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Abstract The proposed study aims to derive an imperfect interface model
which couples finite strain and damaging. The governing equations are ob-
tained via an asymptotic approach within the finite strain theory. Theoreti-
cal findings have been numerically validated within an original application to
brick/mortar interfaces in masonry walls in shear loading conditions.
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1 Introduction

In the last decades, the safeguard of ancient masonry monumental structures
has animated many researchers to develop new constitutive models and in-
novative tools of structural analysis able to simulate the complex response of
such a structure subject to static and dynamic loads.

The complexity of mechanical behavior of masonry is due to its composite
nature. Masonry is an assembly of blocks of artificial or natural origin joined by
dry or mortar joints. The presence of the mortar joints influences the mechan-
ical response of the structure and provides elements of weakness. Moreover, it
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is well-established that brick/mortar interfaces constitute privileged zones for
microcracks nucleation and propagation.

To effectively model the masonry material, two main approaches are usually
adopted: a macromodelling approach which considers an equivalent fictitious
material where the presence of the mortar is smeared out (e.g., [2,27,31,30,
43,44]) and a micromodelling approach which analyzes the structure as an
assembly of blocks connected by interfaces (e.g., [13,25,26,28,50]). The latter
approach turns out to provide a more realistic description of the masonry,
because it allows to adopt suitable constitutive models for each components
constituting the masonry material more advantageous to the study case [9,
16].

Because of the increasing interest in describing the constitutive behavior
of composite structures (i.e., fiber-reinforced materials, laminate composites,
masonry, etc.), a number of interface models have been developed in the lit-
erature which take into account different interface behaviors, like elasticity,
plasticity, viscoelasticity, thermal effects, residual stresses and damaging (e.g.,
[3–6,8,10,14,15,17–24,33,35,39–42,45]).

Constitutive models for interphases/interfaces in masonry structures are
usually formulated in terms of the contact traction and relative displacements
of the two surfaces interacting through the mortar joints [1,9,16]. Thus, the
mortar joints are generally approximated with material interphases in which
material nonlinearities eventually occur. From a numerical point of view, these
constitutive laws being an internal spring-like boundary condition can be im-
plemented within the finite element formulation via zero-thickness interface
elements [15].

In this paper, a regular masonry made of blocks connected together by reg-
ular but not too thin layers of mortar is considered. The original contribution
of the paper consists in the introduction of a third thin interphase interposed
between bricks and mortar joints. This material interphase represents a thin
layer which has the physico-chemical properties allowing the bonding between
bricks and mortar joints.

A novelty with respect the existing literature about micromodelling ap-
proach for masonry structures is thus represented by the introduction of a
third component which has different mechanical properties from brick and
mortar and which undergoes geometrical nonlinearities (i.e., large displace-
ments) together with material nonlinearities (i.e., damaging). To account for
large displacements, the Saint Venant-Kirchhoff constitutive model is adopted,
which is the simplest among nonlinear elastic material models. Damaging be-
havior is modeled using a procedure similar to the approach introduced by
Bonetti et al. [4]: the thin interphase interposed between bricks and mortar
is assumed to be a microcracked material undergoing a degradation process
ruled by a pseudopotential of dissipation. The microcracked material is a gen-
eralized Kachanov-type material. In particular, within the Kachanov theory
[46,47], constitutive equations are obtained via the homogenization of a micro-
cracked material characterized by k families of cracks. The elastic coefficients
depend on the lengths lk of these cracks. In the present study, only one family
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of microcracks is considered and l is taken to denote their equivalent length.
Moreover, the interaction between microcracks is neglected (non-interacting
approximation, cf. [46]). As a result, the equivalent microcracks length l rep-
resents our damage parameter. Thus, according to the Kachanov theory for
microcracked media, the elasticity coefficients of the Saint Venant-Kirchhoff
material are derived and they explicitly depend on the evolving damage pa-
rameter l.

This novel approach used to derive the imperfect interface laws coupling
homogenization for microcracked media and matched asymptotic techniques is
called Imperfect Interface Approach (IIA) [34–36]. Within the large displace-
ment framework, the IIA allows to derive a nonlinear spring-like model which
can be easily implemented in a finite element analysis. In analogy to former
studies [15], the proposed interface model is implemented in a commercial
FEM-based software via zero-thickness interface elements including damage
evolution.

The present paper is organized as follows. Section 2 is devoted to the for-
mulation of the constitutive aspects of the damaged interphase undergoing
large displacements. Then, the problem of a composite body constituted of
three deformable solids, a block, a thin microcracked damaging interphase
and a mortar joint bonded together, is investigated in Section 3. In details,
an asymptotic expansion method is applied to the elastic problem of the com-
posite and a model of nonlinear imperfect interface for the thin interphase is
derived. In such a model, surface damage effects turn out to be included in the
limit as the thickness of the thin interphase vanishes. The numerical valida-
tion is detailed in Section 4. Firstly, an analytical analysis of the brick/mortar
interface is carried out, in which I and II pure loading modes in the sense of
fracture mechanics are investigated. Then, two finite element analyses based
on the extensive experimental campaign carried out in the nineties by Ver-
meltfoort and Raijmakers [48,49] concerning shear tests on masonry walls, are
proposed. Numerical results as well as comparisons with the experimental data
are discussed. Finally, conclusions are presented in Section 5.

2 A model of interphase

2.1 Generalities

In this study a regular masonry is considered, i.e., the masonry structure is
made of parallelepipedic bricks linked together by regular but not too thin
layers of mortar. The novelty of this approach lies in considering as a third
deformable body, a thin interphase between the brick and the mortar. The
physico-chemical properties of this interphase allow the bonding between the
masonry principal constituents. In the following, and without loss of general-
ity, the interphase thickness will be considered as a constant. The interphase
mechanical model is detailed in the next paragraph.
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Fig. 1 Sketch of the three body modeling approach

2.2 A model of damaged material

In this section, a deformable solid occupying a smooth bounded domain B of
IR3 is considered. An orthonormal Cartesian frame (O, e1, e2, e3) is introduced
and let (x1, x2, x3) be taken to denote the three coordinates of a particle. The
solid is assumed to comprise a material:

– hyperelastic of a Saint Venant-Kirchhoff-type [41,35]
– microcracked of a generalized Kachanov-type [29,47]

As a result, the elastic coefficients depend on the length l, which is taken to
denote the equivalent cracks length, therefore, it has the meaning of a damage
parameter.
As an example, for an isotropic material weakened by a cracks family lying
orthogonal to e3, the Young modulus in the third direction E3 is equal to

E3 =
E0

1 + 2 ρC E0
, (1)

with

C =
π

2

1√
E0

(
1

µ0
− 2

ν0
E0

+
2

E0

)1/2

(2)

where E0 (resp. µ0, resp. ν0) is the Young modulus (resp. the shear modulus,
resp. the Poisson ratio) of the undamaged material, and ρ is the cracks density,

which form is ρ = l3

V in 3D problems and ρ = l2

S in 2D, being V (resp. S) the
volume (resp. the surface) of the representative elementary domain [29,47].

Let the evolution of crack length l be introduced. A pseudo-potential of
dissipation φ is considered [12]. As proposed in former papers [4,32], the chosen
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pseudo-potential is given by the sum of a quadratic term and a positively 1-
homogeneous functional, as a result the dissipative character will be directly
related to a rate-dependent and a rate-independent contributions:

φ(l̇) =
1

2
ηl̇2 + I[0,+∞[(l̇), (3)

where η is a positive viscosity parameter and IA denotes the indicator function
of the set A, i.e., IA(x) = 0 if x ∈ A and IA(x) = +∞ otherwise. The term
I[0,+∞[(l̇) forces l̇ to assume non-negative values (i.e., the crack length cannot
decrease) and it renders the irreversible character of the degradation process
of the bond. Moreover, the free energy of the solid is chosen as follows:

ψ(E, l) =
1

2
B(l)E(u) : E(u)− ωl + I[l0,∞[(l) (4)

where E(u) is the Green-Lagrange tensor, E(u) =
1

2

(
∇u+∇uT +∇uT∇u

)
,

B(l) is the stiffness tensor of the body, with usual properties of symmetry and
positivity, ω is a (negative) parameter similar to the Dupré’s energy [12,11]
and l0 is a given initial crack length. It is worth to highlight that, due to the
weak thickness of the bond, it seems natural to introduce finite strains in the
interphase. The constitutive equation is given by:

S = F−1P = B(l)E(u) (5)

where P (resp. S) is the first (resp. second) Piola stress tensor and F = I+∇u
is the gradient of transformation tensor.

Remark. It is possible to limit the crack length by assuming a vanishing stiff-
ness if l ≤ lmax; this can be done by introducing the characteristic function
of [l0, lmax], χ[l0,lmax], and by assuming for the free energy the following form:

ψ(E, l) = χ[l0,lmax](
1

2
B(l)E(u) : E(u)− ωl) + I[l0,∞[(l).

Therefore, the equilibrium of the body is written as:

DivP + f = 0, in B (6)

where f is a given body force.
Finally, from the chosen form of the pseudo-potential of dissipation φ (Eq.

(3)) and because of the positivity of the parameter η > 0, the following equa-
tion governing the damage parameter l results:

ηl̇ =

(
ω − 1

2
B,l(l)E(uε) : E(u)

)
+

, (7)

where (·)+ is taken to denote the positive part of a function.
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2.3 A model of rescaled damaged interphase

The thin interphase domain Bε is assumed to have a constant thickness ε in
the third direction e3 (see Fig. 2), i.e.,

Bε =
{
x ∈ IR3, |x3| < ε/2

}
. (8)

In the following, all the parameters and fields are indexed by ε.

Fig. 2 An example of the geometry of the interphase

The upper and lower surfaces of the thin interphase are denoted as

Sε± =
{
x ∈ IR3, x3 = ±ε/2

}
and SεL = ∂Bε/Sε±, (9)

where ∂Bε indicates the boundary of Bε. Body forces in Bε and lateral forces
on SεL are neglected. Moreover, the material body is assumed to be soft, i.e.,
Bijhk(l) ≈ εbijhk(l).

Thus, the equilibrium problem of the body is described by the following
system of equations:

P εij,j = 0 in Bε

P εijnj = 0 on SεL
P εijnj = P±i on Sε±
P εij = εF εirbrjhk(l)Ehk(uε) in Bε

ηε l̇ =

(
ωε − 1

2
εb,l(l)E(uε) : E(uε)

)
+

in Bε

(10)

where P+ = P− are a priori given vectors.
Since the weak thickness of the interphase, it is natural to seek the solution

of problem (61) using asymptotic expansions with respect to the small param-
eter ε [20–24,42]. In particular, the following asymptotic series with fractional
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powers are assumed [41,35]:{
uε = u0 + ε1/3u1 + ε2/3u2 + εu3 + o(ε)
P ε = P 0 + ε1/3P 1 + ε2/3P 2 + εP 3 + o(ε)

(11)

The following change of variable is introduced [7]:

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B, with (z1, z2, z3) = (x1, x2,
x3
ε

)

and it is set ûε(z1, z2, z3) = uε(x1, x2, x3) and P̂ ε(z1, z2, z3) = P ε(x1, x2, x3),
where B = {(x1, x2, x3) ∈ Ω : |x3| < 1

2}. The superscript (∧) denotes the
fields in the rescaled configuration.

The governing equations of the rescaled problem result in:

P̂ εij,j = 0 in B

P̂ εijnj = 0 on SL
P̂ εijnj = P̂±i on S±
P̂ εij = εF̂ εir b̂rjhk(l)Êhk(ûε) in B

η̂ε
˙̂
l =

(
ω̂ε − 1

2
εb̂,l(l)Ê(ûε) : Ê(ûε)

)
+

in B

(12)

where S± = {(x1, x2, x3) ∈ Ω : x3 = ± 1
2} and SL = ∂B/S±, ∂B are the

boundaries of B. In Eqs. (12), Ê(ûε) is the rescaled Green-Lagrange tensor,
and its asymptotic expansion reads as:

Ê(ûε) = ε−2Ê−2 + ε−1Ê−1 + Ê0 +O(ε), (13)

where


Ê−2 = 1

2 | û
ε
,3 |2 e3 ⊗ e3,

Ê−1 = 1
2u

ε
,3 ⊗ e3 + 1

2 (uε,3 · uε,α)(eα ⊗ e3),

Ê0 = 1
2 (uε,α ⊗ eα) + 1

2u
ε
3,α(eα ⊗ e3 + e3 ⊗ eα) + 1

2 (uε,α · uε,β)(eα ⊗ eβ).

(14)
In view of Eqs. (11) the displacement and stress fields are written as asymp-

totic expansions in the rescaled adhesive, as follows:{
P̂ ε = P̂ 0 + ε1/3P̂ 1 + ε2/3P̂ 2 + εP̂ 1 + o(ε)
ûε = û0 + ε1/3û1 + ε2/3û2 + εû1 + o(ε).

(15)

Substituting Eqs. (15) into the first equation of system (12), the following
conditions are found to hold in B:

P̂ ki3,3 = 0, k = 0, 1, 2, i = 1, 2, 3 (16)

The latter result implies that P̂ ki3 is independent of z3 and, additionally, that
the relative jumps are equal to zero:[

P̂ ki3

]
= 0, k = 0, 1, 2, i = 1, 2, 3 (17)
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where the notation [f ] = f(x1, x2,
1
2 ) − f(x1, x2,− 1

2 ) indicates the jumps of
function f in the rescaled model.

Substituting Eqs. (15) and Eqs. (14) into the fourth equation of system
(12) it is deduced that the following conditions hold in B:

ûki,3 = 0, k = 0, 1, i = 1, 2, 3 (18)

and
û2i,33 = 0, i = 1, 2, 3 (19)

i.e. ûki and û2i,3 are independent of z3, leading to the conditions:[
ûk
]

= 0, k = 0, 1, (20)

û2,3 =
[
û2
]
. (21)

Moreover, the following relationship is obtained:(
1

2
b̂3333(l)

∣∣û2i,3∣∣2 û2i,3)
,3

= 0 (22)

and thus
1

2
b̂3333(l)

∣∣û2i,3∣∣2 û2i,3 = P̂ 0 (23)

where P̂ 0 is the first term in the expansion of P̂ . By introducing Eq. (21) in
Eq. (23) the following equation is obtained:

P̂ 0 =
1

2
b̂3333(l)

∣∣[û2]∣∣2 [û2] (24)

Let consider the fifth equation in system (12). The term

1

2
ε

∫ 1

2

−
1

2

b̂,l(l)Ê(ûε) : Ê(ûε)dz3 (25)

has to be estimated. Using the asymptotic expansions of ûε and Eqs. (18)-(19),
the first non-vanishing term in the expansion (the second order term) is found
to be governed by the expansion of Ê33(ûε). Eqs. (18) and (19) leads to

Ê33(ûε) ≈ 1

2
ε−2/3(û21,3 + û22,3 + û23,3) (26)

As a results, Eq. (25) can be rewritten as follows:

1

2
ε

∫ 1

2

−
1

2

b̂,l(l)Ê(ûε) : Ê(ûε)dz3 ≈

≈ 1

2
εb̂3333,l(l)

∫ 1

2

−
1

2

(
1

2
ε−2/3

(
(û21,3)2 + (û22,3)2 + (û23,3)2

))2

dz3

(27)
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It is worth recalling that the second order terms in the displacements expansion
û2i,3, i = 1, 2, 3 are found to be constant with respect to z3 (cf. Eq. (19)),

accordingly, the expression (û21,3)2 + (û22,3)2 + (û23,3)2 leads to
∣∣[û2]∣∣2 after

integration.
Finally, the damage evolution equation results in:

η̂−1
˙̂
l =

(
ω̂−1 − 1

8
b̂3333,l(l)

∣∣[û2]∣∣4)
+

(28)

where η−1 and ω−1 are the terms in the expansion of ηε and ωε respectively
of power −1/3,

{
η̂ε = ...+ ε−1/3η̂−1 + ...
ω̂ε = ...+ ε−1/3ω̂−1 + ...,

(29)

One remarks that ηε and ωε are assumed to be independent of the z3 coordi-
nate.

3 Study of a composite

The body Bε studied in the two previous sections is, in what follows, sand-
wiched between two hyperelastic bodies occupying respectively the domains
Ωε± ⊂ IR3, denoted as adherents. It is assumed that Ωε± and Bε are perfectly
bonded along the surfaces Sε±. We assume that an external load g is applied
on a boundary part S±g ∈ ∂Ωε±/Sε±, and that the boundary condition u = 0
holds on S±u ∈ ∂Ωε±/Sε±, with S±u having strictly positive measure and such
that S±g ∩ S±u = ∅. Finally, a body force f± is applied to Ωε±.

Fig. 3 An example of the geometry of the composite
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The equilibrium problem of the composite structure is described by the
following system of equations:



P εij,j + f±i = 0 in Ωε±
P εijnj = g±i on Sg
P εij,j = 0 in Bε

[[P εi3]] = 0 on Sε±
[[uεi ]] = 0 on Sε±
uεi = 0 on S±u
Sεij = a±ijhkEhk(uε) in Ωε±
Sεij = εbijhk(l)Ehk(uε) in Bε

ηε l̇ =

(
ωε − 1

2
εbε,l(l)E(uε) : E(uε)

)
+

in Bε

(30)

where a± are the elasticity tensors in Ωε±.
The following change of variable is introduced in the adherents: (x1, x2, x3) ∈

Ωε± → (z1, z2, z3) ∈ Ω±, with (z1, z2, z3) = (x1, x2, x3 ± 1/2 ∓ ε/2), and it is
set ūε(z1, z2, z3) = uε(x1, x2, x3) and P̄ ε(z1, z2, z3) = P ε(x1, x2, x3), where
Ω± = {(x1, x2, x3) ∈ Ω : ±x3 > 1

2}. The external forces are assumed to be
independent of ε. As a consequence, it is set f̄±(z1, z2, z3) = f±(x1, x2, x3)
and ḡ±(z1, z2, z3) = g±(x1, x2, x3). Note that the superscript − (respectively
∧) denotes the fields in the adherents Ωε± (respectively in the interphase Bε)
in the rescaled configuration.

The governing equations of the rescaled problem are the following:



P̄ εij,j + f̄±i = 0 in Ω±
P̄ εijnj = ḡ±i on S̄±g
P̂ εij,j = 0 in B

P̄ εi3 = P̂ εi3 on S±
ūεi = ûεi on S±
ūεi = 0 on S̄u
S̄εij = ā±ijhkĒhk(ūε) in Ω±
Ŝεij = εb̂ijhk(l)Êhk(ûε) in B

η̂ε
˙̂
l =

(
ω̂ε − 1

2
εb̂,l(l)Ê(ûε) : Ê(ûε)

)
+

in B

(31)

In view of Eqs. (11), the displacement and stress fields, written as asymp-
totic expansions, read as:

{
P̄ ε = P̄ 0 + ε1/3P̄ 1 + ε2/3P̄ 2 + εP̄ 3 + o(ε)
ūε = ū0 + ε1/3ū1 + ε2/3ū2 + εū3 + o(ε),

(32)

Substituting Eqs. (32) in system (31), the first order of expansions (power
0) provides the following conditions:
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P̄ 0
ij,j + f̄±i = 0 in Ω±
P̄ 0
ijnj = ḡ±i on S̄±g
ū0i = 0 on S̄±u
S̄0
ij = ā±ijhkĒhk(ū0) in Ω±

(33)

Using the results obtained in Section 2, we have that the following condi-
tions

P̄ 0
i3 =

1

2
b̂3333(l)

∣∣[û2]∣∣2 [û2i ] (34)

and

η̂−1
˙̂
l =

(
ω̂−1 − 1

8
b3333,l(l)

∣∣[û2]∣∣4)
+

(35)

hold on the surfaces S±. The latter conditions are complemented by the con-
tinuity conditions of the stress vectors along the surfaces S±.

To summarize, the following system of equations is obtained:



Pij,j + f±i = 0 in Ω±
Pijnj = g±i on S̄±g
ui = 0 on S̄±u
Sij = a±ijhkEhk(u) in Ω±
[Pi3] = 0 on S

Pi3 =
1

2ε2
b3333(l) |[u]|2 [ui] on S

ηl̇ =

(
ω − 1

8ε3
b3333,l(l) |[u]|4

)
+

on S

(36)

The system (36) governs the equilibrium problem of an adhesive interface
characterized by a nonlinear damaging behavior, which is sandwiched between
two adherents. In the next section, some numerical and analytical applications
of the proposed interface model concerning modeling of the brick/mortar in-
terfaces in masonry structures are investigated.

4 Numerical validations

4.1 Analytical analysis of the brick/mortar interface model

In what follows, two simple analytical applications of the proposed soft inter-
face model are presented. The presence of I and II pure loading modes in the
sense of fracture mechanics is investigated. The geometrical configurations are
shown in Fig. 4.
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Fig. 4 Sketch of the investigated systems composed of two nonlinear elastic isotropic ad-
herents Ω0

+ and Ω0
− joined by a nonlinear soft interface condition along a common face S0.

I and II pure loading modes are represented on the left and on the right side, respectively

4.1.1 Mode I: uniaxial tension/compression condition

The proposed example is based on the former paper by R. Rizzoni et al.
[41] (Section 7). In the reference configuration, the composite structure is
subjected to a tensile (compressive load) Q > 0 (Q < 0) directed along i3 and
acting on the upper and the lower boundaries Γ+ and Γ−, as shown in Fig. 4.
On the remaining part of the boundary ∂Ω0, the surface forces are taken to
vanish. The load intensity Q is assumed to not depend on ε and the body
forces are neglected. For the sake of simplicity, the adherents are supposed
to comprise the same Saint Venant-Kirchhoff material with Lamé constants
λ and µ, however the engineering elastic constants E and ν are used in what
follows.

By combining the formulation proposed in [41] with the one obtained in
Sections 2-3 (cf. Eqs. (36)), the equilibrium problem of the joined structure
reads as:

DivP = 0 in Ω0

P = (I +∇u)
[
( E
1+ν )E(u) + νE

(1+ν)(1−2ν) (I · E(u))I
]

in Ω0

E(u) =
1

2

(
∇u+∇uT +∇uT∇u

)
in Ω0

[P i3] = 0 on S0

P i3 =
1

2ε2
b3333(l) |[u]|2 [u] on S0

P iα = 0 with α = 1, 2 on ∂Ω0

P i3 = Qi3 on Γ±

ηl̇ =

(
ω − 1

8ε3
b3333,l(l) |[u]|4

)
+

on S0

(37)
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We seek the following solution for the displacement field u : Ω0 → IR3:

u = (λ1 − 1)(x1 i1 + x2 i2) +

(
(λ3 − 1)x3 ±

1

2
[u3]

)
i3 in Ω0

± (38)

with λ1,λ3 constants to be determined representing the stretches along x1 and
x3 axes, respectively, and [u3] the i3-component of the constant vector [u]
representing the displacement jump at the interface S0.

The first Piola-Kirchhoff stress tensor corresponding to (38) is:

P = P11(i1 ⊗ i1 + i2 ⊗ i2) + P33(i3 ⊗ i3) (39)

with

P11 =
E λ1

2(1 + ν)(1− 2ν)
(λ21 − 1) +

ν E λ1
2(1 + ν)(1− 2ν)

(λ23 − 1) (40)

P33 =
ν E λ3

(1 + ν)(1− 2ν)
(λ21 − 1) +

E (1− ν)λ3
2(1 + ν)(1− 2ν)

(λ23 − 1) (41)

The stretch λ1, obtained by imposing the vanishing of P11 has the following
form (cf. [41]):

λ1 =
(
1 + ν − νλ23

) 1
2 (42)

By substituting Eq. (42) in Eq. (41) and coupling the boundary condition on
Γ± (cf. Eqs. (37)), the equation which determines λ3 as a function of the load
Q is obtained:

Q = 2E λ3
(
λ23 − 1

)
(43)

Moreover, by recasting the fifth equation of the system (37) and taking into
account the boundary condition on Γ±, the displacement jump [u3] is derived:

[u3] = ε
2
3
Q

|Q| 23

(
2

b3333(l)

) 1
3

(44)

which is positive if Q > 0 and negative otherwise.
In case of compression (Q < 0), ω is a negative-valued constant and there-

fore the last equation of the system (37) gives ηl̇ = 0, implying no damage
evolution. We thus consider the case of traction (Q > 0). After assuming
b3333(l) = L

2C l2 , we have b3333,l(l) = − L
C l3 , in which C is a positive-defined

elastic constant (see Eq. (2)) and L is a constant playing the role of a char-
acteristic interface length. By using this last expression as well as Eq. (44) in
the last equation of the system (37), the damage evolution law as a function
of the load Q is obtained:

η l,Q Q̇ =

(
ω −

(
C

2 εL l(Q)

) 1
3

Q
4
3

)
+

(45)

Because ω < 0, we find no damage evolution for 0 ≤ Q ≤ Q0 with:

Q0 = −ω 4
3

(
2 εL l0
C

) 1
4

with l(Q0) = l0 (46)
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Finally we reduce to the following differential problem: η l,Q Q̇ =

(
ω −

(
C

2 εL l(Q)

) 1
3

Q
4
3

)
+

l(Q0) = l0

(47)

whose solution is represented in Fig. 5 for the following values of the con-
stants: C = 0.0014 MPa−1, L = 210 mm, ε = 10−2L, l0 = 0.05 mm, η =
1.7 e9 MPa s, ω = −3.6 e6 N/mm and Q̇ = 1 MPa s−1.

Fig. 5 Evolution of the damage variable l (Q) as a function of the load Q, obtained as the
solution of the differential problem (47).

Moreover, the displacement jump [u3], shown in Fig. 6, is expressed as
follows: 

[u3] = ε
2
3 Q

1
3

(
4C l20
L

) 1
3

0 ≤ Q ≤ Q0

[u3] = ε
2
3 Q

1
3

(
4C l(Q)2

L

) 1
3

Q > Q0

(48)

with l(Q) solution of the differential problem (47).

4.1.2 Mode II: simple shear condition

In the reference configuration, the composite structure is subjected to a pure
shear load q > 0 directed along i1 and acting on the upper and the lower
boundaries Γ+ and Γ−, as shown in Fig. 4. On the remaining part of the
boundary ∂Ω0, the surface forces are taken to vanish. The load intensity q
is assumed to not depend on ε and the body forces are neglected. In analogy
with the previous case, the adherents are supposed to comprise the same Saint
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Fig. 6 Evolution of the displacement jump [u3] as a function of the load Q.

Venant-Kirchhoff material and their engineering elastic constants E, G and ν
are used in what follows.

The equilibrium problem of the composite structure is analogous to the
system (37), except for replacing the boundary condition on Γ± with

P i3 = q i1. (49)

We seek the following solution for the displacement field u : Ω0 → IR3:

u =

(
γ x3 ±

1

2
[u1]

)
i1 in Ω0

±, (50)

with γ a constant to be determined, representing the shear strain in the plane
{x1 x3} and [u1] the i1-component of the displacement-jump vector [u] at the
interface S0.

The first Piola-Kirchhoff stress tensor corresponding to (50) is:

P = P11(i1⊗ i1) +P22(i2⊗ i2) +P33(i3⊗ i3) +P13(i1⊗ i3) +P31(i3⊗ i1) (51)

with

P11 =
E γ2

4(1 + ν)(1− 2ν)
, (52)

P22 =
E ν γ2

2(1 + ν)(1− 2ν)
, (53)

P33 =
E (1− ν) γ2

2(1 + ν)(1− 2ν)
, (54)

P13 =
E

2(1 + ν)(1− 2ν)

(
γ

(
1− 2ν

2

)
+ γ3(1− ν)

)
, (55)

P31 =
E γ

4(1 + ν)
. (56)
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If the boundary condition (49) is imposed, then the following equation
which determines γ as a function of the load q is derived:

q = γG

(
γ2

1− ν
1− 2ν

+
1

2

)
, (57)

being G = E
2(1+ν) the shear modulus.

In analogy with the previous example, the following relationship holds:

[u1] = ε
2
3
q

|q| 23

(
2

b3333(l)

) 1
3

(58)

which can be rewritten as follows:
[u1] = ε

2
3 q

1
3

(
4C l20
L

) 1
3

0 ≤ q ≤ q0,

[u1] = ε
2
3 q

1
3

(
4C l(q)2

L

) 1
3

q > q0,

(59)

with l(q) solution of the differential problem: η l,q q̇ =

(
ω −

(
C

2 εL l(q)

) 1
3

q
4
3

)
+

l(q0) = l0

(60)

in which q0 = −ω 4
3

(
2 εL l0
C

) 1
4

.

From a qualitative point of view, the damage parameter l(q) and the dis-
placement jump [u1] show a behavior similar to the one shown in Figs. 5 and
6.

4.2 Validation at the macroscale: Vermeltfoort and Raijmakers walls

The proposed numerical simulations made reference to the extensive experi-
mental campaign carried out in the nineties by Vermeltfoort and Raijmakers
[48,49] concerning shear tests on masonry walls. Vermeltfoort and Raijmakers
results are well-known in structural analysis of masonry structures and they
are usually taken as benchmarks for validating models [25,1,51].

Experimental tests [48,49] concern two one-meter-square and 100 mm thick
walls, either without and with an opening, as sketched in Fig. 7. The central
opening is one brick wide and six layers high and it is situated five layers from
the bottom and one and half brick lengths from the loaded side of the specimen
(see Fig. 7, left side). The walls comprise of full bricks of 210 ∗ 100 ∗ 52 mm3

and head and bed mortar joints of 10 mm thickness. The up and the bottom
sides of the specimens are connected via a high-performance mortar with two
steel beams. In particular, the beam at the bottom side is connected to the
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test ring. Moreover, the up side beam is prevented to move in vertical direc-
tion by three vertical jacks in displacement controlled mode, and it is forced to
move horizontally by a jack placed on the left side of the stiff beam. The hor-
izontal load acts at the upper edge of the specimen as an uniform distributed
shear load [48]. Vermeltfoort and Raijmakers tested many specimens compris-
ing units and mortars of different material properties, nevertheless, only the
JD-type walls [25] are considered in the proposed numerical simulations, ac-
cordingly bricks have a Young modulus Eb = 16.7 GPa and a Poisson ratio
νb = 0.15 and mortar has a Young modulus Em = 0.782 GPa and a Poisson
ratio νm = 0.13.

Fig. 7 Geometry of the walls used in experimental tests by Vermeltfoort and Raijmakers.

Both specimens (with and without opening) are subjected to a vertical pre-
load of 0.3 MPa, then the shear force is imposed increasingly and monotonically
via the horizontal jack. Concerning the wall without opening, some horizontal
cracks caused by traction stresses and located at the application corner of
the force and at its opposite in the bottom side, propagate rapidly when the
horizontal load is applied. Successively, cracks propagate following the mortar
joints path along the compressed diagonal with the load increasing, until the
rupture. Moreover, the application of the horizontal load to the wall with
opening causes first cracks nucleation and propagation localized at the corner
of the central opening. Consecutively, after load increasing, a predominant
diagonal crack is formed along the compressed diagonal. Finally, the rupture
mechanism consists in some localized compressive failures at the top and at
the bottom of the wall.

4.2.1 Numerical modeling of the walls

The proposed numerical simulations have been carried out with the FEM-
based software Comsol Multiphysics. The vertical pre-loading is not taken into
account for this study, accordingly, only the applied shear force is simulated.
The problem is modeled in 2D plane stress conditions. The same boundary
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conditions are assumed for both walls, as sketched in Fig. 8. In particular, the
bottom side beam is assumed to be fixed to a rigid plane. Moreover, the top
side beam is constrained in the vertical direction and a horizontal displacement
is applied on its left side. The simulations comprise a quasi-static loading in
displacement controlled mode, accordingly the applied horizontal displacement
is linearly increased until its maximal value.

The three principal domains, i. e. bricks, mortar and steel beams, are mod-
eled as linear elastic isotropic materials whose material properties are taken
in according with experiments by Vermeltfoort and Raijmakers [48,49], as
detailed in the previous paragraph.

It is worth noting that the proposed finite element analyses are carried
out within the small strain theory framework. This fact is not incompatible
with the implementation of an interface law obtained via the finite strain
hypothesis, as demonstrated in a previous work by authors [35].

Fig. 8 Schematic sketch of mesh and boundary conditions for the wall with opening

A free triangular mesh of quadratic Lagrangian order is used in whole do-
mains of both models, steel beams included (Fig. 8). The simulations are solved
within a quasi-static framework via a temporal discrete solver included in Com-
sol. This choice has been made in order to limit solution convergence problems,
which should be due to the strong nonlinearities of coupling brick/mortar in-
terface laws with the evolution law of l, sixth and seventh equations of system
(36), respectively. Consecutively, a fixed time step is chosen as ∆t = 0.1 s and
the shear test simulations are carried out within a range varying between 0
and 5 s. Accordingly, the imposed displacement increases linearly during this
time range and it varies between 0 at the initial step and its maximal value
dmax = 5.5 mm at the final step.
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4.2.2 Brick/mortar interfaces modeling

Within the present study the brick/mortar interfaces, either in horizontal and
vertical principal directions of masonry walls, are assumed to be adhesive
interfaces characterized by a nonlinear damaging behavior. These interfaces
are governed, as a recall, by the following equations:

Pi3 =
1

2ε2
b3333(l) |[u]|2 [ui] on S

ηl̇ =

(
ω − 1

8ε3
b3333,l(l) |[u]|4

)
+

on S
(61)

where the first equation represents the soft nonlinear interface law and the
second one the nonlinear evolution of the damage parameter l. These equa-
tions are specialized in the case of horizontal and vertical interfaces. The in-
terface stiffness b3333(l) is obtained via a micromechanical homogenization of
Kachanov-type [29,47,37,38,10], its closed-form expression reads as:

b3333(lj) =
Lj

2C l2j
(62)

where the subscript j = h, v indicates the horizontal and vertical interface
cases, respectively. The compliance C is calculated from Eq. (2) starting from
the undamaged interphase properties, and in the proposed models it results in
C = 0.0014 MPa−1 (refers to [37,10] for further details). Parameter L is the
characteristic length of the interfaces, resulting in Lh = 210 mm and Lv = 52
mm for horizontal and vertical interfaces, respectively. The first derivative of
Eq. (62) with respect the damage parameter l results in:

b3333,l(lj) = − Lj
C l3j

(63)

The interphase thickness ε appearing in Eqs. (61) is specialized for horizontal
and vertical interfaces and it is assumed to be a fraction of the characteristic
length L, as follows: εh = 10−2 Lh, εv = 10−2 Lv. This last choice has been
made in according with [19] in order to assure a good approximation of the
interphase modeling problem with the physically-based interface one.

Let indicate l(tk) = lk and [u(tk)] = [uk] with tk = k∆t, the damage pa-
rameter and the displacement jump vector calculated at the k-ieme time step,
respectively. Similarly to the numerical approach in [32], by approximating the

first derivative of the damage parameter with respect to time as l̇ ≈ lk+1−lk
∆t ,

an explicit form of the damaging equation (second equation of Eqs. (61)) is
derived:

lk+1
j = lkj +

∆t

η

(
ω +

Lj
8C ε3j (lkj )3

∣∣[ukj ]∣∣4
)

+

j = h, v (64)

Eq. (64), where Eq. (63) has been taken into account, is used for the numer-
ical implementation of damaging in both horizontal and vertical interfaces of
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masonry walls. Moreover, parameter l has as an inferior limit bound, its initial
value l0, so the following condition holds: lk ≥ l0 = l(0). Model parameters
l0 = 0.05 mm, η = 1.7 e9 and ω = −3 e6 have been identified from experi-
mental data by [48,49] concerning solid walls of JD-type, and they are used
in both proposed simulations, i. e. solid wall and wall with a central opening.
As a result, the evolution of damage parameter lh in the solid wall is shown
in Fig. 9.

Fig. 9 Damaging in horizontal interfaces of the solid wall

The l̇ curve (Fig. 9) highlights a first path in which l is constant and equal
to the initial value l0, then while load increases the damaging phenomenon
begins. It is worth to remark that for the proposed numerical investigations
a superior limit bound for the damage parameters is not taken into account,
nevertheless it may be easily implemented. In the following section main results
are discussed.

4.2.3 Results and discussions

Concerning the solid wall an identification process of the three model param-
eters l0, η and ω has been made. The obtained values allow to compare the
global behavior of the simulated shear test with the experimental one [48,49].
Particularly, Fig. 10 shows the horizontal imposed force against the horizontal
displacement of the top side of the wall, either in numerical and experimental
case. A good correlation is found, specially after the elastic limit. It is worth
to remark that the fracture phenomenon is not object of the present study,
which focuses on damaging and the consequent loss of global stiffness.

The initial damage parameter l0 = 0.05 mm is assumed to be uniform in
whole masonry wall at the initial step, this means assuming to have a small
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initial damage uniformly distributed at the brick/mortar interfaces, either hor-
izontal and vertical. This pre-damaging can be caused, in the masonry man-
ufacturing, by creep and shrinkage phenomena in the mortar. The parameter
l0 influences the initial elastic behavior of the wall.

Fig. 10 Horizontal force-displacement graphs for solid wall. Comparison between the pro-
posed model and the experimental data by [48,49] (black dotted curve)

The model parameters η = 1.7 e9 and ω = −3 e6 govern the post-peak
masonry behavior, i. e. after the elastic limit, by acting on the damage evolu-
tion (Eqs. (61)). Particularly, ω represents an energy threshold beyond which
damage triggers.

The distributions of σyy stresses shown in Fig. 11 are in agreement with the
experimental findings by Vermeltfoort and Raijmakers [48,49]. In details, these
contour plots put in evidence, for solid wall as well as for the wall with the
opening, the compressive and tensile zones at the top and bottom wall corner,
and at the corner of the central opening. These stresses localization zones
are the zones where experimentally cracks nucleate and begin propagating
following the brick/mortar interfaces and/or the mortar joints. Within the
numerical simulations, this last phenomenon is highlighted in Figs. 12 and 13,
where the distribution of damage parameters lh and lv is shown.

Particularly, highest values of damage are localized, accordingly with the
experimental evidences, at the corner of the wall in the solid wall, and at the
opening corner in the wall with the opening. The latter finding confirms that
the proposed interface model is able to make a good prediction of damaging
in masonry structures. Therefore, for both numerical models, parameter lv is
smaller than lh. This result is related to the loading condition. In fact, by
applying a shear loading in the horizontal direction the displacement jumps
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Fig. 11 Contour plots of yy-component of stress tensor with deformed shape at the final
simulation step. Undeformed shape is traced also

Fig. 12 Contour plots of the distribution of damage parameters lh and lv in solid wall

in horizontal interfaces are higher than in the vertical interfaces, providing
higher concentrations of damage (see Eqs. 61).

5 Conclusions

In the present study a model of soft imperfect interface comprising large dis-
placements and evolving microcracking is derived via asymptotic techniques.
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Fig. 13 Contour plots of the distribution of damage parameters lh and lv in wall with
opening

This soft nonlinear interface is applied to describe damaging localized at the
brick/mortar interfaces in masonry structures.

Theoretical results are supported by numerical and analytical validations.
At the macroscale scale, two numerical examples based on well-established
experimental data of masonry walls in shear loading condition by [48,49] have
been proposed. Numerical results show a good correlation with experiments
in terms of the global behavior. Particularly, the predictive capacity of the
proposed model to individuate the critical areas in which damaging occurs is
highlighted.

The proposed interface model does not depend on loading conditions, on ge-
ometry and it is not mesh-dependent. Modeling the brick/mortar interfaces via
the proposed imperfect interface model is a suitable and less computationally
expensive alternative to existing detailed micro-models aimed at describing
damage in masonry structures. Moreover, it allows to use linear elastic con-
stitutive laws for the masonry’s principal constituents, i.e., bricks and mortar
joints.

A limitation of the proposed study is to not make a distinction between the
damage level of compressive and tensile zones, as also highlighted in Figs. 12
and 13. As a future enhancement, an unilateral condition preventing damaging
in compression will be accounted within the pseudo-potential of dissipation in
order to better describe the general behavior of quasi-brittle materials.
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