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What is a digital image?

Digital imaging:

(bio)medical data (MRI, CT, . . . )

remote sensing data (satellite images, . . . )

astronomical data (telescope images, . . . )

multimedia data (photos, videos, . . . )

etc.

An image ∼ a function defined on a part E ⊂ Z
n (with, n = 2 or 3)
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Digital image processing

Processing/analysing a digital (colour/grey-level/binary) image:

segmentation

filtering/correction

registration

classification/clustering

knowledge extraction

etc.

Often have to use and/or preserve correct properties related to:

radiometry (colour, intensity, . . . )

morphology (shape)

geometry (size, orientation, curvature, . . . )

topology (connected components, holes, tunnels, . . . )
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Why is it (sometimes) important to consider topology?

Non exhaustive list of (hopefully good) reasons:

“landmarks” for improving segmentation, registration, etc.
correct results for object analysis (ex: medical diagnosis, road
extraction)
correct results for high level post-processing (ex: blood flow
simulation)
correct input for image synthesis (ex: 3D modelling of art
objects)
etc.
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How to consider topology?

Several ways to consider topology:

1 Topological properties extraction:
“what are the topological properties of an object?”

2 Topological properties handling:
“how to control the topological properties of an object?”

3 Topological properties preservation:
“how to guarantee that the topological properties of an object
will not change?”
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Topology preservation: what does it mean?

“Topology preservation”: abuse of language for “topological
properties preservation”.

Topological properties (“from the weakest to the strongest”):

Euler characteristic

Betti numbers

homology/co-homology groups

homotopy type (homotopy equivalence)

homeomorphism

fundamental group

(Quite) informally: two objects X and Y share the same homotopy
type if one can “pass continuously from X to Y and from Y to X”
(possibly with a decrease in the object dimension).
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Homotopy-type: examples and justification

Homotopy-type has several virtues:

sufficiently strong to correctly model the “topology
preservation” between two objects

sufficiently weak to be conveniently considered in Z
n

defined via a notion of deformation which can be
algorithmically handled
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Purpose of this talk (1/2)

Question

How can we transform a digital (binary) object without altering its
homotopy type?

Applications related to this question:

segmentation by monotonic deformation: reduction,
region-growing (Mangin, JMIV 1995)

atlas-based segmentation (Bazin, TMI 2007)

(digital) deformable models (Han, PAMI 2003)

skeletonisation

object warping based on image registration

topology correction (Aktouf, PRL 2002)

Topology-preserving transformations of discrete images in the. . . DGCV 2010, Paris, 23–24 September 2010



Issue 1: Continuous topology vs. digital topology
Issue 2: Topological deadlocks

Issue 3 (bonus): What about non-binary images?

Purpose of this talk (2/2)

Talk divided into 3 parts:

1 links between continuous and digital topology

2 (non?) convergence of topology-preserving transformations

3 (if enough time. . . ) what happens if binary images become
n-ary?

which deal with several issues related to the above question, and:

1 present recent works related to these issues

2 states some (still open) problems

Topology-preserving transformations of discrete images in the. . . DGCV 2010, Paris, 23–24 September 2010



Issue 1: Continuous topology vs. digital topology
Issue 2: Topological deadlocks

Issue 3 (bonus): What about non-binary images?

Continuous topology vs. digital topology
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Digital topology concepts

In order to deal with topology in digital spaces (Zn), several ad
hoc concepts have been defined:

adjacencies: 6, 18, 26, and adjacency couples: (6, 26), (26, 6),
etc. (Rosenfeld, JACM 1966)

paths

connected components

(digital) fundamental group (Kong, C&G 1989)

These notions are used to deal with topological properties of
objects in Z

n.
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Digital/continuous equivalence (1/2)

Postulate

These ad hoc notions defined in Z
n actually model the topological

properties defined in R
n (by assuming that Z

n divides R
n into unit

n-cubes).

Proposition (Mazo et al., research report 2010)

This postulate (generally admitted, but not so obvious!) is true.

It has been proved in two steps:
From R

n to the space of complexes (Fn) and then from F
n to Z

n
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Digital/continuous equivalence (2/2)

In particular, the notion of simple point leads to a “satisfactory”
way to transform an image in a topology preserving fashion.

Definition (unformal. . . )

A simple point is a point x ∈ X ⊂ Z
n which can be removed from

X without altering its homotopy type.

N.B.: several characterisations of simple points (in Z
2, Z

3, Z
4),

which formally define them de facto.

Theorem (Barmak, Advances in Mathematics 2008 + Mazo et al.)

The homotopy groups of a digital object are not changed by the
deletion of a simple point. In particular, this deletion corresponds
to a deformation retract on the continuous analogue.
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(Intermediate) conclusion

Two good news:

“digital topology” defined since the 60’s, correctly matches
the “continuous reality”

simple points actually enable to transform digital objects
without homotopy type modification

The way to use simple points will be considered in the next part of
this talk (Issue 2).

But before that, just a question about continuous topology and
image registration. . .
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Image registration

Image registration aims at estimating consistently a mapping
between two images.

Isource Itarget

h(s)

h = arg minE (Isource , Itarget , h)
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Topology-preserving nonrigid image registration (1/2)

An important issue in (nonrigid) image registration is to enforce
the estimated transformation to preserve the continuous topology
(and in particular, the homotopy type)

Without topology 
preservation

With topology 
preservation

Isource

Isource(h)

Isource(htopo)
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Topology-preserving nonrigid image registration (2/2)

Conditions for enforcing h to be an homeomorphism:

h is continuous

the determinant of the Jacobian of h is strictly positive

h is invariant on the boundaries of the image

Requires to solve the optimisation problem (Noblet, TIP 2005):

h = arg min
∀s ∈ Ω, Jh(s) > 0
∀s ∈ ∂Ω, h(s) = s

E (Isource , Itarget , h)
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Image registration and atlas-based segmentation

Image registration is generally used to defined accurate
deformation fields involved in the guidance of image warping,
especially for atlas-based segmentation.

Definition (Atlas-based segmentation)

If X is an image, SX is its (binary) segmentation, Y is another
image (with the same semantics as X), and h the deformation field
computed from the registration of X onto Y , then, SY = h−1(SX )
is a (binary) segmentation of Y .

⊕ Image registration provides continuous topology-preserving
deformation fields

⊖ topology preservation of digital objects deformed by such
fields ix not considered!
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Fusing continuous topology and discrete topology

Proposition: develop a digital topology preserving warping method
for discrete images, guided by deformation fields generated by
continuous topology preserving registration method (Faisan,
MICCAI 2008, TIP 2011).

Only one similar (but not equivalent) work in the literature: Bazin,
IPMI 2007, MICCAI 2007.

Method already described in CTIC 2008 (for those who remember).
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Image warping method - Overview

Input:

M ⊂ Z
3 (topological model);

D : R
3 → R

3 (deformation field: “K = D(M)”).

Process: deformation of M guided by a cost function f (D,M).
Output:

X ⊂ Z
3:

topologically equivalent to M
geometrically “as close as possible” to K
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Image warping method - Overview

Constrained optimisation problem:

X = arg min
Y∼M

d(Y ,M,D)

Critical points:

the distance d (not discussed here)

the way to preserve topology in Y (classical approach:
iterative removal/addition of simple points)

the optimisation strategy.
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Image warping method - Optimisation strategy (1/2)

Purpose

Minimise the cost function by topology-preserving modification of
points, i.e., converge onto a model topologically equivalent and
geometrically similar to the continuous deformed image D(M).

But: large displacements ⇒ possible convergence onto local
minima.
A solution: deformation performed in a “smooth” way by
estimating intermediate deformation fields D(i) computed from D.

D(0) = Id , D(n) = D

∀j ∈ [0, n − 1], ∀x , ‖D(j+1)(x)− D(j)(x)‖ < 1
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Image warping method - Optimisation strategy (1/2)

Remark

Lower bound for n: maxx∈M ‖D(x)− x‖.

The deformation fields D(i) (0 < i < n) are finally defined by:

∀x , (D(i)(x)− x) =
i

n
(D(x) − x)

Starting from S = M, the dynamical process is iteratively carried
out with D(1), . . . , D(n) using the currently deformed image S .
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Image warping method - Application

Conclusion: it works correctly on each tested image (this is not a
joke!).

deadlocks caused by topological constraints erroneous hole
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Image warping method - Perspectives

But several remaining weaknesses:

depends on the registration quality!

possible topological deadlocks caused by:

the image resolution
the deformation field
the notions of topology themselves. . .

hh(3)h(2)h(1)

M Tres Topt

v1 v2 x
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Topological deadlocks
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Motivation: Homotopic skeletonisation

Homotopic skeletonisation (in Z
2, Z

3, . . . ):

used to transform an object without topology modification

generally defined thanks to the notion of “simple point”

Algorithm

Input: X ⊆ Z
n, Y ⊆ X

Output: S topologically equivalent to X (Y ⊆ S ⊆ X)
S ← X
while ∃x ∈ S \ Y , simple(x ,S) do

Choose x ∈ S \ Y , simple(x ,S) according to some criterion
S ← S \ {x}

end while

N.B.: sometimes, use of alternative concept: cubical complexes
(Cointepas, ICIP 1998), orders (Daragon, PhD thesis 2005)

Topology-preserving transformations of discrete images in the. . . DGCV 2010, Paris, 23–24 September 2010



Issue 1: Continuous topology vs. digital topology
Issue 2: Topological deadlocks

Issue 3 (bonus): What about non-binary images?

Motivation: skeleton minimality

Question

Is S always a “minimal” result?

Answer

In Z
2: Yes (Ronse, DAM 1986)

Answer

In Z
3 (and a fortiori in Z

n, n ≥ 3): No (e.g. Bing’s House)
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Question 1: what happens between 2D and 3D?

Question

What happens for spaces between the Z
2 and Z

2?
→ Case of the 2-D (pseudo)manifolds in n-D spaces (n ≥ 3).

This question has been studied by in the context of cubical
complexes, F

n (Kovalevski, CVGIP 1989), which remains
compliant with topology in Z

n.
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Question 1: between 2D and 3D

Answer (Passat et al., JMIV 2010)

In the space of 2-D (pseudo)manifolds in n-D spaces (n ≥ 3), S is
minimal.

Remark

Moreover, as in Z
2, S can be computed in a greedy fashion!
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Question 2: and in higher dimensions?

Question

Then, what happens in Z
3 (and in higher dimensions)?

→ topological monsters, which may lead to topological deadlocks
in image transformation.

Consequence:

for methods based on monotonic transforms (reduction,
skeletonisation, region-growing), possible convergence on a
“local minimum”

for methods based on non-monotonic transforms (deformable
models, atlas-based segmentation), possible convergence on a
“local minimum”, or no guarantee of termination if a global
minimum has to be found
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Topological monsters

Two kinds of topological monsters

Naughty monsters (ex. Bing’s house): do not really know
what to do with them. . . (open problem)

Less naughty monsters: can get rid of them (in a monotonic
transformation).
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Topological monsters and (minimal) simple sets

When a topological deadlock happens, there is no simple point to
remove. But, there may exist simple sets (∼ sets of non-simple
points), whose removal does not modify the topology of the object.

Definition (Unformal and partial)

A simple set S for an object X ⊂ Z
n is a set whose removal from

X is a deformation retract on the continuous analogue of X .

Remark

Simple points are “singular” simple sets.

We focus in particular on the minimal simple sets, i.e., simple sets
which do not strictly include another simple set.
→ easier to detect, and hopefully sufficient to solve most of the
problems.
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2D simple sets in nD spaces

The notion of simple set can be extended from Z
n to F

n.
(It is actually specialised from F

n to Z
n. . . ).

Proposition (Mazo et al., DCG 2010)

In F
n (n ≥ 2), any minimal 2D simple set can be (easily)

characterised.

Proposition (Mazo et al., DCG 2010)

A simple set can be fully removed by iterative removal of minimal
simple sets in a greedy fashion.
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Topological monsters and simple sets: back to Z
3

The problem of simple sets is solved for spaces of dimension n ≤ 2
or simple sets of dimension k ≤ 2.
→ The challenge is now to try to deal with spaces of dimension
n ≥ 3, and simple sets of dimension 3 ≤ k ≤ n.
Partial result in the case of Z

3 (“3D simple sets in 3D space”), for
(minimal) simple pairs (∼ simple sets composed of two points)

Proposition (Passat et al., JMIV 2008)

In Z
3 any minimal 3D simple pair can be (easily) characterised.

y

x
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Simple sets: open problems

in Z
n (n ≥ 3), minimal simple sets can be of arbitrary size.

except simple points and 3D minimal simple pairs, any other
simple set is not necessarily pure (degenerated parts)

→ Which ones can be characterised, and how?
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What about non-binary images?
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Context

Digital images may require a segmentation/classification into
several labels.
Examples: segmentation of the brain into n ≥ 3 structures.

Remark

Models for binary image topology are not sufficient in this context.

Question

How can we handle the topology of a label image?
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Some (partial) solutions (1/2)

Solution

1 - Never mind, let us use the binary model!

→ Poupon, MICCAI 1998: “surprising configurations can arise...
these strange configurations do not really perturb the segmentation
process”.

Solution

2 - Only consider “good” label images. (version 1)

→ Latecki, CVIU 1995: notion of well-composed sets
(∼ 6-adjacency everywhere).
→ Siqueira, JMIV 2008: modify the image until obtaining a
well-composed one.
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Some (partial) solutions (2/2)

Solution

3 - Only consider “good” label images. (version 2)

→ Mangin, JMIV 1995: use hypotheses which induce a “binary
compliant” structure (ex. nested structures).

Solution

4 - Consider a binary-like model only where you can.

→ Bazin, TMI 2007: “some voxels may be left unclassified
because of conflicting topological constraints”.

Solution

5 - Use sufficient conditions to guarantee that a point is simple.

→ Dupas, DGCI 2009: notion of multi-label simple points (“If v is
an ML-Simple point, then v is a simple point”).
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Towards a general solution

1, 2, 4: not acceptable with general hypotheses

3: correct but convergence (and termination?) problems

3, 5 based on a sound theory, but algorithmic restrictions

⇒ Need for a more general solution.

Work in progress: PhD thesis of Löıc Mazo, on:

a complete model for topology in label images

a modus operandi for topology preserving image
transformation

based on cubical complexes (and compliant with digital imaging)
With results soon (hopefully. . . )
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Conclusions and perspectives
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What has been done / what remains to do (1/3)

Issue 1: Continuous topology vs. digital topology

Done:

A proof of correctness of the topological definitions in Z
n

w.r.t. R
n.

A practical way to fuse digital topology and continuous ones in
transformation methods.

To do:

Improve the way to guide such methods in case of really
complex deformation fields.
Propose solutions to topological deadlocks due to image
resolution.
Consider the issue of topology control instead of topology
preservation.
ad lib. . .
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What has been done / what remains to do (2/3)

Issue 2: Topological deadlocks

Done:

Characterisation of “easy” minimal simple sets: 2D sets, 2D
space, small 3D sets
Proof of convergence of greedy algorithms based on 2D
minimal simple sets.

To do:

How to characterise the other (minimal) simple sets?
How to guarantee the correct convergence/termination of
methods on 3D spaces (and higher ones)?
How to deal with naughty monsters?
ad lib. . .
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What has been done / what remains to do (3/3)

Issue 3: What about non-binary images?

Done:

not so much

To do:

nearly all
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Thank you for your attention.

Contact:
passat@unistra.fr

https://dpt-info.u-strasbg.fr/∼passat
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