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Response of a periodically supported beam on a nonlinear foundation subjected to moving loads
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The influence of a nonlinear foundation on the dynamics of a periodically supported beam has been investigated by a novel model. By using Fourier transforms and Dirac comb properties, a relation between the displacement of the beam and the reaction forces of its supports in steady-state has been established from the Euler-Bernoulli beam's equation. This relation holds for any foundation behaviours. Therefore, the dynamic equation of a support has been built by combining this relation and the constitutive law of the foundation and the supports. This equation describes a forced nonlinear oscillator provided that the moving loads are a periodical series. Then, an iteration procedure has been developed to compute the periodic solution. This procedure has been demonstrated converging to the analytic solution for linear foundations. The applications to bilinear and cubic nonlinear foundations have been performed as examples. Moreover, the influences of non-linearity on the dynamic responses have been investigated by parametric studies.

Introduction

The dynamics of a railway track on a nonlinear foundation is the subject of numerous investigations. The model of beams subjected to moving loads has been often used for this analysis. For elastic foundations, the researches on this analytic model have been summarized by Fryba [START_REF] Fryba | Vibration of solids and structures under moving loads[END_REF]. Analytic and numerical methods have been developed for the visco-elastic foundations [START_REF] Andersen | Finite element modelling of a infinite Euler beams on Kelvin foundations exposed to moving loads in convected co-ordinates[END_REF][START_REF] ¸alim | Dynamic analysis of beams on viscoelastic foundation[END_REF][START_REF] Ichikawa | Vibration analysis of the continuous beam subjected to a moving mass[END_REF][START_REF] Nguyen | Finite element procedures for nonlinear structures in moving coordinates. part II: Infinite beam under moving harmonic loads[END_REF]. For nonlinear foundations, the perturbation techniques have been used in analytic models [START_REF] Ansari | Frequency analysis of finite beams on nonlinear KelvinVoight foundation under moving loads[END_REF][START_REF] Ding | Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load[END_REF][START_REF] Kargarnovin | Response of beams on nonlinear viscoelastic foundations to harmonic moving loads[END_REF] provided that the nonlinear force of the foundation follows a cubic law. The cubic nonlinear foundation has been also studied by using the Galerkin method [START_REF] Ding | Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[END_REF], while the effects of tensionless foundations have been also investigated with numerical methods [START_REF] Chen | Steady state and stability of a beam on a damped tensionless foundation under a moving load[END_REF][START_REF] Sapountzakis | Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads[END_REF].

In order to take into account the discrete distribution of supports, Mead [START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF][START_REF] Mead | Wave propagation in continuous periodic structures: research contributions from Southampton[END_REF] developed the model of a periodically supported beam subjected to moving loads. This model has been also developed for viscoelastic foundations by Metrikine et al. [START_REF] Metrikine | Vibration of a periodically supported beam on an elastic half-space[END_REF][START_REF] Vostroukhov | Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track[END_REF] and Belotserkovskiy [START_REF] Belotserkovskiy | On the oscillation of infinite periodic beams subjected to a moving concentrated force[END_REF]. Although these analytical methods are well developed for linear foundations, they may not be easily applied to nonlinear foundations. Moreover, the models for a continuously supported beam may be difficult to extend to discrete supports.

This article presents a novel model for a periodically supported beam on a nonlinear foundation subjected to moving loads. Based on an analytic model [START_REF] Hoang | Dynamical response of railway tracks in tunnel[END_REF], a dynamic equation of a support is developed which holds for any foundation behavior. This equation leads to a forced nonlinear oscillation provided that the moving loads are a periodic series. Then, a numerical method is developed by using the harmonic balance techniques and the iteration procedures for nonlinear oscillators [START_REF] Nayfeh | Introduction to perturbation techniques[END_REF][START_REF] Nayfeh | Nonlinear oscillations[END_REF]. This method is proven to converges to the ana-
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Fig. 1 Periodically supported beam on a nonlinear foundation subjected to moving forces lytic solution when the foundation behaviour is linear.

Thereafter, the bilinear and cubic laws are considered as examples of nonlinear foundations. These applications show that this method is a fast and simple way to compute the responses. Moreover, the influences of the nonlinear parameters of the foundations are investigated by parametric studies.

Formulations

Periodically supported beam in steady-state

Let's consider a periodically supported beam on a nonlinear viscoelastic foundation as shown in Figure 1. The beam is subjected to moving forces Q j characterized by the distance to the first moving force D j (1 ≤ j ≤ K where K is the number of moving forces). It is remarkable that the mutual distance D j of the moving loads is not restricted to be constant.

In steady-state, we suppose that all supports are equivalent and their reaction forces are described by a same function, but with a delay equal to the time for a load moving from a support to another. The total force applied on the beam can be written with the help of the Dirac function as follows

F (x, t) = ∞ n=-∞ R t - x v δ(x-nl)- K j=1 Q j δ(x+D j -vt) (1) 
where l is the distance between two successive supports and R(t) is the reaction force of the support at the reference origin (x = 0). The response of the beam is governed by the dynamical equation of the Euler-Bernoulli beam

EI ∂ 4 w r (x, t) ∂x 4 + ρS ∂ 2 w r (x, t) ∂t 2 -F (x, t) = 0 (2)
where ρ, E are the density, the Young's modulus and S, I are the cross-section area of the beam and the area moment of inertia.

From equations ( 1) and ( 2), by performing a double Fourier transform, one temporal and one spatial, and by using the Dirac comb properties, we can deduce a relation between the Fourier transforms of the beam displacement ŵr (0, ω) and of the reaction force R(ω) as follows (see Appendix)

R(ω) = K e ŵr (0, ω) + Q e ( 3 
)
where K e and Q e are calculated by 

K e = 4λ
Q e = K j=1 K e Q j e -iω D j v vEI ω v 4 -λ 4 e (5)
with λ e = 4 ρSω 2 EI . Equation (3) does not depend on the behaviour of the support nor on the foundations. Next, this equation will be combined with the constitutive law of the supports to get a dynamical equation of the system.

Dynamical equation of supports

Consider a system of support on a nonlinear foundation as shown in Figure 1. This system contains a viscoelastic pad under the beam with stiffness k 1 and damping coefficient η 1 . The foundation under the block has a linear behaviour with stiffness k 2 , damping coefficient η 2 and a nonlinear behaviour characterized by a function f (w s , w ′ s ), where w s , w ′ s are the displacement and the velocity of the block. The reaction force of the block to the beam is

R(t) = -η 1 d dt [w r (0, t) -w s (t)] -k 1 (w r (0, t) -w s (t)) (6) 
By performing the Fourier transform of the last equation with regard to time t, we obtain

R(ω) = -κ p [ ŵr (0, ω) -ŵs (ω)] (7) 
where κ p = iωη 1 + k 1 . Combining the last equation and equation (3) leads to the following result

       ŵr (0, ω) = κ p ŵs (ω) -Q e κ p + K e R(ω) = κ p κ p + K e (K e ŵs (ω) + Q e ) (8) 
The dynamical equation of the block on the foundation is

M d 2 w s (t) dt 2 + η 2 dw s dt + k 2 w s + f (w s , w ′ s ) = -R(t) (9)
where M is the mass of the block, f (w s , w ′ s ) is the nonlinear part of the reaction force of the foundation. By substituting equation ( 6) into the last equation, we have

M w ′′ s + η s w ′ s + k s w s + f = η 1 w ′ r (0, t) + k 1 w r (0, t) (10) 
where η s = η 1 +η 2 , k s = k 1 +k 2 and the prime stands for the derivation in time t. Performing the Fourier transform and then the inverse Fourier transform of the right term of equation ( 10) leads to the following result

η 1 w ′ r (0, t)+k 1 w r (0, t) = 1 2π ∞ -∞ κ p ŵr (0, ω)e iωt dω (11) 
By substituting equation ( 11) into equation ( 10), we can write

M w ′′ s + η s w ′ s +k s w s + f (w s , w ′ s ) = 1 2π ∞ -∞ κ 2 p ŵs (ω) -κ p Q e κ p + K e e iωt dω (12) 
Equation ( 12) is the dynamical equation of the block. This equation is similar to that of nonlinear oscillators, but it contains terms corresponding to the interaction between the beam and the block. In order to simplify these terms, we consider only the periodical solution which exists when the moving forces are a periodic series (see [START_REF] Hoang | Dynamical response of railway tracks in tunnel[END_REF]).

Periodic series of moving loads

When a train contains many identical wagons, the loads of wheels are equal (Q j = Q) and the distances D j are given by D j = jH for front wheels jH + D for back wheels [START_REF] Mead | Wave propagation in continuous periodic structures: research contributions from Southampton[END_REF] where D is the distance between the front and the back wheels of a boogie, H is the distance between two front wheels of two boogies (see Figure 2). This series of moving loads may be used to represent the limit charges for a railway track. By considering the moving loads as an infinite periodic series (j ∈ Z), we will use the periodicity of this series to reduce the terms on the right side of equation [START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF]. By substituting equation ( 13) into equation ( 5), we obtain

Q e = QK e vEI 1 + e -iω D v ω v 4 -λ 4 e ∞ j=-∞ e -iω H v j (14) 
In addition, we have the propriety of Dirac comb [START_REF] Bracewell | The Fourier transform and its applications[END_REF] ∞

j=-∞ e -iω H v j = 2π v H ∞ j=-∞ δ ω + 2πv H j (15) 
Thus, equation [START_REF] Metrikine | Vibration of a periodically supported beam on an elastic half-space[END_REF] becomes

Q e = 2π QK e EIH 1 + e -iω D v ω v 4 -λ 4 e ∞ j=-∞ δ ω + 2πv H j (16) 
By substituting the last equation into the last term of equation ( 12), we have

1 2π ∞ -∞ κ p Q e e iωt dω κ p + K e = ∞ j=-∞ ω=ωj Qe iωj t EIH 1 + e -iω D v ω v 4 -λ 4 e κ p K e κ p + K e = ∞ j=-∞ F j e iωjt (17) 
where ω j = 2πj v H and F j is calculated by

F j = Q EIH 1 + e -iω D v ω v 4 -λ 4 e κ p K e κ p + K e ω=ωj (18) 
Therefore, by substituting equation ( 17) into equation [START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF], we can write

M w ′′ s +η s w ′ s + k s w s + f (w s , w ′ s ) = 1 2π ∞ -∞ κ 2 p ŵs (ω)e iωt κ p + K e dω - ∞ j=-∞ F j e iωj t (19) 
Equation ( 19) describes a forced oscillation with the exciting force F j e iωj t . This force is periodical with frequency f 0 = H/v. Therefore, it exists a periodical solution of w s (t) which can be represented by its Fourier series

w s (t) = ∞ j=-∞ c j e iωj t (20) 
This expression can be also written as follows:

ŵs (ω) = 2π ∞ j=-∞ c j δ(ω -ω j ) H D v Fig.

Periodical series of moving loads

By substituting the last equation into the right term of equation ( 12), we have

1 2π ∞ -∞ κ 2 p ŵs (ω) κ p + K e e iωt dω = ∞ j=-∞ ω=ωj c j e iωj t κ 2 p κ p + K e = ∞ j=-∞ c j P j e iωjt (21) 
where P j is calculated by

P j = κ 2 p κ p + K e ω=ωj (22) 
Thus, equation [START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF] becomes

M w ′′ s +η s w ′ s +k s w s +f = j c j P j e iωjt - j F j e iωj t ( 23 
)
where F j , P j are computed by equations ( 18) and ( 22). Particularly, we have P 0 = k 1 and F 0 = 2Q L H . In equation ( 23), F j corresponds to the moving loads and P j corresponds to the coupling of the support system and the beam. These quantities depend on the parameters of the beam and the pad (κ p ) but they do not depend on the parameters of the foundation. Therefore, by using the periodicity of the moving loads, we have reduced the dynamic equation ( 12) to a forced oscillation equation. Thus, we can use analytic or numerical techniques for forced nonlinear oscillators to find out the periodic solution of this equation. In the next sections, we present a numerical method and its applications to nonlinear foundations.

Iteration procedure

We will use the harmonic balance method [START_REF] Nayfeh | Nonlinear oscillations[END_REF] and the iteration procedures [START_REF] Mickens | A generalization of the method of harmonic balance[END_REF][START_REF] Mickens | A generalized iteration procedure for calculating approximations to periodic solutions of "truly nonlinear oscillators[END_REF] for nonlinear oscillators to develop a numerical method for the dynamical equation of the block (23). by performing the Fourier series development of equation (23), we have

1 T T /2 -T /2 (M w ′′ s + η s w ′ + k s w s + f )e -iωjt dt = c j P j -F j
By substituting equation ( 20) into the last equation and after rearrangement, we can write

(k s + iω j η s )c j + 1 T T /2 -T /2 f (w s , w ′ s )e -iωjt dt = (M ω 2 j + P j )c j -F j (24) 
where w s , w ′ s in the integral of the last equation are computed by equation ( 20)

w s (t) = ∞ j=-∞ c j e iωj t , w ′ s (t) = ∞ j=-∞ iω j c j e iωjt (25) 
Equation ( 24) is the harmonic balance of equation ( 23). The set of this equation for all j ∈ Z establishes a system of equations with regard to variables {c j } which are to be determined. When the foundation behavior is linear, i.e. f (w s , w ′ s ) = 0, we can obtain easily the analytic solution calculated by

c j = F j P j + M ω 2 j -iω j η s -k s (∀j ∈ Z) (26) 
For a general nonlinear force f (w s , w ′ s ), we can approximate the periodic solution by using techniques for nonlinear oscillators. Here, we use iteration procedures by considering the n first harmonics of the periodic solution

w nm (t) = n j=-n c m j e iωjt ∀m ≥ 1 (27)
Here we take the initial value c 1 j = 0 ∀j. We built series {c m j } such that c m j → c j when m, n → ∞ by inserting an index m in equation ( 24). Such a series {c m j } is given by For |j| ≤ n 0 :

(iη s ω j + k s )c m+1 j + F m j = (M ω 2 j + P j )c m j -F j For n 0 < |j| ≤ n : (iη s ω j + k s )c m j + F m j = (M ω 2 j + P j )c m+1 j -F j
where 0 ≤ n 0 ≤ n and n 0 is chosen for the convergence of the series {c m j } and F m j is calculated by

F m j = 1 T T /2 -T /2
f (w nm , w ′ nm )e -iωj t dt (28)

We can rewrite the series {c m j } as follows

c m+1 j =          M ω 2 j + P j k s + iη s ω j c m j - F m j + F j k s + iη s ω j ∀|j| ≤ n 0 k s + iη s ω j M ω 2 j + P j c m j + F m j + F j M ω 2 j + P j ∀|j| > n 0 (29) 
The last equation defines recurrent sequences {c m j } with regard to m. If these sequences {c m j } converge for all j ∈ Z when n, m → ∞, by replacing c m j , c m+1 j by their limit, we find once again equation (24). Hence, these sequences converge to the solution of (24). By consequence, we have the approximation of the periodic solution from (27) by using the sequence {c m j } when m is large enough. In the next section, we will use these sequences to compute the response of the block on different foundations.

Examples

Linear foundation

Let's consider a linear foundation, i.e. f (w s , w ′ s ) = 0. The analytic solution is given by equation ( 26). Now we calculate the response by the numerical method. By substituting f (w s , w ′ s ) = 0 into equation ( 28), we have F m j = 0 and equation ( 29) becomes

c m+1 j =          M ω 2 j + P j c m j -F j k s + iη s ω j if 0 ≤ |j| ≤ n 0 (k s + iη s ω j ) c m j + F j M ω 2 j + P j if n 0 < |j| ≤ n
By combining the last equation and equation ( 26), we obtain

c m+1 j -c j =          M ω 2 j + P j k s + iη s ω j c m j -c j if 0 ≤ |j| ≤ n 0 k s + iη s ω j M ω 2 j + P j c m j -c j if n 0 < |j| ≤ n
The last equation describes geometric sequences which converge to zeros if and only if

           M ω 2 j + P j k s + iη s ω j < 1 if 0 ≤ |j| ≤ n 0 k s + iη s ω j M ω 2 j + P j < 1 if n 0 < |j| ≤ n
Therefore, if n 0 is chosen so that the last inequalities are satisfied, the iteration procedure converges to the analytic solution. Otherwise, this procedure is not convergent.

Figure 3 shows an example for a linear foundation by using the numerical method with different numbers of iterations. The parameters of the railway track are given in Table 1. Here we plot the vertical displacement of a block in one period of the moving loads which corresponds to the time for the train move a distance of a wagon H. The reference time t = 0 corresponds to the moment when the front wheel moves over the support. The real-time response of the sleeper is the periodical series with a period as shown in the figure. The calculations have been performed with the number of harmonics n = 15 and the parameter n 0 = 0. We see that the numerical results agree well with the analytic results when the number of iterations is bigger than 15.

Cubic-nonlinear foundation

Consider a nonlinear foundation with the nonlinear part following a cubic law

f (w s , w ′ s ) = ek 3 w 3 s ( 30 
)
where e = 0.8 and k 3 = 20 kNmm -3 . Other parameters are given in Table 1. As the previous example, the displacement of a block is calculated with a number of harmonics n = 15 and represented in a time interval corresponding to one period of the moving loads. Figure 4 shows the results for different numbers of iterations m. When m ≥ 15, the response becomes almost unchanged and the iteration procedure converges. The influence of the nonlinear parameter e on the response of the block has been investigated as shown in Figure 5. When e = 0, the foundation is linear. The Fig. 5 Effect of the nonlinear parameter of the cubicnonlinear foundation on the block displacement amplitude of the displacement decreases when the nonlinear parameter increases. Indeed, the bigger e is, the harder the foundation is.

Bilinear foundation

Consider a foundation with different linear behaviours in compression and tension. Such a constitutive law can be described by a damping coefficient (η 2 ), stiffness in compression (k + ) and in traction (k -). Because the linear and nonlinear parts of the behaviour are separated in the model, the nonlinear part of this foundation is given by

f (w s , w ′ s ) = (k + -k 2 )w s if w < 0 (k --k 2 )w s if w ≥ 0 (31) 
We will calculate the displacement of a block in one period with different numbers of harmonics and iterations in order to study the convergence of the numerical method for a railway track in Table 1 and k + = 20MKm -1 , k -= 10MKm -1 . Figure 6 shows the numerical results with different numbers of iterations while the number of harmonics is n = 15. When the number of iterations is bigger than 50, the numerical method converges well. We find out again the convergence with different numbers of harmonics for m = 100 when n ≥ 10 as shown in Figure 7. By consequence, the result shows that the lower harmonics are more important and the high order harmonics (n > 10) can be negligible in this case.

The influence of the nonlinear parameter r = k -/k + is studied by using the numerical method with n = 15 and k = 100. Figure 8 shows the displacement of the block for different parameters r. When r = 1, the foundation is linear and for r = 0, the foundation is tensionless. We see that a small traction stiffness of the foundation can make a great influence on the response of the dynamical system. It is remarkable that the computational time is almost instantaneous for these three examples, and this is an advantage of this semi-analytical method. A semi-analytic model for periodically supported beams on nonlinear foundations has been developed. When the moving loads is a periodic series, the dynamic equation of the support system has been reduced to a forced non-linear oscillation. Then, the harmonic balance method and the iteration procedure have been used to compute the periodic response. In linear cases, this method is proven to converge to the analytic solution. For other cases, this method is demonstrated to converges well with a small number of iterations of harmonics. This model is simple, fast and it is applicable for different nonlinear foundations.

Appendix

By performing the Fourier transform of equations ( 1) and ( 2) with regard to time t, we have The last expression is a sum of an infinite series which can be deduced to the function in equation ( 4) by a symbolic computation (see [START_REF] Hoang | Dynamical response of railway tracks in tunnel[END_REF]) . Finally, we get equation (3) from equation (A.5).

F (x, ω) = R(ω) ∞ n=-∞ e -i ω v x δ(x -nl) - K j=1 Q j v e -i ω v (x+Dj )

Fig. 3

 3 Fig. 3 Analytic solution and numerical results with different numbers of iterations for the linear foundation

Fig. 4

 4 Fig. 4 Numerical results with different numbers of iterations for the cubic-nonlinear foundation

Fig. 6 Fig. 7 5 Fig. 8

 6758 Fig. 6 Numerical results with different numbers of iterations for the bilinear foundation

EI ∂ 4 λ e = 4 4 -λ 4 e(A. 4 )

 4444 ŵr (x, ω) ∂x4 -ρSω 2 ŵr (x, ω) -F (x, ω) = 0 where ŵr (x, ω) and R(ω) are the Fourier transforms of w r (x, t) and R(t) respectively. Then, performing the spatial Fourier transform of the last results with regard to x leads to the following result(EIλ 4 -ρSω 2 )Π(λ, ω) + 2πδ λ + λ, ω)is the Fourier transform of ŵr (x, ω) with regard to x. The last term in equation (A.1) is a Dirac comb[START_REF] Bracewell | The Fourier transform and its applications[END_REF] which has a following propriety ∞ (λ, ω) can be obtained from equation (A.1): ρSω 2 EI . Thereafter, the expression of ŵr (x, ω) is deduced by performing the inverse Fourier transform of Π(λ, ω)By substituting x = 0 into the last equation, we obtain the vertical displacement of the beam at the support position ŵr (0, ω) = R(ω)η e (ω) -

Table 1

 1 Parameters of railway track

	Content					Notation	Unit	Value
	Rail mass					ρS	kgm -1	60
	Rail stiffness					EI	MNm 2	6.3
	Train speed					v	km/h	160
	Charge per wheel					Q	kN	100
	Block mass					M	kg	90
	Sleeper distance					l	m	0.6
	Length of boogie					D	m	3
	Length of wagon					H	m	18
	Stiffness of rail pad					k 1	MNm -1	200
	Damping coefficient of rail pad			η 1	MNsm -1	1.0
	Linear stiffness of foundation				k 2	MNm -1	20
	Linear damping coefficient of foundation		η 2	MNsm -1	0.2
	Displacement (					
	-0.15 -0.1 -0.05	0	0.05	0.1	0.15	0.2
		Time (s)			
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