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The first step of the sensitivity analysis of some quadratic quantity related to acoustic waves with respect to
any flow or wall disturbance is proposed in the configuration of subsonic jet flow. The generation of noise
has been demonstrated to originate from convective instabilities that amplify in the jet stream. Several authors
have investigated them through the Parabolized Stability Equations approach (PSE). The present work aims to
develop the adjoint of the PSE to extract from a mathematically well posed problem the sensitivity coefficients
which can be understood as gradient. The final objective is to propose some path of possible actuations in order
to decrease noise emission in some jet flows. To date some trend can be given. The shape and the location of the
maximum of sensitivity are strongly related to the radial and streamwise variation of the base flow. In particular
the maximum of sensitivity is located along the border of the potential cone and seems to be well correlated with
the location of the sound generation mechanism. In addition the sensitivity to axial momentum forcing is higher
than to a radial momentum forcing. Finally the sensitivity increases when the perturbation is near to the exit of
the nozzle.

INTRODUCTION

In the past many investigators [1–7] have sug-
gested based to theoretical and experimental re-
sults that flow instabilities should be the dominant
noise-generation mechanism for jet flows especially
at high Mach number. In the same manner, more
recent works [8–10] have shown that instabilities
can play an important role even for subsonic jet
noise amplification. In addition, a low computational
cost model of the shear-layer instability modes in
the co-axial jet based on the Parabolized Stability

Equation (PSE) has been developed and correla-
tions between CFD results have been tested suc-
cessfully [2,4,5,10].
In the present works, a sensitivity analysis is per-
formed for a subsonic inviscid single stream jet. The
main goal is to identify the regions of the flow more
sensitive to external momentum forcing and mass or
heat injection. Sensitivity is equivalent to a gradient
of any functional or quadratic integral [11]. This
functional called E in this paper is the physical ener-
gy associated to the perturbed velocity, temperature
and pressure. Mathematically it can be written as



a quadratic function of the full disturbance vector of
the flow field as:

E =
1

2

∫ xf

x0

Ex(x)dx, (1)

with

Ex(x) =

∫ ∞
0

q′tMq′mrdr

where q′ = (u′x, u
′
r, u
′
θ, ρ
′, p′)t is the state vector of

the flow perturbation where components are respec-
tively velocity, density and pressure disturbance and
Ω = [x0, xf ]× [0,∞] is the physical domain. For the
computational domain r ∈ [0, rmax], rmax far enough
from the axis. Assuming a quasi-3D flow the coor-
dinate θ is not required in the integral domain. The
exponent t refers to the transpose of a matrix or a
vector. The velocity are written in the cylindrical sys-
tem of coordinates. The diagonal positive matrix M
and the metric mr are the way to introduce various
kind of ’energy’ definition. They are set respectively
to identity I and to the radius r in the following.
Sensitivity coefficients can be therefore explained
as how the response of any variation in the output
of a system expressed as a mathematical functional
can be apportioned to different sources of variation
in the input of the model. Such analysis is com-
mon in different fields of engineering and in the field
of fluid dynamics since it is closely related to opti-
mization problems and optimal control [12, 13]. In
the last 45 years the physical problem of receptivi ty
and sensitivity of boundary layers flows were investi-
gated in different theoretical, experimental and com-
putational manners. Airiau et al [14] have demon-
strated that receptivity coefficients and the approach
based on adjoint equations [13] can be associated
to an optimization problem and therefore they were
strongly closed to sensitivity coefficients. Later it
was used to perform optimal control in the lami-
nar boundary layer flow [12, 15]. The use of adjoint
equations in flow instability dates back to the early
1990s [16,17], but did not become widespread until
the late 2000s [18,19] and finally the [20] where the
concepts of senstivity analysis with adjoint are spell
out in details. Sensitivity analysis based on the ad-
joint of compressible Navier-Stokes equations have
been recently derived [11,21] and applied to optimal
control studies of the two dimensional shear layer in
the aeroacoustic framework. Some other examples
of sensitivity can be found in the mesh optimization
and in the optimization of structures.
In the present work, the sensitivity of a quasi-3D jet
flow is investigated on the based of adjoint of the
Parabolized Stability Equations (APSE). Emphasis

is made on the methodology. Validation and appli-
cation to a turbulent jet flow is currently in progress.
In this paper, only results for an incompressible and
inviscid unstable base-flow are presented and dis-
cussed. In the next months, the same methodlogy
will be coupled to a LES solver where a mean flow
will be determined first for single stream and later
to dual stream flow. The main objective is to inves-
tigate flow sensitivities to any disturbances and to
define some new noise control strategies. The diffe-
rent steps of the methodology are briefly described
in the next two sections. Section III shows validation
and results and a conclusion ended the paper.

I- PARABOLIZED STABILITY EQUATIONS (PSE)

The flow disturbances are considered as the state
variables of the model and their evolutions are as-
sumed to be well defined by solving the PSE equa-
tions.
The PSE were initially proposed by Herbert and
Bertolloti in 1991 [22], and some other authors du-
ring the same period [23] to study the linear and non
linear development of Tollmien-Schlichting waves in
boundary layers. Comparing to the local stability
theory (LST) where the Orr-Sommerfeld equation
are solved through an eigenvalue problem, the main
advantage of the PSE are to take into account of
the small streamwise variations of the base flow and
of the disturbances directly in the formulation. The
eigenvalue problem no longer exists and the PSE
is set of partial differential equations (PDE) almost
parabolic in the streamwise direction. The second
advantage is that because of solving PDE source
terms and various boundary conditions can be in-
troduced leading to perform quite easily flow control
and weakly non linear stability studies.
PSE were extended later after 2000 for jet flow [24–
26]. In this paper, only linear PSE are considered,
therefore the first step is the compressible Lineari-
zed Euler equations for an axial-symmetric flow in
cylindrical coordinates (x, r, θ, t) written as:

LLEEq
′ = 0, (2)

with

LLEE = B +A3
∂

∂t
+A2

∂

∂θ
+A1

∂

∂x
+A0

∂

∂r

where q′ = (u′x, u
′
r, u
′
θ, ρ
′, p′)

t has been ever de-
fined. The lengths are non-dimensionalized by the
diameter Dj , the velocity by the streamwise exit ve-
locity uj , the density by ρj , the pressure by ρju2

j , the
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Figure 1: Comparison between present PSE and
Yen et Messersmith PSE(◦), 1998 streamwise
wavenumber solution α. a) Real part of α, b) Imagi-
nary part of α for a subsonic flow with ω = 1.2π and
m = 0. See also [2].

time by Dj/uj . The subscript "j" refers to the condi-
tions at the jet exit.
The viscosity is neglected here because its role is
quite negligible in the aeroacoustic studies of jet
flow and in the sound generation and propagation.
A0, A1, A2, A3 and B are matrices function of the
base flow quantities.
Each line of the matrix LLEE has been obtained
from conservation equations:

LLEEq
′ =


continuity

momentum for r
momentum for θ
momentum for x

energy

 = 0 (3)

An important assumption is made at this step. It
is assumed that the axial evolution of large scale
structures is not subject to nonlinear interactions,
but is rather controlled by weakly non parallel me-
chanisms resulting from the divergence of the jet.
The usual PSE assumption of small streamwise
variations of the complex wave numbers is added
inside the spatial theory framework, coming from
the non local (also qualified as non-parallel) stability
theory PSE developed by Herbert [22]. Finally the
disturbance quantities can be written in the quasi
normal mode form as:

q′ = q(x, r) χ(x) ei (mθ − ωt) + c.c., (4)

with

χ(x) = exp

[
i

∫ x

x0

α(ξ)dξ

]
In Eq. 4 q is the shape function and it is assumed
to be slowly varying in the x direction, α(x) is the

axial wavenumber, which is a complex function of
the only streamwise variable, m is the fixed integer
azimuthal wavenumber and the real number ω is the
fixed angular frequency of the disturbance. x0 is the
inlet of the computational domain.
Substituting Eq. 4 into Eq. 2 we obtain the main part
of the PSE equations. The question of keeping the
term ∂p

∂x in the equation which let some ellipticity is
not discussed there [22]. Finally a new set of PDE
equations can be written:

LPSEq = 0, (5)

with

LPSE = iαA1 + iωA3 + imA2 +B +A1
∂

∂x
+A0

∂

∂r

As usual in the stability problem the velocity distur-
bance is assumed to goes to zero when r goes to
infinity.
By observing the decomposition of Eq. 4 it can
be noticed that the streamwise change of the dis-
turbance can be described by the product of the
shape function and the exponential term. This am-
biguity must be resolved by the introduction of an
additional equation, called normalization or closure
relationship, which imposes that the growth of the
disturbance is absorbed by the wave function part
of the decomposition χ(x), making sure that the
shape function q(x, r) stays slowly varying in x. The
streamwise dependence of the shape function is
therefore distributed via the normalization. The defi-
nition of the normalization is based on the definition
of the complex wave number respectively in the lo-
cal and non local approach:

−i∂ ln(q′k)

∂x
= α, and

−i∂ ln(q′k)

∂x
= α− i 1

qk

∂qk
∂x

(6)

Naturally in the local stability theory the wave num-
ber is independent of radial direction r contrarily to
the PSE theory case if the previous definition is kept.
To remove this apparent dependency in r we impo-
sing to α(x) the same defintion as in the local stabi-
lity and after few steps we found:∫ ∞

0

q̄k
∂qk
∂x

mr dr = 0, (7)

or more generally:

N (q) =

∫ ∞
0

(N q̄)t
∂Nq

∂x
mr dr = 0



The matrix N can let choose which components of
the state vector are used in the closure relation.
The choice of another specific normalization would
not change the value of the physical disturbance,
as soon as this normalization removes the wavi-
ness and growth of the disturbance from the shape
function to include it in the exponential term as, ex-
plained by [4,22,23].
The system with the unknown (q, α) is quasi-
parabolic because an residual ellipticity due to the
normalization condition and a streamwise pressure
gradient term. It is solved numerically using a
streamwise marching solution starting from the ini-
tial condition at x = x0 which is set as the solution
of the local approach(LST).
In the present work the PSE code called ’Pasteq’
has been designed, written and validated by the O-
NERA [2]. A comparison with the pioneer work of
Yen et al. [5] is shown in Fig. 1, where the base flow
is an analytical flow, for an incompressible jet:

II- SENSITIVITY WITH ADJOINT PSE

In the following the sensitivity equations are derived
in the case of a small source forcing is applied as
source term of the PSE as:

χLPSEq = f and
∫ ∞

0

q̄t
∂q

∂x
r dr = 0 (8)

As the initial state let us consider f = 0 (no forcing).
The sensitivy Sfk is therefore the gradient of E with
respect to any component of f , fk, translated ma-
thematically as the relationship

δE(fk) = 〈Sfk , δfk〉Ω (9)

where the brackets 〈u, v〉Ω indicates an integral in-
ner product in the complex plane defined by over
the computational domain Ω:

〈u, v〉Ω =

∫
Ω

v̄u dΩ =

∫ xf

x0

∫ ∞
0

ūv rdrdx, (10)

where overbar denotes complex conjugate. Formaly
it can be written :

Sfk = ∇Efk(fk = 0) =

[
∂E

∂fk

]
fk=0

(11)

It is finally interpreted as how the variation in the
output E can be apportioned to variation in the input
δfk around the unforced condition. In case of flow
control problem or optimization problem, the forcing
f is naturally non zero.

To determine the sensitivity coefficients a La-
grangian functional is introduced, as it is currently
done in optimal control or optimization problem. All
arguments in this new functional are assumed in-
dipendent of one another. We have:

L(q, f , α, q̂∗, γ) = E − 〈q̂∗, χLPSEq− f〉Ω

−〈γ,
∫ ∞

0

q̄t
∂q

∂x
r dr〉x + c.c.

(12)

In Eq. 12 we also consider the complex conjugate
c.c. of the inner products to get real values. We
have defined a new inner product 〈 , 〉x which is
very similar to the first one but the integral is defined
along the streamwise coordinate x. The vector q̂∗

and the complex number γ are some Lagrange mul-
tipliers associated to the full PSE systems includ-
ing the normalization condition. Past work [13] has
shown that q̂∗ is more conveniently written in a man-
ner similar to the direct variables, i.e., by the intro-
duction of a wave-like part:

q̂∗(x, y) = q(x, y)χ∗(x) (13)

with

χ∗(x) = i exp

[∫ x0

xf

ᾱ(ξ)dξ

]
Taking into account Eq. 12 is an originality of this
work and is necessary to get a mathematically well-
posed problem.
Since the full PSE equations are equal to zero it is
quite obvious that the variation of the Lagrangian
functional is equal to the variation of the output
quantity E : δL = δE and they have both the same
gradient with respect to the state vector q. Let us
write formally the variation of the Lagrangian func-
tional as :

δL =
∂L
∂q

δq+
∂L
∂f
δf+

∂L
∂q∗

δq∗+
∂L
∂α

δα+
∂L
∂γ

δγ (14)

Eq. 14 has to be developed by introducing the
PSE equations and calculate the variations of these
equations with respect to the state vector q(x, r) and
the complex wave number α(x).
Futhers details are given at the appendix.
The sensitivity coefficient Sfk is found as the factor
term of δfk :

Sfk = ∇Lfk =
χ̄(xf )

χ̄(x)
q∗k(x, r) (15)

where xf is the end of the domain and q∗k is the k
component of the Lagrange multiplier vector q∗. All



the other gradients with respect to each indipendent
argument of the Lagrangian functional must be can-
celled; this requirement is expressed by emplying
Fréchet differentiation int the (generic) direction δa,
e.g.,

∂L
∂a

δa = lim
ε→0

L(a+ εδa)− L(a)

ε
(16)

Their derivations requie a series of integration by
parts to factorize the variations δq∗, δq, δγ, δα and
δf . The gradient with respect to the state vector lead
to the so-called adjoint equations (APSE) where the
adjoint state q∗ is solution of :

L∗APSEq
∗ = g(γ,q) (17)

coupled with the new closing condition (∂L∂α δα = 0).
This new closure relation can be reduced only to :

Ex + χ(xf )
∂

∂x
〈q∗, A1q〉r = 0 (18)

with 〈u, v〉r =
∫∞

0
ūvrdr.

The other part leads after some calculations and in-
tegration by part to obtain the boundary conditions
of the adjoint state q∗ when r → ∞ and to the so-
called terminal condition of the adjoint problem. In
fact, the adjoint equations are to be integrated up-
wing from xf to x0. The initial condition of the adjoint
problem is therefore a ’terminal’ condition.
The calculation are quite close to those found in [12]
where the adjoint equation where obtained for an
optimal control of the boundary layer instabilities.
Determining the terminal condition is quite complex,
since all the equations have to be detailed. In this
particular case where the output E is defined in the
whole computational domain, q∗(xf , r) = 0 is the
"terminal" solution.
Introducing a wall forcing instead of a source forcing
will not change the methodology, and results can be
quickly found by adding some few developments in
the previous equations as demonstrated in [15].

III- VALIDATION AND RESULTS

The subsonic base flow is determined from the ana-
lytical expression given firstly by Crow and Cham-
pagne [27] and found as well in [4] and [5].
The linear PSE results are given in Fig. 1.
The mean flow is given by:

ũx =
1

2

{
1 + tanh

[
1

8Θ

(
1

2r
− 2r

)]}
(19a)

Θ = 0.03x+ 0.02 (19b)

The non-dimensional mean pressure and density
are assumed uniform in the solution domain and re-
spectively equal to p̃ = 1

γM2 and ρ̃ = 1. The mean
radial velocity ũr(x, r) is computed from the conti-
nuity equation. The computations were performed
for Mach number Mj = 0.01 with the axisymmetric
instability mode, m = 0 and a Strouhal number of
0.6.
The Physical domain of interest starts at the nozzle
exit, x = 0.
A sixth order compact difference scheme [28] is
used in the radial direction. The streamwise deriva-
tive, ∂q∗

∂x , is approximated by the backward finite-
difference form (q∗j − q∗j−1)/∆x. The closure rela-
tion is solved with a Newton-Raphson algorithm and
convergence is fast, less than 10 iterations with γ for
each streamwise location x, the iteration is repeated
until a relative error smaller than 10−5. The state
perturbation q(x) and the complex wave number α
are required and have to be saved when running in
the first step the PSE problem.
The APSE computations have been validated by fol-
lowing the steps outlined below:

• PSE code have been modified in order to solve:

χLPSEq = fk (20)

where fk is the vector with fk in the k-th position
and zero otherwise.

• The variation of the quadratic function δE is
computed as a difference between Eq. 20 and
Eq. 5, after two PSE runs:

δE = E(δfk)− E(0) (21)

• The variation of the quadratic function δE is
computed following APSE theory:

δE =

∫
Ω

χ̄(xf )

χ̄
q∗kδfkdΩ (22)

Results of Eq. 22 shown a very favourably agree-
ment compared to the direct approach Eq. 21 for
forcing acting in continuity, and axial-momentum
equations, as displayed in Fig. 3. Similar results
have been found for forcing acting in Energy and r-
momentum equations.
The small forcing δfk is chosen as:

δfk =
ε

|δfk|2
exp(−σx(x− x̃)2 − σr(r − r̃)2) (23)

Where (x̃, r̃) is the central location of the forcing
and ε is the value of the integral volume of δfk,



x r σx σr ε

0.6 0.49 50 50 10−2

0.7 0.48 30 30 10−2

0.8 0.47 30 30 10−2

0.9 0.46 30 30 10−2

1.0 0.45 30 30 10−2

1.1 0.44 30 30 10−2

1.2 0.43 30 30 10−2

Table 1: Values of the coefficient used for the vali-
dation at different spatial position

shear layer

potential cone

x/D

Figure 2: Isolines of spatial distribution of Sf4 , with
5 are plotted the maximum of the sensitivity for dif-
ferent stream-wise positions, with • are plotted the
(x̃, r̃) used for validate de APSE.

∫
Ω
δfkdΩ = ε. This Gaussian function, Eq. 23 is set

in the k-th line of the Eq. 3 and it acts in a restricted
region of the domain (see Fig. 2). The values of the
difference coefficients used to define fk are shown
in Tab. 1.
Forcing smaller and more localized in the position
nearest from the exit of the nozzle is required in
order to avoid modifications of the initial condition
q(0, r). The locations of the forcing have been cho-
sen just out of the potential core where the sensitiv-
ity is high, see Fig. 2 and, because the arbitrary of
the locations tested, they are simply placed along a
straight line.
The variations of the total energy E with respect to
forcing acting in the continuity, momentum and en-
ergy equation are shown in Fig. 4.
We can see that the shape and the location of the
maximun of sensitivity are strongly related to the ra-
dial and streamwise variation of the base flow. In
particular the maximun of sensitivty is located along
the border of the potential cone and is well corre-
late with the location of the sound generation mech-
anism. A comparative study has to be done by defin-
ing some non dimensional gradient to compare the
sensitivity coefficient of each PSE equations. How-
ever we can even conclude that sensitivity to axial

x/D

δE

Figure 3: Comparison between results from Eq. 21
(lines) and Eq. 22 (symbols) is made.

momentum forcing is much higher than to a radial
momentum forcing.
Another important point is that the sensitivity in-
creases when the streawise coordinate decreases.
That makes sense since it is natural to reduce as
soon as possible the mechanism of noise genera-
tion if the aim is to reduce noise emission.

IV- CONCLUSIONS

As conclusion a first sensitivity model of adjoint PSE
equations has been derived in the case of jet flow in-
stability. The goal will be to investigate some noise
control strategy in a single and later in dual stream
jet. First results concern a laminar flow, but we cur-
rently couple the analysis to a LES code in order
to analyse stability and sensitivity from a base flow
extract from a Large Eddy Simulations.
Another point will be in the near future to couple
the stability solver to a far-field sound propagation
approach and to propose the sensitivity of the full
model. Many questions remains relative to the lo-
cation and the quality of the coupling between the
PSE pressure disturbance and the far-field zone as
it have been discussed in [2,7,12,24].
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APPENDIX: PSE MATRICES

A0


0 ρ̃ 0 ũr 0
0 ρ̃ũr 0 0 1
0 0 ρ̃ũr 0 0
ρ̃ũr 0 0 0 0
0 0 0 −ũr ρ̃ũrM

2



A1 =


ρ̃ 0 0 ũx 0
0 ρ̃ũx 0 0 0
0 0 ρ̃ũx 0 0
ρ̃ũx 0 0 0 1
0 0 0 −ũx ρ̃ũxM

2



A2 =


0 0 ρ̃ 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



A3 =


0 0 0 1 0
0 ρ̃ 0 0 0
0 0 ρ̃ 0 0
ρ̃ 0 0 0 1
0 0 0 −1 ρ̃M2



B =


∂ρ̃
∂x

ρ̃
r + ∂ρ̃

∂r 0 ũr

r + ∂ũx

∂x
∂ũr

∂r 0

ρ̃∂ũr

∂x ρ̃∂ũr

∂r 0 0 0

0 0 ρ̃ũr

r 0 0

ρ̃∂ũx

∂x
∂ρ̃
∂r 0 0 0

− ∂ρ̃
∂x − ∂ρ̃

∂x 0 0 0


APPENDIX: APSE EQUATION

Procedure

Imposing all the different directional derivatives must
vanish with exception of ∂L∂f δf we found:

∂L
∂q

δq =

〈
χf

(
AT +BT − ∂AH1

∂x
− ∂AT0

∂r
− 1

r
AT0

)
q̄∗, δq

〉
Ω

−
〈
χfA

T
1

∂q̄∗

∂x
+ χfA

T
0

∂q̄∗

∂r
, δq

〉
Ω

+
〈
χfA

T
1f q̄
∗
f , δqf

〉
r

+
[〈
χfA

T
0 q̄
∗r, δq

〉
x

]
r=0

+
[〈
χfA

T
0 q̄
∗r, δq

〉
x

]
r=∞

+

〈
γ
∂q̄

∂x
δq− ∂ (γ̄q̄)

∂x
δq

〉
Ω

+ 〈γ̄f q̄f , δqf 〉r

−
∫ xf

x0

∫ ∞
0

2χχ̄q̄δq r dr + c.c.

∂L
∂α

δα = 2

〈(∫ ∞
0

χχ̄qq̄ r dr

)
,

∫ x

x0

δαdξ

〉
x

− χf
〈∫ ∞

0

∂ (q̄∗A0q)

∂x
r dr,

∫ x

x0

δαdξ

〉
x

+ χf
〈
q̄∗fA0fqf , δαf

〉
r
c.c.

with A = iαA1 + imA2 − iωA3, χf = χ(xf ) =
χ̄∗(x)χ(x) and the subscript "f" beside a variable in-
dicates its value at x = xf .
Imposing:

∂L
∂q∗

δq∗ = 0

∂L
∂γ

δγ = 0

we obtain respectively Eq. 5 and Eq. 7.

Adjoint Parabolized Stability Equations

Since all variations are arbirary, axcept at bound-
aries where the conditions are fixed (such as, for
example, at x = x0), the different integrals vanish
if the following Euler-Lagrange equations are satis-
fied:

L∗PSEq
∗ = g(q, γ)

with

L∗PSE = −1

r
A0

H +AH +BH − ∂AH1
∂x
− ∂AH0

∂r

−AH1
∂

∂x
−AH0

∂

∂r

and

g(q, γ) =
1

χ̄f

[
(γ − γ̄)

∂q

∂x
+

(
∂γ

∂x
+ χχ̄

)
q

]
closing relation:∫ ∞

0

(
iχχ̄q̄q + χf

∂ (q̄∗A0q)

∂x

)
r dr + c.c. = 0

terminal condtion:

χf

∫ ∞
0

q̄∗fA0fqf r dr + c.c. = 0

χ̄fA
T
1fq
∗
f + γfqf + c.c. = 0

boundary condition:[
χ̄frA

T
0 q
∗]
r=0

+ c.c. = 0

[
χ̄frA

T
0 q
∗]
r=∞ + c.c. = 0
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