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INTRODUCTION

One of the basic hypotheses of research in mathematics education, one being widely considered at the
present time, is the constructivist hypothesis which asserts that the subject explores actively its environment
that he or she participates actively in the creation of space, time and causality (Inhelder and Caprona, 1985
p.8). Following this hypothesis, we can see that the student himself participates actively in the construction of
his own mathematical knowledge. The starting point for the developmental process according to this view, is
the experience of a contradiction which is likely to provoke a cognitive disequilibrium: It is the overcoming of
such a contradiction which results in new constructions (Piaget, 1975).

I would like to emphasize here the consistency of this Piagetian developmental model with the model
proposed by Lakatos to describe the growth of mathematical knowledge through the dialectic of proofs and
refutations. "Informal, quasi-impirical, mathematics does not grow through a monotonous increase of the
number of undubitably established theorems but through the incessant improvement of guesses by
speculation and criticism, by the logic of proofs and refutations" (Lakatos 1976, p.5). But what Lakatos work
shows is the complexity of the overcoming of a contradiction in mathematics due to the diversity of the
possible ways of dealing with a refutation, its possible treatment. The historical study presented by Lakatos
shows the importance of the social dimension of this dialectic. This dimension also plays an essential role in the
learning process taking place in the mathematics classroom. It appears at two levels:

(i) Students have to learn mathematics as social knowledge; they are not free to choose the meanings
they construct. These meanings must not only be efficient in solving problems, but they must also be
coherent with those socially recognized. This condition is necessary for the future participation of
students as adults in social activities.

(ii) After the first few steps, mathematics can no longer be learned by means of interactions with a
physical environment, but requires the confrontation of the student's cognitive model with that of
other students or of the teacher, in the context of a given mathematical activity. Especially in dealing

Nicolas Balacheff (1991) Treatment of refutations 1/20



with refutations, the relevance of overcoming is what is at stake in the confrontation of two students'
understandings of a problem and its mathematical content.

| have studied the complexity of students' treatment of a refutation by means of an experimental
approach within the context of solving a given mathematical problem. My analysis of the data collected takes
into account both the cognitive and social dimensions of the phenomena observed. Before presenting this
study and its results, | would like to explain the main features of the theoretical framework | adopted.

THE PROBLEM OF CONTRADICTION

CONDITIONS FOR THE AWARENESS OF A CONTRADICTION

Following Grize (1983), | consider that a contradiction exists only if it has a witness. That means that a
contradiction does not exist by itself, but only with reference to a cognitive system. For instance, a
contradiction could be recognised by the teacher in the mathematics classroom, but ignored by students. Here
is an example: In a research study about students' conceptions of the convergence of numerical sequences,
Robert (1982) reports the following reasoning:

Having shown that a numerical sequence (u,) has a limit A such that A<1, some students make the
following computation:

Lim (uy™" + U+ u2+ up+ 1) = lim (U 2+ up+ 1) =A%+ A+ 1
They treat n in two different ways according to whether it appears as a suffix or as an exponent.

In this example the students are not aware of the contradiction which results from the two different
treatments of n, whereas it is quite obvious to us.

But, on the other hand, a contradiction could exist for the learner where none exists for the teacher, for
example (Balacheff, 1988):

Students of the seventh grade see a contradiction in the fact that the sum of the angles of a triangle
does not depend on its size (although area or perimeter do).

In all these examples, the fact that a contradiction is elicited or not depends basically on the knowledge of the
one who claims that a contradiction exists or does not.

In the teaching situation, the existence of a referent knowledge (the scientific knowledge or the
knowledge to be taught) gives the right to the teacher to decide whether a fact is contradictory or not with
respect to this knowledge. The problem for the teacher, then, is to make the student recognise the
contradiction he or she alone sees. The didactical question thus becomes twofold: First, what are the
conditions necessary to engender, on the part of the student, awareness of a contradiction and, second, what
are the conditions under which the student can resolve it.

According to Piaget (1974, p.161) the awareness of a contradiction is only possible at the level at
which the subject becomes able to overcome it. | would like to emphasize that, to the extent that such an
overcoming is likely to imply a real re-organisation of the subject's knowledge, this condition appears too
strong to us. | will not ask for such a potential overcoming of contradictions, but merely that they be seen.
Actually, to become aware of a contradiction means to become able to raise the question of the choice
between two propositions: an assertion and its negation. Whatever the choice, it implies that the formulation
of the assertion is available and that the subject can construct and express its negation.
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Thus, consciousness of a contradiction depends on two constructions, and the subject can only be
aware of it when he becomes able to carry out these two constructions. But even when a contradiction has
been identified, overcoming it might only be possible after a long process. For example, in the case of the sum
of the angles of a triangle, overcoming the contradiction | have mentioned above, needs the construction of an
invariant, and finally the conceptualization of the Euclidean Postulate and its consequences. That is to say, to
construct the relation between the assertion “the sum of the angles of a triangle is 180°” and the assertion “the
bigger the triangle, the larger is the sum of its angles”, even if it provides access to the problem of the
contradiction, is not by itself sufficient to allow it to be overcome.

On the other hand, a contradiction exists only with reference to a disappointed expectation, or with
reference to a refuted conjecture. The potential existence of an assertion is not sufficient, to use a metaphor of
Tainel, it is necessary that it comes to the forefront of the scene. Piaget himself remarks that to become aware
of a contradiction is far easier when it appears between an expectation and an external event which
contradicts it (ibid). Here Piaget goes beyond the cognitive conditions and takes into account conditions related
to the situation within which the subject acts. The existence of such an expectation means that the subject is
actually committed to an assertion and is able to sidestep its action. In other words, he or she is able to
consider it as a possible object of thinking, even more, an object of discourse. At that point, action is no longer
just carried out. Being the product of a choice, it is considered in terms of its validity and the adequateness of
its effect. That is to say, action is then related to its aim and a contradiction becomes apparent when this aim is
not fulfilled. The choice which has been made and the conditions under which the action has been performed
are then put in doubt.

I would like then to state the following conditions as being necessary conditions for the emergence of
the awareness of a contradiction:

(i) The existence of an expectation or an anticipation;
(ii) The possibility to construct and formulate an assertion related to this expectation, and the
possibility to state its negation.

TREATMENT OF REFUTATIONS

A counterexample in the mathematics classroom is often understood as a sort of catastrophe because
it implies the definitive rejection of what has been refuted. From this point of view, the mathematics classroom
ideology is more Manichaean than dialectic. An analysis of the mathematician's activity shows quite a
functioning quite a different and much less radical procedure.

Taking as a basis the model proposed by Lakatos (1976), we can differentiate the implications of a
counterexample depending on whether what is considered is the conjecture, its proofz, or the related
knowledge and the rationality of the problem-solver himself.

' Quoted by Hadamard (1959, p.34).
? By "proof" we mean a discourse whose aim is to establish the truth of a conjecture (in French: Preuve), not

necessarily a mathematical proof (in French: Démonstration).
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Figure 1

The schema® (fig.1), showing the conjecture and its proof as the product of both the knowledge and the
rationality of a subject, summarizes the main possible consequences of a counterexample. Of course, the
conjecture could be rejected, but other issues are possible. For example: To inspect carefully the proof in order
to elicit a possible suspect lemma and then to incorporate it as a condition in the statement of the conjecture,
or to question the rational of the proof or the underlying knowledge, or even to dismiss the counterexample as
a monster.

Also, such a process is likely to provoke an evolution of the knowledge related to the proof, resulting in what
Lakatos called as a proof-generated concept (Lakatos 1976, p.88 sqq.).

The analysis Lakatos (1976) provides of the development of mathematical knowledge leaves out a
question that is essential for the teacher and the educational researcher: What determines the relevance of a
choice for overcoming the contradiction brought forth by a counterexample? It is this question that | have
investigated by means of an experimental study | will now present.

STUDENTS' TREATMENT OF A COUNTEREXAMPLE

THE EXPERIMENTAL SETTING
A SOCIAL INTERACTION ABOUT THE NUMBER OF DIAGONALS OF A POLYGON

In order to explore the students' behavior when faced with a counterexample, | have used a situation
involving social interactions which encouraged the confrontation of different viewpoints about the solution of
the problem, and hence, a verbal exchange making explicit the possible refutations, how to deal with them and
thus the proving process underlying the solutions proposed by the students.

Pairs of 13-14 year-old students were required to solve the following problem: Give a way of
calculating the number of diagonals of a polygon once the number of its vertices is known. The answer to this
question was to be expressed in a message addressed to and to be used by other 13-14 year-old students.

* Indeed such a schema just evokes the range of possible consequences, but it is sufficient to give an idea of
what we call the openness of the possible ways to treat a refutation.
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Observations, which began in 1981, were carried out mainly during the first semester of 1982.
Fourteen pairs were observed for 80-120 minutes”.

In the experimental setting the communication with "other 13-14 year-old students" is only invoked®,
but it does not actually take place. Nevertheless, this invoked communication structures the students pairs'
activity, and more particularly it solicits a verbal formulation of the counting procedure. This is something that
students do not normally do straightway even if they are technically capable of it. At the same time, the desire
to supply the "other 13-14 year-old students" with a reliable technique is likely to make the students pair to
pay more attention to its formulation.

Lastly, the two students have access to as much paper as they want, but, on the other hand, to only
one pencil. This constraint reinforces the co-operative nature of the situation, while at the same time giving us
more direct access to the dynamic of the two confronted knowledge systems, especially in cases of decision
making.

The observer intervenes only after the students have claimed that they have produced a final solution.
At this stage he abandons his stance of neutrality and asks the students to deal with counterexamples that he
offers. Thus there are two different phases during the observation, one quasi-independent of the observer and
the other with a strong observer-student interaction.

THE FIELD OF KNOWLEDGE

The problem | selected calls on students' knowledge that is cultural rather than scholastic, insofar as
that, polygons may have been studied in the primary school in the context of geometrical classification, but
they are no longer, for these students, a part of the taught curriculum. Sometimes they are mentioned before
passing rapidly on to the study of triangles and quadrilaterals. Diagonals, however, figure in the curriculum, as
they play an essential role in the study of the parallelogram.

As in the case of the solids in the 18th centurys, students' conceptions of the mathematical content
involved do not constitute a theory. In order to solve the problem, students may have to specify the objects to
which it is related. In other words, to develop definitions for polygon and diagonal is part of their task.

This experimental study creates a context which is favourable for the emergence of processes like
those describe by Lakatos, and thus for the examination of the relevance of his approach for an analysis of
students' behaviors when confronted with counterexamples to a conjecture they have produced.

* ¢f. (Balacheff, 1988) for a complete report on this research.

> That is to say: Communication is fiction; the other participants (the receivers) do not exist. (Mugny 1985,
chap. 10). We call such a situation: Situation for communication.

®In 1758 Euler published his Elementa doctrinae solidorum which was about "corpora hedris planis inclusa". It
is there that we find the first formulation of the famous theorem.
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STUDENTS' SOLUTIONS AND THEIR FOUNDATION

The observed problem-solving procedures are closely linked to the meaning students give to the
“objects” polygon and diagonal. Particular, the interpretation regular polygon for “polygon”, and diameter for
“diagonal” leads students to the conjecture f(n)=n/2 ’. Three types of solution have been proposed which
«effectively» provide the required number of diagonals. They are:

f(n) = f(n-1) + (n-2)
f(n)=(n-3)+(n-3)+(n-4)+..+2+1
f(n) = (n.(n-3))/2

The rational basis for these conjectures are more often than not empirical. But even so, the nature of
the underlying proving process can vary considerably from one solution to another (cf. Table I).

Types of proofs®
Naive Crucial Generic Thought Proof by
empiricism experiment example experiment «reasons»
Pairs
Lio-Lau f(n)=n
Pie-Phi f(n)=n. s(n)
Nai-Val f(n) =n/2
Pie-Mat f(n)=n
Nad-Eli f(n) function of f(n-1)
P1o
Géo-Oli f(n)=2f(n-1) Oli Py, (n-3)+... , on Pg
Mar-Lau Lau Py (n-3)+..., on Pg
Eve-Chri f(n)=n/2 > f(n)=n/2
Bla-Isa f(n)=n-3, sur P; f(n)=n/2 or n-1/2(*)
Lyd-Mar Lyd : f(n)=n/2 no formula
for concave ones
Ber-chr Chr : f(n)=2n Chr Pg Ber : f(n)=n(n-3)/2 ---------- >
Oli-Sté Sté Pg (n-3)+..., s(n)=n-3 ------------——-- >
on Pg
Ant-Dam f(n)=n/2
Ham-Fab f(n)=n2
(*) using a generic example, but just as a linguistic means.
TABLE 1

7 "' is the name we will use for the function which relates the number n of vertices of a polygon to the
number of its diagonals.

& p, stands for "a polygon with n vertices".
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Commentary:

- In the column "crucial experiment" | have indicated the polygon on which this experiment is
performed; in the column "generic example" | have indicated the polygon chosen by the students as
being generic;

- This table does not take account of any chronology, except when an arrow expresses a change in the
level of validation for a given conjecture.

Naive empiricism and generic example are dominant. The analysis of the students' dialogue shows that
the lack of an operative linguistic means is one of the major reasons for the absence of proofs at a higher level.
For example, use of a generic example indicates the willingness of the students to establish their solution in all
its generality, but this willingness is hampered by the absence of an efficient linguistic tool to express the
objects involved in the problem-solving process and their relationships.

| must emphasize that this complexity is not only linguistic but has also cognitive origins, that is the
complexity of the recognition and the elicitation of the concepts needed for the proof. Linguistic constructions
and cognitive constructions are dialectically related during the problem-solving process. Let us take the
example of f(n)=(n-3)+(n-3)+(n-4)+...+2+1. In this case, students have to express an iterative process and to
control it (hnumber of steps, ending of the computation), but at their level of schooling they do not have the
conceptual tools needed. To them, the use of a generic example seems the best means to «show» the
computation procedure and to justify it.

Some of the students mention the need for a mathematical proof, but they do not try to produce one.
In fact they stay at a level of proving which is consistent, on the one hand, with their level of uncertainty and
what they think is needed by the situational context, and on the other hand, with the cognitive and linguistic
constructions they are able to perform (Fischbein, 1982; Balacheff, 1987b).

The social interaction played a fundamental role. In few cases was it an obstacle to reaching a higher
level of proof. Especially when the conflict between two students was too strong and «too social», all means
seem to be good to them as an argument, even naive empiricismg. But in most cases this social interaction has
been the real «engine» which leads the students to an awareness of the need for proofs, forcing them to justify
themselves or to elicit the rationality of the decision to be taken.

? By naive empiricism we mean the situation in which the problem-solver draws the conjecture from the
observation of a small number of cases (for example that f(n)=n because Ps has 5 diagonals). We use the
expression crucial experiment when the problem-solver verifies the conjecture on an instance which "doesn't
come for free", here the problem of generality is explicitly posed. The generic example involves making explicit
the reasons for the truth of the conjecture by means of actions on an object which is not there in its own right,
but as a characteristic representative of its class. The thought experiment invokes action by internalising it and
detaching itself from a particular representation. (For a precise definition of the different types of proofs, see:
Balacheff, 1987a and 1988.)
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THE TREATMENT OF COUNTEREXAMPLES

Most types of treatment of a refutation as described by Lakatos, have been observed. One of the main
differences is that in some cases we have to make a distinction between the treatments which follow an
analysis on the part of the problem-solver, and those which are merely ad hoc treatment of the conjecture in
order to save it in any case.

Tables Il and IIl give an account of the frequency of each type of treatment in each of the two phases
of the experiment. In Table | only 10 student pairs appear out of the 14. The reasons why 4 of them are not
mentioned are the following:

- Two pairs proposed at once a correct solution with reference to their conception of polygon and
diagonal. Their conviction kept them beyond questions (Martine and Laura, Lionel and Laurent).

- One pair did not take any decision about a refutation they met; they asked for advice from the
observer (Naima and Valérie).

- One pair did not identify any counterexample during their problem-solving process.

TABLE I Treatement of counterexamples, phase |
Ant Ber Bla Eve Geo Ham Lyd Nad oli Pie T
n
Dam Chr Isa Chr oli Fab Mar Eli Sté Mat

Rejection
of

. 1 2 3 1 1 1 2 11 7
conjecture
Modif. of
conjecture 3 1 1 1 2 8 5
Exception 1 1 1
Condition 1 1 1 1 a a
The
def!n'ltlon 1 2 1 a 3
revisited
Rejection
of
counter- 1 1 2 1 2 7 5
example
T: Number of appearances of a type of treatment n: Number of pairs

These tables show important differences between "phase I" and "phase II", but these differences are
not the only ones one can possibly foresee a priori.

It is in phase | that rejection of the conjecture is dominant, and not in phase Il in which one might have
expected that a counterexample proposed by the observer would provoke a rejection of the conjecture. On the
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other hand, the rejection of the counterexample is dominant in the phase Il as well as its being treated as an
exception. Two explanations can be proposed for this phenomenon:

- The rejection of the conjecture appears in the case of very fragile ones which are verified in only one
case: f(n)=n (verified by Ps), f(n)=2.n (verified by P;), f(n)=n2 (verified by no polygon, but conjectured by
Hamdi and Fabrice...).

- The rejection of the counterexample happens when it is opposed by a strong conjecture whether or
not it is strongly established (with respect to the conceptions of the students) or correct.

TABLE Il Treatement of counterexamples, phase Il

Ant Ber Bla Eve Geo Ham Lyd Nad Oli Pie Pie Nai Mar Lio

T n
Dam Chr Isa Chr Oli Fab Mar Eli Sté Mat Phi Val Llau Lau

Rejection
of - - -1 - -2 2 5 3
conjecture
Modif. of
conjecture - - 1 - 2 - 1 2 6 4
Exception ) 2 2 1 6 4
Condition 1 1 1 (1) - - 3 1 7 5
The
deffn.ltlon 1 ) 3 1 i 3 8 a
revisited
Rejection
of
counter- - 2 1 1 (1) - 4 - 2 - 1 11 6
example
T: Number of appearances of a type of treatment n: Number of pairs
Commentary:

In the case of Lydie and Marie, the information given is in brackets because these two students did not
succeed in reaching agreement about how to treat the counterexample proposed by the observer. Lydie
wanted to introduce a condition while Marie wanted to the reject the conjecture and then to search for a new
solution.

In the following | will present some details of the categories of treatment of a refutation. Samples of
the students' behavior will be given to help the reader make sense of them.

REJECTION OF THE CONJECTURE

The analysis of this type of response to a counterexample involves two different behaviors:
- The immediate rejection of the conjecture, as soon as the counterexample has been produced. This
decision is more often than not taken following a naive empiricism. This behavior is coherent insofar

as the observation of few a polygons was sufficient to construct the conjecture, one counterexample is
sufficient to dismiss it.
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Christophe defends the conjecture f(n)=2n, deduced from observation of P;. Bertrand refutes it by Ps. In the
conflict between the two students, this refutation is considered by Christophe as a crucial experiment; he then
rejects his conjecture.

Lionel and Laurent defend the conjecture f(n)=n, deduced from observation of Ps. When the observer proposes
Ps they surrender: "So, we were wrong" (Lau. 204)™; they then proceed towards a new solution.

Hamdi and Fabrice defend the conjecture f(n)=n> , not from the observation of some polygons, but directly
from their conception of what a diagonal consists of. When the observer proposes the counterexample Ps, they
reject their conjecture and start their search for a solution again.

- The rejection of the conjecture after an analysis of the possible origin of its refutation. This analysis
provides students with new elements to restart the search for a solution to the problem:

Blandine and Elisabeth defend the conjecture f(n)=n/2; its refutation by Py leads them to an analysis which
reveals that when they draw the diagonals joining the vertices two by two one vertex is left. They then modify
their conception of diagonal and give up their conjecture.

Georges and Olivier defend the conjecture®® f(n)=n.s(n). Its refutation by P, leads them to its modification into
f(n)=n/2.s(n), but they give it up because it appears to be impossible to divide 7 by 2. Afterwards they keep as a
guide line for the search for a new conjecture, the fact that no diagonal should be counted twice.

Lionel and Laurent, whose conjecture f(n)=n.(n-3)/2 is refuted by the observer by means of a polygon Ps with
three aligned vertices (fig.2), keep their initial conjecture for the convex polygons and propose f(n)=(n(n-3)/2)-1
for the others. Exploring this new conjecture, they notice that it is no longer correct for any non-convex
polygons, in fact "it depends on the shape" (Lau 970). Then they give up this new conjecture.

Figure 2.

% "Lau 204" is a reference to the protocol of this pair of pupils, it means "Laurent is speaking, action N° 204".

" Here "s" is the name of the function which associates with the number n of the vertices of a polygon, the
number s(n) of its diagonals at one vertex. That means that pupils have recognized the invariance of the
number of diagonals belonging to each vertex of the polygon.
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MODIFICATION OF THE CONJECTURE

The modification of the conjecture when faced with a refutation appears to be equally possible in both
the phases of the experiment'>. Three main types of such a treatment can be distinguished:

- The ad hoc modification which consists in a direct adaptation of the conjecture to superficial
features, observed by the students, of the relations between the result expected and the one
indicated by the counterexample. The origin of the new conjecture is related to the observation of one
case only, thus it has a naive empiricist foundation:

Lionel and Laurent conjecture f(n)=n.(n-3) as a solution. It is refuted by Ps; they then conclude that the solution
should be f(n)=(n.(n-3))/2 and they validate it by means of a crucial experiment on P;. No analysis is done about
the possible reasons for this division by 2, it comes from the relation they establish between the result of the
counting on P5 and what they expected. Their dialogue shows this:

"Why would you like to divide by 2 ? They will not understand." (Lio 396)
"We must divide by two because... with 4, it works and with 5 also, and with 6 also... " (Lau 399)

- The modification which follows an analysis of the sources of the refutation with reference to the
foundation of the conjecture:

Bertrand and Christophe conjecture f(n)=n.(n-3); they meet the counterexample P;. Then, trying to find the
reasons why this polygon does not fit the formula, Bertrand discovers that "the diagonal AF, that is also the
diagonal FA" (Ber 287). Then they propose to modify the formula into f(n)=(n.(n-3))/2, because "otherwise
some diagonal would be counted twice" (Ber 384), thus "that means to divide by two" (Chr 403).

Georges and Olivier conjecture f(n)=n.s(n) after having observed that the number of diagonals is the same at
each vertex of a polygon. Their analysis after a refutation by Ps leads them towards the conclusion that "they
[the diagonals] appear again after... " (Geo 198), and they consider the new conjecture f(n)=[n/2].s(n).

- The modifications which consists of reducing the domain of validity of the initial conjecture to a set of
objects which excludes the counterexample, and in constructing a solution specific to the objects the
class of which the counterexample is considered a good representative:

Blandine and Isabelle conjecture f(n)=n/2; after its refutation by polygons having an odd number of vertices
they search for a solution for this category of objects. They finally conjecture f(n)=n/2 for «even polygons» and
f(n)=(n-1)/2 for «odd polygons».

Evelyne and Christine conjecture f(n)=n/2, paying no attention to polygons with an odd number of vertices.
After the refutation by the observer, who produces Ps, they reduce their solution to the polygons with an even
number of vertices. For the odd polygons they propose f(n)=n...

Nadine and Elisabeth conjecture, following a crucial experiment, that f(n+1)=f(n)+a(n+1) 3 The observer
proposes as a counterexample a polygon Ps with three vertices which are aligned (fig.2); they then try to find a
solution for this kind of polygon: "The one which has a vertex inside" (Nad 175). But they find that the solution
they envisage is strongly related to the shape of the polygon, finally they surrender.

12 ¢f. Table Il and Table IIl.

3 Here "a" is the name of a function which gives the value of the difference between the number of diagonals
of Pn and that of Pn+1.
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THE COUNTEREXAMPLE CONSIDERED AS AN EXCEPTION

This type of treatment of a counterexample is quite seldom. It appears just once in the first phase of
the experiment. A possible explanation could be the belief that a mathematical assertion must not suffer any
exception:

When faced with a triangle produced by the observer as a counterexample to their conjecture, Blandine and
Isabelle decide that it should be considered an exception because "it has no diagonals" (Isa 184).

Georges and Olivier take the same decision, deciding that their conjecture is valid "from 4... because triangles
are particular cases" (Geo 508). When faced with a polygon PS5, three vertices of which are aligned, they state
that "it is again a particular case" (Oli 590), but "that's a lot of exceptions" (Oli 625). They are not really very
confident: "Perhaps it is the good solution, even if there are a lot of exceptions" (Oli 645). Then they try to find a
specific solution for these cases. Failing to do so, they finally keep on with the decision to consider these
counterexamples as exceptions.

When Hamdi and Fabrice conjecture f(n)=n2 as a solution; they envisage the case of the triangle but "any
polygon should not have zero diagonals" (Ham 222). When the observer proposes the case of P* they claim
again that "it is a particular case" (Fab 279), and they confirm their initial solution but "except the particular
cases... triangles and equilaterals" (Ham 389). They continue to consider these polygons as exceptions, even
when they propose the solution f(n)=(n.(n-3))/2 for which it is no longer the case.

INTRODUCTION OF A CONDITION

The decision to introduce a condition in the statement of the conjecture follows two types of
strategies:

- Some students try to find a condition by means of an analysis of the counterexample to bear down
the class of objects of which it is a representative:

Hamdi and Fabrice introduce a condition in order to brush aside the objects represented by the
counterexample the observer proposes to them (fig. 3): "Except these which have a point in their middle" (Ham
616). Such a condition has nothing to do with what could constitute the foundation of their conjecture.

Figure 3.

Naima and Valérie protect their conjecture against the counterexamples produced by the observer, adding ad

hoc conditions: "all the edges should be of the same size", "the edges should be on a circle", "to a vertex
belongs only one line". This strategy is absolutely resolute "I don't mind, | answer with conditions" (Val 504).
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- Some students try to find a condition by means of an analysis of the refuted conjecture and its
foundations:

Blandine and Isabelle decide to introduce a condition against non-convex polygons, one of them having been
produced by the observer as a counterexample, because "the diagonals should be inside, as they should
intersect just once" (Isa 206). They then decide that the polygons to which the conjecture applies must be
convex.

Olivier and Stéphane conjecture that the larger the number of vertices of a polygon, the larger is the number
of its diagonals. That happens to be refuted by a polygon P; which has some vertices on the same line. The
students analyse the origin of this refutation and introduce a condition: "We have to say that it works if the
points are not on the same line" (Sté 77).

The decision to introduce a condition seemed "not allowed" to some students, because of the
experimental contract'. For example, the conjecture f(n)=n/2 having been refuted, Evelyne proposes to
introduce a condition on the number of vertices of a polygon: "It is always divided by two... so the number
should be even"(Eve 85). But the students finally do not introduce this condition, because no restrictions on the
type of polygon have been stated in the text of the problem: "It might not be so, because there [in the text of
the problem] it is not said that the polygon has... that the number of vertices is even" (Eve 140).

THE DEFINITION REVISITED

Most of the students posing the problem of what a polygon is, or trying to elicit a definition of polygon
or diagonal, are those whose conjecture is f(n)=n/2 (6 cases of the 9 observed). Their uncertainty about what a
polygon is is noticeable from the very beginning of the experiment, but it is only after a refutation that some of
them clearly state this problem of definition:

The doubt about what a polygon could be urges Antoine and Damien to pose the problem of its definition: "/t
could take a long time if we search like that... if we have not the exact data" (Dam 77). Taking Ps as a prototype,
they put aside the odd polygons: "It cannot be an odd number as far as we say that the edges should be parallel
two by two" (Dam 221). Actually this problem turns into being part of the «game»: "the rule tells that we are
the teacher... We tell him [the observer] a polygon is what we have given, and he should find whether our
definition is correct or not" (Ant 383).

Blandine and Isabelle straight away pose the problem of the definition of polygon and diagonal. A first
counterexample they encounter against their conjecture (f(n)=n/2) leads them to the following statement: "it
[a diagonal] joins two vertices" (Bla 18). Later a new conjecture having been formulated (f(n)=n.(n-3)) and then
refuted by P, they refine their definition: "to each vertex belongs one diagonal" (Isa 70). Relying upon that
definition, they return to their initial conjecture which they now hold quite strongly.

Naima and Valérie conjecture f(n)=n/2, after the refutation by the observer they state that "it is perhaps
necessary to know the definition of polygon" (Val 285). In fact, they come to the idea that the problem is
basically a problem of definition and, after having stated a definition, they modify it to cope with the

Y The relationships between the actors involved in the situation (the two pupils and the observer) are
determined by rules which are both explicit (like what is said about the task), and implicit (like those suggested
by the aim of the experiment). All these rules constitute what we call the «experimental contract» (Balacheff
and Laborde, 1985).
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counterexamples produced by the observer. But they recognise that the definition they propose is "what we
think" (Nai 444). This focus on the problem of definition could be related to the wish "to find something valid
for all polygons" (Nai 353).

REJECTION OF THE COUNTEREXAMPLE

This way of treating a counterexample is the most widely distributed among the observations | have
made. It appears at least once in each of 11 pairs out of the 14 observed. On the other hand, its presence is
more frequent in phase Il of my experiment during which the students were perhaps more eager to defend
their conjecture against refutation by the observer. But not all these reactions should be considered the same.

Three main categories can be differentiated:

- The counterexample is rejected after an analysis which reveals that actually it does not refute the
conjecture: It is shown that the refutation is made on the ground of a misinterpretation. The possibility
of such an analysis was opened by the case of a polygon Ps with three aligned vertices, proposed by
the observer™:

Bertrand and Christophe discover the hidden diagonal in the drawing by the observer of a polygon Ps with
three aligned vertices. They suggest that it might be good to inform the recipients of their message of such a
possible event. When faced with a new counterexample produced by the observer, a polygon P, with edges
crossing elsewhere than the vertices, they make an attempt to show the same misinterpretation on the part of
the observer. They fail in doing so...

- The counterexample is rejected with reference to a precise conception of what is a polygon:
Conception which may have been formulated previously as a definition:

Pierre and Mathieu, who have conjectured f(n)=n/2, reject a convex polygon Ps, because it appears not to be
regular: "The edges are not exactly equal" (Mat 63). About the same polygon Mathieu even suggests that
"maybe a polygon with 5 edges doesn't exist" (Mat 135). Actually the difficulties with this counterexample will
be overcome later while revisiting the definition of diagonal.

Figure 4.

Olivier and Stéphane reject the counterexamples proposed by the observer (fig 4.), analysing them as joint
figures but not real polygons: "That's not a polygon" (Oli 768) "Wait... a polygon is a thing... here it's not a
polygon... they are two triangles... [to the observer] Is that a polygon ? " (Sté 769). Actually, in order to reject
the counterexample the students have to raise the problem of the definition of a polygon: "To a point it must
be related to no more than two other points" (Sté 382)

B cf. figure 2
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- The last category is the one Lakatos named «monster-barring», the counterexample is in this case
rejected by students without any further considerations about the definition or any debate about their
conceptions. It is, in particular, the case for the triangle because of its lack of diagonals.

Evelyne and Christine reject the triangle as a counterexample to their conjecture f(n)=n/2 because "the
triangle has no diagonal" (Chr 113). Later on, the triangle being met again, they reject it definitely and
explicitly: "the triangle is not a polygon" (Chr 473).

Hamdi and Fabrice reject the triangle despite the fact that the observer has shown that it fits their latest
conjecture. Since it was a real counterexample to a previous conjecture, they do not want to consider it again
and "whatever it is, in a triangle there are no diagonals... so we are not interested" (Fab 553).

STRATEGIES IN THE TREATMENT OF A COUNTEREXAMPLE: STABILITY AND
DISPERSION

When the number of counterexamples met by a pair of students is large, it is of interest to examine
their global strategy and the distribution of the type of treatments they have chosen. With respect to this
guestion two types of categories should be recognised:

- Stability of treatment: Few different types of treatment are used by the students. The origin of this
stability, which has been observed in three pairs, is quite different from one case to another: In the
case of Bertrand and Christophe, or Olivier and Stéphane, it is due to the success of the first decision
they took about a counterexample; in the case of Naima and Valérie it is a consequence of their
commitment in a «definition game»ls.

- The diversity in the treatment of the counterexamples cannot be characterized in few words; | give an
account of the pairs which appear to be the most significant with respect to this kind of behavior.

Evelyne and Christine: These students construct and defend the conjecture f(n)=n/2, first on the basis of naive
empiricism, and then on that of a thought experiment related to the conception of diagonal which they elicit
after the refutation of their conjecture by P;: "A diagonal is a straight line which belongs to a vertex of a
polygon and which cuts its surface in two pieces".

But they do not share the same point of view: One of them would like to introduce a condition in the
statement of the conjecture; the other would prefer to consider the definition again. Finally, it is this last
decision which is taken, following an argument of Evelyne, who says that if a condition was necessary, it would
have been stated in the description of the task. In other words the students have not the right to restrict the
scope of the polygons which fit the conjecture; they have to give a solution for all of them. Actually, the
definition they choose restricts the set of the polygons to those for which the conjecture is valid: "If we say that
a polygon is... a thing whose sides are always parallel two by two... then it is not necessary to be more precise.
We have just to divide by two" (Chr 201).

But on the other hand, the case of the triangle is not dealt with referring to the definition. It is rejected
as a polygon because it has no diagonals; it appears to the eyes of the students as a kind of monster.

Later on a counterexample, Ps, because it is produced by the observer, imposes itself as a polygon.
Then the initial definition is rejected, and a new one is considered: "for sure a polygon can have any number of
diagonals... but it should be regular" (Chr 270). Thus the only solution to save the conjecture is to introduce a
condition and to search for a solution specific to odd polygons.

16 Against each counterexample proposed by the observer, they enrich their definition with a new ad hoc
clause.
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This last solution starts from a student's conception of diagonal as an «axis of symmetry». In case of P5 it
corresponds to a drawing they make (fig.5). The solution they conjecture is f(n)=n for odd polygons, first proved
by means of a thought experiment and afterwards proved «by reasons»*’. The uncertainty which remains is an
uncertainty about the premises of the students' reasoning: Definition of polygon and of diagonal. It is on the
basis of these definitions that they then treat the counterexamples produced by the observer. These definitions
are even written into their message: "If the number of vertices of the polygon is even: You divide the number by
two and you will obtain the number of its diagonals. If the number of vertices of the polygon is odd: The number
of the diagonals is equal to the number of the vertices. A polygon is a geometrical figure which can have any
number of vertices but whose edges must be equal"

Figure 5

For Evelyne and Christine, dealing with a counterexample is directed by what | would like to call a
problématique™ of the definition which originates in their reading of the experimental contract, following
which they think that they cannot introduce any reduction of the field of polygons to be considered. The only
one which escapes this treatment is the triangle which appears to them as a "monster" and which is definitely
rejected as such™.

Hamdi and Fabrice: From their conceptions of polygon and diagonal, these students conjecture: f(n)=n2. After
a refutation they encounter with P,, they first try to modify this conjecture. Failing in doing so, they decide to
submit it to the observer. His refutation by Ps as a counterexample leads them to give up this first conjecture.
The two refutations lead them to the problem of the definition "he [the observer] should have given the
definition of polygon" (Ham 228).

They then search for a new solution taking as (implicit) basis what appears to be a correct conception
of a convex polygon. Their new conjecture is f(n)=n.(n-3), which is refuted by the observer by the
counterexample Pg. They modify their conjecture into f(n)=(n.(n-3))/2. Actually, it is an ad hoc modification
which is elaborated straightaway from the arithmetical relation they establish between the result obtained
(that is, 9) and the one they had computed (that is, 18). This conjecture is then confirmed in the case of Ps.

7 That is what we have called in French: Preuve en raison , that is a proof by what could be seen as a real
computation on statements (in French: Calcul sur des énoncés ).

18 By «problématique» we mean the framework within which problems are stated and recognized as being
relevant.

® We should remark that, following their definition of polygon and diagonal and the solution they proposed for
odd polygons, the triangle is no longer a counterexample. On the other hand, there is a contradiction they do
not examine, between what they know about the triangle and the fact that the conceptions they have
elaborated lead to 3 diagonals for a [equilateral...] triangle.
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Then they envisage a crucial experiment on P, which they finally abandon. They state in their message that the
triangles and the quadrilaterals are outside the domain of validity of their conjecture. They change their mind
in the case of the quadrilateral after an example produced by the observer, but they stand on their position in
the case of the triangle.

The other counterexamples produced by the observer are the following drawings (fig.6).

Figure 6

First, on the one hand, Fabrice refuses to accept them as being polygons, but on the other, Hamdi
treats them as exceptions. Then Fabrice remembers that there are polygons with edges intersecting elsewhere
than vertices, so he revises his point of view and he considers further the drawings of the observer as being
polygons. Thus the task for the students becomes that of stating a condition to push aside this kind of objects:
"it does not work for polygons which have a point in the middle" (Fab 682). We should notice that this condition
is in no way related to an analysis of the conjecture and its possible foundations but consist in an ad hoc
adaptation to the apparent features of the counterexamples.

The rejection of their initial conjecture by Hamdi and Fabrice is due to their uncertainty about their
conceptions which underlie it. It is this same uncertainty which leads them to raise the problem of the
definition. The modification of their second conjecture f(n)=n.(n-3) appears to be unavoidable as the
counterexample P6 cannot be rejected as not being a polygon, but this modification is ad hoc in order to save
the conjecture. On the other hand the counterexamples produced afterwards by the observer do not lead to
new modifications, they are rejected: The conditions introduced by the students being nothing but ad hoc
means to preserve the conjecture.

Then, the treatment of the refutations is dominated by the students' analysis of the objects in
guestion, perhaps to the detriment of an analysis of the rationality of the conjecture.

Pierre and Mathieu: These students do not share the same conception of polygon and diagonal, this
disagreement is at the core of their conflict. According to Pierre, a polygon is a «geometrical figure with several
sides» but diagonal is taken as a synonym of oblique (actually, a line non-parallel to the edges of the polygon).
For Mathieu, a polygon is nothing but a regular polygon whose diagonals are diameters. For a while Mathieu
considers the diagonals as being axes of symmetry; this conception is rejected by Pierre because of his own
conception. Finally, this conception is rejected after confrontation with the case of the square.

The first conjecture of these students: f(n)=n/2, is refuted by Ps. The treatment of this counterexample
is at stake in a debate between Pierre and Mathieu about what is or is not a diagonal, a polygon, or about the
relevance of a proposed response:

- Mathieu proposes to reject the conjecture, but Pierre opposes that: It is so convincing that that

should not be done;

- Pierre suggests treating it as an exception but Mathieu refuses because a mathematical assertion

must apply to each of the mathematical objects concerned;

- Mathieu proposes to reject it as a non-polygon, but Pierre refuses, referring to the etymology of the

word «polygon»;
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- Pierre proposes to stretch the concept of diagonal (including "half-diagonals"), but such an extension

clearly appears to be too ad hoc.
Finally they search for a specific solution for the odd polygons, despite the fact that they consider that a
«mathematical» solution should be expressed by a unique formula. They conjecture f(n)=n/2 for even
polygons, and f(n)=n-1 for odd polygons (which is in fact an ad hoc adaptation of the initial conjecture). But
Pierre, challenged by the failure of his attempt to stretch the concept of diagonal, finally changes his mind
about what a diagonal consists of accepting the proposal of Mathieu. They propose to the observer: f(n)=n/2
for even polygons, and f(n)=n for odd polygons (which is again an ad hoc adaptation to the case of Ps) .

After the next refutation of that conjecture by the observer, Pierre surrenders, while Mathieu tries to
find one solution. Finally they abandon it.

The conflict between Pierre and Mathieu is, first of all, a conflict between two different conceptions
about what a polygon or a diagonal is. This conflict leads them to debate the problem of the definition of these
objects. This problem being solved, and the two students' agreement about what is allowed in mathematics
being found (status of the exceptions, unique formula), overcoming of a refutation consists in the search for
specific solutions, and then for one solution. For Pierre, the fact that each of their solutions is refuted leads to
the idea that the situation is nothing but a game in which they have to "guess" a solution. Actually, he
abandons the search to try to obtain the solution from the observer.

CONCLUSION

Three factors appear to determine students' choice in their treatment of a refutation:

- The analysis with reference to the problem itself. It gives a central place to the discussion on the
nature of the objects concerned, and thus on their definition. This analysis potentially leads to any type of
treatment which could be considered, none of them being privileged a priori. The choice the students make can
be understood only in the light of a local analysis or of the specific character and knowledge of each of the
individuals. The type of treatment can change in the course of the problem-solving process: Modification of the
definition followed by the introduction of a condition or a modification of the initial conjecture when the
conceptions have been stabilized. The origins of the choice between the introduction of a condition and the
search for a specific solution, and the modification of the conjecture, cannot be traced in the data gathered.
What could be conjectured is that when the refutation might brush aside a wide range of polygons (with
respect to the students' conceptions), then a modification of the conjecture is decided which consists in a
specific solution (extension to the odd polygons in case of f(n)=n/2, search for a solution for non-convex

polygons).

- The analysis with reference to a global conception of what mathematics consists of. This could be a
serious obstacle to some of the treatments of a refutation: Refusal to treat the counterexample as an
exception, refusal of a solution which cannot be expressed by a unique formula, etc.

- The analysis with reference to the situation. What is in question is mainly the didactical contract
which leads students to favour some treatments of the counterexample (definition game, riddle game in which
they abandon their solution quite easily) or constitutes an obstacle to others (refusal to introduce a condition
because it has not been stated in the problem statement). Whatever is the case, the role played by the
experimental contract should not be over-estimated. In particular, it should be noticed that the fact that
treating the counterexample as an exception or its rejection, during phase Il of the experiment, confirms the
result already known about the fact that one counterexample is generally not sufficient for students to call a
conjecture into question (Burk 1984, Galbraith 1979). The fact that this treatment has been observed in other,
and quite different, experimental settings, suggests that it is not specific to the experimental contract in this
situation as it might be conjectured at first.
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One of the questions | have examined is that of a possible influence of the type of conjecture on the
choice of a treatment of a refutation. One hypothesis might be that if the conjecture is false, then its rejection
or its modification or a revision of the definition should be dominant, but that, if the conjecture is correct, then
the rejection of the counterexample should be dominant.

Actually, | have observed that conjectures like f(n)=n or f(n)=2n are abandoned after their refutation.
In fact, such conjectures are very fragile in so far as they are verified by only one polygon. It is quite different
when the conjecture is verified by a large set of polygons, like f(n)=n/2. The strength of that conjecture comes
from the fact that it is related (explicitly or not) to the conception of a polygon as a regular polygon and the
diagonal as a diameter®®. On the other hand, | have checked the type of treatment of the counterexample
against the type of foundation of the conjecture; it appears that no treatment of the counterexample is
privileged, whether the foundation of the conjecture is naive empiricism or a thought experiment.

I have also examined the case of the correct conjectures. It should be noticed that they implicitly refer
to a correct conception of polygon and diagonal. These conjectures are the result of a process which has
occupied all the first phase of the experiment, whether they have been constructed deductively or are the
result of a dialectic between successive attempts and their refutation. The treatment appears to be far less
varied than in the case of the conjecture f(n)=n/2. A first type of treatment which is dominant is the rejection
of the counterexample after its analysis relative to the students' conceptions, a second type of treatment is to
consider the counterexample as an exception or to introduce a condition (actually this last treatment could be
a way for some students to escape particular cases).

Whatever is the level of proving involved in the problem-solving process, it appears that the
robustness of the students' conceptions and the existence of a large domain of validity of their conjecture lead
to privilege the treatments which consist of keeping aside counterexamples which appear to be some kind of
«monsters»’ in the eyes of the students. On the other hand, | have found that in the case of the conjecture
f(n)=n/2, the limitation to even polygons is associated with an important uncertainty about the definition,
which is often reconsidered after the refutation.

Mathematicians, Lakatos considers, share almost the same rational background. In the case of the
students the background is not the same: Naive empiricism, or pragmatic validations, can be the basis of their
proof and can constitute the roots of their belief in the truth of a statement. If this is so, the discussion of the
criticism of a counterexample or of the modification of conjecture could appear less relevant to the teacher
than the discussion of its «logical» background. How can we escape the fact that faced with a counterexample
produced by the teacher, students claim that it is a particular case when in fact, what should be questioned is
the naive empiricism on which their conjecture is based? At a higher level of schooling this problem can still
appear: A student may be discussing the legitimacy of a counterexample, when it is his or her understanding of
the related mathematical knowledge that should be questioned.

To base the learning of mathematics on the students' becoming aware of a contradiction requires that
we take into account the uncertainty about the ways they might find to overcome the contradiction. If, as |
believe, we cannot assume that there is strict determinism in cognitive development, what could be the role
played by a particular situation? Rather the teacher's interventions will be fundamental. The way he or she
manages the teaching situation may bring the students to see that their knowledge and the rationality of their

%% such a conception is reinforced by the prototype of the square.
2! That is, a «monster» with respect to their conception of what a polygon is. For example, a polygon must have
diagonals (actually the problem underlying this view is that of the interpretation of «zero»).
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conjectures must be questioned and perhaps modified, because no ad hoc adaptation of a particular solution,
or its radical rejection, can by itself lead to a conceptual advance.
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