the external fluid
will be considered, as this point has also be well studied in the past.

Often, authors have neglected the quasi-static deformation of tires and
confused the stationary configuration with the configuration of reference
(the configuration of reference is the initial configuration which undergoes a
rigid rotation and the stationary configuration is that of the quasi-stationary
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regime wherein all material points deform statically under the effects of ex-
terior loads). Under the load of the vehicle and the effect of the air pressure,
the tire undergoes a nonlinear deformation. It is thus necessary to distin-
guish the deformed and non-deformed configurations. The deformed config-
uration is illustrated by the image of a crushed tire. This configuration is
not known. It is obtained by solving the equilibrium equations in stationary
regime. This point was for instance developed by [32, 33, 34] which used a
FEM model for computing the response of tires including the quasi-static
deformation and gyroscopic effects. However, these FEM models leads to
heavy computations.

This paper aims at developing a nonlinear ring model to estimate the
influence of these nonlinearities with a low computational cost. A first step
towards the solution of this problem is a good understanding of the nonlinear
behaviour of beams. In this domain, Antman and al. [35, 36, 37, 38, 39,
40, 41, 42, 43] have established general formulations for the behaviour of
beams. Simo [44, 45, 46] described the problem of nonlinear beams with
large rotations in three dimensions. These authors have also proposed a
finite element method to solve the problem. Davi [47] took the Kirchhoff
hypothesis to build equilibrium relationships for a thin beam. He therefore
neglected the deformation due to shear stress. Applying these results Lanzo
[48, 42] has analysed the stability of a multi-layer model of a rubber beam
and the influence of a large shear force on the nonlinear deformation of a
beam.

From these ideas, we develop here a nonlinear circular ring model with a
good representation of shear deformations to get a mostly analytical model
able to estimate the influence of non linearities. Note that we focus on the
behaviour of the tire and not on the solution of the global problem of a tire
rolling on a real road. So the contact with the road is not in the scope of
this article. The structure of the article is the following. In section two
the general equations for bodies with finite rotation and deformation are
described. In section three a Timoshenko beam model including shear and
rotating effects with large deformations is considered. Finally, in section
four, examples and validations are given before a conclusion.

2. Finite rotation and transformation of deformable solids

A study of the dynamics of a deformable solid in finite transformation
and rotation requires different configurations. Two states should be consid-
ered:

• a stationary state: This is the configuration in which the deformed
solid is static. It is obtained from the crushed configuration by apply-
ing a rigid rotation. This means that the displacements of the material
points depend only on their positions.
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• a dynamic state: It is a small perturbation around the stationary state.
This disturbance is time dependent.

The Arbitrary Lagrangian Eulerian (ALE) approach [49] is valid to treat the
stationary motion. For the dynamic movement, formulations on a selected
reference configuration will be developed. This selected reference configura-
tion could be the rigidly rotating configuration or the stationary deformed
configuration depending on the way that the problem is set in the following.

2.1. Equations of motion

In this section, the different configurations with the different movements
are defined. Then, the equilibrium equations of each deformed state are
built.
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Figure 1: Description of the different configurations
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In Fig 1, the four possible configurations of the solid during the defor-
mation are presented: The initial configuration denoted D0, the rotating
configuration denoted Dr, the stationary configuration denoted Ds and the
vibrating (or current) configuration denoted Dt. A point in the physical
space is represented by its coordinates (X1,X2,X3) in a fixed orthonormal
reference system R(O, e1, e2, e3). Quantities with indices (.)0, (.)r, (.)s, (.)t
are relative to the configurations D0,Dr,Ds and Dt respectively. So the
subscript 0 refers to the initial configuration, the subscript r to the rigidly
rotating configuration, the subscript s to the stationary deformed configu-
ration and the subscript t to the final current configuration as defined in Fig
1. For instance, a material point M is:

• M0 in D0. So that we can write: X0 = OM0 = X01e1+X02e2+X03e3

• Mr in Dr : Xr = OMr = Xr1e1 +Xr2e2 +Xr3e3

• Ms in Ds : Xs = OMs = Xs1e1 +Xs2e2 +Xs3e3

• Mt in Dt : Xt = OMt = Xt1e1 +Xt2e2 +Xt3e3

The operators gradi and divi represent respectively the gradient and di-
vergence in the configuration Di. The transformations φij describe the
change from configuration i to configuration j. For example, the trans-
formation of the initial configuration to the rotating configuration is written
as Xr = φ0r(X0, t).

The Green tensors of the gradient of transformation are calculated using
the configurations:

F0r =
dXr

dX0
, Frs =

dXs

dXr
, Fst =

dXt

dXs
, F0s =

dXs

dX0
(1)

One has relations between the different configurations, for instance: F0s =
Frs.F0r. One can notice that the tensor F0r of a rigid transformation should
satisfy: TF0r.F0r = F0r.

TF0r = I with I the identity tensor.

2.2. Equilibrium equations of the stationary state

The ALE approach is taken to treat the stationary motion. The reference
configuration of this step is Dr. We will write the balance equations on this
configuration of reference. The conservation of quantities of movement on
the stationary configuration Ds leads to the equilibrium equations:

ρsγs = ρsfs + divs (σs) (2)

where ρs is the density of the material in Ds, fs the exterior body force
applied in Ds, γs the acceleration in Ds and σs the Cauchy stress tensor in
Ds. The equation (2) is written in the stationary configuration. One must
describe all the terms of this equation in the reference configuration.
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Density

The mass conservation gives: ρsVs = ρrVr −→ ρs =
Vr

Vs
ρr where ρr is the

density of the material in the rotating configuration Dr. One denotes J = Vs

Vr

the coefficient of volume expansion of the solid which equals det(Frs). One
gets ρs =

ρr
J
.

Acceleration

The acceleration of a material point is calculated by Eulerian derivation
versus time.

γs =
D2Xs

Dt2
(3)

In the stationary state of the solid, the deformation of a material point in the
current configuration depends only on its position in the rotating configura-
tion. This deformation does not depend on time. We denote Xs = φrs(Xr).
So the absolute velocity in the stationary configuration is calculated by:

vs =
DXs

Dt
=

∂Xs

∂Xr

∂Xr

∂t
(4)

The rigid movement is written as: Xr = φ0r(X0, t) = C(t)+θ(t)(X0−C(0))
where C(t) and C(0) are respectively the position vectors of the rotation
centre of the solid at time t and at the initial time. θ(t) is the orthogonal
rotation matrix. So

∂Xr

∂t
=

∂(C(t) + θ(t)(X0 −C(0)))

∂t

= Ċ(t) + θ̇(t)(X0 −C(0))

= Ċ(t) + θ̇(t)θ(t)−1(Xr −C(t)) (5)

One defines:
Ω(Xr, t) = Ċ(t) + θ̇(t)θ(t)−1(Xr −C(t)) (6)

the rotation vector of the solid. It is noted that the velocity of the material
point of the reference configuration is the rotation vector. It is known if we
know the speed of rotation. The expression (4) becomes:

vs =
DXs

Dt
= Frs.Ω(Xr, t) (7)

From (7), one computes the acceleration in (3):

γs =
D2Xs

Dt2

=
Dvs

Dt

=
D(Frs.Ω(Xr, t))

Dt

=
∂(Frs.Ω(Xr, t))

∂t
+

∂(Frs.Ω(Xr, t))

∂Xr
.Ω(Xr, t)

(8)
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So,

γs = Frs.
∂(Ω(Xr, t))

∂t
+ gradr (Frs.Ω(Xr, t)) .Ω(Xr, t) (9)

Stress

In equation (2), the stress tensor is the Cauchy tensor. This is the
stress on the deformed configuration. It must be turned into the first or
second Piola-Kirchhoff stress tensors which are stress fields of the reference
configuration [50, 51].

Knowing the acceleration, the equation of equilibrium of the stationary
state can be written in the rotating configuration as:

Frs.
∂(Ω(Xr, t))

∂t
+ gradr (Frs.Ω(Xr, t)) .Ω(Xr, t) = fs +

1

ρr
divr (Prs) (10)

with the first Piola-Kirchhoff stress tensor such that

Prs = Frs Sr (11)

and the second Piola-Kirchhoff given by

Sr = JF−1
rs σs

TF−1
rs (12)

Supposing that ∂(Ω(Xr ,t))
∂t

= 0 (without orthocentrifugal inertia force)
the equation of equilibrium (10) is written as:

gradr (Frs.Ω(Xr, t)) .Ω(Xr, t) = fs +
1

ρr
divr (Frs Sr) (13)

2.3. Equations of the vibrating state

2.3.1. Balance equation of the vibrating state with respect to the stationary
state

To describe the movement, the following notations are defined or recalled:







Xr = φ0r (X0, t) = C(t) + θ(t) (X0 −C(0))
Xs = φrs(Xr, t) = Xr +Us(Xr)
Xt = φst(Xs, t) = Xs + u(Xs, t) = Xr +Us(Xr) + ut(Xr, t)

(14)

withUs(Xr) representing the stationary displacement, u(Xs, t) and ut(Xr, t)
are small perturbations around the stationary state projected onto the sta-
tionary configuration and the configuration of reference respectively. The
condition for an infinitesimal disturbance is written as:

grads (u(Xs, t)) ≪ I

or

gradr (ut(Xr, t)) ≪ I (15)
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In the vibrant configuration Dt, the equation of equilibrium is obtained
in the same way as in the stationary case:

ρtγt = ρtft + divt (σt) (16)

with ρt representing the density of the material in Dt, ft the exterior body
force in Dt, γt the acceleration in Dt and σt the Cauchy stress tensor in Dt.
Under the hypothesis of infinitesimal strains, the Dt and Ds configurations
are confused. This implies that ρt=ρs. The velocity of a material point in
the current configuration is calculated as:

DXt

Dt
=

Dφst (Xs, t)

Dt
=

∂φst (Xs, t)

∂t
+

∂φst (Xs, t)

∂Xs

∂Xs

∂t
(17)

So,
DXt

Dt
=

∂φst (Xs, t)

∂t
+ Fst.vs (Xs, t) (18)

The acceleration is

γt =
D2Xt

Dt2
=

D
(

∂φst(Xs,t)
∂t

+ Fst.vs (Xs, t)
)

Dt
(19)

After development, this leads to:

γt =
∂2 (φst (Xs, t))

∂t2
+ 2

∂Fst

∂t
.vs (Xs, t)

+ Fst.
∂vs (Xs, t)

∂t
+ grads (Fst.vs (Xs, t)) .vs (Xs, t) (20)

The description of the movement allows to write Xt = φst(Xs, t) = Xs +
u(Xs, t) in the precedent formula and the expression (20) becomes:

γt =
∂2 (u (Xs, t))

∂t2
+ 2

∂Fst

∂t
.vs (Xs, t)

+ Fst.
∂vs (Xs, t)

∂t
+ grads (Fst.vs (Xs, t)) .vs (Xs, t) (21)

As in the stationary case, the increment of the second Piola-Kirchhoff tensor
St is linked to the Cauchy stresses σt in the stationary configuration Ds by:

St = J F−1
st σt

TF−1
st (22)

The equilibrium equation is written as:

∂2u

∂t2
+ 2

∂Fst

∂t
.vs +Fst.

∂vs

∂t
+ grads (Fst.vs) .vs = ft +

1

ρs
divs (Fst.St) (23)
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On the other hand, the acceleration of a material point is calculated as
the derivative of velocity in the stationary configuration:

γs =
D (vs (Xs, t))

Dt
=

∂vs (Xs, t)

∂t
+ grads (vs (Xs, t)) .vs (Xs, t) (24)

The equation of equilibrium in the stationary configuration (2) can be writ-
ten in the form:

∂vs (Xs, t)

∂t
+ grads (vs (Xs, t)) .vs (Xs, t) = fs +

1

ρs
divs (σs) (25)

So by simple subtraction of the two equations (23) and (25), one obtains the
vibrating balance equation around the stationary state:

∂2u

∂t2
+ 2

∂Fst

∂t
.vs + (Fst − I)

∂vs

∂t
+ grads ((Fst − I) .vs) .vs

= (ft − fs) +
1

ρs
divs (Fst.St − σs) (26)

Recall that expression (1) combined with expressions (14) gives:

Fst =
dXt

dXs
= I+ grads (u(Xs, t))

By replacing it in the expression (26):

∂2u

∂t2
+ 2

∂grads (u)

∂t
.vs + grads (u) .

∂vs

∂t
+ grads (grads (u) .vs) .vs

= (ft − fs) +
1

ρs
divs (Fst.St − σs) (27)

One defines S̃t = St − σs which is the increment of the stress tensor which
can be computed by the behaviour law of the solid material:

S̃t = C : e (28)

with C is the tensor describing the behaviour of the material and e is the
Green strain tensor

e =
1

2
(grads (u) + grads (u)

T + grads (u)
T grads (u)) (29)

Using the hypothesis of a small perturbation: |Fst − I| ≪ 1 or |grads (u)| ≪
1, and neglecting all second order terms, the equation of equilibrium (27)
can be written

ü+ 2grads (u̇) .vs + grads (u) .v̇s + grads (grads (u) .vs) .vs

= (ft − fs) +
1

ρs
divs

(

S̃t + grads (u) .σs

)

(30)

Physically, the terms in the formula for this balance equation are defined
by:
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• The relative acceleration: ü (Xs, t)

• The Coriolis acceleration: 2 grads (u̇(Xs, t)) .vs

• The ortho-centripetal acceleration: grads (u) .v̇s

• The centripetal acceleration: grads (grads (u(Xs, t)) .vs) .vs

• The body force: (ft − fs)

• The internal stress 1
ρs
divs

(

S̃t + grads (u) .σs

)

Remark:

vs is the rotational speed (because in the stationary state the displacement
does not depend on time). So, in a state in which the rotational speed is
constant, vs is also a constant. The term of the Coriolis acceleration is
proportional to vs and that of centripetal acceleration is proportional to the
square of that speed. In this case, the ortho-centripetal acceleration is zero.

2.3.2. Balance equation of the vibrating state with respect to the rotating
state

The position of the material point in the vibrant configuration is written
as (14):

Xt = Xr +Us(Xr) + ut(Xr, t)

As in the development of (18) to (20), the term of the acceleration of a
material point with respect to the rotating configuration is given by:

γt =
∂2 (ut (XR, t))

∂t2
+ 2

∂Frt

∂t
.Ω (XR, t)

+ Frt.
∂Ω (XR, t)

∂t
+ gradr (Frt.Ω (XR, t)) .Ω (XR, t) (31)

with Ω (XR, t) is the rotation vector of the rigid motion.
Therefore, the equilibrium equations with respect to the rotating config-

uration are written:

∂2ut

∂t2
+ 2

∂Frt

∂t
.Ω+ Frt.

∂Ω

∂t
+ gradr (Frt.Ω) .Ω = ft +

1

ρr
divr (Frt.Sr) (32)

with Sr representing the second Piola-Kirchhoff stress tensor.

3. Geometrically nonlinear circular ring model

3.1. Description of the model

The description of the circular ring model representing a tire is illustrated
in figure (2). The tread is described as a circular beam. The sides are
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Figure 2: Description of the circular ring model

modelled using radial and tangential springs. The pressure is modelled as
a uniform load on the ring. Finally, the tire/road contact is described by a
force field applied to the base of the ring. The radial and tangential springs
are fixed at the other end.

The circular ring has a radius R, a straight section A and a thickness
e. The beam is assumed very thin with e

R
≪ 1 which is a condition on

the geometry of the tread. It behaves like a beam which must satisfy the
following assumptions:

• The radius of curvature of the medium line and its length are large
relatively to the largest transverse dimension of the cross section.

• The area of the cross section does not change after deformation.

• The beam is of Cosserat-Timoshenko type. This means that the shear
effect is taken into account and that there is no warping of the cross
section.

• The material of the beam is linear elastic.

kR, kθ are respectively the radial and tangential stiffnesses of the springs.

3.2. Stationary motion

3.2.1. Description of the motion

Each material point in the rotating configuration is defined by two vari-
ables (z, θ) in the polar coordinates defined by (uR,uθ) with z varying in
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the range [− e
2 ;

e
2 ] and θ in [0; 2π].

O

'S

'P

P

α

Figure 3: Description of the transformation

In the rotating configuration, a material point can be represented in the
following way:

OP = OS+ SP = (R+ z)uR (33)

with S is a point on the neutral fibre of the beam. S and P belong to the
same section. By switching to the stationary configuration, a displacement
field is applied so that P → P ′ and S → S′. Point S moves to point S′ by
two translations (u(θ), w(θ)). Point P turns by an angle α to point P ′, see
figure 3. Therefore, the transformation of the material vector is defined by:

OP′ = OS′ + S′P′ = (R+ u+ z cosα)uR + (w + z sinα)uθ (34)

The displacement vector of a material point is then:

u = OP′ −OP = (u+ z(cosα− 1))uR + (w + z sinα)uθ (35)

One also has the transformation matrix:
(

t

n

)

=

(

cosα sinα
− sinα cosα

)(

uR

uθ

)

(36)
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3.2.2. Strain tensor

The tensor of the gradient of the transformation is calculated by:

F = I+ grad (u) (37)

and the strain tensor of the transformation is computed by:

e =
1

2
(TF.F− I)

The detailed computation is given in Appendix A and leads to the formulas
for each component:

eRR = 0

eRθ = eθR =
1

2R

(

ζ2 − ζ + 1
) ((

u′ −w
)

cosα+
(

R+ u+ w′
)

sinα
)

eθθ =
1− 2ζ + 3ζ2

2R2

(

(

u′ − w
)2

+ (R+ u+ w′)2

+2Rζ
(

α′ + 1
) ((

R+ u+w′
)

cosα− (u′ − w) sinα
)

+R2ζ2
(

α′ + 1
)2
)

−
1

2
(38)

3.2.3. Behaviour law and internal forces

Material behaviour of the elastic ring is assumed linear elastic. The
stress tensor can be written with the engineering notations as:

(

Sθθ

SRθ

)

=

(

E 0
0 G

)(

eθθ
2eRθ

)

(39)

with E and G are the Young and shear modulus. Active forces on the cross
section are the normal force N , the shear force V and the moment M , which
are calculated as following in the reference configuration (uR,uθ):



















N =
∫

A

SθθdA

V =
∫

A

SRθdA

M =
∫

A

zSθθdA

(40)

with A is the cross-section area. The detailed expressions of these quantities
are given in Appendix B.

One denotes the force on the cross section in the reference configuration
as:

fr = V uR +N uθ (41)

14



This force is written in the stationary configuration using (36):

f =

(

cosα sinα
− sinα cosα

)

fr = N n+ V t (42)

Remark:
The components of the force on the cross-section relative to the reference
configuration fr equal those of the force on the cross-section in the stationary
configuration f (cf. Simo [44]).

3.2.4. Equilibrium equations

The equilibrium equations of the stationary state relatively to the rotat-
ing configuration, are proved in the precedent section (cf. 2.2) in equation
(13). To simplify the writing of formulas, the index ”r” is deleted from all
operators. From that moment, all calculations are in the rotating configu-
ration (the non-deformed configuration). The equilibrium equations yield:

ρ grad (F.Ω(X, t)) .Ω(X, t) = ρ f + div (F.S) (43)

with ρ is the density, F the tensor of the gradient of transformation, ρ f = qv

the body force applied on the ring, Ω the rotation vector, S the second Piola-
Kirchhoff stress tensor. F.S = P is the first Piola-Kirchhoff stress tensor.
To set the equilibrium equations on the ring, these equations are integrated
on a beam portion.

Equilibrium of forces

Formula (43) is integrated on a volume D of reference length ”ds” along
the neutral axis in the deformed configuration:

∫

D

ρ grad (F.Ω(X, t)) .Ω(X, t)dV =

∫

D

qvdV +

∫

D

div (P) dV (44)

���

Figure 4: Equilibrium around a portion of the beam.
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The tensor P is written under the form P = P1 ⊗ s1 +P2 ⊗ s2 +P3 ⊗ s

where (s1, s2, s) are the unit vectors of the orthogonal curvilinear reference
system. s is the vector tangential to the neutral axis. One recall:

f =

∫

A

P.s dA (45)

the active force on the cross section in the deformed configuration. The
projection of f on two unit vectors in a basis of the current cross-section
(t,n) gives respectively the shear and normal forces (V,N) (cf. relation 42).
The theorem of Green-Ostrogradski allows writing:

∫

D

div (P) dV = f(s+ ds)− f(s) + q(s) ds (46)

q =
∫

∂A

qsdl are the surface forces on the beam from the air pressure, the

contact forces and the forces of the springs. l is the curvilinear abscissa of
the edge of the cross section ∂A.

Replacing the relation (46) in equation (44) yields:

∫

D

ρ grad (F.Ω(X, t)) .Ω(X, t)dV = f(s+ds)−f(s)+q(s) ds+

∫

D

qvdV (47)

ds is small enough to have (ρ grad (F.Ω(x, t)) .Ω(x, t)) and qv constant along
ds. Equation (47) becomes:

ds

∫

A

ρ grad (F.Ω(X, t)) .Ω(X, t)dA = f(s+ds)−f(s)+q(s) ds+ds

∫

A

qv dA

(48)
The equilibrium of forces is thus written as:

∂f

∂s
+

∮

∂A

qsdl +

∫

A

qv.dA =

∫

A

ρ grad (F.Ω(X, t)) .Ω(X, t)dA (49)

Equation (49) represents the equilibrium of forces on a piece of beam. ∂f
∂s

is a variation in the forces on two straight sections between positions s and
s+ ds.

∫

∂A

qsdl is the sum of surface forces on the beam.
∫

A

qv.dA is the sum

of the body forces.
∫

A

ρ grad (F.Ω(X, t)) .Ω(X, t)dA is the centripetal force

linked to the rotation.

Equilibrium of the moment

In the same way, the equation of balance of the moment is built. From
the equation (43), a cross product is applied to the left. Then the expression
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is integrated on the domain D:

∫

D

S′P′ ∧ (ρ grad (F.Ω(X, t)) .Ω(X, t)) dV

=

∫

D

S′P′ ∧ qv dV +

∫

D

S′P′ ∧ div (P) dV (50)

Supposing ds small enough:

∫

D

S′P′ ∧ (ρ grad (F.Ω(X, t)) .Ω(X, t)) dV

= ds

∫

A

S′P′ ∧ (ρ grad (F.Ω(X, t)) .Ω(X, t)) dA

∫

D

S′P′ ∧ qv dV = ds

∫

A

S′P′ ∧ qv dA (51)

With the developments of Appendix C, the equation of the equilibrium
of the moment becomes:

∂M

∂s
+

∂OS′

∂s
∧ f +

∫

A

S′P′ ∧ qv dA+

∫

∂A

(

S′P′ ∧ qs
)

dl

−

∫

A

ρS′P′ ∧ grad (F.Ω(X, t)) .Ω(X, t)dA = 0 (52)

The equations (49) and (52) allow finding the equations of equilibrium
of beams set by Davi [47], Simo [44], Antman [35] under the following form
in the stationary configuration (t, n):

{

∂f
∂s

+ q = 0
∂M
∂s

.s+
(

∂OS′

∂s
∧ f
)

.s+ g = 0
(53)

with:

f =

(

V
N

)

the active forces on the cross section in the configuration (n, t)

(cf. relation 42).
M is the moment in the cross-section.
q =

∫

∂A

qsdl +
∫

A

qv dA −
∫

A

ρgrad (F.Ω(X, t)) .Ω(X, t)dA are the applied

forces.
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g =





∫

∂A

S′P′ ∧ qsdl +

∫

A

S′P′ ∧ qvdA

−

∫

A

ρS′P′ ∧ grad (F.Ω(X, t)) Ω(X, t)dA



 .s (54)

is the applied moment along the beam. The equations of equilibrium (53)
are in the local basis of the deformed configuration (t,n). They can be
written in the reference configuration (uR,uθ):











∂
∂s

((

cosα − sinα
sinα cosα

)(

V
N

))

+ q = 0

∂M
∂s

.s+
(

∂OS′

∂s
∧ f
)

.s+ g = 0
(55)

One must calculate the applied forces and moments on the beam in the
reference configuration (uR,uθ).

3.2.5. Computation of surface forces

In our case, these forces consist of the air pressure, the contact force and
the reactions of springs.

• Air pressure

Air pressure results in a pressure p uniform along the ring. It is in the
direction of uR in the case of linear deformation. For the nonlinear
case, the pressure follows the deformation. Therefore it is expressed
as:

p = −pOz ∧

(

∂OS′

∂s

)

= −pOz ∧

(

∂OS′

R∂θ

)

• The contact

At first, the tire/road contact is simply modelled by a point force in

the radial direction

(

fR
0

)

.

• The springs

The forces are given by

(

f spring
R = kR.∆lR
f spring
θ = kθ.∆lθ

)

. The elongations

(

∆lR
∆lθ

)

are computed by:





∆lR =

√

(l0 + u)2 + w2 − l0

∆lθ =
√

(l0 + w)2 + u2 − l0




∼=

(

u
w

)

(56)
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assuming that the initial lengths of the springs l0 are very large com-
pared to their displacements u ≪ l0 et w ≪ l0. The components
(f spring

R , f spring
θ ) are respectively in the direction of uR and uθ in the

case of linear deformation. For the nonlinear case, these components
follow the deformation of the neutral axis. To sum up, the surface
forces are in the reference system (uR,uθ) :

∫

∂A

qsdl = p+

(

fR − f spring
R

−f spring
θ

)

(57)

3.2.6. Calculation of body forces

In this work, the effect of the weight of the material is neglected. There
remains only the inertial force bound to the rotation. From the equation of
equilibrium (53), the centripetal force is calculated by:

∫

A

ρ grad (F.Ω(X, t)) .Ω(X, t)dA

with Ω(X, t) = Ċ(t)+ θ̇(t).θ(t)−1. [X−C(t)] the rotation vector (see equa-
tion (6)). We suppose that Ċ(t) = C(t) = C(0) = 0 meaning that the
centre of the wheel is fixed and is the origin of the reference system.

θ(t) =

(

cos θ − sin θ
sin θ cos θ

)

is the rotation matrix. So, with X = (R + z)uR

and Ω = θ̇, we get:

Ω(X, t) = Ω(R+ z)uθ (58)

The computation developed in Appendix D yields the body force given by
integrating over the cross section in the reference system (uR,uθ):

−ρ

∫

A

grad (FΩ(X, t)) .Ω(X, t)dA = −ρΩ2A

(

−R+ u′′ − 2w′ − u
w′′ + 2u′ − w

)

(59)

3.2.7. Calculation of the moment applied to the beam

The surface forces move and revolve around a node while the beam is
deformed. Therefore, they do not create moment on the beam because all
quantities are independent of the variable z (see relation (57)):

∫

∂A

z.t ∧ qsdl = 0

Moreover, the weight of the beam is neglected. So, the moment is created
by the centripetal body force. Using (D.5), the moment can be calculated
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by:

g =



−ρ

∫

A

zt ∧ grad (F.Ω(x, t)) .Ω(x, t)dA



 .s = −ρΩ2Iα′′ (60)

In conclusion, the combination of equations (55), (59) and (60) provides
the equations of equilibrium in the basis of the configuration of reference
(uR,uθ) :



































1
R

d
dθ

((

cosα −sinα
sinα cosα

)(

V
N

))

+ p−

(

f spring
R − fR
f spring
θ

)

−ρΩ2A

(

−R+ u′′ − 2w′ − u
w′′ + 2u′ − w

)

= 0

1
R

dM
dθ

+ 1
R

(

∂OS′

∂θ
∧

(

cosα − sinα
sinα cosα

)(

V
N

))

.s− ρΩ2Iα′′ = 0

(61)
with M,N, V are given by (B.2).

3.3. Dynamic motion

3.3.1. Different model configurations

Configurations of the system are summarized in table (1). By switching

Initial Rotating Stationary Vibrating

X0 = R.uR

{

Xr = θR.uR

Ω (Xr) = θ̇Ruθ

{

Xs = Xr +U

U = (u,w, α)

{

Xt = Xs +Ut

Ut = (ut, wt, αt)

Table 1: Different configurations

to the vibrating configuration, a new displacement field must be defined:

{

OS′ → OS′′

S′P′ → S′′P′′
(62)

The overall transformation of the rotating configuration to the vibrant con-
figuration leads to:

{

OS → OS′′

SP → S′′P′′
(63)

The total displacement is written as:

u = us + ut

with us is the stationary displacement and ut is the dynamic perturbation.
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3.3.2. Movement relative to the rotating configuration

In this section, all developments are performed in the local basis (uR,uθ)
of the rotating configuration. The total and stationary displacements are
given by:

u =
(

u+ ut + z (cos (α+ αt)− 1)
)

uR +
(

w + wt + z sin (α+ αt)
)

uθ (64)

us =
(

u+ z(cosα− 1)
)

uR + (w + z sinα)uθ (65)

The developments from the section on the stationary motion can be used. In
particular, the gradient of the Green Lagrange transformation (A.3) relative
to the rotating configuration is given by:

Frt = I+ gradr (u) = I+ gradr (us + ut) (66)

with:

Frt =




cos (α+ αt)
1

R+z

(

u′ + u′t − w − wt − z sin (α+ αt) (1 + α′ + α′

t)
)

sin (α+ αt)
1

R+z

(

R+ u+ ut + w′ + w′

t + z cos (α+ αt) (1 + α′ + α′

t)
)





(67)

Neglecting the second order terms in ut yields:

Frt =









cosα− αt sinα
1

R+z

(

u′ + u′t − w − wt − zα′

t sinα
−z (sinα+ αt cosα) (1 + α′)

)

sinα+ αt cosα
1

R+z

(

R+ u+ ut + w′ +w′

t + zα′

t cosα
+z (cosα− αt sinα) (1 + α′)

)









(68)

3.3.3. Analytical equilibrium equations in the rotating configuration

As previously the developments made to establish the stationary equa-
tions are used again for the dynamic equations relatively to the rotating
configuration. The hypothesis of small perturbations gives:

ut
R

≪ 1,
wt

R
≪ 1, αt ≪ 1
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We first consider the case without rotation. The balance equations of the
stationary case are taken from (61) by deleting the terms of rotation:

1

R

(

V ′cosα−N ′ sinα−
(

α′ + 1
)

(V sinα+N cosα)
)

+p
R+ u+ w′

R
+ fR − kRu = 0

1

R

(

V ′sinα+N ′ cosα+
(

α′ + 1
)

(V cosα−N sinα)
)

− p
u′ − w

R
− kθw = 0

1

R
M ′ +

1

R

(

(

u′ − w
)

(V sinα+N cosα)

−
(

R+ u+ w′
)

(V cosα−N sinα)
)

= 0 (69)

with N,V and M given by relation (B.2). By replacing (u,w, α) in these
equations by (u+ut, w+wt, α+αt), the global equations are obtained with
parts relative to static and dynamic balance equations. Stationary forces
are equally separated from the dynamic forces:

N = Ns +Nt, V = Vs + Vt, M = Ms +Mt

this implies:

N −Ns = Nt, V − Vs = Vt, M −Ms = Mt (70)

with (Ns,Ms, Vs) are the static forces, (Nt,Mt, Vt) are associated to the dy-
namic perturbation. Indeed, (Nt,Mt, Vt) depend linearly from the dynamic
displacement ut. They are obtained by subtracting the static forces of global
efforts (70). Their detailed expressions are given in Appendix E.

Inclusion of the rotation

The general equations of equilibrium are written relatively to the rotating
configuration from (32):

ρü+ 2ρgradr (u̇) .Ω (Xr, t) + ρgradr (Frt.Ω(Xr, t)) .Ω(Xr, t)

= ρf + divr (Frt.Sr) (71)

with u is the global displacement vector such that u = us + ut. As in the
precedent case, one integrates this formula on a piece of beam of length ds
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along the neutral axis in the rotating configuration:

∫

D

ρüdV +

∫

D

2ρgradr (u̇) .Ω (Xr, t) dV

+

∫

D

ρgradr (Frt.Ω (xr, t)) .Ω (Xr, t) dV =

∫

D

ρf + divr (Frt.Sr)dV

∫

D

zt ∧ ρüdV +

∫

D

zt ∧ 2ρgradr (u̇) .Ω (xr, t)dV

+

∫

D

zt ∧ ρgradr (Frt.Ω (xr, t)) .Ω (xr, t)dV =

∫

D

zt ∧ (ρf + divr (Frt.Sr)) dV

(72)

In equations (72), only the term for the gyroscopic effect has not yet been
detailed. Using the computation of the gradient of the transformation (68),
one has

gradr (u̇) =

(

−α̇t sinα
1

R+z
(u̇′t − ẇt − zα̇t (1 + α′) cosα− zα̇′

t sinα)

α̇t cosα
1

R+z
(u̇t + ẇ′

t − zα̇t (1 + α′) sinα+ zα̇′

t cosα)

)

(73)
With Ω given by (58), this gives the gyroscopic term:

gradr (u̇) .Ω (Xr, t) = Ω

(

u̇′t − ẇt − zα̇t (1 + α′) cosα− zα̇′

t sinα
u̇t + ẇ′

t − zα̇t (1 + α′) sinα+ zα̇′

t cosα

)

(74)

Finally:







∫

D

2ρgradr (u̇) .Ω (xr, t) dV =2ρΩA (u̇′t − ẇt)uR + 2ρΩA (u̇t + ẇ′

t)uθ

∫

D

z.t ∧ 2ρgradr (u̇) .Ω (xr, t) dV = 2ρΩIα̇′

t

(75)
The equations of equilibrium of the case without rotation (E.2) are com-
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pleted by adding terms due to the rotation:

1

R

(

V ′

t cosα−N ′

t sinα− α′

t (V sinα+N cosα)
)

+ p
ut + w′

t

R
+ pt

R+ u+ w′

R

−
αt

R
(V ′ sinα+N ′ cosα)

−
α′ + 1

R

(

Vt sinα+Nt cosα+ αt (V cosα−N sinα)
)

+fR
t − kRut − ρΩ2A (u′′

t − 2w′

t − ut) = ρAüt + 2ρΩA (u̇′

t − ẇt)

1

R

(

V ′

t sinα+N ′

t cosα+ α′

t (V cosα−N sinα)
)

− p
u′

t − wt

R
− pt

u′ − w

R

+
αt

R
(V ′ cosα−N ′ sinα)

+
α′ + 1

R

(

Vt cosα−Nt sinα− αt (N cosα+ V sinα)
)

−kθw − ρΩ2A (w′′

t + 2u′

t − wt) = ρAẅt + 2ρΩA (u̇t + ẇ′

t)

1

R
M ′

t +
1

R

(

(u′

t − wt) (V sinα+N cosα)− (ut + w′

t) (V cosα−N sinα)
)

+

1

R

(

(u′ − w) (Vt sinα+Nt cosα)− (R+ u+ w′) (Vt cosα−Nt sinα)
)

+

1

R

(

αt (u
′ − w) (V cosα−N sinα) + αt (R+ u+ w′) (V sinα+N cosα)

)

−ρΩ2Iα′′

t = ρIα̈t + 2ρΩIα̇′

t (76)

3.3.4. Construction of the numerical equilibrium equations

One also proposes a numerical method to solve the ordinary differential
equations (61). The stationary equilibrium equations are written under the
form:

g(us) = fs (77)

with g represents the function of the internal forces in the beam which are
not always linear with the displacement us. By adding a small disturbance
ut, the dynamic relation becomes:

Müt +Cu̇t + g(us + ut) = fs + ft (78)

Equation (78) is linearized around ut. One has:

g(us + ut) = g(us) +
∂g

∂us
ut (79)

Replacing (77) and (79) in equation (78):

Müt +Cu̇t +
∂g

∂ us
ut = ft (80)

Setting:
∂g

∂us
= K
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Finally, the numerical equations are as follows:

Müt +Cu̇t +Kut = ft (81)

The matrix K is found by the stationary solution. We still have to find
two matrices M and C. In fact, the matrix M is easily constructed by
discretizing the term of the relative acceleration in the dynamic equation
(76). The matrix C is the gyroscopic matrix which is also constructed by
discretizing the analytical equations (76).

4. Validation of models and rotating effects

4.1. Stationary case

The system of differential equations of the second order (61) has period-
ical boundary conditions:







u = f(θ,u,u′)
u(0) = u(2π)
u′(0) = u′(2π)

(82)

with u is the displacement vector. The exact solution is approximated by
a discrete solution. For this, a mesh of N points is defined with θ = (θ1 =
0; θ2; ...θi...; θN = 2π(N − 1)/N). The discretized values are:










u′(θi) =
u(θi+1)−u(θi−1)

2h = ui+1−ui−1

2h

u′′(θi) =
u(θi+1)−2u(θi)+u(θi−1)

h2 = ui+1−2ui+ui−1

h2

u′′(θi) = f(θi,u(θi),u
′(θi)) ↔

ui+1−2ui+ui−1

h2 = f(θi,ui,
ui+1−ui−1

2h )
(83)

The boundary conditions are written as:

u(0) = u(2π) →

{

u1
′ = u2−uN

2h ;uN
′ =

u1−uN−1

2h

u1
′′ = u2−2u1+uN

h2 ;uN
′′ =

u1−2uN+uN−1

h2

(84)

The relations (83) and (84) provide N equations with N unknowns. In the
linear case, finding u is immediate. For the nonlinear case, the Newton
method is used. The model parameters are shown in the table (2).

4.2. Dynamic case

The dynamic equations are written in the form:

Müt +Cu̇t +Kut = ft (85)

The matrices M and C are constructed directly using analytical equations.
In the case of the linear static deformation, stiffness matrix K does not
change during the deformation. It is built directly by the analytical equa-
tions without rotation or with rotation. In the case where the effect of large
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Parameter Description Value Unit

E Young modulus 2.6611e9 Pa
ρ Density 1160.7 kgm−3

R Ring radius 0.285 m
e Thickness of the beam 0.01 m
b Width of the beam 0.085 m
kR Radial stiffness 4.35e6 Pa
kθ Tangential stiffness 3.19e5 Pa
ν Poisson coefficient 0.3

Table 2: Model parameters

displacements is taken into account, the stiffness matrix varies during the
deformation. Stiffness matrix obtained at the end of the static state is the
one considered in the dynamic calculation. There are two ways to calculate
this matrix either using analytical equations using the stationary solutions,
or as the Jacobian of stationary equations (see section 3) calculated by nu-
merical solution of the stationary case. In order to validate the analytical
model of a circular ring, it is compared to the result of the simulation of this
model with Abaqus.

4.3. 2D FEM with beams

This model is built to validate the analytical formulations of the circu-
lar ring model. It does not take into account the effect of rotation. The
parameters and loading conditions are identical to the analytical model.
In the finite element code Abaqus, one uses the Euler Bernoulli beam ele-
ments (B23 element), and Timoshenko beams (B21 element). The ring is
discretized in N nodes each connected to two springs: a radial spring and
a tangential spring. The values of the stiffness of the springs are calculated
from the analytical stiffness springs as follows:

{

knumR = R△θkR
knumθ = R△θkθ

(86)

4.4. 3D FEM with shells

To take into account the effects of rotation in the circular ring model, the
*STEADY STATE TRANSPORT functionality available under Abaqus
is used. It can be applied, however, only on shells or solid elements. It is
necessary for this reason to build a similar model based on shell elements.
The parameters of the model geometry do not change (Figure 5). The radial
and tangential springs are also retained. A static validation is performed
before any application of rotational effects.
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Figure 5: Circular ring model with Abaqus

4.5. Case without rotation, analytical model versus FEM with beams

The results of the steady state between the Matlab calculation and the
calculation under Abaqus are compared at constant boundary conditions
and equivalent load.

1. Vehicle load

Vehicle load is applied to the wheel centre. It is represented by a
point force imposed at the base of the tire. The comparison between
the Matlab modelling and Abaqus simulation is shown in Figure 6. A
good correlation of the displacements is observed. Note that the results
of the Euler Bernoulli beam and those of the Timoshenko beam are
identical. This is explained by the use of the assumption of the thin
beam (the shearing effect is neglected).

2. Comparison of deformed linear and nonlinear configurations

A comparison of the deformed configurations of the linear case and the
nonlinear case in geometry is shown in Figure 7. There are differences
around the excitation point. Near this point one can expect that the
stress and strains are large and so in this zone the differences between
the linear and non linear models will be the largest.

3. Modes of vibration

The natural frequencies of the tire in its deformed configuration are
compared. Two types of boundary conditions are considered: fixed
wheel centre / free tire base and both fixed wheel centre and tire base.
The results obtained with Matlab and Abaqus are very close. The
differences are less than 1.2 % which is satisfactory. Mode shapes are
also identical. In the case where the tire base is free, ring symmetry
is preserved. In this case, double modes at the same frequency are
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Figure 6: Undeformed and deformed configurations of the tire resulting from nonlinear
static calculations for a point force at the bottom of the tire
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Figure 7: Undeformed and deformed configurations of the tire due to linear and nonlinear
static calculations for a point force at the bottom of the tire

observed and obtained one from the other by a rotation of π
2n (Figure

8). In contrast, if the tire base is fixed, this property is lost (Figure
9). These observations are identical to what was found for instance
by [33] in the case of a FEM modelling. The frequency range of these
modes is quite similar to what is reported in [29]. In conclusion, the
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analytical model is validated up to 400 Hz.

Figure 8: Eigenmodes with a fixed wheel centre and a free tire base

Figure 9: Eigenmodes with fixed wheel centre and tire base

4. Transfer functions

An example of transfer function is shown in Figure 10. It is the vertical
reaction force at the centre resulting from a vertical dynamic force
applied in the tire base with constant unit amplitude. The vertical
reaction force at the wheel centre which is the sum of the vertical
reactions of the radial and tangential springs, is obtained as follows:

Ry =

∫

0

2π

kRut. (uR,y)dθ +

∫

0

2π

kθwt. (uθ,y)dθ (87)

with (, ) means the scalar product in ℜ2. Matlab and Abaqus curves
are superposed up to 300Hz and have small differences in the fre-
quencies around 350Hz because the natural frequencies calculated in
Matlab and Abaqus are slightly different, f20 = 346Hz under Abaqus
and f20 = 350Hz under Matlab (cf. figure 10). The difference is very
low and we get a good agreement. The agreement between two differ-
ent computations with different software makes us confident into the
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validity of these results. Moreover the experimental results reported in
[30] show similar tendencies with a maximum near 100 Hz and values
extending over a range of about 30dB.
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Figure 10: Response of the vertical force at the wheel centre for an excitation at the base
of the tire for the case with no-rotation and no-load except the dynamic excitation

4.6. Case with rotation, analytical model versus shell FEM

In section 3, the development of analytical formulations showed that tak-
ing into account the rotating effects consists in adding a centripetal stiffness
matrix and a viscous damping matrix. The effect on the change in the stiff-
ness of the structure is very small. On the contrary, the gyroscopic damping
strongly changes the dynamic response and causes a frequency splitting ac-
cording to the speed of rotation. This is shown by the theoretical work of
Bolton and Kim [18] and the experimental works of [30, 6, 31]. This result
is confirmed in this section.

1. Linear deformation case

Regarding the linear case, the natural frequencies are calculated ana-
lytically. Meanwhile, a calculation can be performed using the numer-
ical equations in the frequency domain:

−ω̃2
nMun + iω̃nCun +Kun = 0 (88)

with un is the displacement vector of the ring.

Denoting ũn =

(

un

iω̃nun

)

the complex eigenvector equations (88)

become:

iω̃n

(

K 0

0 M

)(

un

iω̃nun

)

+

(

0 −K

K C

)(

un

iω̃nun

)

=

(

0

0

)

(89)
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So, the numerical frequency ω̃n is given by:

det

∥

∥

∥

∥

iω̃n

(

K 0

0 M

)

+

(

0 −K

K C

)∥

∥

∥

∥

= 0 (90)

When the matrices M and K are symmetric and the matrix C is
skew-symmetric, the first matrix on the left of the equation (90) is
symmetrical and the second is skew-symmetric. It is easy to show that
the eigenvalues are imaginary. This implies that the eigenfrequencies of
the system are real. One checks that the natural frequencies calculated
by the analytical and numerical models at different speeds are very
close. It is shown that the natural frequencies depend on the speed of
rotation. This effect is illustrated in Figure 11.

Figure 11: Frequencies versus the rotation speed for the undeformed tire

2. Nonlinear deformation case

Having no simple analytical solution, a direct comparison of numerical
results with Matlab and Abaqus is realized. As above, the dynamic
solutions of the tire are compared around the deformed stationary
configuration under a load with the parameters: circular velocity Ω =
100rad/s, inflation pressure p = 2.5bar and a vehicle load q = 250kg.
A good correlation of natural frequencies calculated in Matlab and
Abaqus is observed, as shown in Figure 12. The gap increases with
frequency. However, in the range [0,400 Hz], the maximum deviation
is 7.3% which remains moderate. In conclusion, the analytical model
in nonlinear deformation is validated for low frequencies.
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As for the case without rotation (Figure 10), dynamic responses at
the wheel centre are compared. The formulation (87) is repeated for
assessing the vertical reaction. From the deformed configuration, a
harmonic force 1eiωt is imposed at the tire base. The response is
plotted versus the frequency. Under Abaqus, the mass matrix and the
stiffness matrix are extracted from the model. Using these matrices,
calculation of the transfer function is performed using Matlab.

Figure 12: Eigenfrequencies of the circular ring model at Ω = 100rad/s in the nonlinear
deformation case for a load of 250kg applied at the bottom of tire

Figure 13 shows the comparison of the transfer functions. At low
frequencies, the results are very close. Gaps begin to appear from
250 Hz. Concerning the rotation effect, the transfer functions versus
the speed of rotation are plotted in Figures 14(a) and 14(b). The
first resonance corresponds to the frequency 112 Hz of the ”spring”
mode and there is no duplication. The explanation is found by the
absence of mass of springs. One can see different behaviours near 350
Hz. This frequency corresponds to the eighth mode. For the vertical
force, two maxima are observable for low frequencies. This is explained
by looking at the deformed configuration of this mode. In fact, this
mode is a combination of two tire vibrations: a radial vibration and
a vibration in traction and compression tangent to the neutral fiber.
The radial vibration has eight peaks on the deformed configuration.
The other has two vibration maximums. This is why we see two peaks
on the vertical response curve. The tension-compression vibration like
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Figure 13: Ring response for the forced excitation at (Ω = 100rad/s) for a load of 250kg
applied at the bottom of the tire

mode is symmetric, so it does not excite the horizontal force. This
is reason why we do not observe the second peak on the horizontal
response curve.
To observe the frequency splitting effect, we construct a map of the
transfer function at the wheel centre versus the speed. Figure 15 rep-
resents the vertical reaction at the wheel centre for a tire loaded with a
vertical force of 250 kg applied at the bottom of the tire. The horizon-
tal axis is the frequency and the vertical axis is the linear velocity. The
maps built with Matlab and Abaqus are very similar which validates
the circular ring model with rotating effect. The splitting according
to the speed is seen in the form of two branches from zero speed. The
spacing between the arms is a function of the wave number. It only
affects the modes including the deformation of the tread. For the first
mode, the tread does not deform, so there is no duplication. If we
compare this figure with figure 11, we can see that similar behaviours
are observed in the deformed and undeformed cases. The mode at the
frequency 100 Hz do no change with the rotating velocity. On the con-
trary there is a splitting of modes associated with higher frequencies.

5. Conclusion

In this paper, a 2D nonlinear ring model for the analysis of tire dynamic
behaviour in both non-rolling and rolling conditions is proposed. The as-
sumptions of Timoshenko beam and finite displacements are considered to
build the model. Thus, large rotations of the cross section and high order
of translation displacements are taken into account but the cross section is
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Figure 14: The longitudinal and vertical responses at the wheel centre for a vehicle load
of 250kg

assumed to remain non-deformed. The analytical formulation is established
successfully in linear/nonlinear static and dynamic states in non-rolling and
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(a)

(b)

Figure 15: Mapping vertical reaction at the wheel center in Abaqus (a) and Matlab (b)
for the deformed tire with a 250 kg load at the bottom

rolling conditions using an Arbitrary Lagrangian Eulerian approach. Since
the nonlinear problem cannot be solved analytically, a numerical resolution
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method by discretization is proposed. The comparison with Abaqus simu-
lations considered as reference allows the validation of the model and the
rotating effects. First, in the static case, we check that the deformed shapes
are similar. In the dynamic case without rotation, we verify that the eigen-
modes and transfer functions computed around the static state are in good
agreement. In rolling conditions, the dynamic behaviour can also be pre-
dicted in a satisfactory manner. One finds the rotating effects as splitting
of natural frequencies with velocity.
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Appendix A. Strain tensor

To establish the relationship between du and dOP, equation (33) is taken
to calculate:

dOP = d((R + z)uR) = d(R+ z)uR + (R+ z)duR = dzuR + (R + z)dθuθ

This allows to write:

dz = uR.dOP; dθ =
1

R+ z
uθ.d(OP) (A.1)

From relation (35), one also has:

du = d((u+ z(cosα− 1))uR + (w + z sinα)uθ)

Developing:

du = (dz(cosα− 1) + (u′ − zα′ sinα)dθ − (w + z sinα)dθ)uR

+ (dz sinα+ (u+ z(cosα− 1))dθ + (w′ + zα′ cosα)dθ)uθ

where exponent ()′ means the derivation relative to θ, i.e. ()′ = ∂
∂θ
.

Using (A.1), the expression becomes:

du =

(

(cosα− 1)uR ⊗ uR +
1

R+ z
(u′ − zα′ sinα− w − z sinα)uR ⊗ uθ+

sinαuθ ⊗ uR +
1

R+ z

(

u+ z(cosα− 1) + (w′ + zα′ cosα)
)

uθ ⊗ uθ

)

.dOP

with ⊗ is the tensor product. The gradient of the displacement field can be
written in matrix form in the reference system (uR,uθ):

grad (u) =

(

cosα− 1 1
R+z

(u′ −w − zα′ sinα− z sinα)

sinα 1
R+z

(u+ w′ + z (cosα+ α′ cosα− 1))

)

(A.2)

The tensor of the gradient of the transformation is calculated by:

F = I+ grad (u)

=

(

cosα 1
R+z

(u′ − w − zα′ sinα− z sinα)

sinα 1
R+z

(R+ u+ w′ + z (cosα+ α′ cosα))

)

(A.3)
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Denoting ζ = z
R
, the so-called thin ring condition is written as ζ ≪ 1. The

tensor of the transformation is thus:

F =





cosα 1
1+ζ

(

u′
−w
R

− ζ(α′ sinα+ sinα)
)

sinα 1
1+ζ

(

R+u+w′

R
+ ζ(cosα+ α′ cosα)

)



 (A.4)

and developing 1
1+ζ

to the second order:

F =





cosα
(

ζ2 − ζ + 1
)

(

u′
−w
R

− ζ (α′ + 1) sinα
)

sinα
(

ζ2 − ζ + 1
)

(

R+u+w′

R
+ ζ (α′ + 1) cosα

)



 (A.5)

The strain tensor of the transformation is computed by:

e =
1

2
(TF.F− I)

Detailing each component leads to:

eRR = 0

eRθ = eθR =
1

2R

(

ζ2 − ζ + 1
) ((

u′ −w
)

cosα+
(

R+ u+ w′
)

sinα
)

eθθ =
1− 2ζ + 3ζ2

2R2

(

(

u′ − w
)2

+ (R+ u+ w′)2

+2Rζ
(

α′ + 1
) ((

R+ u+w′
)

cosα− (u′ − w) sinα
)

+R2ζ2
(

α′ + 1
)2
)

−
1

2
(A.6)

Remark:

eRR = 0 means that there is no deformation along the direction uR which
is consistent with the hypothesis of thin beam.

Appendix B. Internal forces

The active forces on the cross section are the normal force N , the shear
force V and the moment M , given in the reference configuration (uR,uθ)
by:



















N =
∫

A

SθθdA

V =
∫

A

SRθdA

M =
∫

A

zSθθdA

(B.1)
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with A is the cross-section area. After calculation, the terms of force and
moment in the local reference system are:

N =
EA

2R2

(

(

u′ − w
)2

+
(

R+ u+ w′
)2

−R2
)

+
3EI

2R4

(

(

u′ − w
)2

+
(

R+ u+ w′
)2
)

−
2EI

R3

(

α′ + 1
) ((

R+ u+ w′
)

cosα− (u′ − w) sinα
)

+
EI

2R2

(

α′ + 1
)2

V =

(

GA

R
+

GI

R3

)

((

u′ −w
)

cosα+
(

R+ u+ w′
)

sinα
)

M = −
EI

R3

(

(

u′ − w
)2

+
(

R+ u+ w′
)2

+
EI

R2

(

α′ + 1
) ((

R+ u+ w′
)

cosα−
(

u′ − w
)

sinα
)

)

(B.2)

with I =
∫

A

z2dA;
∫

A

zdA = 0 et A =
∫

A

dA.

Appendix C. Equilibrium of moment

Proposition 1 : for all vector a and second order tensor A defined in
an Euclidian space on a domain D, we always have:

∫

D

a ∧ div (A) dV =

∫

∂D

(a ∧A.n) dS +

∫

D

v dV

with n the normal vector to outside the boundary of Ω, v a vector whose
components are given by:

v =





v1
v2
v3



 ; grad (a) .AT −A.grad (a)T =





0 −v3 v2
0 −v1

anti− sym 0





Demonstration : As the gradient and divergence operations do not depend
on the chosen reference system, to simplify the discussion, we can consider
Cartesian coordinates. Writing in this basis, we get:

∫

D

a ∧ div (A) dV =

∫

D

(aiei) ∧ (Aij,jei) dV

with

Aij,j =
∂Aij

∂xj
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So,

∫

D

a ∧ div (A) dV =

∫

D

((a2A3j,j − a3A2j,j)e1 +

(a3A1j,j − a1A3j,j)e2 + (a1A2j,j − a2A1j,j)e3) dV

Applying the Stokes’ theorem, we obtain:

∫

D

(a2A3j,j − a3A2j,j) e1dV =
∮

∂D

(a2A3jnj − a3A2jnj) e1dS −
∫

D

(a2,jA3j − a3,jA2j) e1dV
∫

D

(a3A1j,j − a1A3j,j) e2dV =
∮

∂D

(a3A1jnj − a1A3jnj) e2dS −
∫

D

(a3,jA1j − a1,jA3j) e2dV
∫

D

(a1A2j,j − a2A1j,j) e3dV =
∮

∂D

(a1A2jnj − a2A1jnj) e3dS −
∫

D

(a1,jA2j − a2,jA1j) e3dV

with nj are the components of the normal vectors outward the domain D.
So,

∫

D

a ∧ div (A) dV =

∫

∂D

(a ∧A.n) dS −

∫

D

(a2,jA3j − a3,jA2j) e1dV

−

∫

D

(a3,jA1j − a1,jA3j) e2dV −

∫

D

(a1,jA2j − a2,jA1j) e3dV (C.1)

If we define:

v =





v1
v2
v3



 =





a3,jA2j − a2,jA3j

a1,jA3j − a3,jA1j

a2,jA1j − a1,jA2j





Otherwise:

grad (a) .AT −A.grad (a)T = (ai,kAjk −Aikaj,k) ei ⊗ ej

under a matrix form:

grad (a) .AT −A.grad (a)T =





0 −v3 v2
0 −v1

skewsym 0





we get:
∫

D

a ∧ div (A) dV =

∫

∂D

(a ∧A.n) dS +

∫

D

v dV

We apply this relation in (50) and we get:

∫

D

S′P′ ∧ div (P)dV =

∮

∂D

(

S′P′ ∧P.n
)

dV +

∫

D

vdV (C.2)
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and

∮

∂D

(

S′P′ ∧P.n
)

dV =

∫

As+ds

(

S′P′ ∧Ps+ds.s
)

dA−

∫

As

(

S′P′ ∧Ps.s
)

dA+

+

∫

∂Dlateral

(

S′P′ ∧P.n
)

dA = Ms+ds −Ms + ds

∮

∂A

(

S′P′ ∧P.n
)

dl (C.3)

with Ms+ds and Ms are the moments on the right section respectively at
the positions (s+ ds) and (s). By definition:

∫

As+ds

(

S′P′ ∧Ps+ds.s
)

dA = Ms+ds

∫

As

(

S′P′ ∧Ps.s
)

dA = Ms

The components of the vector v are calculated in equation (C.2):

grad
(

S′P′
)

.PT −P.grad
(

S′P′
)T

= grad
(

OP′ −OS′
)

.PT −P.grad
(

OP′ −OS′
)T

= grad
(

OP′
)

.PT −P.grad
(

OP′
)T

−
(

grad
(

OS′
)

.PT −P.grad
(

OS′
)T
)

= F.PT −P.FT −
(

grad
(

OS′
)

.PT −P.grad
(

OS′
)T
)

(C.4)

As the second Piola-Kirchhoff stress tensor is always symmetric, we have:

S = ST → F.S.FT = F.ST .FT → P.FT = F.PT → F.PT −P.FT = 0

So,

grad
(

S′P′
)

.PT−P.grad
(

S′P′
)T

= −
(

grad
(

OS′
)

.PT −P.grad
(

OS′
)T
)

= −

(

(

∂ (OS′)

∂s
⊗ s

)

.(Pi ⊗ si +P3 ⊗ s)T − (Pi ⊗ si +P3 ⊗ s) .

(

∂ (OS′)

∂s
⊗ s

)T
)

= −

((

∂ (OS′)

∂s
⊗P3

)

−

(

P3 ⊗
∂ (OS′)

∂s

))

By the definition of the vector v in the proposal, we find that:

v =
∂ (OS′)

∂s
∧P3 (C.5)
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Combining (C.2), (C.3) and (C.5) :
∫

D

S′P′ ∧ div (P)dV = Ms+ds−Ms+ds

∮

∂A

(

S′P′ ∧P.n
)

dl+

∫

D

∂ (OS′)

∂s
∧P3 dV

= Ms+ds −Ms + ds

∮

∂A

(

S′P′ ∧ qs
)

dl + ds

∫

A

∂ (OS′)

∂s
∧P3 dA

= Ms+ds −Ms + ds

∮

∂A

(

S′P′ ∧ qs
)

dl + ds
∂ (OS′)

∂s
∧

∫

A

P3 dA

= Ms+ds −Ms + ds

∮

∂A

(

S′P′ ∧ qs
)

dl + ds
∂ (OS′)

∂s
∧ f (C.6)

From (50), (51) and (C.6), we get:
∫

A

ρS′P′ ∧ grad (F.Ω(x, t)) .Ω(x, t)dA

=

∫

A

S′P′ ∧ qvdA+
Ms+ds −Ms

ds
+

∮

∂A

(

S′P′ ∧ qs
)

dl +
∂ (OS′)

∂s
∧ f

We get the equilibrium equation:

∂M

∂s
+

∂ (OS′)

∂s
∧ f +

∫

A

S′P′ ∧ qvdA

−

∫

A

ρS′P′ ∧ grad (F.Ω(x, t)) .Ω(x, t)dA+

∮

∂A

(

S′P′ ∧ qs
)

dl = 0 (C.7)

Appendix D. Body forces

Returning to the expression of the gradient tensor of the transformation
given by (A.3), one gets:

F.Ω(X, t) =

(

cosα 1
R+z

(u′ − w − z (α′ + 1) sinα)

sinα 1
R+z

(R+ w′ + u+ z (α′ + 1) cosα)

)

Ω

(

0
R+ z

)

= Ω

(

u′ − w − z (α′ + 1) sinα
R+ w′ + u+ z (α′ + 1) cosα

)

(D.1)

Taking equation (D.1) :

d (F.Ω) = Ω
((

−
(

α′ + 1
)

sinα dz +
(

u′′ − w′ − z
(

α′′ sinα+ (α′ + 1)α′ cosα
))

dθ
)

uR

+
(

u′ − w − z(α′ + 1) sinα
)

dθuθ −
(

R+ w′ + u+ z(α′ + 1) cosα
)

dθuR
((

α′ + 1
)

cosα dz +
(

w′′ + u′ + z
(

α′′ cosα− (α′ + 1)α′ sinα
))

dθ
)

uθ

)

(D.2)
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Replacing in relation (A.1), one gets

grad (F.Ω) = Ω
(

−
(

α′ + 1
)

sinαuR ⊗ uR+

1

R+ z

(

−R+ u′′ − 2w′ − u− z
(

α′′ sinα+ (α′ + 1)2 cosα
))

uR⊗uθ+
(

α′ + 1
)

cosαuθ⊗uR

1

R+ z

(

w′′ + 2u′ − w − z
(

−α′′ cosα+ (α′ + 1)2 sinα
))

uθ ⊗ uθ

)

(D.3)

Finally,

grad (F.Ω) .Ω = Ω2
((

−R+ u′′ − 2w′ − u− z
(

α′′ sinα+ (α′ + 1)2 cosα
))

uR

+
(

w′′ + 2u′ − w − z
(

−α′′ cosα+ (α′ + 1)2 sinα
))

uθ

)

(D.4)

which can also be written as:

grad (F.Ω(X, t)) .Ω(X, t)

= Ω2





−R+ u′′ − 2w′ − u− z
(

cos(α)(α′ + 1)2 + α′′ sin(α)
)

w′′ + 2u′ − w − z
(

sin(α)(α′ + 1)2 − α′′ cos(α)
)





(D.5)

The body force is then given by integrating over the cross section in the
reference system (uR,uθ):

−ρ

∫

A

grad (FΩ(X, t)) .Ω(X, t)dA = −ρΩ2A

(

−R+ u′′ − 2w′ − u
w′′ + 2u′ − w

)

(D.6)

Appendix E. Dynamic forces

Neglecting all second order terms in ut the dynamic forces are computed
from (B.2) by:
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Nt = (
EA

R2
+

3EI

R4
)
(

(u′ − w)(u′

t − wt) + (ut + w′

t)(R + u+ w′)
)

+
EI

R2
α′

t(α
′ + 1)−

2EI

R3
α′

t

(

(R+ u+ w′) cosα− (u′ − w) sinα
)

−
2EI

R3
(α′ + 1)

(

(ut + w′

t) cosα− (u′

t − wt) sinα

−αt ((R+ u+ w′) sinα+ (u′ − w) cosα)
)

Vt =

(

GA

R
+

GI

R3

)

(

(u′

t − wt) cosα+ (ut + w′

t) sinα
)

+

(

GA

R
+

GI

R3

)

αt

(

(R+ u+ w′) cosα− (u′ − w) sinα
)

Mt = −
2EI

R3

(

(u′

t − wt) (u
′ − w) + (ut + w′

t) (R+ u+ w′)
)

+
EI

R2
α′

t

(

(R+ u+ w′) cosα− (u′ − w) sinα
)

+
EI

R2
(α′ + 1)

(

(ut + w′

t) cosα− (u′

t − wt) sinα

−αt ((R+ u+ w′) sinα+ (u′ − w) cosα)
)

(E.1)

The linearized balance equations of the vector of displacements (ut, wt, αt)
are obtained by subtracting the stationary part of equations (30) and (69) in
the same way that in the linear case. The terms of second order in (ut, wt, αt)
are neglected and the dynamic equations are in the basis (uR,uθ):

1

R

(

V ′

t cosα−N ′

t sinα− α′

t (V sinα+N cosα)
)

+ p
ut + w′

t

R
+ pt

R+ u+ w′

R

+
1

R

(

− αt (V
′ sinα+N ′ cosα)− (α′ + 1)

(

Vt sinα+Nt cosα

+αt (V cosα−N sinα)
))

+ fR
t − kRut = ρAüt

1

R

(

V ′

t sinα+N ′

t cosα+ α′

t (V cosα−N sinα)
)

− p
u′

t − wt

R
− pt

u′ − w

R

+
1

R

(

αt (V
′ cosα−N ′ sinα) + (α′ + 1)

(

Vt cosα−Nt sinα

−αt (N cosα+ V sinα)
))

− kθwt = ρAẅt

1

R
M ′

t +
1

R

(

(u′

t − wt) (V sinα+N cosα)− (ut + w′

t) (V cosα−N sinα)
)

+
1

R

(

(u′ − w) (Vt sinα+Nt cosα)− (R+ u+ w′) (Vt cosα−Nt sinα)
)

+
1

R

(

αt (u
′ − w) (V cosα−N sinα) + αt (R+ u+ w′) (V sinα+N cosα)

)

= ρIα̈t

(E.2)
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