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ABSTRACT

Context. Thermal tides can torque the atmosphere of hot Jupiters into asynchronous rotation, while these planets are usually assumed
to be locked into spin-orbit synchronization with their host star.
Aims. In this work, our goal is to characterize the tidal response of a rotating hot Jupiter to the tidal semidiurnal thermal forcing of
its host star by identifying the structure of tidal waves responsible for variation of mass distribution, their dependence on the tidal
frequency, and their ability to generate strong zonal flows.
Methods. We develop an ab initio global modelling that generalizes the early approach of Arras & Socrates (2010, ApJ, 714, 1) to
rotating and non-adiabatic planets. We analytically derive the torque exerted on the body and the associated timescales of evolution, as
well as the equilibrium tidal response of the atmosphere in the zero-frequency limit. Finally, we numerically integrate the equations of
thermal tides for three cases, including dissipation and rotation step by step.
Results. The resonances associated with tidally generated gravito-inertial waves significantly amplify the resulting tidal torque in the
range 1–30 days. This torque can globally drive the atmosphere into asynchronous rotation, as its sign depends on the tidal frequency.
The resonant behaviour of the tidal response is enhanced by rotation, which couples the forcing to several Hough modes in the general
case, while the radiative cooling tends to regularize it and diminish its amplitude.

Key words. hydrodynamics – planet-star interactions – waves – planets and satellites: atmospheres –
planets and satellites: gaseous planets

1. Introduction

Modelling the general circulation of hot Jupiters is a key element
in observationally constraining their properties (temperature
structure, day-night heat transport, circulation regime). In partic-
ular, it allows to establish a link between these properties and the
Doppler shift in the transmission spectra of the planets that can
be measured in orbital phase curves of secondary eclipses (e.g.
Rauscher & Kempton 2014). Because of their proximity to their
host star, hot Jupiters orbiting circularly are generally assumed
to be locked into spin-orbit synchronous rotation, meaning that
their rotation rate is exactly equal to their orbital frequency (see
Showman et al. 2015, and references therein). The argument
invoked for this assumption is the mechanism of gravitational
tides, which torques the planet towards this state of equilibrium.
Given the strength of the tidal torque, the timescale associated
with this evolution (a few million years, see Showman & Guillot
2002; Ogilvie & Lin 2004) is short compared to that associ-
ated with the evolution of the planetary system. Thus, tidal
forces should lock the planet into synchronous rotation before
they circularize its orbit (e.g. Rasio et al. 1996). However, other
arguments have been given in recent works in favour of an
asynchronous rotation, leading some authors to consider this
configuration (e.g., Showman et al. 2009, 2015; Rauscher &
Kempton 2014; Tsai et al. 2014).

These arguments invoke the transport of angular momen-
tum between the planet’s orbit and its atmosphere or interior
Showman & Guillot (2002), the forcing of a fast super-rotating
equatorial jet in the atmosphere by the strong day-night heating

contrast (Showman et al. 2015), and the ability of thermal tides
to generate asynchronous zonal flows (Gu & Ogilvie 2009; Arras
& Socrates 2010). This latter mechanism was first introduced
by Gold & Soter (1969) through an ad hoc approach to explain
the locking of Venus at the observed retrograde rotation rate. It
results from the incoming stellar flux, which submits the atmo-
sphere to a day-night periodic forcing. This forcing, like the tidal
gravitational potential, generates density fluctuations leading to
a global variation of mass distribution. The tidal torque induced
by thermal tides can be in opposition with that induced by the
gravitational forcing. In this case, the rotation of Venus-like
planets evolves toward the asynchronous state of equilibrium
where solid and atmospheric tidal torques compensate each other
exactly (see Ingersoll & Dobrovolskis 1978; Dobrovolskis &
Ingersoll 1980; Correia & Laskar 2001, 2003; Auclair-Desrotour
et al. 2017b). These arguments have recently been reinforced by
results obtained with ab initio models showing that the internal
structure of the fluid layer and timescale associated with dissi-
pative processes directly affect its tidal response (Leconte et al.
2015; Auclair-Desrotour et al. 2017a).

However, as discussed by Gu & Ogilvie (2009), there is no
solid surface in hot Jupiters to support the load of a mass sur-
plus in the atmosphere of the planet as in telluric Venus-like
planets. As a consequence, it would seem that no net tidal
bulge could appear and the tidal torque exerted on the atmo-
sphere should be negligible. This seems to be at odds with
the conclusions of Arras & Socrates (2010) about semidiurnal
thermal tides, who argue for a strong amplification of the tidal
torque in the range of forcing periods 1–30 days due to the
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propagation of resonant internal waves (see also Lubow et al.
1997). In this early work, the dynamical effect of rotation of
the planet was ignored, although it is directly related to the
forcing frequency. Similarly, dissipative processes such as radia-
tive cooling were not taken into account although they dissipate
the energy of tidally generated gravity modes (Terquem et al.
1998). Thus, we propose here to revisit the study by Arras &
Socrates (2010) by using a similar ab initio global modelling.
In this linear approach, we include both the coupling induced
by rotation between excited tidal modes and the tidal forcing,
and the dissipation resulting from radiative/diffusive cooling,
which is modeled by a Newtonian cooling. We aim at (1) clar-
ifying the internal structure of the tidal response by identifying
dominating modes, their characteristics and their behaviour; (2)
quantifying the order of magnitude of timescales associated
with the forcing of zonal-mean flows by the semidiurnal ther-
mal tide; and (3) characterizing how the rotation and radiative
cooling affect the thermal tidal response and the resulting tidal
torque.

Hence, in Sect. 2, we detail the physical setup of the model,
establish the equations describing the structure of forced tidal
waves, and discuss the used boundary conditions and gravita-
tional and thermal tidal forcings. In Sect. 3, the expressions
of the tidal torques and quadrupoles are given, and the asso-
ciated evolution timescales introduced. Then, in Sect. 4, we
compute the tidal response of the planet due to the thermal com-
ponent and the associated evolution timescales in three cases:
(a) in a static and adiabatic planet (case treated by Arras &
Socrates 2010), (b) in a static planet with radiative cooling, and
(c) in a rotating planet with radiative cooling. We show that
a resonant behaviour can arise from the reflection of gravity
waves on the boundaries of the stably stratified radiative zone.
The radiative cooling tends to attenuate the amplitude of the
response, while rotation increases it in the zero-frequency limit.
In Sect. 5, we compute the frequency spectra of the total tidal
torque in the above three cases. In the static case, we reproduce
the results previously obtained by Arras & Socrates (2010) and
show that rotation amplifies the resonant behaviour of the tidal
response. Synchronization timescales associated with the gravi-
tational and thermal tidal components are computed in Sect. 6.
We finally discuss the consequences of thermal tides on zonal-
flows and the used approximations in Sect. 7, and give our
conclusions in Sect. 8.

2. Tidal waves dynamics

In this section, we establish the equations describing the tidal
response of a rotating Jupiter submitted to both gravitational
and thermal forcings. Thermal tides have been examined before
in different ways (Gu & Ogilvie 2009; Arras & Socrates 2010;
Leconte et al. 2015). Here, we use the formalism developed by
Auclair-Desrotour et al. (2017a) with the physical setup of Arras
& Socrates (2010).

2.1. Physical setup and background distributions

We consider a Jovian planet of mass Mp and radius Rp,
rotating on itself at the spin angular velocity Ω, and orbiting
its host star at the dynamical frequency norb. In order to avoid
mathematical complications related to internal circulation, we
assume in this study that the planet is in uniform rotation (this
simplification is discussed in Sect. 7). The associated co-rotating
reference frame centred on the centre of inertia of the body
is denoted RE : {O, XE,YE, ZE}, where ZE = Ω / |Ω|, Ω being

Fig. 1. Reference frames and systems of coordinates. The notations Ω
and norb designate the rotation vector and the orbital angular velocity
respectively.

the rotation vector of the planet, and XE and YE designate two
directions of the equatorial plane. To locate a point M of the
planet, we use the spherical vectorial basis

(
er, eθ, eϕ

)
and coor-

dinates (r, θ, ϕ), which refer to the radius, the colatitude, and the
longitude, respectively (see Fig. 1). Hence, the position vector is
expressed as r = r er.

The internal structure of the planet is defined by spatial dis-
tributions of pressure p0, density ρ0, and gravity g. To simplify
it, we ignore day-night temperature gradients and the effect of
the centrifugal acceleration. This approximation is appropriate
provided that Ω � Ωc, Ωc =

√
g/r being the critical Keplerian

angular velocity. The equation of hydrostatic balance is written

d2 p0

dr2 +

[
2
r
−

(
d ln ρ0

dp0

)
dp0

dr

]
dp0

dr
+ 4πG ρ2

0 = 0, (1)

the parameter G standing for the gravitational constant. Consid-
ering that the planet is basically composed of a deep convective
envelope and a superficial, stably stratified atmosphere, we adopt
the equation of state proposed by Arras & Socrates (2010) to
fully characterize the internal structure. This equation writes

ρ0 (p0) = e−p0/pb

( p0

a2

)
+

(
1 − e−p0/pb

) ( p0

Kc

) 1
Γ1

, (2)

where we have introduced the adiabatic exponent Γ1 =
(∂ ln p0/∂ ln ρ0)S (the index S referring to specific macroscopic
entropy), the pressure at the base of the stably stratified layer
pb, the characteristic pressure specifying the entropy of the
core Kc = GR2

p, and the isothermal sound speed of the enve-
lope a = (pbKc)1/4. The transition between the two layers thus
occurs at p = pb. Equation (1) is then integrated upward using
a Runge-Kutta scheme of the fourth order with the regularity
condition dp0/dr = 0 at r = 0. We deduce from the gravity pro-
file the profile of mass contained within the sphere of radius r,
expressed as

M (r) = 4π
∫ r

0
r′2ρ0

(
r′
)

dr′. (3)

Hence, the pressure at the centre of the planet is iterated to make
M converge toward Mp at the upper limit, denoted Re. We note
that Re determines the pressure level at the upper limit of the
atmosphere. It differs from Rp, which is the photospheric radius
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of the planet, and can be arbitrarily chosen as soon as Re > Rp. In
this work, we set Re = 1.01 Rp in order to have p0 (Re) /p? < 10−6

and avoid side effects at the upper boundary.
Other background distributions are deduced straight-

forwardly from p0, ρ0 and g. The vertical profiles of pressure
height and sound velocity are expressed as

H =
p0

gρ0
and cs =

√
Γ1 p0

ρ0
. (4)

The stratification of the fluid with respect to convection is
characterized by the Brunt-Väisälä frequency N, defined by

N2 = −g

[
d ln ρ0

dr
−

1
Γ1

d ln p0

dr

]
. (5)

Finally, we assume that the fluid is a perfect gas uniform in
composition, of molar massMg and specific gas constant Rs =
RGP/Mg, the notation RGP referring to the perfect gas constant.
Denoting κ = (Γ1 − 1) /Γ1, we get the background profiles of
temperature and heat capacity per unit mass,

T0 =
gH
Rs

and Cp =
Rs

κ
. (6)

In this work, following Lindzen & McKenzie (1967; see also
Dickinson & Geller 1968), we take into account the effect of
internal dissipation on tidal waves by using a Newtonian cool-
ing, that is, by considering that the local thermal losses Jd due
to radiative and diffusive processes are proportional to the tem-
perature variation ∆T . As demonstrated by Iro et al. (2005) with
numerical simulations in the case HD 209458b, this approach is
justified if ∆T/T0 does not exceed 5%, which corresponds well
to the framework of our linear modelling. The local dissipated
power per unit mass can thus be written

Jd = Cpσ0∆T, (7)

where σ0 designates the effective radiative frequency associated
with diffusion and radiation. This parameter is the reciprocal of
the thermal timescale τ0. The tidal response does not depend
much on the vertical profile of τ0. However, it depends on its
order of magnitude in the region where the stellar heating is
absorbed, typically around the p? pressure level. Therefore, to
set τ0, we choose to use the vertical profile computed numeri-
cally by Iro et al. (2005) in the case of HD 209458b using an
advanced model of thermal transfers (see Fig. 4 in their article).
This profile shows two tendencies: τ0 ∝ p1/2

0 for p0 . p? and
τ0 ∝ p2

0 for p0 & p?. We thus approximate it by the empirical
scaling law

τ0 =
τ?
2

( p0

p?

) 1
2

+

(
p0

p?

)2
 , (8)

the parameter τ? standing for the radiative time at the base of the
heated layer, at the characteristic pressure p? (τ? ∼ 1−10 days and
p? ≈ 1 bar in the case of HD 209458b, see Showman & Guillot
2002; Cho et al. 2003; Iro et al. 2005). This modelling mim-
ics the two regimes of thermal time, with a transition occurring
at p0 ∼ p?. For p0 < p?, τ0 increases slowly with pressure.
Below the p?-level, pressure broadening increases the opac-
ity rapidly. As a consequence, the effect of radiative cooling
becomes negligible. Introducing σ? = 2π/τ?, we define the

radiative frequency as

σ0 = 2σ?

( p0

p?

) 1
2

+

(
p0

p?

)2

−1

. (9)

In the following, τ? is used as a control parameter to spec-
ify the efficiency of the radiative cooling, the τ? = +∞ limit
corresponding to the adiabatic case.

As the thermal forcing generating thermal tides is absorbed
in the upper layers of the atmosphere (in the case of
HD 209458b, 99.99% of the incoming stellar flux is absorbed
before reaching the 7 bar level, see Iro et al. 2005), the tidal per-
turbation mainly affects the stably stratified region. Therefore, it
is convenient to choose as radial coordinate the reduced altitude
defined by

x =

∫ r

0

dr′

H (r′)
, (10)

rather than the radius r (Chapman & Lindzen 1970). Indeed, this
change of coordinates expands the domain of the stably stratified
atmosphere (see Ioannou & Lindzen 1993a,b, 1994, for gravita-
tional atmospheric tides in Jovian planets), which allows us to
increase the vertical resolution in this region. Another way to
expand the heated radiative zone would be to choose the optical
depth zop measured from r = +∞ as radial coordinate, as done
by Gu & Ogilvie (2009). With this coordinate, the upper limit
of the atmosphere corresponds to zop = 0 and the centre of the
planet to zop = +∞.

In order to compare our results to those obtained previously
by Arras & Socrates (2010), we use the same values of physical
parameters. Hence, denoting MJ and RJ the Jupiter’s mass and
radius, we set the mass and radius of the planet to Mp = 0.7 MJ

and Rp = 1.27 RJ, the core compressibility to Kc = GR2
J , the

adiabatic exponent to Γ1 = 1.4, the pressure at the base of the
radiative atmosphere to pb = 100 bar and the pressure at the base
of the heated layer to p? = 1 bar. The corresponding background
profiles are plotted in Fig. 2 as functions of r (left panel) and x
(right panel) with τ? = 1 day. By comparing the two plots, we
observe that the proportion of the vertical domain occupied by
the stably stratified atmosphere (N2 , 0) switches from a few
percents with r to almost a half of the total domain with x,
as mentioned above. The base of the stably stratified layer thus
corresponds approximately to x = 11.

2.2. Structure and regimes of tidal waves

To establish the structure of tidal waves, we summarize the
main lines of the formalism detailed in Auclair-Desrotour et al.
(2017a). The planet is submitted to the tidal gravitational and
thermal forcings of its host star. The gravitational forcing is due
to the tidal gravitational potential U, such that the tidal force is
defined by F= ∇U (we follow the convention of Zahn 1966), and
the tidal heating to the heat power per unit mass J. These forc-
ings generate tidal winds of velocity V =

(
Vr,Vθ,Vϕ

)
as well as

fluctuations of pressure (δp), density (δρ) and temperature (δT ),
which are assumed to be small compared to background quanti-
ties in this linear approach. Thus, conserving only terms of the
first order in V , δp, δρ and δT and neglecting the fluctuations
of the self-gravitational potential (this is the so-called Cowling
approximation, see Cowling 1941), we write the momentum
equation (Auclair-Desrotour et al. 2017a)

∂tV + 2Ω × V = −
1
ρ0
∇δp −

g

ρ0
δρ er + ∇U, (11)
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Fig. 2. Background profiles normalized by their maxima as functions of the normalized radius r/Rp (left panel) and of the pressure altitude x (right
panel). Values of parameters are those given in Sect. 2.1, that is Mp = 0.7MJ, Rp = 1.27RJ, Kc = GR2

J , Γ1 = 1.4, pb = 100 bar, p? = 1 bar and
τ? = 1 day. The grey (white) area corresponds to the radiative (convective) region.

where t designates the time and ∂X = ∂/∂X the partial deriva-
tive along the X coordinate. The dynamics are completed by the
equation of mass conservation,

∂tδρ + ∇ · (ρ0V) = 0, (12)

the equation of energy,

1
ρ0

(
1
c2

s
∂tδp − ∂tδρ

)
+

N2

g
Vr =

1
T0

(
J

Cp
− σ0δT

)
, (13)

and the equation of perfect gas,

δp
p0

=
δT
T0

+
δρ

ρ0
. (14)

It should be noted that this set of primitive equations is very
similar to that used by Arras & Socrates (2010). We have
only added the effect of rotation by taking into account the
Coriolis acceleration (2Ω × V) in the momentum equation,
Eq. (11), and the effect of radiative/diffusive processes through
the Newtonian cooling term (σ0δT ) in the equation of energy,
Eq. (13).

We now look for solutions of Eqs. (11)–(14) both periodic
in time and longitude. Thus, a perturbed quantity f is expanded
into Fourier series,

f (t, r) =
∑
m,σ

f m,σ (x, θ) ei(σt+mϕ), (15)

where we have introduced the imaginary number i, the tidal
frequency σ and the longitudinal wavenumber m of a given
mode (typically m = 2 and σ = 2 (Ω − norb) for the stellar
semi-diurnal tide studied in the following section). In the fol-
lowing, the superscripts (m, σ) are omitted where no confusion
arises.

The latitudinal projection of the rotation vector in the
Coriolis acceleration (Eq. (11)) induces a coupling between the
horizontal and the vertical projections of the equation of dynam-
ics. Deriving analytically the structure of the tidal response
requires elimination of this coupling. Therefore, we assume the
traditional approximation (e.g. Unno et al. 1989), which consists
in ignoring 2Ω sin θ terms. This assumption is usually considered
as appropriate in the regime of super-inertial waves, defined by

2Ω � |σ|, where rotation hardly affects the fluid tidal response.
In strongly stratified regions (|σ| � N), the previous condition
becomes 2Ω . |σ|, (Mathis 2009; Prat et al. 2017), which allows
us to treat sub-inertial waves in this case (see also Sect. 7).
However, as discussed by Ogilvie & Lin (2004), the traditional
approximation gives an inaccurate representation of the fluid
tidal response within the inertial regime (2Ω > |σ|) in convective
regions, because it leads to an overestimated tidal dissipation.
In this case, these authors argue that it is better to assume the
static approximation, which consists in simply ignoring rotation,
as Arras & Socrates (2010) do.

In the following sections, we focus on thermal tides and
ignore the component of the tidal response generated by the tidal
potential. The traditional approximation can be assumed in this
case because thermal tides only affect the thin stably stratified
atmosphere of the planet, which approximately stands for ∼2%
of the planet radius (see Fig. 2, left panel). Tidal waves induced
by the absorption of the stellar heating are expected to propagate
within the stably stratified zone and not go through its threshold,
as they are mainly restored by the Archimedean force. We verify
this postulate a posteriori in Sect. 4 by plotting internal tidal den-
sity variations as a function of the latitude and pressure levels.
The traditional approximation would lead to strongly inaccurate
results if we considered the tidal component generated by the
tidal gravitational potential because this forcing affect the whole
planet, and particularly the thick convective region, where the
assumptions mentioned above are violated. However, we choose
to keep the terms associated with the gravitational tidal forcing
in the following analytic development for the sake of generality,
given that the present model can be applied to the case of the thin
stably stratified atmospheric layers of a terrestrial planet, where
the traditional approximation can be assumed.

Substituting Eq. (15) into Eqs. (11)–(14) and introducing the
reduced pressure fluctuation y = δp/ρ0, we obtain the set of
equations defining the latitudinal and radial distributions of the
perturbed quantities,

iσVm,σ
θ − 2Ω cos θVm,σ

ϕ = −
1
r
∂θ (ym,σ − Um,σ) , (16)

iσVm,σ
ϕ + 2Ω cos θVm,σ

θ = −
im

r sin θ
(ym,σ − Um,σ) , (17)

iσVm,σ
r = −

1
ρ0
∂r (ρ0y

m,σ) −
g

ρ0
δρm,σ + ∂rUm,σ, (18)
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iσδρ +
1
r2 ∂r

(
r2ρ0Vr

)
= −ρ0∇⊥ × Vm,σ, (19)

iσ + Γ1σ0

c2
s

ym,σ +
N2

g
Vm,σ

r =
iσ + σ0

ρ0
δρm,σ +

Jm,σ

T0Cp
, (20)

where ∇⊥ designates the horizontal part of the divergence
operator.

The traditional approximation allows us to proceed to the
separation of the x and θ coordinates in solutions, and to
expand Fourier coefficients of Eq. (15) into series of Hough
functions (Hough 1898). Thus, any Fourier coefficient f m,σ

of the tidal gravitational potential, thermal forcing, pres-
sure, density, temperature fluctuations and vertical velocity is
written

f m,σ (x, θ) =
∑

n

f m,σ
n (x) Θm,ν

n (θ) , (21)

while Fourier co-efficients of horizontal velocities are expressed
as

Vm,σ
X (x, θ) =

∑
n

Vm,ν
X;n (x) Θ

m,ν
X;n (θ) , (22)

with X = θ, ϕ. In Eqs. (21) and (22), we have introduced the spin
parameter ν defined by

ν (σ) =
2Ω

σ
, (23)

the latitudinal wavenumber n, such that n ∈ N if |ν| ≤ 1, and
n ∈ Z otherwise (with the notations of Lee & Saio 1997), the
so-called Hough functions Θ

m,ν
n , and the associated horizontal

functions Θ
m,ν
θ;n and Θ

m,ν
ϕ;n . Let us introduce the operator

Lm,ν =
1

sin θ
d
dθ

(
sin θ

1 − ν2 cos2 θ

d
dθ

)
(24)

−
1

1 − ν2 cos2 θ

(
mν

1 + ν2 cos2 θ

1 − ν2 cos2 θ
+

m2

sin2 θ

)
. (25)

Hough functions are the solutions of the eigenvalue–
eigenfunction problem defined by the Laplace’s tidal equation
(Laplace 1798; Chapman & Lindzen 1970; Lee & Saio 1997;
Wang et al. 2016),

Lm,νΘm,ν = −Λm,νΘm,ν, (26)

integrated with regularity boundary conditions. They are associ-
ated with the eigenvalues Λ

m,ν
n and constitute an orthogonal basis

through the scalar product

〈Θm,ν
n ,Θm,ν

j 〉 =

∫ π

0
Θm,ν

n (θ) Θ
m,ν
j (θ) sin θ dθ. (27)

For convenience, we use the normalised Hough functions, such
that 〈Θm,ν

n ,Θm,ν
j 〉 = δn, j for any n and j, the notation δn, j standing

for the Kronecker symbol. Moreover we use the notation Am,ν
n,l =

〈Pm
n ,Θ

m,ν
n 〉 for the projection coefficients of Hough functions

on the normalized associated Legendre polynomials, such
that

Θm,ν
n =

∑
l≥m

Am,ν
n,l Pm

l (cos θ) . (28)

The associated horizontal functions intervening in Eq. (22)
are straightforwardly deduced from the Θ

m,ν
n . They are defined

by

Θ
m,ν
θ;n =

1
1 − ν2 cos2 θ

(
d
dθ

+ mν cot θ
)
Θm,ν

n , (29)

Θm,ν
ϕ;n =

1
1 − ν2 cos2 θ

(
ν cos θ

d
dθ

+
m

sin θ

)
Θm,ν

n . (30)

Symmetric Hough functions (n even) and the associated
horizontal functions are plotted in Fig. 3 as functions of the
colatitude for m = 2 (main component of the semidiurnal tide)
for typical cases of the super-inertial (|ν| ≤ 1) and sub-inertial
(|ν| > 1) regimes, namely ν = 0.2 and ν = 2. We can observe on
these graphs the two families of Hough modes characterizing the
horizontal structure of tidal waves (e.g. Unno et al. 1989; Lee &
Saio 1997):
1. Gravity modes (n ≥ 0), also referred to as g modes. These

modes are defined for ν ∈ R and associated with positive
eigenvalues. When ν → 0, they converge toward the asso-
ciated Legendre polynomials Pm

l (with l = m + n), which
are the solutions of the Laplace’s tidal equation in the non-
rotating case. Similarly, the associated eigenvalues converge
toward those of Legendre associated polynomials, that is
Λ

m,0
n = (m + n) (m + n + 1).

2. Rossby modes (n < 0), or r modes. These modes exist in
the sub-inertial regime only (|ν| > 1). In this regime, gravity
modes are confined within an equatorial band that becomes
narrower while |ν| increases and Rossby modes spread from
one pole to another (see Fig. 3, left panels).

To obtain the vertical profiles of other perturbed quantities,
we have to solve the system of Eqs. (18) to (20). After
some manipulations and the introduction of the displacement
ξ, such that V = ∂t ξ, this system is reduced to the system
of ODEs

dyn

dx
= A1yn + B1r2ξr;n + C1, (31)

d
dx

(
r2ξr;n

)
= A2yn + B2r2ξr;n + C2, (32)

with the coefficients

A1 (x) =
HN2

g
+

iκσ0

σ − iσ0
, (33)

B1 (x) = −
H
r2

(
σ

σ − iσ0
N2 − σ2

)
, (34)

C1 (x) =
dUn

dx
− i

κ

σ − iσ0
Jn, (35)

A2 (x) =
HΛn

σ2

(
1 − εs;n

)
, (36)

B2 (x) =
1
Γ1
−

iσ0

σ − iσ0

HN2

g
, (37)

C2 (x) = −
HΛn

σ2 Un − i
κr2

g (σ − iσ0)
Jn. (38)

The parameter εs;n that appears in Eq. (36) is an acoustic
parameter comparing the tidal frequency to the Lamb frequency
of the n-mode,

σs;n =
√

Λn
cs

r
, (39)
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Fig. 3. Normalized symmetrical (n even) Hough functions (left) and associated horizontal functions (middle and right) as functions of latitude
(degrees) for m = 2 and two values of ν = 2Ω / σ representative of inertial regimes. Top: ν = 0.2 (super-inertial regime); weak impact of rotation
on the tidal response. Bottom: ν = 2 (sub-inertial regime); strong impact of rotation. Gravity modes are designated by subscripts p ≥ 0 while
Rossby modes correspond to p < 0.

Fig. 4. Frequency spectrum of tidal regimes and waves characteriz-
ing the fluid tidal response. The parameter σ designates the forcing
frequency (Eq. (15)), σ0 the thermal frequency (Eq. (9)), 2Ω the iner-
tia frequency, N the Brunt-Väisäl ä frequency (Eq. (5)), and σs the
characteristic acoustic cutoff frequency (Eq. (39)).

which is the characteristic cutoff frequency of horizontally prop-
agating acoustic modes (we also introduce the general acoustic
cutoff frequency σs = cs / r); it writes

εs;n (x) =
σ − iΓ1σ0

σ − iσ0

σ2

σ2
s;n
. (40)

Therefore, εs;n weights the contribution of acoustic waves
to the fluid tidal response; this contribution being negligible if∣∣∣εs;n

∣∣∣ � 1. Similarly, by considering Eqs. (34) and (23), we can
note that the ratio N2 /σ2 measures the contribution of internal

gravity waves, that is, waves restored by the Archimedean force,
and the spin parameter (ν), the contribution of inertial waves
restored by the Coriolis acceleration. This draws up a global pic-
ture of possible tidal regimes. As shown by Fig. 4, where the
frequency spectrum of these regimes is given, the nature of the
tidal response is thus totally determined by the hierarchy of char-
acteristic frequencies of the physical system (σ, σs, N, 2Ω and
σ0).

The last step consists in reducing the system of Eqs. (31)–
(32) to a single vertical structure equation, which is first
expressed as

d2y

dx2 + A
dy
dx

+ By = C, (41)

with the x-dependent coefficients (see Auclair-Desrotour et al.
2017a, Eq. (41))

A (x) = −
σ − 2iσ0

σ − iσ0

HN2

g
−

1
Γ1
− K◦, (42)

B (x) =H2k̂2
⊥;n

(
σ

σ − iσ0

N2

σ2 − 1
) (

1 − εs;n
)

(43)

−

(
d
dx

+
iσ0

σ − iσ0

HN2

g
−

1
Γ1
− K◦

) (
HN2

g
+

iκσ0

σ − iσ0

)
,

C (x) =

(
d
dx

+
iσ0

σ − iσ0

HN2

g
−

1
Γ1
− K◦

) (
dUn

dx
− i

κ

σ − iσ0
Jn

)

+ H2k̂2
⊥;n

(
σ

σ − iσ0

N2

σ2 − 1
) [

Un − i
(Γ1 − 1) εs;n

σ − iΓ1σ0
Jn

]
.

(44)
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In these expressions, we have identified the horizontal wavenum-
ber k̂⊥;n of the (n,m, σ)-mode, defined by

k̂2
⊥;n =

Λn

r2 , (45)

and a sphericity term, denoted K◦, that is written

K◦ =
r2

H

(
σ

σ − iσ0

N2

σ2 − 1
)−1 d

dx

[
H
r2

(
σ

σ − iσ0

N2

σ2 − 1
)]
. (46)

We finally introduce the change of variable yn = ΦnΨn,
where Φn is the function defined by

Φn (x) = exp
[
−

1
2

∫ x

0
A

(
x′
)

dx′
]
. (47)

This allows us to write the vertical structure equation as a
Schrödinger-like equation, which describes the forced response
of a harmonic oscillator. Equation (41) thus becomes

d2Ψn

dx2 + k̂2
nΨn = Φ−1

n C, (48)

where k̂n designates the normalized vertical wavenumber of the
(n,m, σ)-mode (the vertical non-normalized wavenumber being
k̂r;n = k̂n/H) and is expressed as (see Auclair-Desrotour et al.
2017a, Eq. (47))

k̂2
n =H2k̂2

⊥;n

(
σ

σ − iσ0

N2

σ2 − 1
) (

1 − εs;n
)

(49)

−

(
d
dx

+
iσ0

σ − iσ0

HN2

g
−

1
Γ1
− K◦

) (
HN2

g
+

iκσ0

σ − iσ0

)
+

1
2

d
dx

[
σ − 2iσ0

σ − iσ0

HN2

g
+ K◦

]
−

1
4

(
σ − 2iσ0

σ − iσ0

HN2

g
−

1
Γ1
− K◦

)2

.

We recognize in the first term of k̂2
n the vertical wavenum-

ber of gravito-inertial waves propagating within a homogeneous
fluid. This term predominates in the stably stratified radiative
zone in the low-frequency asymptotic limit. It is responsible
for the rapid increase of the vertical wavenumber, which scales
as k̂n ∝ σ−1 (if |σ| � σ0) or k̂n ∝ σ−1/2 (if |σ| � σ0) when
|σ| � N2. Other terms result from radial variations of back-
ground distributions. They may be important around transition
zones in the internal structure of the planet, such as the base
of the atmosphere where the gradient of N2 is strong (see
Fig. 2).

The tidally generated variation of mass distribution at the
origin of the tidal torque is finally derived from Ψn. It is
written

δρn = −
ρ0

gH
N2

N2 − σ (σ − iσ0)

[
Φn

(
dΨn

dx
+ BnΨn

)
(50)

−
dUn

dx
+ i

κσ

N2 Jn

]
,

with

Bn (x) =
1
2

[
1
Γ1

σ − i Γ1σ0

σ − iσ0

(
2
σ (σ − iσ0)

N2 − 1
)

(51)

−
σ

σ − iσ0

HN2

g
+ K◦

]
.

The polarization relations of other perturbed quantities are given
in Appendix A. It shall be noted here that all of the results
derived in this section remain true for any vertical profiles of
background quantities as far as the fluid is a perfect gas at
hydrostatic equilibrium.

2.3. Thermal and gravitational forcings

As mentioned above, the incoming stellar flux is absorbed in
the upper layers of the atmosphere. Thus, following Arras &
Socrates (2010) and introducing the stellar zenith angle φ?, we
define the distribution of total heat per unit mass as

J? (p0, φ?) =
g

p?
F?e−p/p? cos φ? for φ? ∈

[
0,
π

2

]
,

J? (p0, φ?) = 0 for φ? ∈
]
π

2
, π

]
.

(52)

In Eq. (52), F? designates the incoming flux at the sub-stellar
point, expressed as F? = σSBT 4

? (R?/r?)2, where σSB is the
Stefan-Boltzmann constant, r? the star-planet distance, and R?

and T? the stellar radius and mean surface temperature, respec-
tively. If we assume that R? � r?, the gravitational potential
generated by the star in the accelerated reference frame of the
planet is written

U? (r, r?) =
GM?

|r − r?|
−

GM?

r2
?

r cos θ, (53)

the vector r? being the planet-star vector (such that |r?| = r?) and
M? the mass of the star. In the general case, the stellar heating
and gravitational forcing are expanded into Fourier series and
spherical harmonics, that is

U? =
∑
l,m,σ

Um,σ
l (x) Pm

l (cos θ) ei(σt+mϕ), (54)

J? =
∑
l,m,σ

Jm,σ
l (x) Pm

l (cos θ) ei(σt+mϕ), (55)

the Pm
l standing for the normalized associated Legendre

polynomials1.
However, to simplify the forcing, we suppose that the

planet orbits its host star circularly and that its equatorial
plane is coplanar with the orbital plane. As a consequence,
the expansion of the tidal gravitational potential in spherical
harmonics is reduced to the semidiurnal quadrupolar com-
ponent (l = m = 2), expressed as (Arras & Socrates 2010,
Mathis & Le Poncin-Lafitte 2009)

U2,σ
2 =

√
3
5

M?

M? + Mp
n2

orbr2, (56)

with σ = 2 (Ω − norb). Similarly, the quadrupolar component of
the thermal forcing is given by

J2,σ
2 =

5
16

√
3
5
g

p?
F?e−p/p? . (57)

1 The normalized associated Legendre polynomials are defined by
(Abramowitz & Stegun 1972)

Pm
l (X) =

√
(2l + 1) (l − m)!

2 (l + m)!
(−1)m

(
1 − X2

)m/2 dm

dXm [Pl (X)] ,

where the Pl stand for the Legendre polynomials,

Pl (X) =
1

2ll!
dl

dXl

[(
X2 − 1

)l
]
.
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Fig. 5. Logarithms of the spin parameter (ν) and stability ratio
max (N) / (2Ω) as functions of the forcing period τtide = 2π/ |σ| (days)
in logarithmic scale. The blue dashed line designates the transition
between the inertial and sub-inertial regimes (see Fig. 4), which occurs
for τtide = τorb, the parameter τorb = 2π/norb being the orbital period.
The red dashed line corresponds to the Ω = 0 case. “Rotation (−)” and
“Rotation (+)” stand for retrograde and prograde rotation, respectively.
The green dashed line delimits the boundary of the asymtotic domain
where the stable stratification dominates rotation in the radiative zone
(N � 2 |Ω|), which is the condition of applicability of the traditional
approximation in the sub-inertial regime.

We note that the semidiurnal spin parameter is simply expressed
as

ν = 1 +
2norb

σ
, (58)

which highlights the parameter measuring the impact of rotation
on the tidal response, |norb/σ|. For a sub-synchronous rotation
(σ < 0), the inertial regime corresponds to |norb/σ| � 1 (see
Fig. 5). In this case, the planet is rapidly rotating. The transition
from the inertial regime to a sub-inertial one occurs for |norb/σ| ∼
1. Beyond this critical value, ν ∝ 2norb/σ and diverges at the
spin-orbit synchronous rotation (σ → 0), where the effects of
rotation are stronger than the forcing. In the zero-frequency limit,
the traditional approximation is only appropriate for strongly
and stably stratified layers. Thus, the effects of rotation can be
taken into account provided that the region where tidal waves
propagate satisfies the condition 2Ω � N (e.g., Mathis 2009;
Auclair-Desrotour et al. 2017a).

2.4. Boundary conditions

To integrate the vertical structure equation, Eq. (48), two bound-
ary conditions must be chosen. We set one condition at the lower
boundary of the atmosphere, and one at its upper boundary.
Arras & Socrates (2010) choose to set the lower boundary at the
centre of the planet (x = 0). Hence, they use a standard regular-
ity condition requiring all variables to be finite (e.g. Unno et al.
1989). In the static case, this condition writes

σ2ξr;n =
l
r

(yn − Un) . (59)

It can be adapted to the rotating case in the super-inertial regime
(|ν| ≤ 1), where the previous expression becomes

σ2ξr;n =

√
1 + 4Λn − 1

2r
(yn − Un) . (60)

However, it cannot be applied for |ν| > 1, Rossby modes
being associated with negative Λn. Therefore, in this work, we
choose to use a rigid-wall condition enforcing the fact that fluid
particles cannot go through the lower boundary. It is simply
expressed as ξr = 0, that is,

dΨn

dx
+AnΨn = −Φ−1

n

(
−

dUn

dx
+ i

κ

σ − iσ0
Jn

)
, (61)

with (see Appendix A)

An (x) =
1
2

(
1
Γ1

σ − i Γ1σ0

σ − iσ0
−

σ

σ − iσ0

HN2

g
+ K◦

)
. (62)

We note that the lower boundary shall not necessarily be set
at the centre of the planet since we focus on thermal tides, which
only affect the stably stratified atmospheric layer of the planet.
The convective region is not perturbed by the tidal thermal forc-
ing. The lower boundary could thus be set at any pressure level
greater than that corresponding to the base of the stably stratified
region, that is pb ≈ 102 bar. Nevertheless, setting the lower limit
of the atmosphere at pb would cause reflections of waves and
induce side effects, as discussed by Ogilvie & Lin (2004) and
illustrated by Appendix B. This is the reason why this bound-
ary shall be located at higher pressure levels. Here, considering
that the tidal perturbation is confined to the atmosphere and
does not affect the convective region, we set the lower bound-
ary as far as possible from the basis of the stably stratified zone,
that is at the centre of the planet. This allows us to avoid arte-
facts related to reflections. We verify a posteriori by checking
other conditions that, in this case, the lower boundary condi-
tion has no repercussions on the tidal response generated by the
thermal forcing.

The upper limit of the atmosphere is located in the tidally
forced region. Thus, the associated boundary condition partly
determines the frequency dependent behaviour of the fluid,
as demonstrated by Arras & Socrates (2010). In the adiabatic
case, it is possible to apply the radiation condition, that is to
consider that waves carry energy upward without reflections
(e.g. Wilkes 1949; Chapman & Lindzen 1970). This condition
regularizes the tidal response by eliminating resonances due
to gravity waves of short vertical wavelengths in the vicin-
ity of spin-orbit synchronous rotation (e.g. Arras & Socrates
2010; Auclair-Desrotour et al. 2017a). The vertical energy flow
associated with the (n,m, σ)-mode is expressed as

Fr;n =
1
2
σρ0

H
=


(

σ

σ − iσ0
N2 − σ2

)−1 [
|Φn|

2
(
Ψ∗n

dΨn

dx
+An |Ψn|

2
)

+Φ∗nΨ∗n

(
−

dUn

dx
+ i

κ

σ − iσ0
Jn

)]}
. (63)

Assuming that the tidal sources are located below the altitude
of the upper boundary (denoted Re or xe depending on the used
vertical coordinate), we ignore the last term. For σ0 = 0, the only
potentially negative term is thus Ψ∗n (dΨn/dx). We then suppose
that the vertical wavelength of tidal waves is shorter than the
length scale of background distributions, so that the solution of
Eq. (48) writes Ψn (x) = Aeik̂n x + Be−ik̂n x at the upper boundary
(x = xe). The radiation condition hence consists in conserving
only the first term of this solution associated with Fr;n > 0, that
is in setting

sign
(
<

{
k̂n

})
= sign

(
σ

N2 − σ2

)
and B = 0, (64)
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the symbol< referring to the real part of a complex number.
As it may be noted, this condition is only convenient in the

adiabatic case and for propagative modes k̂2
n ≥ 0. If σ0 , 0, both

terms of the solution can contribute to a positive upward energy
flux. Moreover, it is not appropriate to waves of wavelengths
comparable to the pressure height scale. For these two reasons,
we choose to apply at x = xe the standard free-surface condition,
δp = gρ0ξr (e.g. Unno et al. 1989), which can be enforced for
any k̂n. This condition is formulated as

dΨn

dx
+

[
An +

H
g

(
σ

σ−iσ0
N2 − σ2

)]
Ψn = Φ−1

n

(
iκJn

σ − iσ0
−

dUn

dx

)
.

(65)

In the absence of dissipation, it leads to a highly frequency-
resonant behaviour around σ = 0, given that gravity waves can
be reflected backward at the upper boundary (Arras & Socrates
2010; Auclair-Desrotour et al. 2017a). In reality, due to the strong
stellar heating, the energy given by the tidal forcing is partly radi-
ated toward space, which makes internal tidal waves evanescent
and consequently strongly attenuate the amplitude of the pertur-
bation. This effect is modelled by Gu & Ogilvie (2009) with a
Marshak condition, which enforces a radiative energy loss at the
upper limit of the atmosphere. In our study, we model dissipa-
tive processes with the Newtonian cooling defined by Eqs. (7)
and (9). As observed in Sect. 4, the frequency dependence of the
tidal response is regularized by the damping for |σ| . σ0 (see
Fig. 4).

3. Tidal torque and quadrupole

As the goal of this work is to examine the ability of thermal
tides to modify the planet’s rotation and to generate zonal flows,
we introduce in this section the expressions used to compute
the tidal torque exerted on the fluid shell with respect to the
spin axis of the planet. This torque is obtained by projecting the
tidally induced variation of mass distribution on the tidal force
(F = ∇U). Thus, its (m, σ)-component is defined by (Zahn 1966;
Auclair-Desrotour et al. 2017a)

T m,σ = <

{
1
2

∫
V
∂ϕUm,σ (δρm,σ)∗ dV

}
, (66)

where V designates the volume of the fluid shell and ∗ the con-
jugate of a complex number. By substituting in Eq. (66) the
expansions of fluctuations in Hough functions given by Eq. (21),
we end up with

T m,σ = πm
∑
l≥m

Wm,σ
l =

{
Qm,σ

l

}
. (67)

In this expression, we have introduced the imaginary part =, the
factors Wm,σ

l such that Um,σ
l = Wm,σ

l rl and the tidal multipole
moments Qm,σ

l , which are expressed as

Qm,σ
l =

∑
n

Am,ν
n,l

∫ R

0
r2+lδρm,σ

n dr. (68)

The coefficients Am,ν
n,l quantify the distortion of the tidal

response caused by rotation. In the static case, Am,0
n,l = δl,m+n,

and we retrieve the expression given by Arras & Socrates
(2010). These authors propose an expansion of this expres-
sion in terms of other perturbed quantities in order to avoid

numerical errors2. We adapt their formula to the rotating case
in Appendices C and D, and get Eq. (D.3). In the following,
in order to validate the obtained results, we compute the tidal
quadrupole moment by using both Eqs. (68) and (D.3). The evo-
lution timescale of the planet’s global rotation rate due to the
(m, σ)-mode is expressed as

τΩ =

∣∣∣∣∣IZ (Ω − norb)
T m,σ

∣∣∣∣∣ , (69)

where IZ is the moment of inertia with respect to the Z-axis, that
is written as

IZ =
8π
3

∫ R

0
r4ρ0dr. (70)

However, the global torque and timescale provide no infor-
mation about the local strength of the thermal tidal forcing. To
know which layers are forced and where strong jets can be gener-
ated, we use the longitudinal tidal force per unit volume averaged
over the longitude,

Fϕ = <

{
1

4πr sin θ

∫ 2π

0
∂ϕUm,σ (δρm,σ)∗ dϕ

}
. (71)

Hence, the characteristic timescale necessary to generate a
jet of velocity Vjet in the absence of viscous coupling writes

τevol =

∣∣∣∣∣∣ρ0Vjet

Fϕ

∣∣∣∣∣∣ . (72)

In the case of the quadrupolar semidiurnal tide, which is the
object of this study, the perturbation is forced by the component
defined by l = m = 2 and σ = m (Ω − norb). Therefore, the total
torque induced by the semi-diurnal tide reduces to (see (Eq. 56))

T σ
SDT = 2π

√
3
5

(
M?

M? + Mp

)
n2

orb=
{
Q2,σ

2

}
, (73)

with the quadrupole moment

Q2,σ
2 =

∑
n

Am,ν
n,2

∫ R

0
r4δρ2,σ

n dr. (74)

4. Properties of thermally forced tidal waves

We now explore the properties of the tidal response and its
dependence on dissipative mechanisms and rotation by apply-
ing the linear analysis to three different configurations. The
aim of this section is to investigate the consequences of the
thermal tidal torque on the general circulation of the atmo-
sphere, and particularly its ability to generate strong zonal flows.
Thus, we isolate the thermal tide by setting U = 0 in the equa-
tions describing the vertical structure of the fluid tidal response
(Sect. 2.2). The tidal gravitational potential given by Eq. (56)
is nevertheless used to compute the induced gravitational tidal
torque.

Using the values of parameters given by Table 1, we treat
three cases:
1. adiabatic without rotation. This is the case treated by Arras

& Socrates (2010), where the rotation of the planet is ignored
(Ω = 0, ν = 0), as well as dissipative processes (τ? = +∞);

2 This point is discussed in Appendix D.
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Table 1. Parameters used for the three cases examined in Sect. 4.

Parameter Symbol Value Unit

Planet mass Mp 0.7 MJ
Planet radius Rp 1.27 RJ
Orbital period τorb 4.08 d
Distance to star a? 0.05 AU
Star mass M? 1.0 M�
Star radius R? 1.0 R�
Star surface temperature T? 1.0 T�
Adiabatic exponent Γ1 1.4 –
Pressure at the base of the RZ pb 100 bar
Pressure at the base of the HZ p? 1.0 bar

Notes. The acronyms RZ and HZ stand for Radiative Zone and Heated
Zone, respectively.

2. non-adiabatic without rotation. The thermal time at the base
of the heated layer is set to τ? = 1 d, which is the order of
magnitude predicted by radiative transfer modellings for the
hot Jupiter HD 209458b (Showman & Guillot 2002; Iro et al.
2005);

3. non-adiabatic with rotation. The effect of rotation is taken
into account by introducing the Coriolis acceleration in the
framework of the traditional approximation.

Since the tidal torque is directly proportional to the imaginary
part of the density fluctuation (see Eq. (74)), we use this quantity
as a proxy to identify regions that are accelerated by the ther-
mal tide. The imaginary part of δρ is thus plotted in Fig. 6 as a
function of the latitude and pressure level in each case for a wide
range of forcing periods (τtide = 10−1, 100, 101, 102, 103 days) in
the regime of sub-synchronous rotation (σ < 0). Hence, a pos-
itive (negative) = {δρ} is associated to an eastward (westward)
accelerated zonal-mean flow. The corresponding timescale nec-
essary to generate a jet of velocity Vjet = 1 km s−1 (order of
magnitude of velocities of atmospheric winds in HD 209458b,
e.g. Showman & Guillot 2002) is plotted in Fig. 7 using Eq. (72).

As may be observed, the thermal tide essentially affects the
stably stratified region, where the Archimedean force restores
internal gravity waves and allows them to propagate. We note
here that the quality of the solution depends on the condition
σ2 � N2 mentioned above. This means that solutions involving
density variations around the base of the stably stratified region
(pb ≈ 102 bar) can be deteriorated given that the Brunt-Väisälä
frequency falls down at this pressure level (see Fig. 2).

In addition to gravity waves, acoustic waves can also con-
tribute to the tidal response, but only for forcing frequencies
greater than acoustic cutoff frequencies of the horizontally prop-
agating Lamb modes, defined by Eq. (39). Typically, in the
non-rotating case, only one mode is forced by the quadrupolar
thermal heating, the gravity mode of meridional degree n = 0
(black line in top panels of Fig. 3). This mode is associated
with the eigenvalue Λ

2,0
0 = 6, which sets its characteristic Lamb

period (τs;n = 2π /σs;n) to τs;0 ≈ 1.4 days in the radiative zone.
Hence, the tidal fluctuations that can be observed in the left pan-
els of Figs. 6 and 7 are partly due to compressibility. However,
the tidal frequency is not important enough to enable the prop-
agation of internal waves in the convective region. We note that
the propagation of internal waves in the convective region would
not be realistic since the traditional approximation assumed in
the present work is strongly violated in this region. Therefore, we
do not compute solutions for tidal periods lower than 0.1 days.

In the first case (top panels of Figs. 6 and 7), dissipation is
ignored. Therefore, in the stably stratified region and for tidal
periods τtide � τs;0, the dispersion relation of internal waves
associated with the n-mode given by Eq. (50) approximately
reduces to

k̂2
⊥;n + k̂2

r;n =
N2

σ2 k̂2
⊥;n, (75)

with n = 0. This highlights the two possible asymptotic regimes.
On the one hand, if the forcing period is short, the vertical wave-
length is of the same order of magnitude as the typical thickness
of the atmosphere. The tidal response thus exhibits large scale
patterns characterized by a small number of oscillations (top left
panels in Figs. 6 and 7). On the other hand, when tidal periods
are long (N2/σ2 � 1), k̂r;n � k̂⊥;n, which explains the wave-like
oscillatory response that can be observed for τtide & 10 days.

Without dissipation, waves reach the bottom of the radiative
zone and the turning point N2 = σ2, where k̂r;n ≈ 0. The skin
thickness of their penetration in the convective region decreases
while the forcing period increases. Similarly, the vertical
wavelength decays following the scaling law k̂2

r;n ∼
(
N2/σ2

)
k̂2
⊥;n

derived from Eq. (75). This leads to a highly oscillating response
in the vicinity of spin-orbit synchronous rotation (see top right
panels of Figs. 6 and 7). We note that such a behaviour is a source
of complications for numerical calculations. Indeed, following
the decay of wavelengths requires to increase the resolution
by a factor 10 at each decade of τtide. This strong numeri-
cal constraint prevents us from computing solutions beyond a
critical value of the forcing period. Here, with the 104 points
mesh that we use for the vertical coordinate in the first case,
this value approximately corresponds to τtide = 102 days, which
means that solutions plotted in the top right panels of Figs. 6
and 7 are sub-resolved. However, this behaviour is not realis-
tic because waves of such small scales are in reality damped by
dissipative processes.

This is exactly what is observed in the second case, where the
radiative cooling is introduced (middle panels of Figs. 6 and 7).
Beyond the transition regime corresponding to τtide ∼ τ?,
tidal waves are first strongly damped. Second, their wave-
lengths remain rather large, which eliminates the numerical
complications mentioned above. Third, their penetration in the
atmosphere is limited by the damping. As in the previous case,
the wavelike structure of the tidal response implies that the
thickness of regions where the tidal force is applied scales as half
of the wavelength of the dominating mode. As a consequence,
the forcing tends to generate superposed zonal-mean flows
of alternate directions. Figure 7 shows the narrow separation
there is between the convective envelope and the radiative
atmosphere with respect to this forcing. The first layer is hardly
affected by the thermal tidal torque, with time scales greater than
100 million years to generate jets, while the second one is sub-
mitted to a strong forcing. In this region, the time scale can reach
values below 1 year. In the absence of dissipation, the linear
response diverges, which explains why τevol is very short in the
top right panels of Fig. 7. The observed contrast between the two
layers is due to the fact that the whole energy of the semidiur-
nal thermal tide is deposited in the radiative zone, which is very
thin compared to the planet radius (Fig. 2, left panel) and far less
dense than the convective region (see Fig. 2).

As shown by the bottom panels of Figs. 6 and 7, intro-
ducing rotation distorts the regular structure associated with
the quadrupolar mode, which was the only forced mode in
the non-rotating cases. The fluid response is now formed
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Fig. 6. Imaginary part of density fluctuations generated by the quadrupolar semidiurnal thermal tide a functions of the latitude (horizontal axis,
degrees) and background pressure in logarithmic scale (vertical axis, bars). Density fluctuations are plotted using Eq. (51) for several decades of
the forcing period (τtide = 2π/σ), log (τtide) = −1, . . . , 3 (from left to right), and the three studied cases. Top: case treated by Arras & Socrates
(2010), that is, adiabatic without rotation (no-Coriolis approximation). Middle: non-adiabatic without rotation (τ? = 1 day). Bottom: non-adiabatic
(τ? = 1 day) with rotation (traditional approximation). The horizontal structure of the tidal response (Eq. (26)) is computed for 250 Hough modes
using the spectral method described by Wang et al. (2016), with projections on 375 associated Legendre polynomials. The vertical structure
equation (Eq. (41)) is integrated on a regular mesh composed of 1000 points (10 000 points for the case τ? = +∞) using the implicit fourth order
finite differences scheme detailed in Appendix E.

by a series of Hough modes that describe the propaga-
tion of gravito-acoustic-inertial waves of different wavelengths.
In order to facilitate the interpretation of results in the
rotating case, we plot in Fig. 8 the eigenvalues associated to even
Hough functions of degrees n = {−6,−4,−2, 0, 2, 4}, the cor-
responding coupling coefficients with the quadrupolar forcing,

C2,ν
2,n,2 =

(
A2,ν

n,2

)2
, and the ratios C2,ν

2,n,2 /
∣∣∣Λ2,ν

n

∣∣∣ that will be identified
as amplification factors resulting from rotation in the follow-
ing section. The values of spin parameters, computed using
Eq. (58), and the associated Λ

2,ν
n and C2,ν

2,n,2, are summarized in
Table 2.
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Fig. 7. Characteristic time scale necessary for the quadrupolar semidiurnal thermal tide to generate an azimuthal jet of velocity Vjet = 1 km s−1. The
logarithm of τevol (yr) is plotted using Eq. (72) for several decades of the forcing period (τtide = 2π/σ), log (τtide) = −1, . . . , 3 (from left to right),
and the three studied cases. Top: case treated by Arras & Socrates (2010), that is, adiabatic without rotation (no-Coriolis approximation). Middle:
non-adiabatic without rotation (τ? = 1 day). Bottom: non-adiabatic (τ? = 1 day) with rotation (traditional approximation). The horizontal structure
of the tidal response (Eq. (26)) is computed for 250 Hough modes using the spectral method described by Wang et al. (2016), with projections on
375 associated Legendre polynomials. The vertical structure equation (Eq. (41)) is integrated on regular mesh composed of 1000 points (10 000
points for the case τ? = ∞) using the implicit fourth order finite differences scheme detailed in Appendix E.

In the asymptotic case of rapid rotation, the predominant
modes are the gravity modes of smallest horizontal wavenum-
bers. Hence, for τtide = 10−1 days (bottom left panel), the P2

2-like
meridional variation of δρ and τevol corresponds to the gravity
mode of degree n = 0. In the following case (τtide = 1 day), we
note that the amplitude of the harmonic of degree 2 is of the same
order of magnitude as that of degree 0, while Θ

2,ν
0 is far better

coupled to P2
2 than Θ

2,ν
2 in this case (ν = 0.51). This results from

a resonant amplification of the harmonic. While τtide increases,
gravity modes tend to be confined equatorially. We observe this
effect in the bottom middle panel of Figs. 6 and 7, where the
meridional structure of the tidal response is essentially shaped
by the main gravity mode (n = 0, see Fig. 3, top left panel).
Because of the equatorial confinement, the coupling between
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Fig. 8. Eigenvalues Λ2,ν
n associated with even Hough modes (left), coupling coefficients C2,ν

2,n,2 =
(
An,ν

n,2

)2
(middle) and amplification factors

C2,ν
2,n,2 /

∣∣∣Λ2,ν
n

∣∣∣ (right) as functions of the spin parameter (ν) for n = {−6,−4,−2, 0, 2, 4} (three Rossby modes and three gravity modes). To
represent quantities varying over a large range of magnitude and with sign changes, the function f (X) = sign (X) log (1 + |X|) is used. It enforces
f (X) ≈ X for X � 1 and f (X) ≈ sign (X) log (|X|) with a continuous transition. The peak observed in the right panel corresponds to the equality
between the tidal frequency and the characteristic frequency of the Rossby mode of degree n = −2 (at this frequency, Λ2,ν

−2 = 0, see Lee & Saio 1997).

Table 2. Values of the spin parameter (ν), eigenvalues of Hough modes
(Λn) and coupling coefficients (C2,n,2) associated with the values of τtide
used in Sect. 4 for n = {−6,−4,−2, 0, 2, 4}.

Case (a) (b) (c) (d) (e)

τtide [d] 0.1 1 10 100 1000
ν 0.951 0.510 −3.90 −48.0 −489

Λ−6 – – −14.0 −0.142 −6.27 E−3

Λ−4 – – −8.30 −0.106 −5.58 E−3

Λ−2 – – −4.16 −7.60 E−2 −4.95 E−3

Λ0 10.6 7.55 4.26 4.02 4.00
Λ2 38.0 23.7 159 2.09 E4 2.15 E6

Λ4 82.2 49.1 759 1.13 E5 1.27 E7

C2,−6,2 – – 1.40 E−2 6.35 E−2 1.00 E−2

C2,−4,2 – – 2.68 E−2 5.82 E−2 6.32 E−3

C2,−2,2 – – 5.01 E−2 3.79 E−2 2.68 E−3

C2,0,2 0.954 0.998 0.875 0.330 0.106
C2,2,2 3.81 E−2 1.86 E−3 7.21 E−3 9.65 E−6 9.66 E−9

C2,4,2 5.55 E−3 9.69 E−6 7.26 E−4 7.59 E−7 9.83 E−10

gravity modes and the quadrupolar forcing decays. It follows
that the family of modes composing the response switches from
gravity modes to Rossby modes around τtide = 10 day, that is
the transition between the inertial and the sub-inertial regimes
illustrated by Fig. 5.

In the vicinity of spin-orbit synchronous rotation, the tidal
response converges toward the asymptotic behaviour of the zero-
frequency limit (τtide → +∞), that is the so-called equilibrium
tide. The aspect of spatial distributions plotted in Figs. 6 and 7
does not evolve any more. This behaviour is studied analytically
in Appendix C, where the vertical profiles of perturbed quanti-
ties associated with the equilibrium thermal tide are given. By
comparing the dissipative cases with and without rotation (right
panels of cases 1 and 2), we notice that rotation strongly affects
this regime. In the static approximation (Ω = 0), the amplitude
of the tidal response decreases while τtide increases, following
the scaling law δρ ∝ σ. It is not the case any more when rotation
is taken into account. Instead of decreasing, the amplitude
of the density fluctuations saturates. Thus, the tidal response
is enhanced by rotation. This saturation typically occurs for
|σ| � |2Ω|, that is, when the Coriolis effects exceed the ther-
mally forced advection in the momentum equation. We will see

in the following section that this results from the amplification of
Rossby modes by the factor C2,ν

2,n,2 /
∣∣∣Λ2,ν

n

∣∣∣ mentioned above. As
shown by Fig. 8, this factor plummets for gravity modes in the
limit ν → −∞, while it increases in the case of Rossby modes.
Therefore, the coupling of the tidal response with Rossby
modes is accentuated and the coupling with gravity modes
annihilated. This explains why a gap can be observed at the
equator, where gravity modes are confined (bottom right panels
of Figs. 6 and 7).

5. Frequency spectra of the tidal torque

We end this study by examining how the total tidal torque
exerted on the planet depends on the tidal frequency and how
it is affected by the radiative cooling and rotation. As done
in the previous section, we isolate the component of the fluid
response associated with the thermal tides by setting U = 0 in
the equations of tidal waves, and use the parameters of Table 1.
First, following Arras & Socrates (2010), we consider the static
approximation (Ω = 0) and compute the tidal response for
a strong radiative cooling (τ? = 0.1 day) and a weaker one
(τ? = 10 day). Second, we compare the static (Ω = 0) and
rotating cases (Ω = norb + σ/ 2) for τ? = 1 day. The obtained
torques are plotted on Fig. 9 as functions of the tidal period.

In the static approximation (left panel of Fig. 9), we repro-
duce the results previously obtained by Arras & Socrates (2010).
Three regimes can be observed. At small tidal periods, the
spectrum of the tidal torque exhibits a resonance due to the
propagation of internal gravito-acoustic waves in the radiative
zone. For extremal values of the tidal period, tidal waves are
mainly restored by the fluid compressibility, which allows them
to cross the lower limit of the stably stratified atmosphere and
propagate in the central convective region. We note however
that these frequencies correspond to rotation rates greater than
the critical Keplerian frequency (Ωc), meaning that the planet
should be destroyed by centrifugal distortion in this frequency
range. In the range τtide ≈ 1−30 days, a batch of resonances can
be observed. It results from the excitation of the pure gravity
waves observed in Figs. 6 and 7 (middle columns). Contrary
to those associated with gravito-acoustic waves, these reso-
nances are damped by the radiative cooling. Their amplitude
decays while τ? increases. The non-dissipative asymptotic case,
τ? = +∞ corresponds to the spectrum of Fig. 5 in the work by
Arras & Socrates (2010).
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Fig. 9. Total tidal torque exerted of the planet (N.m) as a function of the tidal period (days). Left: for two extremal value of the thermal time
(τ? = 0.1, 10 days) in the static approximation (Ω = 0). Right: for τ? = 1 day in the static (Ω = 0) and traditional (Ω , 0) approximations (in this
case, Ω is given by Ω = norb + σ/ 2 with |σ| = 2π / τtide and norb = 2π / τorb, see Table 1). In both panels, the torque resulting from the quadrupolar
component of the semi-diurnal tide is plotted in logarithmic scale (vertical axis) as a function of the logarithm of τtide (horizontal scale). Solid
(dashed) lines correspond to negative (positive) torques, pushing the planet away (toward) spin-orbit synchronous rotation. The black dotted line
designates the equilibrium tidal torque plotted using the analytic formula of Eq. (76). The grey zone corresponds to the region of the spectrum
where the rotation rate exceeds the critical Keplerian angular frequency, defined in Sect. 2. Values of parameters used for these calculations are
summarized in Table 1. The vertical structure of the tidal response is integrated on a regular mesh composed of 104 points for the left panel and
103 points for the right panel.

Finally, in the limit of long tidal periods (zero-frequency
limit), the tidal response converges toward the regime of the
equilibrium thermal tide. For more details about solutions in
this regime, we refer the reader to the analytic study detailed
in Appendices C and D. Particularly, we derive in this study
an analytic approximation of the tidal quadrupole moment Q2,σ

2
(Eq. (74)), which is expressed as (see Eq. (D.10))

Q2,σ
2 =

∑
n

A2,ν
n,2

{[
1 −

30
Λ

m,ν
n

] ∫ Re

0
ρ0r4

(
σ2

N2

)
Jn

iσT0Cp
dr (76)

+
R5

Λ
m,ν
n

[(
σ2

N2

)
ρ0

(
6 +

R
H

) Jn

iσT0Cp

]
r=Re

 ,
where Re designates the radius of the upper limit of the atmo-
sphere introduced in Sect. 2.1. This formula is the generalization
of the scaling law given by Arras & Socrates (2010) in Eq. (45)
to the rotating and dissipative case. This shows that the radiative
cooling does not intervene in the asymptotic regime of the
equilibrium thermal tide since the quadrupole moment does not
depend on σ0. Hence, whatever the efficiency of the radiative
cooling, the fluid tidal response associated with the thermal
tide invariably converges towards the same asymptotic regime
and the same spatial distributions of perturbed quantities. This
corresponds to what is observed on Fig. 9 (left panel), where
the equilibrium tidal torque is plotted by using Eq. (76) (dot-
ted black line). In the asymptotic zero-frequency regime, the
quadrupole scales as Q2,σ

n,2 ∝ σ, a frequency-dependence cor-
responding to that described by the constant time lag model
(Mignard 1979, 1980; Hut 1981). Moreover, we notice that the
sign of the tidal torque varies with the tidal frequency depend-
ing on the internal variation of mass distribution generated by
tidal waves (see Fig. 6, middle and top panels). As the rotation
is sub-synchronous in the studied case (σ < 0), a positive torque
(dashed line) pushes the planet toward spin-orbit synchroniza-
tion in a global way while a negative torque (continuous line)

tends to drive it away from this state of equilibrium. We note
that this diagnosis is only valid as a zero-order approximation
given that fluid layers are differentially forced by the thermal
tide. The tidal forcing will generate zonal flows in the radiative
zone as shown by early studies (e.g. Gu & Ogilvie 2009) and the
previous section, rather than modify the mean solid rotation
of the planet. These flows can nevertheless provide angu-
lar momentum to deeper layers through viscous coupling
(e.g. Tsai et al. 2014).

Let us now examine the effect of rotation on the frequency
spectrum (Fig. 9, right panel). As seen in the previous section,
the rotation increases the number of excited modes by inducing a
coupling in the momentum equations of tidal waves through the
Coriolis acceleration. The strength of this effect is related to the
absolute value of the spin parameter (ν = 2Ω /σ), the asymptotic
limit ν→ 0 corresponding to the static case. Thus, in the regime
of rapid rotation ν ≈ −1, and the number of resonances due
to gravito-acoustic waves is increased. The transition between
retrograde and prograde rotation occurs in the period range
τtide ≈ 1–10 days (see Fig. 5). As a consequence, the regime
of the fluid response is super-inertial and the quadrupolar forc-
ing is essentially coupled with the gravity mode of degree n = 0
(Fig. 8, middle panel). This explains why the resonances associ-
ated with gravity waves in the range τtide ≈ 1−30 days are weakly
modified by Coriolis effects.

It is not the case of the low-frequency range, where the tidal
torque ceases to decay beyond τ ≈ 30 days. To interpret this
behaviour, let us return to the analytic formula of the quadrupole,
given by Eq. (76). Unlike dissipative processes, the rotation
strongly affects the equilibrium thermal tide through the cou-
pling coefficients Am,ν

n,l and the eigenvalues Λ
m,ν
n . In the regime of

sub-inertial waves, where |ν| � 1, the quadrupolar perturbation
of the semidiurnal tide is mainly coupled with Rossby modes,
characterized by very small eigenvalues in absolute value (see
Fig. 8, left panel, and Townsend 2003, for scaling laws of the
Λ

m,ν
n ). Therefore, the amplitude of the tidal response associated
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with the n-Hough mode is enhanced by a factor(
An,2

)2∣∣∣Λm,ν
n

∣∣∣ � 1
l (l + 1)

=
1
6
, (77)

plotted in Fig. 8 (right panel). This corresponds to the fact
that Coriolis effects dominate the forced advection terms in the
momentum equation (Eq. (11)). As τtide → +∞, Ω → norb , 0,
which lets time to the Coriolis force to affect tidal motions. As a
consequence, the tidal response reaches the observed saturation
plateau (Fig. 9, right panel, cyan curve) for |σ| � |2Ω| while the
tidal frequency decreases. The global quadrupole does not scale
as Qm,σ

n,l ∝ σ as in the static case.
The analytic formula of Eq. (76) allows us to approximate

this behaviour. We can notice however a factor 2−3 difference
between the numerical results and the analytic approximation.
This difference is due to limitations of the analytic study of
Appendix C, where the eigenvalues associated with Hough
modes are considered as weakly sensitive to the tidal frequency.
Actually, these parameters strongly depend on σ in the sub-
inertial regimes. Particularly, those associated with the Rossby
modes decrease in absolute value while ν → −∞ (Fig. 8, left
panel, see also Lee & Saio 1997; Townsend 2003). They thus
tend to compensate the decay of the tidal frequency in the
zero-frequency asymptotic limit. We however recover the correct
functional form.

The observed behaviour of the tidal torque in the low-
frequency range is due to the absence of friction in the model.
This absence is responsible for the widening of the spectrum
of Hough modes when σ → 0. In calculations, one has to take
a large number of modes into account to compute the tidal
response because their amplitude decays very slowly while the
meridional degree (n) increases. As it is not possible to com-
pute an infinite number of modes, this leads to truncation effects,
which tends to degrade the obtained solution. In reality, fric-
tion modifies the tidal response in the low-frequency range by
introducing an additional timescale, denoted τfriction. If τtide �

τfriction, the obtained solution is not modified. If τtide & τfriction, it
has a strong impact on the spectrum of excited Hough modes.
In the asymptotic limit τtide/τfriction → +∞, Rossby modes
merge with gravity modes and converge toward the associated
Legendre polynomials (see e.g. Volland & Mayr 1972; Volland
1974), which are the Hough functions in the absence of rota-
tion. This means that the spectrum of Hough modes coupled with
the quadrupolar thermal forcing tends to reduce to one function,
as in the static case, when τtide & τfriction, instead of broaden-
ing as observed in the present study. Hence, we expect that
introducing friction in further works will change the aspect of
the frequency-spectrum of the tidal torque in the low-frequency
range.

6. Spin evolution

The tidal torque due to the semi-diurnal thermal tide is exerted
on the radiative zone, where all of the tidal heating is absorbed.
As showed by Sect. 4, there is a net separation between this
zone and the convective interior as regards the direct impact of
thermal tides on the dynamical evolution of the fluid. In this
section, we investigate the possibility for thermal tides to gen-
erate a dynamical decoupling between the radiative zone and the
convective interiors.

As a first step, let us compare the contributions of the tidal
thermal and gravitational forcings in the radiative zone. For that,

we introduce the ratio between the amplitude of the tidal thermal
(Ctherm) and gravitational (Cgrav) components, η = Ctherm/Cgrav.
In the general case, these two components depend on the com-
plex tidal response of the radiative zone and cannot be simply
expressed. However, η can be derived analytically in the zero-
frequency limit using the analysis detailed in Appendices C and
D. In this case, the expression of the total multipole moment
given by Eq. (D.3) shows that Ctherm and Cgrav are proportional
to the two terms of the equilibrium vertical displacement, which
reads for a given Hough mode (see Eq. (C.10))

ξ
(eq)
r;n =

1
iσ

(
σ0Un

g
+

gJn

N2T0Cp

)
. (78)

To simplify the problem, we consider the heated layer as
isothermal, leading to N2 = g2/CpT0, set the gravity to g =

GMp/R2, and assume τ? =
(
p?Cp

)
/ (gF?) with F? = 4σSBT 4

0
(e.g. Showman & Guillot 2002; Arras & Socrates 2010). Hence,
by substituting in Eq. (78) the expressions of U2 and J2 given
by Eqs. (56) and (57) and using the third Kepler law r3

?n2
orb =

G
(
M? + Mp

)
to eliminate norb, we finally obtain

η ∼
CpT?r3

?

GM?R2

(
R?

r?

) 1
2

, (79)

where the constant factor has been ignored.
The ratio η is plotted in Fig. 10 as a function of the star-planet

distance. This figure shows the regions where the tidal response
of the radiative layer is due to gravitational (η � 1, blue area)
and thermal (η � 1, red area) forcings. In the case treated here,
with the values of Table 1 and Cp = 7.49×103 J.kg−1.K−1, η ∼ 1
corresponds to r? ∼ 0.03 AU, which means that the gravitational
and thermal components are comparable in the zero-frequency
limit. The thermal component can nevertheless be greater than
the gravitational one in the frequency range of resonant internal
gravity waves, where it is increased by two orders of magnitude
(see Fig. 9). Moreover, one should bear in mind that ηmeasures a
mean ratio at the base of the heated layer. This ratio varies with
the altitude from the base of the stably stratified layer, where
gravitational tides dominate, to the high levels of the atmosphere,
mainly submitted to the stellar heating.

We now compare the global rotational evolution of the spin
in the convective interior and radiative layer. The convective
interior is submitted to the gravitational forcing of the star
only, which generates an equilibrium elongation and a dynam-
ical response taking the form of inertial waves (Ogilvie &
Lin 2004). The lag due to the energy dissipated tidally by the
factor, we obtain the global convective zone is thus specified by
the tidal quality factor Q, and the corresponding tidal torque is
given by (e.g. Goldreich & Soter 1966)

Tgrav =
3GM2

?R5

2r6
?Q

, (80)

from which the synchronization time scale of the interior
τCZ

syn is deduced. Ignoring the constant factor, we get (e.g.
Showman & Guillot 2002)

τCZ
syn ≈ Q

(
R3

GMp

) (
Mp

M?

)2 ( a
R

)6
|σ| . (81)

Similarly, by considering the radiative layer as a thin shell
corresponding to the mass fraction fp of the planet and ignoring
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Fig. 10. Regions where the tidal response of the radiative layer is domi-
nated by the gravitational (blue area) and thermal (red area) components
of the forcing in the zero-frequency limit (σ→ 0). The logarithm of the
ratio η given by Eq. (79) (black solid line) is plotted as a function of the
star-planet distance r? (AU) in logarithmic scale. The blue dashed line
designates the critical distance at which the two components are of the
same order of magnitude (η ≈ 1).

the constant factor, we obtain the global synchronization time
scale of the spin due to semidiurnal thermal tides,

τRZ
syn ≈ fpMpR2

∣∣∣∣∣ σ

TSDT (Ω, σ)

∣∣∣∣∣ , (82)

where TSDT is the total tidal torque given by Eq. (73). The
mass fraction of the radiative layer is determined by the
pressure level at which the transition between neutral and sta-
ble stratification is located. Considering the background profiles
computed in Sect. 2.2, we estimate it to fp ≈ 2 × 10−5 in the
studied case.

Hence, using Eqs. (81) and (82) with the values of
parameters given by Table 1, we plot in Fig. 11 the synchro-
nization time scale of the radiative and convective zones as a
function of the tidal period. The tidal quality factor is not well
constrained because it partly results from the dynamical tide
within the convective region, which can vary over several orders
of magnitude depending both on the properties of internal
friction and on resonances associated with the propagation of
inertial waves (Ogilvie & Lin 2004). For Jupiter, the magni-
tude of Q inferred from Io’s dissipation rate is in the range
6× 104 < Q < 2× 106 (Yoder & Peale 1981). For Saturn, Lainey
et al. (2017) estimate the Love number to k2 = 0.390 ± 0.24
and the ratio k2/Q to k2/Q = (1.59 ± 0.74) × 10−4, which gives
1 × 10−3 < Q < 5 × 10−3. Therefore, to calculate the synchro-
nization time scale of the convective interior, we employ a
simplified constant-Q model, with two different values of Q. In
the first case, considered as weakly dissipative, the tidal qual-
ity factor is set to Q = 105 (blue dashed line). In the second
case, which corresponds to a stronger tidal dissipation, Q = 103

(red dashed line). Concerning the radiative layer, we use the
torque computed in the non-adiabatic case with rotation and its
analytic approximation in the zero-frequency limit (see Fig. 9,
right panel).

The figure shows that the synchronization time scale of
the radiative layer forced by thermal tides is similar to that
of the convective interior for Q = 105 (weak tidal dissipation)

Fig. 11. Synchronisation time scale (yr) of the radiative (RZ) and con-
vective (CZ) zones as a function of the tidal period (days) in logarithmic
scales. The cyan line designates the synchronization time scale com-
puted numerically with the model of the uniformly rotating spherical
shell using Eq. (82). This line is solid (dashed) in regions where the
radiative layer is torqued away from (towards) synchronization. The dot-
ted black line designates the synchronization time scale resulting from
the torque derived analytically in the zero-frequency limit. Red and blue
dashed lines correspond to the case of the convective interior with con-
stant tidal quality factors set to Q = 103 and Q = 105, respectively. They
are plotted using Eq. (81).

in the zero-frequency limit. In this case, thermal tides do not
induce differential rotation between the radiative and convective
regions. Resonances associated with the propagation of internal
gravity waves can decrease the synchronization time scale of the
radiative layer by two orders of magnitude in the period range
1–30 days. However, their effects on mean flows remain local,
the high dissipation rate in the vicinity of a resonance tend-
ing to drive the rotation of the layer out of it. The time scale
corresponding to a strong tidal dissipation in the radiative zone
is of the same order of magnitude than that associated with
Q = 103 in the convective interior.

7. Discussion
The linear analysis shows that semi-diurnal thermal tides are
able to generate strong asynchronous zonal flows in the radiative
zone, where all of the tidal heating is absorbed. Because of the
propagation of internal waves, the fluid tidal response can be
enhanced by several orders of magnitude. This reinforces the
conclusions of Arras & Socrates (2010) for the semidiurnal tide,
and of Gu & Ogilvie (2009) who demonstrated that the diur-
nal thermal tide could drive the upper layers of the atmosphere
into asynchronous rotation by transporting angular momentum
upward. Moreover, it emphasizes the necessity to consider the
possibility of tidally driven asynchronous zonal flows in the
modelling of the general circulation of hot Jupiters beyond a crit-
ical orbital radius, which is approximately r? ≈ 0.03 AU in the
treated case. Thermal tides can be difficult to take into account
with GCMs for two reasons. First, they are negligible at time
scales characterizing the global flows. Second, the atmospheric
tidal response depends at the inner boundary condition on the
distortion of the convective envelope. Thus, to properly com-
pute the atmospheric tidal response, one should know how the
system of coordinates is modified by the gravitationally excited
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distortion of the convective interior. However, owing to their
ability to drive the radiative region into asynchronous rotation,
the effects of thermal tides on the general circulation should
be included in models when the thermally excited component
of the tidal response is greater than the gravitationally excited
component.

In the present work, it emerges that dissipative processes
play a key role in the fluid tidal response. Firstly, they affect
its magnitude, particularly for tidal periods τtide & τ?. Secondly,
they regularize the resonant behaviour obtained by Arras &
Socrates (2010) in the vicinity of synchronous rotation, which
is due to the reflection of internal gravity waves on the bound-
aries of the stably stratified layer (compare Fig. 9 with Fig. 4
of Arras & Socrates 2010). The radiative cooling drains away
the energy injected by the tidal heating. In that sense, it acts
similarly to the radiation condition used by Arras & Socrates
(2010), which allows the energy to propagate upwards at the
upper boundary. We thus retrieve qualitatively the spectrum
plotted in Fig. 5 of their study in the static approximation.
The effect of rotation on the tidal response is strong when
|2Ω| � |σ|. It induces the excitation of a large number of modes
behaving in a frequency-resonant way. For this reason, the tidal
response would be much more altered by rotation in the range
0.1 days < τtide < 1 day in the case of super-synchronous rota-
tion than in the case of sub-synchronous rotation treated in this
study.

We shall discuss here the two approximations that we make
concerning rotation to simplify calculations. As regards back-
ground flows, we consider that the planet rotates uniformly at
the angular frequency Ω. Thus we ignore the coupling between
tidal waves and mean flows. Nevertheless, this coupling could
significantly modify the tidal response of the radiative region.
Indeed, taking into account winds introduces an advection term
in the momentum equation. This term is weighted by the Rossby
number, that is, the parameter measuring the departure of the
flow to solid rotation. Hence, in the regime of high Rossby
numbers, the Coriolis acceleration is dominated by wind-driven
advective accelerations, which implies a new tidal regime in
Fig. 4. The effect of a vertical shear on internal waves has
been studied in the framework of the Earth atmospheric tides
(e.g. Chiu 1952; Booker & Bretherton 1967) and oceanic tur-
bulence (e.g. Worthem et al. 1983). Beyond a critical value
of the local Richardson number Ri = N2 |dV0/dr|−2 (V0 stand-
ing for the velocity vector of the wind), internal gravity are
attenuated by the vertical shear at the level at which their
horizontal phase speed is equal to the zonal velocity Vϕ;0
(Booker & Bretherton 1967). As the horizontal phase speed
scales as vϕ ∼ σR in the radiative zone, we expect that the ver-
tical shear plays an important role in the low-frequency range.
Typically, for R = 1.27 RJ and Vϕ;0 = 1 km s−1, the frequency at
which vϕ ∼ Vϕ,0 is σ = 1.1 × 10−5 s−1, which corresponds to the
tidal period τtide = 6.5 days.

The second most important simplification as regards rota-
tion is the traditional approximation (e.g. Unno et al. 1989).
In this approximation, the horizontal component of the rotation
vector, −Ω sin θ eθ, is neglected (see Eqs. (16) to (18)). Physi-
cally, this means that the we ignore the radial component of the
Coriolis force and the horizontal component associated with
radial motions. Therefore, the traditional approximation is
appropriate in the case where the fluid displacement is dom-
inated by horizontal motions. As the Archimedean force acts
as a restoring force on fluid particles in the vertical direc-
tion, a sufficiently strong stable stratification limits vertical
motions. The buoyancy thus dominates the radial component of

the Coriolis force, and makes the horizontal component associ-
ated with radial motions negligible compared to that associated
with horizontal motions. Given that the strengths of the Cori-
olis and Archimedean forces are measured by the inertia and
Brunt-Väisälä frequencies, respectively, this condition is math-
ematically expressed by the hierarchy of frequencies |2Ω| � N
(e.g. Auclair-Desrotour et al. 2017a). The validity of the tradi-
tional approximation as regards the modelling of internal waves
has been examined for various media, such as oceanic layers (e.g.
Gerkema & Shrira 2005; Gerkema & Zimmerman 2008), plan-
etary atmospheres and envelopes (e.g. Ogilvie & Lin 2004; Tort
& Dubos 2014), and stellar interiors (e.g. Savonije et al. 1995;
Mathis et al. 2008; Mathis 2009; Prat et al. 2017). The traditional
approximation prevents us from extending the analytic approach
used in this work to weakly of neutrally stratified layers, where
radial and horizontal motions are of the same order of magni-
tude. In such cases, it is necessary to keep all of the components
of the Coriolis force. This requires the use of numerical or semi-
analytical methods like the Chebyshev pseudospectral method
used by Ogilvie & Lin (2004).

8. Conclusions

Motivated by the understanding of the effect of stellar semidiur-
nal thermal tides on the general circulation of hot Jupiters, we
revisited the early study by Arras & Socrates (2010) by includ-
ing the effects of radiative cooling and rotation. We derived the
equations describing the tidal response of a radially stratified
fluid planet in the framework of the traditional approximation,
where the horizontal and vertical structure of waves can be
solved separately. For the background structure of the planet,
we used the equation of state proposed by Arras & Socrates
(2010), which mimics a bi-layer planet composed of a central
neutrally stratified region and a thin superficial stably stratified
radiative zone. As regards the radiative cooling, we applied the
prescription given by Iro et al. (2005) to set the scaling law
of the thermal time in the heated layer. We thus derived the
equations of tidal waves forced both by the stellar incoming
flux and the tidal gravitational potential of the star, as well as
the associated tidal torque and time scale of evolution of tidally
forced mean zonal flows. We then solved these equations numeri-
cally for the case treated by Arras & Socrates (2010) in three con-
figurations: (a) in the static and adiabatic approximations (Arras
& Socrates 2010), (b) in the static approximation with radiative
cooling, (c) with rotation and radiative cooling. In each case,
we computed both the internal structure of the tidal response
due to the thermal forcing and the total tidal torque exerted on
the planet.

The rotation strongly modifies the structure of the tidal
waves by coupling the forcing with Hough modes of different
wavenumbers. The better coupled modes can change depend-
ing on the frequency. In the super-inertial regime (|ν| � 1), the
main contributor is the gravity mode of degree n = 0. In the sub-
inertial regime (|ν| � 1), the structure of the tidal perturbation
is shaped by a large number of Rossby modes. In the framework
of the static and adiabatic approximations we recover the results
obtained by Arras & Socrates (2010). The absence of dissipation
allows gravito-acoustic waves to propagate over the whole thick-
ness of the radiative zone and to be reflected by its boundaries,
which amplify the tidal response and allows a strongly oscillat-
ing behaviour to arise in the vicinity of spin-orbit synchronous
rotation. Introducing the radiative cooling leads to a regular-
ized response where such oscillations do not exist any more. In
this case, the response is characterized by large-scale patterns
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tending to generate zonal flows in alternate directions. However,
the tidal response in the zero-frequency limit remains the same
as in the adiabatic case. It does not depend on the thermal time
of the radiative zone.

In the zero-frequency limit, the obtained frequency spec-
trum of the tidal torque reaches a saturation plateau when
rotation in included. It thus qualitatively differs from the static
case treated by Arras & Socrates (2010). In their case, the
torque follows the scaling law TSDT ∝ σ, which corresponds
to the frequency behaviour described by the constant time lag
model. Both behaviours are well approximated by the ana-
lytic formula derived for the equilibrium tide in this work,
which generalizes that given by Arras & Socrates (2010) to
non-adiabatic and rotating atmospheres. Particularly, this for-
mula allows us to identify the amplification factors at the origin
of the saturation in the rotating case. These amplification fac-
tors are due to the absence of friction in the model, which
allows rotation to couple the perturbation with a large num-
ber of Rossby modes. In reality, friction would prevent this
coupling in the low-frequency range and drive the perturba-
tion toward a quadrupolar pattern, similarly to the forcing. As
observed by Arras & Socrates (2010), the obtained spectra of the
total tidal torque exhibit resonances corresponding to gravito-
acoustic waves in the high-frequency range (τtide . 1 day) and
to gravity waves in the medium-frequency range (1 . τtide .
30 days).

As the sign of the tidal torque varies with the tidal frequency,
the semidiurnal tide is likely to drive strong asynchronous zonal
flows over time scales comparable to the year in order of mag-
nitude. This impact results from both the weak density of the
radiative zone and the fact that it absorbs all of the incoming
stellar flux. This highlights the fact that the dynamics of the
radiative zone are far more sensitive to stellar thermal tides than
the central convective region. However, the time scales associ-
ated with the growth of tidally forced jets remains larger than
those characterizing the general circulation in the heated zone.
In the zero-frequency limit, the thermal tidal response of the
radiative layer dominate the gravitational component beyond
a critical orbital radius, estimated to r? ∼ 0.03 AU in this
work. The associated synchronization time scale is of the
same order as that of the convective interior if this lat-
ter has a Jupiter-like tidal dissipation rate, Q = 105. It can
be decreased by several orders of magnitude by resonances
due to internal gravito-inertial waves in the period range
1–30 days.

A subject of interest for forthcoming works would be to
investigate how winds affect the tidal response. The intense stel-
lar heating to which hot Jupiters are submitted by their host star
forces strong zonal jets inducing an important departure to the
idealised solid rotation approximation. Therefore, the interplay
between the general circulation and tidal waves appears as a
key question in the understanding of the effect of tides on the
dynamical evolution of hot Jupiters.
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Appendix A: Polarisation relations of the tidal
response

The polarisation relations of the tidal response (Sect. 2.2) are
computed by substituting Ψn in primitive equations. Omitting
the superscripts m and σ, we obtain, for latitudinal motions,

ξθ;n =
1
σ2r

(ΦnΨn − Un) , (A.1)

Vθ;n =
i
σr

(ΦnΨn − Un) , (A.2)

for longitudinal motions,

ξϕ;n =
i
σ2r

(ΦnΨn − Un) , (A.3)

Vϕ;n = −
1
σr

(ΦnΨn − Un) , (A.4)

for vertical motions,

ξr;n = −
1
H

(
σ

σ − iσ0
N2 − σ2

)−1 [
Φn

(
dΨn

dx
+AnΨn

)
−

dUn

dx

+ i
κ

σ − iσ0
Jn

]
, (A.5)

Vr;n = −
iσ
H

(
σ

σ − iσ0
N2 − σ2

)−1 [
Φn

(
dΨn

dx
+AnΨn

)
−

dUn

dx

+ i
κ

σ − iσ0
Jn

]
, (A.6)

and for scalar quantities,

δpn = ρ0ΦnΨn, (A.7)

δρn = −
ρ0

gH
N2

N2 − σ (σ − iσ0)

[
Φn

(
dΨn

dx
+ BnΨn

)
(A.8)

−
dUn

dx
+ i

κσ

N2 Jn

]
,

δTn =
N2

N2 − σ (σ − iσ0)

[
Φn

(
dΨn

dx
+ CnΨn

)
−

dUn

dx
+ i

κσ

N2 Jn

]
,

(A.9)

]where we have introduced the co-efficients

An (x) =
1
2

(
1
Γ1

σ − i Γ1σ0

σ − iσ0
−

σ

σ − iσ0

HN2

g
+ K◦

)
, (A.10)

Bn (x) =
1
2

[
1
Γ1

σ − i Γ1σ0

σ − iσ0

(
2
σ (σ − iσ0)

N2 − 1
)

(A.11)

−
σ

σ − iσ0

HN2

g
+ K◦

]
,

Cn (x) = Bn + 1 −
σ (σ − iσ0)

N2 . (A.12)

Appendix B: Impact of the lower boundary
condition on the solution

Fig. B.1. Imaginary part of density fluctuations in the case treated in
Fig. 6 for a lower boundary located at the pressure level p0 = 104 bar
instead of the centre of the planet as in Fig. 6. The density fluctu-
ations are plotted as a function of latitude (degrees, horizontal axis)
and pressure in logarithmic scale (bars, vertical axis) in the case with
rotation and radiative cooling and for two different tidal periods, (i)
τtide = 0.1 day (left) and (ii) τtide = 10 day (right). The correspond-
ing rotation rates are given by Ω = σ/2 + norb with |σ| = 2π/τtide and
norb = 2π/τorb (see Table 1).

As discussed in Sect. 2.4, the lower limit of the fluid region
where the tidal perturbation is computed can affect the obtained
solution if it is set too close to the base of the stably stratified
zone. We show here an example of the kind of artefacts that can
occur in these cases. In plots displayed by Fig. 6, the lower limit
is set as far as possible from the perturbed region, that is at the
centre of the planet. This allows us to avoid artificial interactions
of the perturbation with the lower boundary. In the present case,
we set the lower limit of the fluid region at the pressure level
p0 = 104 bar, much more closer to the basis of the stably strat-
ified zone (the region now stands for 6% of the planet radius),
and do the calculations again for two cases treated in Fig. 6: (i)
τtide = 0.1 day and (ii) τtide = 10 days, with rotation and radia-
tive cooling. The parameters used for this study are those given
by Table 1. The lower boundary condition is a rigid-wall condi-
tion, as defined in Sect. 2.4. The obtained results are plotted in
Fig. B.1.

In case (ii), we obtain exactly the same solution as in
Fig. 6. Tidal density variations are not affected by the lower
boundary. We cannot observe any artefact. The other case is
different. In case (i), we clearly note that the solution exhibit
a new pattern with respect the the plot of Fig. 6. This pat-
tern corresponds to an artefact resulting from the interactions
of the tidal perturbation with the lower boundary of the fluid
region. It highlight the way this boundary can affects the solu-
tion and justifies that we set the lower limit of the fluid region
“at the infinite”.

Appendix C: Low-frequencies asymptotic regime

We derive here the asymptotic tidal response of the radia-
tive zone in the low-frequency regime, which corresponds to
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σ � σ0, 2Ω,N, σs (see Fig. 4). Following Arras & Socrates
(2010), we first establish the zero-frequency limit, the so-called
equilibrium tide, and then a finite frequency correction to obtain
the trend in the vicinity of spin–orbit synchronous rotation. Our
goal is study the role played by rotation and radiative cooling
in this regime and to explain the results obtained numerically in
Sects. 4 and 5.

C.1. The equilibrium tide (σ→ 0)

The equilibrium tide is defined as the zero-frequency tidal
response. We thus consider the primitive equations given by
Eqs. (16) to (20) and let σ tend to zero. We begin with the equi-
librium displacement. In the static case, the dis-placement asso-
ciated with the (l,m, σ)-mode can be expanded in the poloidal
harmonics (e.g., Arras & Socrates 2010)

ξm,σ
l =

[
ξm,σ

r;l (r) er + ξm,σ
⊥;l (r) r∇⊥

]
Pm

l (cos θ) ei(σt+mϕ), (C.1)

where ξm,σ
⊥;l designates the vertical profile of the horizontal dis-

placement and ∇⊥ = (1/r) ∂θeθ + 1/ (r sin θ) ∂ϕeϕ the horizontal
gradient operator in spherical coordinates. When the rotation
is introduced (using the traditional approximation), the solution
is a series of Hough modes identified by the subscript n. The
previous expression thus generalises into

ξm,σ
n =

[
ξm,σ

r;n (r) + ξm,σ
⊥;n (r)Lm,ν

⊥

]
Θm,ν

n (θ) ei(σt+mϕ), (C.2)

the notation Lm,ν
⊥ referring to the horizontal operator

L
m,ν
⊥ =

1
1 − ν2 cos2 θ

[(
d
dθ

+ mν cot θ
)

eθ (C.3)

+

(
ν cos θ

d
dθ

+
m

sin θ

)
eϕ

]
.

In the static case, Lm,0
⊥ = r∇⊥ and we recover the expansion in

poloidal harmonics given by Eq. (C.1). In the following, we omit
the superscript (m, σ) in order to lighten equations.

With the notations introduced above, the equation of conser-
vation of the horizontal momentum is expressed as

σ2ξ⊥;n =
1
r

(
δpn

ρ0
− Un

)
. (C.4)

As a consequence, the equilibrium pressure fluctuation writes

δp(eq)
n = ρ0Un. (C.5)

Substituting Eq. (C.5) in the equation of conservation of the
vertical momentum,

−σ2ξr;n = −
1
ρ0

dδpn

dr
−
g

ρ0
δρn +

dUn

dr
, (C.6)

we get the density fluctuation associated with the equilibrium
tide,

δρ
(eq)
n = −

dρ0

dr
Un

g
. (C.7)

We then consider the equation of heat transport,

δρn

ρ0

(
1 +

σ0

iσ

)
=
δpn

ρ0c2
s

(
1 +

σ0

iσ

)
+

N2

g
ξr;n −

Jn

iσT0Cp
, (C.8)

where we substitute the pressure and density fluctuations asso-
ciated with the equilibrium tide, Eqs. (C.5) and (C.7). It follows
that

N2ξ
(eq)
r;n =

N2

g

σ0

iσ
Un +

gJn

iσT0Cp
. (C.9)

As discussed by Arras & Socrates (2010), we note that no
solution exist in the central neutrally stratified region, since
N2 → 0 while the thermal forcing is non-zero. This results from
the vanishing of the Archimedean force, which is the only restor-
ing force of the system in the vertical direction. In the neutrally
stratified region, fluid particles can move freely along the verti-
cal direction. As a consequence, no equilibrium can be reached
when a forcing is applied. We shall also highlight here the
fact that the traditional approximation is not valid in neutrally
stratified region in the zero-frequency limit since 2Ω & σ,N.

In the stably stratified radiative zone however, the vertical
displacement associated with the equilibrium tide is expressed
as

ξ
(eq)
r;n =

σ0

iσ
Un

g
+

g

N2

Jn

iσT0Cp
. (C.10)

By substituting Eqs. (C.5), (C.7) and (C.10) in the equation of
mass conservation,

δρn

ρ0
= −

1
r2ρ0

d
dr

(
r2ρ0ξr;n

)
+

Λn

r
ξ⊥;n, (C.11)

we finally get the horizontal displacement,

rρ0ξ
(eq)
⊥;n =

1
Λn

[
d
dr

(
r2ρ0ξ

(eq)
r;n

)
+ r2δρ

(eq)
n

]
. (C.12)

Hence, the pressure and density fluctuations associated with
the equilibrium tide are determined by the tidal gravitational
potential only while the displacement results from both gravi-
tational and thermal forcings. Looking at Eq. (C.10), we note
that the radiative cooling only affects the gravitationally forced
tidal component. This explains why the tidal torques computed
for different thermal times all converge towards the same asymp-
totic law at τtide → +∞. The role played by rotation is of greater
complexity. It is first expressed through the eigenvalues associ-
ated with Hough modes (Λn), which take very different values
from those of gravity modes in the static case. Typically, for
|ν| � 1, predominant symmetric (n even) Rossby modes cou-
pled with the quadrupolar forcing (m = 2) are characterized by∣∣∣Λ2,ν

n

∣∣∣ � Λ
2,0
0 = 6. Second, the rotation modifies the coupling

coefficients weighting Hough modes (the Am,ν
n,l introduced in

Eq. (28)) in a non-trivial way. Thus, predominant Hough modes
can change depending on ν. In the super-inertial regime (|ν| < 1)
the predominant mode is the gravity mode of index n = 0. For
ν = 10, it is the Rossby mode of index n = −2.

C.2. Finite frequency correction

We now consider the first order correction in σ2, in order to
derive scaling laws describing the behaviour of the density fluc-
tuation as a function of σ in the asymptotic regime of low tidal
frequencies. First, by identifying δp(eq)

n (Eq. (C.5)) in Eq. (C.4),
we get

δpn = δp(eq)
n + σ2rρ0ξ

(eq)
⊥;n . (C.13)
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We then substitute this equation in the vertical momentum
equation to obtain the density fluctuation,

δρn = δρ
(eq)
n +

σ2

g

[
ρ0ξ

(eq)
r;n −

d
dr

(
rρ0ξ

(eq)
⊥;n

)]
. (C.14)

Finally, by using the expression of the horizontal dis-placement
associated with the equilibrium tide (Eq. (C.12)) in this equa-
tion and ignoring the gravitational forcing, we end up with the
expression of δρn as a function of ξ(eq)

r;n ,

δρn =
σ2

g

[
ρ0ξ

(eq)
r;n −

1
Λn

d2

dr2

(
r2ρ0ξ

(eq)
r;n

)]
. (C.15)

Appendix D: Tidal multipole moment

The tidal multipole moment Qm,σ
l introduced in Eq. (68) stands

for the global variation of mass distribution associated with the
(l,m, σ)-mode. It quantifies the energy tidally dissipated by the
mode and is defined by (e.g., Arras & Socrates 2010)

Qm,σ
l =

∫ Re

0
r2δρm,σ

l dr, (D.1)

where δρm,σ
l designates the projection of the distribution of den-

sity fluctuations on the (l,m)-harmonic, and Re the radius of
the upper boundary introduced in Sect. 2.1. The tidal multipole
moment is thus the sum of the contributions of Hough modes,
denoted Qm,σ

n,l , weighted by the projections coefficients of Hough
functions on the associated Legendre polynomials, that is,

Qm,σ
l =

∑
n

Am,ν
n,l Qm,σ

n,l . (D.2)

To improve the convergence of the numerical integration,
Arras & Socrates (2010) separate the equilibrium and the dynam-
ical tide (see Arras & Socrates 2010, Appendix A). Following
their method, we substitute δρm,σ

l in Eq. (D.1) using Eq. (18).
After two integrations by parts, and omitting the superscripts
(m, σ), we end up with

Qm,σ
n,l =

∫ Re

0
r2+lδρ

(eq)
n dr + σ2

[
r2

Λn

d
dr

(
r2+l

g

)
ρ0ξr;n −

r3+l

g
ρ0ξ⊥;n

]Re

0

+ σ2
∫ Re

0

{
ρ0ξr;n

[
r2+l

g
−

r2

Λn

d2

dr2

(
r2+l

g

)]
+

r2

Λn

d
dr

(
r2+l

g

)
δρn

}
dr, (D.3)

where ξ⊥;n and δρ(eq)
n are defined by Eqs. (C.4) and (C.7), respec-

tively. We recover here the multipole moment given by Arras &
Socrates (2010) modified by rotation (the l (l + 1) of Legendre
polynomials have been replaced by the associated eigenvalues of
Hough modes, Λn). In Eq. (D.3), we have conserved the bound-
ary term resulting from the integrations by part (second term of
the right member). Arras & Socrates (2010) ignore this term by
arguing that it is negligible with respect to the others. They thus
compute the quadrupole moment associated with the l = m = 2
tidal component by using a simplified expression and find that it
leads to a better convergence than integrating the density vari-
ations directly. However, we notice in our calculations that the
boundary term is negligible in the zero-frequency limit and in
the non-adiabatic case. In the adiabatic case, tidal waves can

be reflected backward at the upper boundary, leading to a non-
negligible boundary term. We verify that we obtain numerically
the same results by using either Eq. (D.1) or Eq. (D.3), which
suggests that writing the tidal quadrupole moment in the way of
Eq. (D.3) does not improve the precision of the computation.

In the zero-frequency limit (σ → 0), the above expression
can be simplified using the equations of the equilibrium ther-
mal tide (Un = 0) established in Appendix C. First, let us note
that δρ(eq)

n = 0, ξr;n ∼ ξ
(eq)
r;n and δρn = O

(
σ2

)
in this regime,

which means that the term in δρn in Eq. (D.3) tends to become
negligible compared to that in ξr;n while σ → 0. Moreover, as
tidal waves cannot propagate in the central convective region, the
perturbation at the lower boundary can be neglected. It follows
that

Qm,σ
n,l = σ2

∫ Re

0
ρ0ξr;n

[
r2+l

g
−

r2

Λn

d2

dr2

(
r2+l

g

)]
dr (D.4)

+ σ2
[

1
Λn

d
dr

(
r2+l

g

)
r2ρ0ξr;n −

r3+l

g
ρ0ξ⊥;n

]
r=Re

.

The thermal tide only affects a thin superficial layer of the planet.
We thus approximate the internal mass by M ≈ Mp, which makes
the gravity scale as g ∝ r−2 in this region. This allows us to sim-
plify the derivatives of r2+l/g in Eq. (D.4) and to obtain for the
integrand

r2+l

g
−

r2

Λn

d2

dr2

(
r2+l

g

)
=

r2+l

g

[
1 −

(l + 4) (l + 3)
Λn

]
. (D.5)

We now consider the boundary term of Eq. (D.4). Without
the contribution of the gravitational tidal potential the hori-
zontal displacement of the n-Hough mode given by Eq. (C.12)
simplifies into

ξ
(eq)
⊥;n =

1
Λnrρ0

d
dr

(
r2ρ0ξ

(eq)
r;n

)
. (D.6)

In this equation, the derivative can be expanded as

d
dr

(
r2ρ0ξ

(eq)
r;n

)
=

d
dr

(
r2gρ0

iσN2T0Cp

)
J +

(
r2gρ0

iσN2T0Cp

)
dJ
dr
. (D.7)

Firstly, with the approximation done above for the internal mass,
r2g is a constant. Secondly, the background structure that we
use of the radiative zone corresponds to an isothermal atmo-
sphere (see Fig. 2). As a consequence, T0 and Cp are constant
and N2 = κg/H varies slowly with the vertical coordinate com-
pared to the density, which is approximated by the exponential
law ρ0 ∝ exp (−z/H), the notation z standing for the altitude
with respect to the base of the isothermal region. Besides, Jn ∝

J? exp
[
− exp (−z/H)

]
, where J? designates the tidal heating

power per unit mass at z = +∞. It follows that

Jn ∝ J? and
dJn

dr
∝

J?
H

e−z/H . (D.8)

Therefore, the ratio between the second and the first term of
Eq. (D.7), denoted ς, scales as ς ∼ e−z/H , which allows us to
approximate ξ(eq)

⊥;n at r = Re by

ξ
(eq)
⊥;n

∣∣∣∣
r=Re
≈ −

1
Λn

R
H

(
gJn

iσN2T0Cp

)
r=Re

, (D.9)
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and to obtain finally

Qm,σ
n,l =

[
1 −

(l + 3) (l + 4)
Λn

] ∫ Re

0
ρ0r2+l

(
σ2

N2

)
Jn

iσT0Cp
dr (D.10)

+
R3+l

Λn

[(
σ2

N2

)
ρ0

(
4 + l +

R
H

) Jn

iσT0Cp

]
r=Re

.

Appendix E: Numerical scheme used to integrate
the vertical structure equation of tidal waves

Integrating the vertical structure equation of tidal waves,
Eq. (41), consists in seeking solutions of the boundary conditions
problem defined by the equations

d2y

dx2 + P
dy
dx

+ Qy = R, for x ∈
[
xinf , xsup

]
,

ainf
dy
dx

+ binfy = cinf , at x = xinf ,

asup
dy
dx

+ bsupy = csup, at x = xsup,

(E.1)

where P, Q, and R are r-dependent coefficients and
(ainf , binf , cinf) and

(
asup, bsup, csup

)
triplets of coefficients defin-

ing the lower and upper boundary conditions, respectively. To
solve this system, we use a procedure of forward and backward
substitution (cf. Press 2007, Sect. 2.4), also called Thomas’ algo-
rithm. This method is interesting because it takes only O (N)
operations, the parameter N being the size of the mesh. It is used
by Chapman & Lindzen (1970) with a finite difference scheme of
the second order. Here, we adapt it to a finite difference numer-
ical scheme of the fourth order. This allows us to improve the
stability of the scheme, and thus the treatment of highly oscil-
lating tidal waves3, for which the curvature terms can be very
important.

The domain
[
xinf , xsup

]
is divided into N intervals of size h.

The points are indexed with the subscript n, such that 0 ≤ n ≤ N,
n = 0 corresponding to the left boundary x = xinf and n = N
to the upper boundary x = xsup. At the fourth order, the cen-
tred finite difference approximations of the first and second
derivatives of f at the point of index n are expressed as

d f
dx

=
yn−2 − 8yn−1 + 8yn+1 − yn+2

12h
, (E.2)

and

d2 f
dx2 =

−yn−2 + 16yn−1 − 30yn + 16yn+1 − yn+2

12h2 . (E.3)

Therefore, by substituting Eqs. (E.2) and (E.3) into the differ-
ential equation given by Eq. (E.1), we obtain, for 2 ≤ n ≤ N − 2,
the recurrence relation

Anyn+2 + Bnyn+1 + Cnyn + Dnyn−1 + Enyn−2 = Fn, (E.4)

with the coefficients

An = −1 − hPn, Bn = 8 (2 + hPn) ,

Cn = 6
(
2h2Qn − 5

)
, Dn = 8 (2 − hPn) ,

En = hPn − 1, Fn = 12h2Rn.

(E.5)

3 This regime typically corresponds to gravity waves propagating in
a stably stratified radiative zone characterized by weak dissipative
mechanisms (see e.g., Fig. 6, top right panels).

At the points n = 1 and n = N − 1, we use the centred finite
difference scheme of the second order, where derivatives are
written

d f
dx

=
yn+1 − yn−1

2h
, (E.6)

and

d2 f
dx2 =

yn−1 − 2yn + yn+1

h2 . (E.7)

The recurrence relation is thus given by

Bnyn+1 + Cnyn + Dnyn−1 = Fn, (E.8)

with the coefficients

Bn = 1 +
h
2

Pn, Cn = h2Qn − 2,

Dn = 1 −
h
2

Pn, Fn = h2Rn.

(E.9)

We introduce then the triplet (αn, βn, γn) such that

yn = αnyn+1 + βnyn+2 + γn. (E.10)

Substituting Eq. (E.10) into Eq. (E.4), we express the triplet
(αn, βn, γn) as a function of triplets of smaller indices (i.e. n − 1
and n − 2),

αn = −K−1
n (Bn + Dnβn−1 + Enαn−2βn−1) , (E.11)

βn = −K−1
n An, (E.12)

γn = K−1
n

[
Fn − Dnγn−1 − En (αn−2γn−1 + γn−2)

]
, (E.13)

where Kn is expressed as

Kn = Cn + Dnαn−1 + En (αn−2αn−1 + βn−2) . (E.14)

To initialise the series (αn, βn, γn), we consider the left
boundary condition. This condition implies that

α0 = −
2ainf

hbinf −
3
2 ainf

, β0 =
1
2

ainf

hbinf −
3
2 ainf

,

γ0 =
hcinf

hbinf −
3
2 ainf

.
(E.15)

Besides, Eq. (E.8) expressed at n = 1 provides the co-efficients

α1 = −
B1 + D1β0

C1 + D1α0
, β1 = 0, γ1 =

F1 − D1γ0

C1 + D1α0
. (E.16)

Hence, the co-efficients (αn, βn, γn) are computed forward from
n = 2 to n = N − 2.

The terms yN−1 and yN of the series yn shall now be deter-
mined. We use the upper boundary condition and Eq. (E.8) at
n = N − 1 to obtain the algebraic system A1yN−1 + B1yN = C1,

A2yN−1 + B2yN = C2,
(E.17)

where the coefficientsA1, B1, C1,A2, B2, and C2 are given by
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A1 = asup

(
1
2
αN−2 − 2

)
, A2 = CN−1 + DN−1αN−2,

B1 =
1
2

asup (3 + βN−2) + hbsup, B2 = BN−1 + DN−1βN−2,

C1 = hcsup −
1
2

asupγN−2, C2 = FN−1 − DN−1γN−2.

(E.18)

It follows that

yN−1 =
B2C1 − B1C2

A1B2 −A2B1
, and yN =

A1C2 −A2C1

A1B2 −A2B1
. (E.19)

The yn are finally integrated backward from n = N − 2 to n = 0
with the recurrence relation given by Eq. (E.10).
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