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ABSTRACT

Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of
Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets.
Aims. The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency.
Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to
constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations
used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves.
Methods. We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary
atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically
derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to
examine the key role played by stratification.
Results. In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity
of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid
layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible.
The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in
regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies.
Conclusions. Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally driven
toward synchronous or asynchronous final rotation rates. The domain of applicability of the traditional approximation is rigorously
constrained by calculations.
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1. Introduction

The end of 2016 and the beginning of 2017 have been marked
by the discovery of potentially habitable Earth-like exoplanets
orbiting two stars that are located in the close neighborhood of
the solar system. The first star is Proxima Centauri, where a
planet with a minimum mass of 1.3 M⊕ has been detected; this is
Proxima b (Anglada-Escudé et al. 2016; Ribas et al. 2016). The
second star is the ultra-cool dwarf star Trappist-1, which hosts
seven telluric planets of masses between 0.2 M⊕ and 2 M⊕ and
radii between 0.7 R⊕ and 1.2 R⊕ (Gillon et al. 2017). Proxima b
and Trappist-1 e, f, and g orbit in the habitable zone of their
host stars. In addition, they are likely to be covered with an at-
mosphere like Earth, Venus, or Mars in the solar system. Their
habitability is hence strongly constrained by their atmospheric
dynamics (i.e., the general circulation and zonal winds), which
plays a prominent role in the heat transport and determines their
climate and surface temperature.

The atmosphere dynamics is tightly related to the rotational
dynamics of planets. For instance, the general circulation of
rapidly rotating planets such as Earth is driven by geostrophic
flows, while planets close to spin-orbit synchronous rotation are
subject to large-scale convective cells that transport heat from
the dayside to the nightside (e.g., Leconte et al. 2013). It is thus
of great importance to characterize the rotational evolution of the
observed rocky exoplanets.

The exoplanets hosted by Trappist-1 are expected to be either
tidally synchronized with the star or trapped in a higher-order
spin-orbit resonance, since they are submitted to a strong tidal
gravitational potential applied on their telluric core (Gillon et al.
2017). However, as noted by Ribas et al. (2016), who studied
the rotation of Proxima b, the stellar irradiation can generate
thermal atmospheric tides in addition to the standard gravita-
tional tide. Thermal tides have been proved to be able to com-
pensate for the solid tidal torque and to torque the planet away
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from synchronization. This is the case of Venus, which is main-
tained in a retrograde rotation state of equilibrium by the compe-
tition between solid and atmospheric tides (Gold & Soter 1969;
Dobrovolskis & Ingersoll 1980; Correia & Laskar 2001, 2003;
Auclair-Desrotour et al. 2017b).

Using a global ab initio modeling, we investigated the
role played by the structure and properties of the atmosphere
in response to a semidiurnal quadrupolar tidal forcing in a
previous study (Auclair-Desrotour et al. 2017a). We showed
in particular that stable stratification is able to modify the
dependence of the atmospheric tidal torque on the tidal fre-
quency. These results suggest that the Maxwell-like frequency
dependence (so called in reference to the Maxwell model, see,
e.g., Greenberg 2009; Correia et al. 2014) obtained by early
works with parametrized models (Ingersoll & Dobrovolskis
1978; Correia & Laskar 2001) or general circulation models
(GCMs; Leconte et al. 2015) corresponds to the tidal response
of a neutrally stratified atmosphere with respect to convection.
The results also show that a strongly stable stratification tends
to annihilate the global tidal bulge by allowing gravity waves to
propagate, so that the resulting atmospheric tidal torque becomes
negligible. This has large repercussions on the final rotation rate
of the planet. In the neutrally stratified case, an asynchronous ro-
tation rate can be reached, while the solid tide dominates in the
second case, leading the body to spin-orbit synchronization.

However, these tendencies were obtained by considering
asymptotic cases (neutrally slowly rotating and isothermal stably
stratified atmospheres), which set the details of the continuous
variation of the tidal response with stratification aside. More-
over, the global model used to describe the dynamics of tidal
waves in this early work is based upon an approximation on the
hierarchy between rotation and stratification, the traditional ap-
proximation. It consists of neglecting the latitudinal projection of
the rotation vector in the Coriolis acceleration, which allows us
to separately integrate the vertical and horizontal structure of the
tidal response. The traditional approximation is not valid for all
configurations, and its domain of applicability is not clearly es-
tablished (Gerkema & Zimmerman 2008; Tort & Dubos 2014).
Some of the limitations of the traditional approximation have
been identified in geophysical and astrophysical fluid dynamics
(Gerkema & Shrira 2005). Particularly, the general case is fully
2D, and thus the coordinates cannot be separated (Mathis et al.
2014). Hence, the traditional approximation needs to be vali-
dated for thermal atmospheric tides. It is thus necessary to de-
velop a tractable model enabling us to widely explore the pos-
sible stratifications and rotations without any approximation on
the Coriolis acceleration. Such a model would also allow us to
discuss the different tidal regimes, their consequences on the
evolution of the rotation rate of a planet, and the possible bias
resulting from approximations made in the global modeling.

Therefore, we propose in this study to characterize the be-
havior of the atmospheric tidal torque with respect to stratifica-
tion in the framework of a 2D simplified local Cartesian mod-
eling where the effect of rotation is fully taken into account.
This approach is based on the early works by Gerkema & Shrira
(2005), Mathis et al. (2014), and André et al. (2017), who ex-
amined the effect of stratification and rotation on waves prop-
agating within planetary oceans, stars, and gaseous envelopes
of giant planets. We generalize their formalism to treat the case
of stratified atmospheres with vertically dependent hydrostatic
equilibrium structures.

We introduce the physical setup of the local model in Sect. 2
and write the equations describing the dynamics of thermally
generated tidal waves in a planetary fluid layer in Sect. 3. Then
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Fig. 1. Spherical and Cartesian reference frames and coordinate sys-
tems. The vectors Ω and g designate the rotation and the gravity,
respectively.

we derive in Sect. 4 the energy balance associated with a prop-
agating tidal mode. In Sect. 5 analytic solutions are computed
in the case of simplified atmospheric models, namely a homo-
geneous fluid with uniform background distributions and of an
isothermal stably stratified atmosphere. In Sect. 6 these solutions
are used to discuss the possible tidal regimes and the depen-
dence of the atmospheric tidal torque on stratification in the non-
traditional framework. We show that beyond a critical value of
the Brunt-Väisälä frequency, this torque becomes negligible. We
then illustrate the consequences of this behavior on the planet ro-
tation by computing the evolution of this latter for various strat-
ifications. We end this work with a study of the applicability of
the traditional approximation in Sect. 7 that allows us to identify
asymptotic regimes where it can be applied. Finally, we give our
conclusions in Sect. 8.

2. Physical setup and background structure

Following Gerkema & Shrira (2005) and Mathis et al. (2014),
we considered a local volume within a planetary atmospheric
layer (Fig. 1). This volume is a Cartesian box of side L such
that L � R, R being the planet radius. It is rotating uniformly at
the angular velocity Ω. We denote by Ω the corresponding spin
vector. The position of the fluid box is located in the corotating
frame attached to the body RE: {O, XE,YE, ZE}, such that ZE =
Ω/ |Ω|, with the usual system of spherical coordinates (r, θ, ϕ),
where r stands for the vertical coordinate, θ for the colatitude,
and ϕ for the longitude. The associated vectorial basis is de-
noted

(
er, eθ, eϕ

)
. To study the dynamics of tidal waves inside the

box, we used the Cartesian coordinates x (west-east), y (south-
north) and z (vertical, positive upward), and the associated ba-
sis

(
ex, ey, ez

)
=

(
eϕ,−eθ, er

)
. Finally, the time is denoted t. For

convenience, we used the same notations as Gerkema & Shrira
(2005) for physical quantities whenever possible.

The structure of the layer is described by the background
spatial distributions of gravity g, pressure p0, density ρ0 and
temperature T0. To simplify the problem, we assumed that these
quantities vary with the vertical coordinate (z) only. This corre-
sponds to ignoring the effects of centrifugal distortion and the
day-night variations of the atmosphere. We also introduce the
pressure scale height of the fluid,

H (z) =
p0

gρ0
, (1)
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and its Brunt-Väisälä frequency, that is, the frequency charac-
terizing the stability of the vertical entropy stratification, defined
as

N2 (z) = g

[
1
Γ1

d ln p0

dz
−

d ln ρ0

dz

]
, (2)

where Γ1 stands for the first adiabatic exponent (e.g.,
Gerkema & Zimmerman 2008). We consider in the following
that the fluid is a perfect gas, so that Γ1 = 1.4. As the at-
mosphere is assumed to be in solid rotation with the body,
mean flows are ignored in this first paper. However, the in-
ternal dissipation due to radiative cooling is taken into ac-
count. In the Maxwell approximation mentioned above, the
maximum amplitude of the atmospheric torque corresponds
to equalizing the tidal period τtide and an effective ther-
mal time associated with internal diffusive and radiative pro-
cesses τ0 (Leconte et al. 2015; Auclair-Desrotour et al. 2017a).
These processes can be described at first order by a New-
tonian cooling as in Auclair-Desrotour et al. (2017a; see also
Lindzen & McKenzie 1967; Dickinson & Geller 1968). This in-
troduces a parameter for the efficiency of dissipation, the fre-
quency σ0, which is the inverse of the local radiative time of the
fluid. Like the other quantities, σ0 can vary along the vertical
direction (see, for example, Pollack & Young 1975, for Venus);
it was set to a constant value here for the sake of simplicity.
The effect of a radiative time varying with altitude on the tidal
perturbation has been studied in the framework of the classi-
cal theory of atmospheric tides (e.g., Dickinson & Geller 1968;
Lindzen & McKenzie 1967).

3. Tidal wave dynamics

The fluid is forced thermally by the perturber with the thermal
power per unit mass J. The resulting perturbed quantities are
the variations of pressure δp, density δρ, and the velocity field
u = (u, v, w). To simplify the equations of dynamics, we used
the reduced pressure variations p = δp/ρ0 and the buoyancy
b = −gδρ/ρ0 instead of δp and δρ (see, e.g., Gerkema & Shrira
2005). The effect of rotation on the tidal perturbation is taken
into account through the Coriolis acceleration. Hence, we intro-
duce the Coriolis parameters f = 2Ω cos θ and f̃ = 2Ω sin θ and
assume them to be constant in the box, which is the so-called
f -plane approximation. We note that f corresponds to the verti-
cal projection of the rotation vector and f̃ to its latitudinal com-
ponent, which is responsible for the coupling of the latitudinal
and vertical structures of tidal waves. To make the problem sep-
arable and tractable analytically within spherical geometry, it is
necessary to assume the traditional approximation, that is, to ig-
nore this term. Here, the simplified Cartesian geometry of the
local modeling allows us to conserve the complete Coriolis ac-
celeration that includes terms in f̃ .

We assumed that asynchronous rotation rates are possible
only in the vicinity of synchronous rotation, in range of forc-
ing periods defined by τtide ∼ τ0. This allowed us to ignore
the effects of compressibility and to simplify calculations by
applying the anelastic approximation (Spiegel & Veronis 1960).
Thus, following Mathis et al. (2014), we neglect the contribu-
tion of acoustic waves. We note that compressibility can nev-
ertheless contribute to the atmospheric tidal response in a non-
negligible way in the regime of rapidly rotating bodies, where
horizontally propagating acoustic waves can be generated, the
so-called Lamb modes. Finally, we assumed the so-called Cowl-
ing approximation (Cowling 1941), which consists of ignoring

the perturbation of the self-gravitational potential. The dynam-
ics of the tidally forced fluid response is thus described by the
following linearized Navier-Stokes equation

ut + 2Ω × u = −∇p + b ez, (3)

the equation of mass conservation

∇ · (ρ0u) = 0, (4)

and the equation of energy

bt + N2w =
κ

H
J − σ0b, (5)

where the subscript t denotes the partial derivative in time, κ =
(Γ1 − 1) /Γ1, and σ0b stands for the sink term associated with
the Newtonian cooling. Because of the periodicity in time of the
tidal forcing (thermal and gravitational), any perturbed quantity
q can be expanded as a Fourier series of the form

q (x, t) =
∑
σ

qσ (x) eiσt, (6)

the parameter σ being the tidal frequency of a component and qσ
the Fourier coefficient of the expansion. In the following, the su-
perscript σ is omitted in order to lighten expressions. By substi-
tuting Eq. (6) in Eqs. (3)–(5), we obtain the system of linearized
primitive equations

iσu − f v + f̃w = −px, (7)
iσv + f u = −py, (8)

iσw − f̃ u = −pz + b, (9)

ux + vy + wz +
d ln ρ0

dz
w = 0, (10)

(iσ + σ0) b + N2w =
κ

H
J. (11)

We note that the notations u, v, w, p, and b now refer to the spatial
distributions of perturbed quantities.

We consider waves propagating in the horizontal direction
along the vector eα = cosα ex + sinα ey, α being the angle of the
direction of propagation in the

(
ex, ey

)
plane. Hence, using the

change of variable χ = x cosα + y sinα, the system of Eqs. (7)–
(11) can be reduced to a single equation for w,

Awχχ + 2Bwχz + Cwzz + Dwχ + Ewz + Fw = S , (12)

where the subscripts χ and z refer to the horizontal and ver-
tical derivatives, respectively. The coefficients associated with
second-order derivatives are expressed as

A (z) = N2 + η−1
(

f 2
s − σ

2
)
, (13)

B (z) = η−1 f fs, (14)

C (z) = −η−1
(
σ2 − f 2

)
, (15)

those associated with first-order derivatives as

D (z) = η−1 d ln ρ0

dz
f̃ (iσ cosα + f sinα) , (16)

E (z) = η−1
(

f 2 − σ2
) d ln ρ0

dz
, (17)

F (z) = η−1
(

f 2 − σ2
) d

dz

(
d ln ρ0

dz

)
, (18)
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and the source term S due to the thermal forcing is written

S (z, χ) =
κ

H
Jχχ. (19)

In these expressions, we have introduced the modified Coriolis
parameter of Gerkema & Shrira (2005), fs = f̃ sinα, and the
function

η (σ) =
σ

σ − iσ0
, (20)

which is such that η = 1 if the radiative cooling is ignored and
0 ≤ |η| < 1 otherwise. In the asymptotic regime dominated by
the radiative cooling (|σ/σ0| → 0), η → 0. In the regime where
thermal time is far greater than the tidal period (|σ/σ0| → +∞),
η→ 1.

Hence, by setting σ0 = 0 and a uniform density profile
(d ln ρ0/dz = 0), we eliminate terms associated with first-order
derivatives and recover the equations given by Gerkema & Shrira
(2005).

Following this early work, we seek 2D solutions expressed
as

w (z, χ) = Ψ (z) ei[k⊥χ+δ(z)], (21)

where k⊥ stands for the horizontal wavenumber, δ is the function
defined as

δ (z) = k⊥
f fs

σ2 − f 2 z + i
1
2

ln ρ0, (22)

and Ψ the solution of the Schrödinger-like vertical structure
equation

d2Ψ

dz2 + k2
z Ψ = −k2

⊥

Ŝ
C

Φ−1. (23)

In this equation, Ŝ denotes the vertical profile of S resulting
from the above separation of coordinates and kz the local ver-
tical wavenumber of the mode, defined by

k2
z = k2

⊥

ηN2 − σ2

σ2 − f 2 +

(
σ fs

σ2 − f 2

)2
+

d ln ρ0

dz

(
k⊥
σ f̃ cosα
σ2 − f 2 −

1
4

d ln ρ0

dz

)
+

1
2

d2 ln ρ0

dz2 ,

(24)

while Φ (z) = exp (iδ). We recognize in the first term of
Eq. (24) the classical vertical wavenumber of gravito-inertial
waves. Other terms are associated with the variation of back-
ground distributions. The polarization relations giving the verti-
cal profiles of perturbed quantities as functions of Ψ and its first
derivative are deduced straightforwardly from primitive equa-
tions. Denoting by q̂ the vertical profile of a quantity q (such
that q (z, χ) = q̂ (z) eik⊥χ), we thus obtain for the buoyancy,

b̂ (z) = −
i

σ − iσ0

[
κ

H
Ĵ − N2ΦΨ

]
, (25)

for the pressure,

p̂ (z) = i
f 2 − σ2

σk2
⊥

Φ

[
dΨ

dz
+

(
1
2

d ln ρ0

dz
+A

)
Ψ

]
, (26)

and for the components of the velocity field,

û (z) =
iσ cosα + f sinα

σk⊥
Φ

[
dΨ

dz
+

(
1
2

d ln ρ0

dz
+ B

)
Ψ

]
, (27)

v̂ (z) = −
f cosα − iσ sinα

σk⊥
Φ

[
dΨ

dz
+

(
1
2

d ln ρ0

dz
+ C

)
Ψ

]
, (28)

ŵ (z) = ΦΨ, (29)

with the coefficients

A = −k⊥
σ f̃ cosα
σ2 − f 2 , (30)

B = ik⊥ fs

[
f

σ2 − f 2 +
sinα

iσ cosα + f sinα

]
, (31)

C = ik⊥ fs

[
f

σ2 − f 2 +
cosα

f cosα − iσ sinα

]
· (32)

4. Energy balance

The vertical profiles of the perturbed quantities being established
in Eqs. (25)–(29), we can compute the energy balance and torque
associated with the atmospheric tide. The equation for the energy
is obtained by multiplying the momentum equation Eq. (3) by u
and the equation of buoyancy Eq. (5) by b. We obtain(
Ec + Ep

)
t
= −∇ · (ρ0 pu) + Ddiss + Pfor, (33)

where we have introduced the kinetic energy per unit volume,

Ec =
1
2
ρ0u2, (34)

the potential energy per unit volume associated with
stratification,

Ep =
1
2
ρ0

b2

N2 , (35)

the power dissipated per unit volume by the radiative cooling,

Ddiss = ρ0σ0
b2

N2 , (36)

and the power injected per unit volume by the thermal tidal
forcing,

Pfor = ρ0
κ

HN2 bJ. (37)

Averaged over time, these quantities become

Ec =
1
2
ρ0〈u2〉t, Ep =

1
2
ρ0

N2 〈b
2〉t,

Ddiss =
ρ0σ0

N2 〈b
2〉t, Pfor = ρ0

κ

HN2 〈bJ〉t,
(38)

where 〈. . .〉t is the average in time. Finally, we use the identity

〈< {p}< {q}〉t =
1
2
<

{
p̂ q̂∗

}
, (39)

the notations< and ∗ referring to the real part and conjugate of
a complex number, respectively. We obtain

Ec =
1
4
ρ0

∣∣∣̂u∣∣∣2 , Ep =
1
4
ρ0

N2

∣∣∣∣̂b∣∣∣∣2 ,
Ddiss =

1
2
ρ0σ0

N2

∣∣∣∣̂b∣∣∣∣2 , Pfor =
1
2
ρ0κ

HN2<
{̂
bĴ∗

}
.

(40)
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We recall that in these expressions, b̂ and û =
(̂
u, v̂, ŵ

)
designate

the vertical profiles of the complex perturbed quantities that are
given by Eqs. (25)–(29).

Similarly, the tidal torque exerted by the star on the fluid
layer with respect to the spin axis of the planet is defined by

T =

∫
V

r sin θ<{δρ} FT,ϕdV , (41)

where FT;ϕ is the latitudinal component of the tidal force, ϕ is the
longitudinal coordinate, and V is the volume of the fluid shell.
This expression can be written as a function of the tidal potential
generating the tidal force U, which is such that F = ∇U, and
becomes (e.g., Zahn 1966; Auclair-Desrotour et al. 2017a)

T = <

{
1
2

∫
V

Uϕδρ
∗dV

}
. (42)

One can note that δρ has two components: the adiabatic compo-
nent <{δρ}, which is in phase with the tidal potential and does
not contribute to the tidal torque, and the dissipative component
delayed with respect to the forcing, = {δρ}, the notation = re-
ferring to the imaginary part of a complex number. Hence, the
equivalent local tidal torque exerted on the fluid box scales as

T ∝ −=

{∫ zb

0
ρ0b̂dz′

}
. (43)

5. Simplified atmospheric models

The above equations are formulated in the general case, for any
background distribution. In order to analytically explore the pa-
rameter domain, we compute in this section analytic solutions of
the thermal tide in two simplified cases: in a homogeneous fluid
with uniform background distributions, and in an isothermal sta-
bly stratified gas. In both cases, we consider a uniform profile
of thermal forcing (Ĵ is now a constant) for the sake of simplic-
ity, as done before in the global model (Auclair-Desrotour et al.
2017a). Such a profile physically corresponds to an optically thin
atmosphere homogeneous in composition, where the stellar in-
coming flux is absorbed over the whole depth of the fluid layer.
It can also be seen in the general case as a zero-order approxi-
mation of the effective energy input per unit mass generating the
thermal tide. Assuming Ĵ to be constant allows us to reduce the
right-hand side of the vertical structure equation (Eq. (23)) to a
simple exponential function of the altitude.

5.1. In a homogeneous fluid

The simplest case is that of uniform background distributions,
which corresponds to the case studied by Gerkema & Shrira
(2005). We assume that ρ0, H, and σ0 do not vary with the alti-
tude. As a consequence, the vertical structure equation reduces
to

d2Ψ

dz2 +k2
⊥

ηN2 − σ2

σ2 − f 2 +

(
σ fs

σ2 − f 2

)2 Ψ =
k2
⊥κηĴ

H
(
σ2 − f 2)e−iδcz, (44)

with

δc =
k⊥ f fs
σ2 − f 2 · (45)

Solving Eq. (44) requires us to choose two boundary conditions.
As the guideline of this work is to characterize the atmospheric

tidal response of a terrestrial planet, we use an impenetrable
rigid-wall condition at z = 0, that is, Ψ = 0. For the upper bound-
ary, following Shen & Zhang (1990), we assume that there is no
material escape at the top of the atmosphere. Thus, the obtained
solution shall not diverge at z = +∞. This amounts to eliminat-
ing the diverging term of the solution,

Ψ = A eikzz + Be−ikzz + ΨSe−iδcz, (46)

where ΨS is the amplitude of the particular solution, and A and
B are integration constants. With the convention = {kz} > 0, it
follows that

Ψ = A eikzz + ΨSe−iδcz, (47)

at the upper boundary. Thus, denoting by ν the dimensionless
complex factor expressed as

ν (σ) =
ηN2

ηN2 − σ2 + f 2
s
, (48)

we obtain the solution

Ψ (z) = ΨS

(
e−iδcz − eikzz

)
, (49)

where the constant ΨS is written

ΨS (σ) =
κĴ

HN2 ν. (50)

We note that the case ν = 0 corresponds to a neutral stratification
(see Eq. (48) with N2 = 0). In this case, ΨS = κĴ/

[
H

(
f 2
s − σ

2
)]

.
We then substitute Eq. (49) in Eqs. (25)–(29) and introduce the
parameters

D (z) = 1 − ei(δc+kz)z and E (z) = −i (δc + kz) ei(δc+kz)z, (51)

to obtain the vertical profiles of the tidal fluctuation of buoyancy

b̂ (z) = −
i

σ − iσ0

κĴ
H

(1 − νD) , (52)

pressure

p̂ (z) = i
f 2 − σ2

σk2
⊥

ΨS

[
E + k⊥ f̃

σ cosα + i f sinα
f 2 − σ2 D

]
, (53)

and velocity field

û (z) = i
cosα

k⊥
ΨS

[
E + ik⊥

f̃ sin2 α

iσ cosα + f sinα
D

]
, (54)

v̂ (z) = −
f cosα − iσ sinα

σk⊥
ΨS

[
E + ik⊥

f̃ sinα cosα
f cosα − iσ sinα

D

]
,

(55)
ŵ (z) = ΨSD. (56)

Finally, denoting zb the altitude of the upper boundary and sub-
stituting Eq. (52) into Eqs. (40) and (43), we obtain the total
averaged dissipated energy per unit area of the (σ, k⊥)-mode in
the fluid Cartesian box,

D̂diss =
1
2

ρ0σ0

N2
(
σ2 + σ2

0

) κĴ
H

2 ∫ zb

0

∣∣∣1 − νD (
z′
)∣∣∣2 dz′, (57)

and the dimensionless tidal torque

T ∝ 2σ0=

{
i

1 − ν
σ − iσ0

}
, (58)

which is normalized so that max |T | = 1 when ν = 0.
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5.2. In an isothermal atmosphere

The isothermal approximation is the zero-order approximation
of the atmospheric structure of terrestrial planets such as Earth.
It is also the simplest structure allowing us to examine the reper-
cussions of the variations of background distributions on the
tidal response. An isothermal atmosphere is characterized by
exponentially decaying density and pressure distributions and
a uniform pressure height-scale depending on the temperature.
Hence, ρ0 is now given by

ρ0 (z) = ρse−τz, with τ =
1
H
, (59)

the notations ρs and τ designating the density at the surface of
the solid part of the planet and the vertical decaying rate, re-
spectively. Since the density profile follows an exponential law,
d ln ρ0/dz = −τ. Therefore, noting that N2 does not vary with the
altitude either, we obtain for the vertical structure of tidal waves
an equation of the same form as Eq. (44),

d2Ψ

dz2 + k2
z Ψ =

k2
⊥κηĴ

H
(
σ2 − f 2)e−iδcz, (60)

with in this case

δc =
k⊥ f fs
σ2 − f 2 − i

τ

2
, (61)

and

k2
z = k2

⊥

ηN2 − σ2

σ2 − f 2 +

(
σ fs

σ2 − f 2

)2 − τk⊥
σ f̃ cosα
σ2 − f 2 +

τ2

4
· (62)

Hence, by applying the same boundary conditions as in the pre-
vious case, we obtain an analytic solution, which is written sim-
ilarly as Eq. (49). The parameter ν alone is modified and is writ-
ten

ν =
ηN2

ηN2 − σ2 + f 2
s + γ f̃ (i f sinα − σ cosα) + 1

2γ
2 (
σ2 − f 2) ,

(63)

where the parameter γ is defined as

γ =
τ

k⊥
, (64)

and compares the horizontal wavelength of the mode to the typ-
ical scale height of the background vertical distributions. The
vertical profiles of perturbed quantities derived from this solu-
tion are written for the buoyancy

b̂ (z) = −
i

σ − iσ0

κĴ
H

(1 − νD) , (65)

for the pressure

p̂ (z) = i
f 2 − σ2

σk2
⊥

ΨS

[
E +

(
k⊥ f̃

σ cosα + i f sinα
f 2 − σ2 − τ

)
D

]
, (66)

and for the velocity field

û (z) = i
cosα

k⊥
ΨS

[
E +

(
ik⊥

f̃ sin2 α

iσ cosα + f sinα
− τ

)
D

]
, (67)

v̂ (z) = −
f cosα − iσ sinα

σk⊥
ΨS

[
E (68)

+

(
ik⊥ f̃ sinα cosα
f cosα − iσ sinα

− τ

)
D

]
,

ŵ (z) = ΨSD. (69)

In these expressions, the parameters D and E are those defined
by Eq. (51). Basically, we note that we recover all of the results
of the previous case by setting τ = 0 since a uniform density dis-
tribution is just the asymptotic limit of an exponentially decaying
one with H → +∞. We finally compute the energy dissipated per
unit surface by the radiative cooling in the fluid section

D̂diss =
1
2

ρsσ0

N2
(
σ2 + σ2

0

) κĴ
H

2 ∫ zb

0

∣∣∣1 − νD (
z′
)∣∣∣2 e−τz′dz′, (70)

and of the normalized dimensionless tidal torque,

T = 2σ0=

 i
σ − iσ0

1 − ν − ν

1 − i δc+kz
τ


 , (71)

which is obtained in a similar way as Eq. (58) and is such that
max |T | = 1 when ν = 0. As noted for other quantities, we easily
verify that these two expressions simplify into those obtained in
the case of uniform background distributions, that is, Eqs. (57)
and (58), respectively, when τ→ 0.

6. Tidal regimes and their implications
on the rotational dynamics of terrestrial planets

In this section, we use the results derived in the framework of
our Cartesian model to explore the domain of parameters and
understand the behavior of the atmospheric tidal response pre-
dicted by the much more complex previous global modelings
(Auclair-Desrotour et al. 2017a; Leconte et al. 2015). Particu-
larly, we examine the tidal torque exerted on the atmosphere,
which contributes to the evolution of the rotation rate of the
planet with the torque resulting from the tidal elongation and the
viscous friction of the solid core. In the vicinity of synchroniza-
tion, the atmospheric and solid tidal torques can balance each
other, the first torquing the planet away from synchronous ro-
tation and the second toward it. This can explain the locking
of the planet Venus at the observed asynchonous retrograde ro-
tation rate (Gold & Soter 1969; Ingersoll & Dobrovolskis 1978;
Dobrovolskis & Ingersoll 1980; Correia & Laskar 2001, 2003).

If the tidal response of the atmosphere is reduced to its
non-wavelike part1 (Ogilvie 2013), which is associated with a
quadrupolar bulge, the atmospheric tidal torque can be approx-
imated with a Maxwell rheology characterized by the effective
radiative frequency of the atmosphere (Ingersoll & Dobrovolskis
1978; Leconte et al. 2015; Auclair-Desrotour et al. 2017a,b),
that is,

T ∝
σ

σ2 + σ2
0

· (72)

However, Auclair-Desrotour et al. (2017a) pointed out that sta-
ble stratification is able to annihilate the tidal torque due to the

1 The separation of the fluid tidal response into non-wavelike and
wavelike part was introduced by Ogilvie (2013) in the context of
gravitational tides. The non-wavelike part designates the instantaneous
global elongation of the atmosphere and the induced large-scale flow,
while the wavelike part encompasses the effects of internal waves gen-
erated by the forcing and resonances they can induce. In the present
work, the term non-wavelike refers to the global elongation of the at-
mosphere due to the thermal forcing by analogy with the gravitational
tidal potential. It is different from the equilibrium tide, however, which
designates the tidal response of the fluid in the zero-frequency limit
(σ→ 0).
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thermal non-wavelike tide in the vicinity of synchronization be-
cause it induces a wavelike tide composed of gravity waves.
As a consequence, the planet would be led in this case toward
synchronous rotation by the solid tide. To study this effect, the
global modeling used in this early study should be completed for
two reasons. First, it describes the tidal atmospheric response in
a spherical geometry. This tends to dilute the physics into math-
ematical aspects. Second, it is based upon the traditional approx-
imation, and can be affected by the bias induced by this hypothe-
sis, which we study in the next section. Typically, when 2Ω & N,
the traditional approximation can lead us to overestimate the am-
plitude of the tidal torque, as discussed by Ogilvie & Lin (2004).
These authors show that the static approximation, in which the
effect of rotation is ignored, is better in this case. Following
them, we used this last approximation instead of the traditional
approximation to establish the Maxwell law in the global model
(Auclair-Desrotour et al. 2017a).

Hence, the local Cartesian modeling developed in the present
study allows us to explore the full domain of parameters in ro-
tation and stratification, including taking into account the com-
plete Coriolis acceleration, filtering out complexities due to the
spherical geometry, but keeping the key physical ingredients.

Considering the expressions of ν in the two cases treated in
the previous section, Eqs. (48) and (63), we recover the asymp-
totic regimes observed with global modelings. On the one hand,
in the convective atmosphere limit (i.e., N2 → 0), ν → 0.
The expressions of the tidal torque given by Eqs. (58) and (71)
both reduce to Eq. (72), that is, a Maxwell law. On the other
hand, in the stably stratified atmosphere limit (N2 → +∞),
ν → 1. Thus, the torque obtained in the case of a uniform back-
ground readily tends to zero. The case of the isothermal atmo-
sphere is slightly more complex because we have to take the
dependence of the vertical wavelengths of tidal gravito-inertial
waves on the tidal frequency into account. Equation (62) shows
that kz (σ) diverges in the vicinity of spin-orbit synchroniza-
tion (σ = 0), namely kz ∝

∣∣∣σ2 − f 2
∣∣∣−1/2

if |σ| � σ0, and

kz ∝

∣∣∣∣σ/ (σ2 − f 2
)∣∣∣∣1/2 otherwise. As a consequence, |kz/τ| � 1

and the third term associated with the propagation of gravito-
inertial waves in Eq. (71) becomes negligible. We identify here
how the tidal torque is flattened by the stable stratification. This
behavior corresponds to the equilibrium thermal tide of a stably
stratified fluid region studied by Arras & Socrates (2010) in the
case of fluid extrasolar planets. As demonstrated analytically by
Arras & Socrates (2010), the N2ξr/g term of the heat transport
equation tends to equalize the heat source term (J) in the equa-
tion of energy (Eq. (5)) while σ → 0. This means that the local
density decreases generated by the thermal forcing are exactly
cancelled by the vertical displacement of denser fluid brought
up from below.

This behavior is illustrated by Figs. 2 and 3, where the case of
the stellar semidiurnal thermal tide is examined. The planet is as-
sumed to orbit its host star circularly at the orbital frequency norb,
and its equatorial plane is coplanar with the orbital plane, so that
the perturbation reduces to the quadrupolar tidal forcing of fre-
quencyσ = 2 (Ω − norb). We set for the studied mode k⊥ = 2π/λ,
with the wavelength λ = 1000 km, so that γ = τ/k⊥ � 1 (asymp-
totic regime of long wavelengths). The tidal torque is plotted
as a function of the normalized apparent orbital frequency of
the star in the reference frame in corotation with the planet,
namely the normalized tidal frequency ω = (Ω − norb)/norb,
for different values of the Brunt-Väisälä frequency from the
convective isentropic limit (N = 10−8 s−1) to strongly stable
stratification (N = 10−2 s−1). These boundaries are chosen in
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Fig. 2. Normalized tidal torque as a function of the frequency of the
perturber ω = (Ω − norb) /norb for various values of the Brunt-Väisälä
frequency from weak to strongly stable stratification, i.e., log (N) =
{−8,−6,−4,−2}. The tidal torque is computed using the normalized
function given by Eq. (71), and we consider the case of a Venus-like
planet with the following set of values: norb = 1.991×10−7 s−1, Γ1 = 1.4
(perfect gas), H = 15.9 km, θ = π/3, α = 0 (westward propagating
wave), σ0 = 7.5 × 10−7 s−1 (Leconte et al. 2015), and k⊥ = 2π/λ with
λ = 1000 km.

such way that N � {2Ω, σ, σ0} in the first asymptotic regime
and N � {2Ω, σ, σ0} in the other. We recover in the first
case (red curve) the Maxwell-like tidal response predicted by
early studies (Ingersoll & Dobrovolskis 1978; Correia & Laskar
2001; Auclair-Desrotour et al. 2017a), and in the second (vio-
let curve) the weak torque obtained with the ab initio modeling
of Auclair-Desrotour et al. (2017a) that takes tidal gravity waves
into account.

Several resonances can be observed in the transition regime.
They result directly from the equality of characteristic frequen-
cies of the system (N2, σ, 2Ω), which occurs in the denominator
of the parameter ν. They are related to the local nature of the
model since their positions depend on the colatitude, and conse-
quently do not exist in the global tidal response, where the tidal
equation is integrated over the sphere (Auclair-Desrotour et al.
2017a). However, we have to characterize them here to clarify
the tidal torque frequency spectra observed in Fig. 2.

In the regime of long wavelengths (γ � 1), the denominator
of Eq. (63) can be approximated by

d = ηN2 +
1
2
γ2

(
σ2 − f 2

)
. (73)

We assume σ0 . σ, which corresponds to the quasi-adiabatic
regime (Press 1981; Auclair Desrotour et al. 2015), and substi-
tute σ = 2 (Ω − norb) in Eq. (73). Resonances thus correspond to
the zeros of the polynomial

P (Ω) = sin2 θΩ2 − 2norbΩ + n2
orb +

1
2
γ−2N2. (74)

We obtain the roots

Ω± =
1

sin2 θ

norb ±

√
n2

orb cos2 θ −
1
2
γ−2N2 sin2 θ

 , (75)

which, expressed in the normalized tidal frequency ω =
(Ω − norb) /norb used in Fig. 2, become

ω± =
cos θ
sin2 θ

cos θ ±

√
1 −

1
2
γ−2

(
N

norb

)2

tan2 θ

 . (76)
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Fig. 3. Normalized tidal torque (left panel) and imaginary part of the surface pressure oscillation (right panel) as functions of the normalized tidal
frequency ω = (Ω − norb) /norb (horizontal axis) and Brunt-Väisälä frequency in logarithmic scale (vertical axis). The tidal torque and pressure
variations are computed using the functions given by Eqs. (71) and (66), respectively. The torque is normalized by its maximum value in the
asymptotic regime of neutral stratification. The imaginary part of pressure oscillations is normalized by its maxima in absolute value. We consider
the case of a Venus-like planet with the following set of values: norb = 1.991 × 10−7 s−1, Γ1 = 1.4 (perfect gas), H = 15.9 km, θ = π/3, α = 0
(westward propagating wave), σ0 = 7.5 × 10−7 s−1 (Leconte et al. 2015), and k⊥ = 2π/λ with λ = 1000 km. The frequencies ω− and ω+ are the
resonant frequencies identified in Sect. 6 (see Eq. (76)).

In the limit N2 → 0, they tend to ω− = tan−2 θ − 1 and ω+ =
sin−2 θ. As a consequence, ω− = −1 and ω+ = +∞ at the poles.

These features are represented in the right panel of Fig. 3,
where the tidal torque is plotted as a function of the tidal fre-
quency (ω) and Brunt-Väisälä frequency in logarithmic scale.
Black vertical dashed lines indicate the positions of resonances,
while the horizontal dashed line designates the transition be-
tween the flat and Maxwell-like regimes for the tidal torque
identified above, which corresponds to N ∼ {γσ, γ f }. For the
evolution of planetary systems, this means that rocky planets
with an atmospheric Brunt-Väisälä frequency below this critical
value are likely to tend toward non-synchronized rotation states
of equilibrium, like Venus, while those beyond it will be led to-
ward spin-orbit synchronization, in good agreement with predic-
tions obtained in Auclair-Desrotour et al. (2017a; Sect. 6.3).

In the right panel of Fig. 3, the imaginary part of the sur-
face pressure oscillation is plotted as a function of ω and N. This
plot shows that we retrieve the asymptotic behaviors identified
for the tidal torque in surface pressure oscillations. In a weakly
stratified atmosphere, a net tidal bulge appears, leading to sur-
face pressure oscillations of high amplitude, in agreement with
the lag of the bulge. In the strongly stratified regime, pressure
oscillations vanish as there is no net tidal bulge anymore. How-
ever, we note that =

{
p̂
}

has not the same functional form as the
tidal torque. In addition, one should bear in mind that it partly
depends on the chosen boundary conditions, which prevents us
from proceeding to a more quantitative analysis.

To illustrate the impact of the atmospheric structure on the
long-term rotational evolution, we study the evolution of the ro-
tation rate of an idealized Venus-like rocky planet submitted to
both atmospheric and solid semidiurnal tides due to a host star.
As the goal of these calculations is to isolate the different possi-
ble evolutions, we chose simple values of parameters. We used
for the solid torque the simplified model expressed as

TS = −TS;0 tanh
(
σ

σS

)
, (77)

where TS;0 = 5.0 × 1016 N m designates the amplitude of the
torque and σS the effective relaxation frequency of the mate-
rial composing the rocky core. This model can be interpreted
as a zero-order approximation of the Andrade model (Andrade
1910; Efroimsky 2012; Leconte et al. 2015), which describes the
forced visco-elastic response of metals and silicates. The relax-
ation frequency of a rocky planet is usually far lower than the
orbital frequency (σS ∼ 10−10 s−1; e.g., Efroimsky 2012). Here,
we set σS = 10−2 norb. In the Andrade model, the decaying rate
of the tidal torque is far lower than that of the atmosphere for
σ � σS. It is therefore well approximated by a constant in the
vicinity of synchronous rotation. Concerning the atmospheric
torque, we applied Eq. (71) with the effective radiative frequency
σ0 = 3 norb and the amplitude TA;0 = 1.52 TS;0, which was arbi-
trarily chosen in such way that the final rotation rate corresponds
toω = 4 in case of asynchronous state of equilibrium. The planet
was assumed to have the same moment of inertia as Venus, that
is, Ip = 5.88× 1037 kg m2, and to orbit its host star at the orbital
period Porb = 100 d (we recall that norb = 2π/Porb).

The equation describing the evolution of the planet’s rotation
rate is written

Ip
dΩ

dt
= TS (Ω) + TA (Ω) . (78)

It was integrated over 10 billion years using the ODEX code im-
plemented in the algebraic manipulator TRIP (see Hairer et al.
2000; Gastineau & Laskar 2014), with the initial condition
Ω (0) = 10 norb. Simulations were achieved for a wide range
of Brunt-Väisälä frequencies N = 10β with β = −7 to β = −3.
The results are plotted in Fig. 4 as a function of time.

We can observe in this figure that rotational evolutions di-
vide into two distinct families. The first family (β ≥ −4), which
encompasses strongly stratified cases, is driven by the solid tidal
torque alone. In this family, the rotation rate invariably converges
toward synchronous rotation (ω = 0). Planets of the second fam-
ily (β ≤ −5.5) are driven by both solid and atmospheric tidal
torques. The evolution rate of their spin varies depending on the
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Fig. 4. Evolution of the rotation rate of a Venus-like planet for
various Brunt-Väisälä frequencies. The normalized frequency ω =
(Ω − norb) /norb is plotted as a function of time (Myr) in logarithmic
scale. The Brunt-Väisälä frequency N = 10β is increased from β = −7
(weak stable stratification) to β = −3 (strongly stable stratification) with
a step ∆β = 0.5.

strength of the atmospheric tidal torque, which tends to push the
planet away from synchronous rotation. They finally reach a sta-
ble non-synchronized state of equilibrium corresponding to the
frequency where the solid and atmospheric torques exactly bal-
ance each other. We can note two evolutions behaving in a differ-
ent way than those detailed above, namely β = −4.5 and β = −5.
These cases are associated with the transition regime. In the first
(β = −4.5), a non-synchronized state of equilibrium closer to
synchronization is reached, while the rapid evolution of Ω in the
second (β = −5) around t = 600 Myr results from one of the
resonances studied above (see Eqs. (73) to (76)). We note that
the rotation tends toward synchronization in this case.

In the general case, it seems difficult to predict the final ro-
tation rate of the planet using the formula given by Eq. (71).
However, it can be done in the asymptotic regime described by
the Maxwell model (see, e.g., Auclair-Desrotour et al. 2017b, in
the case where the tidal torque of the rocky core is modeled by a
Maxwell law). With the law chosen for the tidal torque applied
to the rocky core in the present work (Eq. (77)), the frequencies
ω± of possible states of equilibrium are expressed as

ω± =
1
2
σ0

norb

TA;0

TS;0

1 ±
√

1 −
(
TS;0

TA;0

)2
 , (79)

although onlyω+ corresponds to a stable state leading to an asyn-
chronous final rotation rate.

7. Domain of validity of the traditional
approximation

As mentioned in Sect. 3, the traditional approximation con-
sists of ignoring terms involving the factor f̃ in the momen-
tum equation components, Eqs. (7)–(9). This is convenient
to eliminate the coupling between the horizontal and vertical
structures of the tidal response induced by the Coriolis accel-
eration in global modelings (e.g., Chapman & Lindzen 1970;
Auclair-Desrotour et al. 2017a). However, the regime of param-
eters where the approximation is appropriate still remains only
partially determined. Early studies generally agree on the fact
that the approximation can be applied if 2Ω � σ, that is, in the

regime of super-inertial waves, where the fluid tidal response is
weakly affected by the rotation of the planet. It has also been
shown that the above condition could be extended to 2Ω . σ in
the case of a stably stratified fluid (σ � N) (e.g., Friedlander
1987; Mathis et al. 2008; Mathis 2009; Prat et al. 2017).

We propose here to quantify the conditions of applicability
of the traditional approximation by establishing the boundaries
of its domain of validity as a function of the characteristic fre-
quencies of the system (i.e.,σ,σ0, 2Ω, N) and of the length scale
ratio γ.

In light of the expressions of the dissipated power and tidal
torque, given in Eqs. (70) and (71), the dimensionless parameter
ν introduced in Eqs. (48) and (63) appears as a key parameter
to characterize the domain of validity of the traditional approx-
imation. It intervenes in an essential way in D̂diss and T , and
contains all the information concerning the hierarchy of charac-
teristic frequencies and control parameters of the system. There-
fore, considering that the impact of the traditional approxima-
tion on the obtained results is directly related to the variation of
ν with f̃ , we adopt as index of validity the normalized relative
difference between the parameters νTA and νNTA corresponding
to the cases with ( f̃ = 0) and without ( f̃ , 0) the traditional
approximation, respectively (the subscripts TA and NTA stand
for traditional approximation and no traditional approximation,
respectively), which is expressed as

ς =

∣∣∣∣∣νTA − νNTA

νTA + νNTA

∣∣∣∣∣ · (80)

In this approach, the condition of validity of the traditional ap-
proximation is ς � 1. Otherwise, neglecting the latitudinal pro-
jection of the rotation vector strongly modifies the tidal response,
leading to ς ≈ 1, and the traditional approximation should be
abandoned.

The parameter ς is plotted in Fig. 5 as a function of the fre-
quencies ratios N/σ, 2Ω/σ and for asymptotic values of σ0/σ
and the length-scale parameter γ = τ/k⊥. Angles are set to
θ = π/12 and α = π/2. The values taken by ς are indicated by
colors. Blue regions indicate the domain of parameters where the
traditional approximation can be applied (ς � 1), while red re-
gions designate regimes where it is not relevant (ς ≈ 1). Hence,
we note that the traditional approximation is appropriate regard-
less of the hierarchy of characteristic frequencies if the wave-
length of the mode is far greater than the pressure height-scale,
that is, if γ � 1. The reason is that the term (1/2) γ2

(
σ2 − f 2

)
is always far greater in this case than terms associated with the
latitudinal component of the Coriolis acceleration in the denom-
inator of ν,

d = ηN2 − σ2 + f 2
s + γ f̃ (i f sinα − σ cosα) (81)

+
1
2
γ2

(
σ2 − f 2

)
.

This suggests that the traditional approximation is well adapted
to the treatment of the tidal response of thin atmospheres,
where the horizontal wavelength of dominating propagating
modes is comparable to the radius of the planet in order of
magnitude. In the case of small wavelengths (γ � 1), we
recover the domain of validity established by early studies:
2Ω � σ if the layer is weakly stably stratified or convec-
tive (N � σ), and 2Ω . σ in the case of strongly sta-
ble stratification (N � σ). Particularly, the bottom left panel
of Fig. 5 shows that the boundary of the validity domain of
the approximation corresponds to 2Ω ∼ N in the regime
of strongly stable stratification, which is in good agreement
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Fig. 5. Relative difference between the parameters νTA and νNTA corresponding to the cases with and without traditional approximation respectively,
as a function of the ratio N/σ (horizontal axis) and 2Ω/σ (vertical axis) in logarithmic scales, and for various values of the ratios σ0/σ and γ = τ/k.
From left to right, log (γ) = {−2, 2}. From bottom to top, log (σ0/σ) = {−2, 2}. The normalized relative difference between νTA and νNTA is given
by ς = |νTA − νNTA| / |νTA + νNTA|. Blue (red) areas designate regions where the traditional approximation is (not) appropriate. Parameters: θ = π/4
and α = π/2.

with the diagnosis reported in Auclair-Desrotour et al. (2017a;
Fig. 21). This boundary is slightly modified by the radia-
tive/diffusive cooling (top left panel), with a downward trans-
lation of magnitude (1/2) log (σ/σ0) resulting from the equality
of the dominating terms of Eq. (81): (σ/σ0) N2 = f 2

s .

8. Conclusions
Motivated by the understanding of the role played by thermally
forced gravity waves in the atmospheric tidal response of a ter-
restrial planet submitted to the irradiation of its host star, we
have studied the tidal perturbation of a local atmospheric sec-
tion in solid rotation with the body. In this ab initio approach, in-
spired by Gerkema & Shrira (2005) and Mathis et al. (2014), the
dynamics of tidal waves are reduced to the essentials, which al-
lowed us to conserve the whole physics of tides, and particularly,
all the components of the Coriolis acceleration, while avoid-
ing complexities associated with spherical geometry. The goal
of this work was to provide a diagnosis of the results obtained
in our previous global analytic study (Auclair-Desrotour et al.
2017a) where two asymptotic regimes were identified: a weakly
stratified regime inducing a Maxwell-like tidal torque applied on
the atmosphere, and a strongly stably stratified regime associated
with a weak torque.

We wrote the linearized equations of tides for a fluid sec-
tion characterized by radial background distributions and dis-
sipative processes modeled with a Newtonian cooling as in
Auclair-Desrotour et al. (2017a). We computed analytic solu-
tions describing the forced oscillatory response in two typ-
ical cases: a homogeneous fluid with uniform background

distributions, and an isothermal atmosphere. In both cases,
the tidal torque exerted and the energy dissipated by dif-
fusive/radiative processes were also derived analytically. We
showed that tidal regimes are defined by a small number of phys-
ical parameters, namely the tidal (σ), inertia (2Ω), Brunt-Väisälä
(N), and radiative (σ0) frequencies, and the ratio between the
horizontal wavelength of a propagating tidal wave and the pres-
sure height-scale of the fluid (γ).

Considering the semidiurnal stellar tide, we recovered the
results obtained with global modelings in early works. The de-
pendence of the tidal torque on the forcing frequency can be de-
scribed by a Maxwell model in the vicinity of spin-orbit syn-
chronous rotation (Leconte et al. 2015; Auclair-Desrotour et al.
2017a) in the case of weakly stably stratified or convective at-
mospheres. If the stratification is strong, gravito-inertial waves
are generated. This wavelike response breaks the large-scale
quadrupolar hydrostatic elongation caused by the stellar heat-
ing at zero order, so that there is no net tidal bulge. As a
consequence, the amplitude of the tidal torque diminishes and
becomes negligible compared to the convective case. This sug-
gests that Venus-like planets with a stably stratified atmosphere
are likely to tend toward spin-orbit synchronous rotation, while
those with a convective atmosphere rather evolve toward non-
synchronized states like Venus, as predicted by the model of
Auclair-Desrotour et al. (2017a). Hence, the Cartesian approach
allows us to explore the domain of parameters, to confirm
the previously identified asymptotic regimes, and to highlight
the continuous transition between them. This transition occurs
for N ∼ {γσ, γσ0}. In the case of Venus itself, the structure
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of the atmosphere is characterized by a strong negative tem-
perature gradient near the surface of the planet (Seiff et al.
1980). This implies that the densest layers of the atmosphere,
which are also the better viscously coupled to the solid part,
are neutrally stratified. Hence, our simplified modeling sug-
gests in this case a strong atmospheric torque that agrees with
the conclusions of early works that examined the rotation of
Venus (e.g., Gold & Soter 1969; Dobrovolskis & Ingersoll 1980;
Correia & Laskar 2001; Auclair-Desrotour et al. 2017b).

By isolating in obtained solutions a characteristic scaling pa-
rameter (ν), we were also able to delimit the domain of valid-
ity of the traditional approximation used in global models as
a function of the system’s control parameters, and to charac-
terize the asymptotic regimes. In the short-wavelength approx-
imation, we recovered the domain of validity identified in early
studies, namely the validity conditions 2Ω � σ in the case of
weakly stratified fluids, and 2Ω � N in the case of strongly
stratified fluids (Friedlander 1987; Mathis et al. 2008; Mathis
2009; Auclair-Desrotour et al. 2017a). This domain is slightly
modified by dissipative mechanisms in this case. In the long-
wavelength asymptotic regime, where the pressure scale height
is smaller than the horizontal wavelength of a propagating mode,
we found that the Coriolis terms neglected in the traditional
approximation do not affect the tidal response, except at the
boundary of the inertial regime, defined by 2Ω ∼ σ. This re-
sult is appropriate to characterize the forced response of the
fluid up to meso-scale modes, that is, the application limit of
the f -plane approximation used in our modeling. Therefore, the
impact of the traditional approximation on global tidal modes
should be studied in general with global modelings, as was
done by Ogilvie & Lin (2004) in the case of giant planets or
Tort & Dubos (2014) for atmospheric dynamics.

However, the local approach developed here still remains an
efficient way to peer into the large domain of parameters of at-
mospheric tidal responses and to clarify the predictions of global
modelings obtained with assumptions. It offers a simplified but
robust picture of the tidal wave dynamics with the essential phys-
ical ingredients. Its predictive power on the rotation state of ex-
oplanets as a function of the convective stability of their atmo-
sphere is of great interest with their probe by forthcoming space
missions such as the JWST (Lagage 2015). Such missions will
be able to provide constraints on the temperature gradient at dif-
ferent depths in the atmospheres of exoplanets thanks to multi-
wavelength observations in the near IR. In forthcoming studies,
we will complete this picture by including stratified background
flows in the Cartesian fluid section. These flows are likely to
strongly modify the atmospheric tidal response, but cannot be
taken into account directly in global analytic modeling without
important mathematical complications.
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