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HYPERBOLICITY AND CUBULABILITY ARE PRESERVED UNDER
ELEMENTARY EQUIVALENCE

SIMON ANDRÉ

Abstract. The following properties are preserved under elementary equivalence, among
finitely generated groups: being hyperbolic (possibly with torsion), being hyperbolic and
cubulable, and being a subgroup of a hyperbolic group. In other words, if a finitely
generated group G has the same first-order theory as a group possessing one of the
previous property, then G enjoys this property as well.

1. Introduction

In the middle of the twentieth century, Tarski asked whether all non-abelian finitely
generated free groups satisfy the same first-order theory. In [Sel06], Sela answered Tarski’s
question in the positive (see also the work of Kharlampovich and Myasnikov, [KM06]) and
provided a complete characterization of finitely generated groups with the same first-order
theory as the free group F2. Sela extended his work to give in [Sel09] a classification of
torsion-free hyperbolic groups up to elementary equivalence. In addition, Sela proved the
following striking theorem (see [Sel09], Theorem 7.10).

Theorem 1.1 (Sela). A finitely generated group with the same first-order theory as a
torsion-free hyperbolic group is itself torsion-free hyperbolic.

Recall that a finitely generated group is called hyperbolic (in the sense of Gromov) if its
Cayley graph (with respect to any finite generating set) is a hyperbolic metric space: there
exists a constant δ > 0 such that any geodesic triangle is δ-slim, meaning that any point
that lies on a side of the triangle is at distance at most δ from the union of the two other
sides. At first glance, there doesn’t seem to be any reason that hyperbolicity is preserved
under elementary equivalence. Sela’s theorem above is thus particularly remarkable, and
it is natural to ask whether it remains valid if we allow hyperbolic groups to have torsion.
We answer this question positively.

Theorem 1.2. A finitely generated group with the same first-order theory as a hyperbolic
group is itself hyperbolic.

More precisely, if Γ is a hyperbolic group and G is a finitely generated group such that
Th∀∃(Γ) = Th∀∃(G) (meaning that Γ and G satisfy the same first-order sentences of the
form ∀x1 . . . ∀xm∃y1 . . . ∃yn ϕ(x1, . . . , xm, y1, . . . , yn), where ϕ is quantifier-free), then G is
hyperbolic.

Furthermore, we show that being a subgroup of a hyperbolic group is preserved under
elementary equivalence, among finitely generated groups. More precisely, we prove the
following theorem.

Theorem 1.3. Let Γ be a group that embeds into a hyperbolic group, and let G be a finitely
generated group. If Th∀∃(Γ) ⊂ Th∀∃(G), then G embeds into a hyperbolic group.

Recall that CAT(0) cube complexes are a particular class of CAT(0) spaces (see [Sag14]
for an introduction) and that a group is called cubulable if it admits a proper and cocompact
action by isometries on a CAT(0) cube complex. Groups which are both hyperbolic and
cubulable have remarkable properties and play a leading role in the proof of the virtually
Haken conjecture (see [Ago13]). By using a result of Hsu and Wise, we prove:

Theorem 1.4. Let Γ be a hyperbolic group and G a finitely generated group. Suppose that
Th∀∃(Γ) = Th∀∃(G). Then Γ is cubulable if and only if G is cubulable.
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Some remarks. Note that, in Theorem 1.3, we do not need to assume that Γ is finitely
generated. In contrast, in the theorems above, it is impossible to remove the assumption
of finite generation on G. For instance, Szmielew proved in [Szm55] that Z and Z × Q
have the same first-order theory. Note also that it is not sufficient to assume that Γ and
G satisfy the same universal sentences, i.e. of the form ∀x1 . . . ∀xm ϕ(x1, . . . , xm), where
ϕ is quantifier-free. For example, the class of finitely generated groups satisfying the same
universal sentences as F2 appears to coincide with the well-known class of non-abelian limit
groups, also known as finitely generated fully residually free non-abelian groups, and this
class contains some non-hyperbolic groups, such as F2 ∗ Z2.

In Theorem 1.3 above, in the special case where Γ is a free group, we can prove that G
is hyperbolic. Indeed, Sela proved in [Sel01] that a limit group is hyperbolic if it does not
contain Z2, and this holds for a finitely generated group G such that Th∀∃(F2) ⊂ Th∀∃(G)
(see 2.17). More generally, Sela’s result remains true if we replace F2 by a finitely generated
locally hyperbolic group Γ (that is, every finitely generated subgroup of Γ is hyperbolic).
If Γ is such a group, it turns out that the hyperbolic group built in the proof of Theorem
1.3, in which G embeds, is in fact locally hyperbolic. So G is locally hyperbolic as well.
As a consequence, the following theorem holds.

Theorem 1.5. Let Γ be a finitely generated locally hyperbolic group, and let G be a finitely
generated group. If Th∀∃(Γ) ⊂ Th∀∃(G), then G is a locally hyperbolic group.

In the rest of the introduction, we give some details about the proofs of the previous
theorems.

Strategy of proof. In the language of groups, a system of equations in n variables is
a conjunction of formulas of the form w(x1, . . . , xn) = 1, where w(x1, . . . , xn) stands for
an element of the free group F (x1, . . . , xn). Given a group Γ, a finite system of equations
Σ(x1, . . . , xn) = 1 admits a non-trivial solution in Γn if and only if Γ satisfies the first-order
sentence ∃x1 . . . ∃xn (Σ(x1, . . . , xn) = 1) ∧ ((x1 6= 1) ∨ . . . ∨ (xn 6= 1)), if and only if there
exists a non-trivial homomorphism from GΣ to Γ, where GΣ = 〈s1, . . . , sn | Σ(s1, . . . , sn)〉.
Hence, the study of the set Hom(GΣ,Γ), for any (finite) system of equations Σ, is a first
step towards understanding the whole first-order theory of the group Γ. In the case where
Γ is a torsion-free hyperbolic group, Sela proved that there is a finite description of the
set Hom(G,Γ) (called the Makanin-Razborov diagram), for any finitely generated group
G. His work has subsequently been generalized by Reinfeldt and Weidmann to the case
of a hyperbolic group possibly with torsion. Below is the basis of this description (see
Theorems 2.2 and 2.5 for completeness).

Theorem 1.6 (Sela, Reinfeldt-Weidmann). Let Γ be a hyperbolic group, and let G be a
finitely generated one-ended group. There exists a finite set F ⊂ G \ {1} such that, for
every non-injective homomorphism f ∈ Hom(G,Γ), there exists a modular automorphism
σ of G such that ker(f ◦ σ) ∩ F 6= ∅.

The modular group of G, denoted by Mod(G), is a subgroup of Aut(G) defined by means
of the JSJ decomposition of G (see Section 2.5 for details). Its main feature is that each
modular automorphism acts by conjugation on every non-abelian rigid vertex group of the
JSJ decomposition of G.

This theorem will be our starting point. First, we will consider a particular case. Let
G = 〈s1, . . . , sn | Σ(s1, . . . , sn)〉 be a finitely presented one-ended group, and let Γ be
a hyperbolic group. Assume that Th∀(Γ) = Th∀(G) (that is, Γ and G satisfy the same
universal sentences). Suppose in addition that G is a rigid group (meaning that G does not
split non-trivially over a virtually abelian group). Then the modular group of G coincides
with the group of inner automorphisms. As a consequence, Theorem 1.6 provides us with a
finite set F = {w1(s1, . . . , sn), . . . , wk(s1, . . . , sn)} ⊂ G \ {1} such that every non-injective
homomorphism f ∈ Hom(G,Γ) kills an element of F . We claim that G embeds into Γ.
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Otherwise, every homomorphism from G to Γ kills an element of F ; in other words, the
group Γ satisfies the following first-order sentence:

∀x1 . . . ∀xn (Σ(x1, . . . , xn) = 1)⇒ ((w1(x1, . . . , xn) = 1) ∨ . . . ∨ (wk(x1, . . . , xn) = 1)).

Since Th∀(Γ) = Th∀(G), this sentence is true in G as well. Taking x1 = s1, . . . , xn = sn,
the previous sentence means that an element of F is trivial, contradicting the fact that
F ⊂ G \ {1}. So we have proved that G embeds into Γ.

At this stage, we cannot conclude that G is hyperbolic, because hyperbolicity is not
inherited by finitely presented subgroups (see [Bra99]). However, assuming that the group
Γ is rigid as well, we can prove in the same way that Γ embeds into G (before doing so, it
is necessary to observe that Theorem 1.6 is still valid for subgroups of hyperbolic groups,
see Corollary 2.4).

Let us summarize the previous discussion: given a rigid hyperbolic group Γ and a rigid
finitely presented group G, we have shown that if Th∀(Γ) = Th∀(G), then G and Γ
are isomorphic. In the case where G is not finitely presented anymore, but only finitely
generated, this result remains true because hyperbolic groups are equationally noetherian,
which means that, for any infinite system of equations Σ(x1, . . . , xn) = 1, there exists a
finite subsystem Σ′(x1, . . . , xn) = 1 such that Σ and Σ′ have exactly the same solutions in
Γn (see [RW14]).

What happens when G is not assumed to be rigid anymore ? In this case, the modular
group Mod(G) is in general infinite, and we cannot fully express Theorem 1.6 by means
of first-order logic, since the power of expression of first-order logic is not sufficient to
express precomposition by an automorphism. The challenge is to express some fragments
of Theorem 1.6 that are enough to capture the hyperbolicity (or cubulability) of Γ and
prove the hyperbolicity of G in turn. To do so, we shall follow a strategy comparable with
that used by Perin in [Per11].

If G does not embed into Γ, the idea is to consider the following immediate corollary
of Theorem 1.6: for every homomorphism f : G → Γ, there exists a homomorphism
f ′ : G → Γ that kills an element of F and that coincides with f in restriction to each
non-abelian rigid vertex group of the JSJ splitting of G, up to conjugacy by an element of
Γ. One can easily see that this statement is expressible by a first-order sentence satisfied
by Γ (see Section 3.2 for details). Since Γ and G are elementarily equivalent, this sentence
is satisfied by G as well.

Now, taking for f the identity of G, we get a special homomorphism f ′ that kills an
element of F and coincides with the identity, up to conjugacy, in restriction to each non-
abelian rigid vertex group of the JSJ splitting of G. In the torsion-free case, an important
part of the work consists in transforming f ′ into a retraction, which leads to the notion of
a hyperbolic tower in the sense of Sela. In the presence of torsion, there are new difficulties
and we do not know how to get a retraction (see further details below). This leads to the
notion of a quasi-tower (that we introduce in Section 5), which is more complicated than
the notion of a hyperbolic tower.

The torsion-free case. The proof that hyperbolicity and cubulability are first-order
invariants among torsion-free finitely generated groups is based on the following result
proved by Sela in [Sel09] (though it is not explicitly stated).

Theorem 1.7 (Sela). Let Γ be a non-elementary torsion-free hyperbolic group, and let G
be a finitely generated group with the same first-order theory as Γ. There exist a subgroup
Γ′ of Γ and a subgroup G′ of G such that:

• Γ′ and G′ are isomorphic;
• Γ is a hyperbolic tower over Γ′;
• G is a hyperbolic tower over G′.
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Hyperbolic towers have been introduced by Sela in [Sel01] (see Definition 6.1) to solve
Tarski’s problem about the elementary equivalence of free groups (see also Kharlampovich
and Myasnikov’s NTQ groups). More generally, Sela used towers in [Sel09] to classify those
finitely generated groups with the same first-order theory as a given torsion-free hyperbolic
group. Roughly speaking, a hyperbolic tower is a group obtained by successive addition of
hyperbolic floors, and a hyperbolic floor is a group obtained by gluing a retracting surface
to another group (see Example 1.8 below). We refer the reader to [Per11] for a precise
definition of hyperbolic towers.

Example 1.8. Let Σ be a surface with boundary (with Euler characteristic at most -2, or
a punctured torus). Denote by S its fundamental group and by B1, . . . , Bn its boundary
subgroups (well-defined up to conjugacy). Let H be a group and let h1, . . . , hn be elements
of H of infinite order. We define a graph of groups with two vertices labelled by S and
H, and n edges between them identifying Bi with 〈hi〉 for each 1 ≤ i ≤ n. Call G the
fundamental group of this graph of groups. We say that G is a hyperbolic floor over H if
there exists a retraction r : G→ H (such that r(S) is non-abelian).

Figure 1. The group G is a hyperbolic floor over H in the sense of Sela.

In the previous example, if G is hyperbolic, then H is hyperbolic, as a retract of G.
Conversely, if H is hyperbolic, it follows from the Bestvina-Feighn combination theorem
(see [BF92]) that G is hyperbolic as well. As a consequence, since a hyperbolic tower is a
group obtained by successive addition of hyperbolic floors, the following holds: if a group
G is a hyperbolic tower over a group H, then G is hyperbolic if and only if H is hyperbolic.
In the same way, using a combination theorem proved by Hsu and Wise (see [HW15]), we
can prove: if a group G is a hyperbolic tower over a group H, then G is hyperbolic and
cubulable if and only if H is hyperbolic and cubulable.

Now, the fact that hyperbolicity and cubulability are first-order invariants (among
torsion-free finitely generated groups) follows immediately from Theorem 1.7.

Figure 2. The group G is a hyperbolic tower over G′ in the sense of Sela.
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A new phenomenon arising from the presence of torsion. To give a flavour of the
influence of torsion, let us briefly describe a new phenomenon, which occurs only in the
presence of torsion. In the case of torsion-free groups, performing a HNN extension over a
finite group is the same as doing a free product with Z, and it is well-known that if G is a
torsion-free non-elementary hyperbolic group, then G and G ∗ Z have the same universal
theory (and even the same first-order theory, as a consequence of the work of Sela). By
contrast, it turns out that the situation is very different in the presence of torsion: in
general, performing a HNN extension over a finite subgroup, even trivial, modifies the
universal theory of a hyperbolic group. Let us consider the following simple example:

Example 1.9. Let G = F2 × Z/2Z. Then the sentence ∀x∀y (x2 = 1) ⇒ (xy = yx) is
satisfied by G, but not by G ∗ Z.

This example shows that, in general, the class of groups with the same universal theory
as a given hyperbolic group with torsion is not closed under HNN extensions and amalgams
over finite groups. In Section 4, we deal with this problem by proving the following result.

Theorem 1.10. Every hyperbolic group Γ embeds into a hyperbolic group Γ possessing the
property that the class of Γ-limit groups is closed under amalgamated free products and
HNN extensions over finite groups.

We will see that this result plays an important role in our proofs.

Quasi-towers. In order to prove our main theorems, we aim to generalize Theorem 1.7
to the case where Γ is a hyperbolic group possibly with torsion (see Theorem 6.8). When
looking for a generalization of hyperbolic towers in the presence of torsion, we are brought to
perform HNN extensions over finite groups, and this leads to new difficulties, as illustrated
by Example 1.9 above. In Section 5 we introduce quasi-floors and quasi-towers. It is
important to stress that quasi-towers are more complicated than hyperbolic towers in the
sense of Sela, the major complication being that if a group G is a quasi-floor over a group
H, then H is neither a subgroup, nor a quotient of G. Roughly speaking, a quasi-tower
is a group obtained by successive addition of quasi-floors, and Figure 1.6 below illustrates
what a quasi-floor is.

Figure 3. The group G is a quasi-floor over H. The groups A and B are
one-ended, and F is finite. There exist a homomorphism r : G→ H, maybe
not surjective, and a homomorphism j : H → G, maybe not injective.
However, r can be viewed as a "piecewise retraction", and j can be viewed
as a "piecewise inclusion". Indeed, r ◦ j is inner on A and B, and j is
injective on A, B and F . The groups G and H are subgroups of a bigger
group G′ that retracts onto H via an epimorphism ρ : G′ → H such that
ρ|G = r.

Let us say a few words about the proof of Theorem 1.7, which we aim to generalize. Let
Γ be a torsion-free hyperbolic group, and let G be a finitely generated group with the same
first-order theory as Γ. First-order logic provides us with a sequence of hyperbolic floors

G = G0 �
r1
G1 �

r2
· · ·�

rn
Gn� · · · ,
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and this sequence is necessarily finite thanks to the descending chain condition 2.7 for
Γ-limit groups. In the presence of torsion, we cannot use this theorem straightaway for
two reasons:

• if a group G is a quasi-floor over a group H, the homomorphism r : G → H
associated with the quasi-floor structure is maybe not surjective,
• and Th∀(G) is not equal to Th∀(H) in general, since the first-order theory with
one quantifier is sensitive to amalgams and HNN extensions over finite groups (see
Example 1.9).

This second difficulty will be resolved by means of Theorem 1.10. The problem of non-
surjectivity of r will be solved by proving that if

G = G0 →
r1
G1 →

r2
· · · →

rn
Gn→· · ·

is a sequence of quasi-floors, there exists a subgroup Hn < Gn, for each n, such that the
restriction of rn to Hn is an epimorphism onto Hn+1.

Acknowledgements. I am very grateful to my advisor Vincent Guirardel for his help,
and for the time he spent carefully reading previous versions of this paper. I would also like
to thank Chloé Perin for a talk she gave at "Session états de la recherche de la SMF", where
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Contents

1. Introduction 1
2. Preliminaries 6
3. How to extract information from the JSJ using first-order logic 16
4. Torsion-saturated groups 20
5. Quasi-floors and quasi-towers 23
6. Proofs of the theorems 29
6.1. How to build a quasi-floor using first-order logic 29
6.2. Being a subgroup of a hyperbolic group is a first-order invariant 31
6.3. Being hyperbolic is a first-order invariant 31
6.4. Being hyperbolic and cubulable is a first-order invariant 34
7. From a preretraction to a quasi-floor 35
References 43

2. Preliminaries

In this section we recall some facts and definitions about the elementary theory of groups,
Γ-limit groups, K-CSA groups, JSJ decompositions. We also prove some results that will
be useful in the sequel, and whose proofs are independent from the main body of the paper.

2.1. The elementary theory of groups. For detailed background, we refer the reader
to [Mar02].

A first-order formula in the language of groups is a finite formula using the following
symbols: ∀, ∃, =, ∧, ∨, ⇒, 6=, 1 (standing for the identity element), −1 (standing for the
inverse), · (standing for the group multiplication) and variables x, y, g, z . . . which are to
be interpreted as elements of a group.

A variable is free if it is not bound by any quantifier ∀ or ∃. A sentence is a formula
without free variables.

Given a formula ϕ(x1, . . . , xp) with p ≥ 0 free variables, and p elements g1, . . . , gp of a
group G, we say that ϕ(g1, . . . , gp) is satisfied by G if its interpretation is true in G. This
is denoted by G |= ϕ(g1, . . . , gp).
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The elementary theory of a group G, denoted by Th(G), is the collection of all sentences
which are true in G. The universal-existential theory of G, denoted by Th∀∃(G), is the
collection of sentences true in G which are of the form

∀x1 . . . ∀xp∃y1 . . . ∃yq ϕ(x1, . . . , xp, y1, . . . , yq)

where p, q ≥ 1 and ϕ is a quantifier-free formula with p + q free variables. In the same
way, we define the universal theory of G, denoted by Th∀(G), and its existential theory
Th∃(G).

2.2. Γ-limit groups. Let Γ and G be two groups. We say that G is fully residually Γ if,
for every finite subset F ⊂ G, there exists a homomorphism f : G → Γ whose restriction
to F is injective. If G is countable, then G is fully residually Γ if and only if there
exists a sequence (fn) of homomorphisms from G to Γ such that, for every non-trivial
element g ∈ G, fn(g) is non-trivial for every n large enough. Such a sequence is called a
discriminating sequence.

Γ-limit groups have been introduced by Sela in [Sel09] to study Hom(G,Γ), where Γ
stands for a torsion-free hyperbolic group, and G stands for a finitely generated group. Sela
proved that Γ-limit groups are exactly those finitely generated fully residually Γ groups.
Reinfeldt and Weidmann generalized this result when Γ is hyperbolic possibly with torsion
and, more generally, when Γ is equationally noetherian (see [RW14]).

The following easy proposition builds a bridge between group theory and first-order
logic.

Proposition 2.1. Let G and Γ be finitely generated groups. Suppose that G is finitely
presented or that Γ is equationally noetherian. Then G is fully residually Γ if and only if
Th∀(Γ) ⊂ Th∀(G).

The proofs of our main results rely essentially on the following four theorems, proved by
Sela for torsion-free hyperbolic groups and later generalized by Reinfeldt and Weidmann
to the case of hyperbolic groups possibly with torsion.

Theorem 2.2 (Sela, Reinfeldt-Weidmann). Let Γ be a hyperbolic group and let G be a one-
ended finitely generated group. There exist non trivial elements g1, . . . , gk of G such that,
for every non-injective homomorphism f : G → Γ, there exist a modular automorphism
σ ∈ Mod(G) and an integer 1 ≤ ` ≤ k such that f ◦ σ(g`) = 1.

Remark 2.3. In the case where G is not a Γ-limit group, the result is obvious.

The modular group Mod(G) is a subgroup of Aut(G) that will be defined in Section
2.5.2, by means of the JSJ decomposition.

The following easy corollary will be useful in the sequel.

Corollary 2.4. Let Γ be a group that embeds into a hyperbolic group, and let G be a one-
ended finitely generated group. There exist non trivial elements g1, . . . , gk of G such that,
for every non-injective homomorphism f : G → Γ, there exist a modular automorphism
σ ∈ Mod(G) and an integer 1 ≤ ` ≤ k such that f ◦ σ(g`) = 1.

Proof. Denote by i an embedding of Γ into a hyperbolic group Ω. By the previous theorem,
there exist non trivial elements g1, . . . , gk of G such that every non-injective homomorphism
from G to Ω kills some g`, up to precomposition by a modular automorphism. If f : G→ Γ
is a non-injective homomorphism, then i ◦ f is non-injective as well, so i ◦ f ◦ σ(g`) = 1 for
some 1 ≤ ` ≤ k and some σ ∈ Mod(G). Since i is injective, we have f ◦ σ(g`) = 1. �

For every γ ∈ Γ, we write ιγ for the inner automorphism x 7→ γxγ−1.

Theorem 2.5 (Sela, Reinfeldt-Weidmann). Let Γ be a hyperbolic group and let G be a one-
ended finitely generated group. Suppose that G embeds into Γ. Then there exists a finite
set {ϕ1, . . . , ϕ`} of monomorphisms from G into Γ such that, for every monomorphism
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f : G→ Γ, there exist a modular automorphism σ ∈ Mod(G), an integer 1 ≤ ` ≤ k and an
element γ ∈ Γ such that

f = ιγ ◦ ϕ` ◦ σ.

Remark 2.6. In contrast with Theorem 2.2, the previous theorem does not extend to the
case where Γ is a subgroup of a hyperbolic group.

Theorem 2.7 (Sela, Reinfeldt-Weidmann). Let Γ be a hyperbolic group. Let (Gn) be a
sequence of Γ-limit groups. If (fn : Gn → Gn+1) is a sequence of epimorphisms, then fn is
an isomorphism for n sufficiently large.

Theorem 2.8 (Sela, Reinfeldt-Weidmann). Let Γ be a hyperbolic group and G a Γ-limit
group. Then every abelian subgroup of G is finitely generated.

In the next section, we shall prove the following proposition, which is a consequence of
the theorem above.

Proposition 2.9. Let Γ be a hyperbolic group and G a finitely generated group. Suppose
that Th∀∃(Γ) ⊂ Th∀∃(G). Then every abelian subgroup of G is virtually cyclic.

But before proving this proposition, we need to define K-CSA groups.

2.3. Virtual cyclicity of abelian subgroups.

2.3.1. K-CSA groups. A group is said to be CSA if its maximal abelian subgroups are
malnormal. It is well-known that every torsion-free hyperbolic group is CSA. However, it
is not true anymore in the presence of torsion. To overcome this problem, Guirardel and
Levitt defined K-CSA groups in [GL16] (Definition 9.7).

Definition 2.10. A group G is called a K-CSA group (where K > 0) if the following
conditions hold:

• every finite subgroup of G has order bounded by above by K (hence, an element g
has infinite order if and only if gK! 6= e);
• every element g of infinite order is contained in a unique maximal virtually abelian
subgroup ofG, denoted byM(g). MoreoverM(g) isK-virtually torsion-free abelian
(i.e. M(g) has a torsion-free abelian subgroup of index less than K);
• M(g) is equal to its normalizer.

We recall some useful facts about K-CSA groups. The proofs can be found in [GL16].

Proposition 2.11. Every hyperbolic group is K-CSA for some K > 0.

Proposition 2.12. Let G be a K-CSA group.
(1) If g, h ∈ G have infinite order, the following conditions are equivalent:

(a) M(g) = M(h).
(b) gK! and hK! commute.
(c) 〈g, h〉 is virtually abelian.

(2) Let H be an infinite virtually abelian subgroup of G. Then H is contained in a
unique maximal virtually abelian subgroup of G, denoted by M(H). This group is
almost malnormal: if M(H)g ∩M(H) is infinite, then g belongs to M(H). More-
over, for every element h of H of infinite order, M(H) = M(h).

Proposition 2.13. Let G be a K-CSA group and g an element of G of infinite order.
The subgroup M(g) is definable without quantifiers with respect to g. In other words, there
exists a first-order formula ψK(x, y) without quantifiers such that

M(g) = {h ∈ G | ψK(h, g)}.
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Proof. First, let us remark that M(g) = {h ∈ G | 〈g, h〉 is K-virtually abelian}. Indeed,
if 〈g, h〉 is K-virtually abelian, then 〈g, h〉 ⊂ M(g) by maximality of M(g). Conversely,
if h ∈ M(g) then 〈g, h〉 is a subgroup of M(g), which is K-virtually abelian, so 〈g, h〉 is
K-virtually abelian. We now prove that there exists a first-order formula ψK(x, y) with
two free variables such that 〈g, h〉 is K-virtually abelian if and only if ψK(g, h) is true in
G. Let π : F2 = 〈x, y〉 → G be the epimorphism sending x to g and y to h. If A is a
subgroup of 〈g, h〉 of index less than K, there exists a subgroup B of 〈x, y〉 of index less
than K such that A = π(B). Denote by H1, . . . ,Hn the n subgroups of F2, of index ≤ K.
For each 1 ≤ i ≤ n, let (wi,j(x, y))1≤j≤ni be a finite generating set of Hi. We can define
ψK(g, h) by

ψK(g, h) =

n∨
i=1

ni∧
k=1

ni∧
`=1

[wi,k(g, h), wi,`(g, h)] = 1.

�

One can prove that the property K-CSA is defined by a set of universal formulas (see
[GL16], Proposition 9.9). Since every hyperbolic group is K-CSA for some K > 0 (see
above), the following holds:

Proposition 2.14. Let Γ be a hyperbolic group. There exists a constant K > 0 such that
every Γ-limit group is K-CSA.

2.3.2. Abelian subgroups are virtually cyclic. First, recall the following well-known result:

Lemma 2.15. There exists a ∀∃-sentence φ such that, if G is a finitely generated torsion-
free abelian group, G |= φ if and only if G is cyclic.

Proof. Since Zn/2Zn has 2n elements, it results from the pigeonhole principle that the
following ∀∃-sentence is verified by Zn if and only if n = 1:

∀x1∀x2∀x3∃x4 (x1 = x2x
2
4) ∨ (x1 = x3x

2
4) ∨ (x2 = x3x

2
4).

�

The following results will be important in the sequel.

Proposition 2.16. Let Γ be a hyperbolic group and G a finitely generated group such that
Th∀∃(Γ) ⊂ Th∀∃(G). If g is an element of G of infinite order, thenM(g) is virtually cyclic.

Corollary 2.17. Let Γ be a hyperbolic group and G a finitely generated group such that
Th∀∃(Γ) ⊂ Th∀∃(G). Then every abelian subgroup of G is virtually cyclic.

Proof of Corollary 2.17. By Proposition 2.14, G is K-CSA for some K. Let H be an
infinite abelian subgroup of G. By Proposition 2.12, H is contained in a unique maximal
virtually abelian subgroup of G, denoted by M(H), and M(H) = M(h) for every element
h of H of infinite order (note that such an element exists since H is abelian, finitely
generated (according to Lemma 2.8) and infinite). According to Proposition 2.16 above,
M(h) is virtually cyclic, hence H is virtually cyclic. �

Proof of Proposition 2.16. By Proposition 2.14, Γ and G are K-CSA for some K. Let
g be an element of G of infinite order. Since the group M(g) is K-virtually torsion-free
abelian, it has a normal torsion-free abelian subgroup N of index dividing K!. For every
element h of M(g) the element hK! belongs to N . Denote by N(g) the subgroup of M(g)
generated by

{
hK! | h ∈M(g)

}
. It is a subgroup of N , so it is torsion-free abelian.

It is enough to show that N(g) is cyclic. Then we will be able to conclude that M(g)
is virtually cyclic. Indeed, if N(g) is cyclic, so is 〈xK!, yK!〉 for every x, y ∈ M(g). As a
consequence there is no pair of elements of M(g) generating a subgroup isomorphic to Z2.
Since M(g) is virtually abelian and finitely generated (according to Lemma 2.8), it is thus
virtually cyclic.
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For every integer ` ≥ 1, let N`(g) =
{
hK!

1 · · ·hK!
` | h1, . . . , h` ∈M(g)

}
. Since N(g) is

finitely generated, there exist an integer r and some elements g1, . . . , gr of M(g) such that
N(g) is generated by

{
gK!

1 , . . . , gK!
r

}
. We claim that N(g) = Nr(g). In order to see this,

remark that, since N(g) is abelian, every element h ∈ N(g) can be written as follows:

h =
(
gK!

1

)n1

· · ·
(
gK!
r

)nr

= (gn1
1 )K! · · · (gnr

r )K!,

where n1, . . . , nr lie in Z. This proves that N(g) ⊂ Nr(g), and the reverse inclusion is
immediate. Then, recall that there exists a first-order formula without quantifiers ψ(x, y)
such that M(g) = {h ∈ G | ψ(h, g)} (see Proposition 2.13). Hence

Nr(g) =
{
h ∈ G | ∃h1 . . . ∃hr

(
h = hK!

1 · · ·hK!
r ∧ ψ(h1, g) ∧ . . . ∧ ψ(hr, g)

)}
.

It remains to prove that Nr(g) is cyclic. Recall that, by Lemma 2.15, a finitely generated
torsion-free abelian group is cyclic if and only if it satisfies ∀x1∀x2∀x3∃x4φ(x1, x2, x3, x4),
where φ(x1, x2, x3, x4) : (x1 = x2x

2
4) ∨ (x1 = x3x

2
4) ∨ (x2 = x3x

2
4). Since Γ is a hyperbolic

group, every torsion-free abelian subgroup of Γ is cyclic, so satisfies the previous sentence.
We can write a ∀∃-sentence ϕr satisfied by Γ, with the following interpretation: for every
element γ of Γ of infinite order, Nr(γ) is cyclic. Below is the sentence ϕr, where hi stands
for (hi,1, . . . , hi,r) and xi := hK!

i,1 · · ·hK!
i,r .

ϕr : ∀γ∀h1∀h2∀h3∃h4

 3∧
i=1

r∧
j=1

ψ(hi,j , γ) ∧
(
γK! 6= 1

)⇒
 r∧

j=1

ψ(h4,j , γ) ∧ φ(x1, x2, x3, x4)


Since Th∀∃(Γ) ⊂ Th∀∃(G), the sentence ϕr is true in G as well. It follows that N(g, r)

is cyclic. This concludes the proof. �

2.4. Generalized Baumslag’s lemma. We shall generalize a criterion proved by Baum-
slag in the case of free groups (see [Bau62] Proposition 1 or [Bau67] Lemma 7) that will
be useful to show that some sequences of homomorphisms taking values in a hyperbolic
group are discriminating. A proof in the hyperbolic case can be found in [Os93], Lemma
2.4. We include a proof for completeness.

If g is an element of infinite order of a hyperbolic group G, we denote by g+ and g− the
attracting and repellings fixed points of g on the boundary ∂G of G.

We begin with a preliminary lemma.

Lemma 2.18. Let G be a hyperbolic group and S a finite generating set of G. Let g, h, x
be elements of G such that g and h have infinite order. For every p ≥ 1, denote by αp a
geodesic path between gp and gp−1 in Cay(G,S), and βp a geodesic path between xhp−1 and
xhp in Cay(G,S). Denote by γ a path joining 1 and x. If g+ 6= x ·h+, then there exist two
constants λ and k such that for every integers p ≥ 1 and q ≥ 1, wp,q = αp · · ·α1 ·γ ·β1 · · ·βq
is a (λ, k)-quasi-geodesic.

Proof. It is well-known that p ∈ Z 7→ gp and p ∈ Z 7→ hp are quasi-geodesics, i.e. there
exist constants λg, kg and λh, kh such that for every p, αp · · ·α1 is a (λg, kg)-quasi-geodesic
joining gp and 1, and β1 · · ·βp is a (λh, kh)-quasi-geodesic joining x and xhp. An easy
computation gives

length(wp,q) ≤ max(λg, λh)(d(1, gp) + d(1, xhq)) + (kg + kh + length(γ) + λhd(1, x)).

Since g+ 6= x · h+, there exists a constant C such that the Gromov product (gp, xhq)1 is
less than C, that is

d(1, gp) + d(1, xhq)− d(gp, xhq) ≤ 2C.

It follows that length(wp,q) ≤ λd(gp, xhq) + k for some constants λ and k. �

One can now prove the following criterion generalizing that of Baumslag.
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Proposition 2.19. Let a0, a1, . . . , am, c1, . . . , cm be elements of a hyperbolic group. Let
w(p1, . . . , pm) = a0c

p1
1 a1c

p2
2 a2 · · · am−1c

pm
m am with p1, . . . , pm ≥ 0. Suppose that the two

following conditions hold:
(1) every ci has infinite order;
(2) for every i ∈ J1,m− 1K, c+

i 6= ai · c+
i+1.

Then there exists a constant C such that w(p1, . . . , pm) 6= 1 for every p1, . . . , pm ≥ C.

Proof. We will prove that there exist constants λ, k satisfying the following property:
for every integer n, there exists an integer p(n) such that for every p1, . . . , pm ≥ p(n),
w(p1, . . . , pm) (viewed as a path in Cay(G,S), for a given finite generating set S) is a local
(λ, k, n)-quasi-geodesic, i.e. every subword of w(p1, . . . , pm) whose length is less than n is
a (λ, k)-quasi-geodesic. Then, it will follow from [CDP90] Theorem 1.4 that there exist
three constants L, λ′ and k′ such that for every p1, . . . , pm ≥ p(dLe), w(p1, . . . , pm) is a
(λ′, k′)-quasi-geodesic. Hence:

d(1, w(p1, . . . , pm)) ≥ 1/λ′(length(w(p1, . . . , pm))− k′).

Moreover lim
p1,...,pm→+∞

length(w(p1, . . . , pm)) = +∞, so d(1, w(p1, . . . , pm)) ≥ 1 for every

p1, . . . , pm large enough. As a consequence, w(p1, . . . , pm) 6= 1 for every p1, . . . , pm large
enough.

To prove the existence of constants λ and k, let’s look at subwords of w(p1, . . . , pm).
For every n, every subword of w(p1, . . . , pm) whose length is less that n is a subword of a
word of the form cki or cki aic

k
i+1 where i ∈ J1,m− 1K.

Now, it suffices to show that the words above are quasi-geodesic with constants that do
not depend on k. This follows from Lemma 2.18. �

If G is a hyperbolic group, each element g of infinite order is contained in a unique
maximal virtually abelian subgroup of G, denoted by M(g), namely the stabilizer of the
pair of points {g+, g−}. The straightforward following corollary of Proposition 2.19 is
easier to use in practice.

Corollary 2.20. Let a0, a1, . . . , am and c be elements of a hyperbolic group. Let (εi) in
{−1,+1}m. Let w(p) = a0c

ε1pa1c
ε2pa2 · · · am−1c

εmpam with p ≥ 0. Suppose that the two
following conditions hold:

(1) c has infinite order;
(2) for every i ∈ J1,m− 1K, ai /∈M(c).

Then there exists a constant C such that w(p) 6= 1 for p ≥ C.

2.5. The canonical JSJ splitting and the modular group.

2.5.1. The canonical JSJ splitting.

Definition 2.21. A group G is called a finite-by-orbifold group if it is an extension

F → G→ π1(O)

where O is a compact hyperbolic 2-orbifold possibly with boundary, and F is an arbitrary
finite group called the fiber. We call extended boundary subgroup of G the preimage in G
of a boundary subgroup of π1(O). We define in the same way extended conical subgroups.
In the case where O has only conical singularities, i.e. has no mirrors, we say that G is a
conical finite-by-orbifold group.

Definition 2.22. A vertex v of a graph of groups is said to be quadratically hanging
(denoted by QH) if its stabilizer Gv is a finite-by-orbifold group F → G→ π1(O) such that
O has non-empty boundary, and such that any incident edge group is finite or contained
in an extended boundary subgroup. We also say that Gv is QH.
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A one-ended finitely generated K-CSA group G has a canonical JSJ splitting over vir-
tually abelian groups (see [GL16], Theorem 9.14). In the case where all finitely generated
abelian subgroups of G are virtually cyclic, G has a canonical JSJ decomposition ∆ over
Z, the class of virtually cyclic groups with infinite center. We refer the reader to [GL16],
Section 9.2, for a construction of ∆ using the tree of cylinders. The benefit of this de-
composition ∆ is that its QH vertex groups have no mirrors. In the sequel, all one-ended
groups will be K-CSA without Z2, and the expression "the JSJ splitting" or "the Z-JSJ
splitting" will always refer to the canonical JSJ splitting over Z obtained by the tree of
cylinders. Below are the properties of ∆ that will be useful in the sequel.

• The graph ∆ is bipartite, with every edge joining a vertex carrying a virtually
cyclic group to a vertex carrying a non-virtually-cyclic group.
• There are two kinds of vertices of ∆ carrying a non-cyclic group: rigid ones, and
QH ones. If v is a QH vertex of ∆, every incident edge group Ge coincides with
an extended boundary subgroup of Gv. Moreover, given any extended boundary
subgroup B of Gv, there exists a unique incident edge e such that Ge = B.
• The action of G on the associated Bass-Serre tree T is acylindrical in the following
strong sense: if an element g ∈ G of infinite order fixes a segment of length ≥ 2
in T , then this segment has length exactly 2 and its midpoint has virtually cyclic
stabilizer.
• Let v be a vertex of T , and let e, e′ be two distinct edges incident to v. If Gv is not
virtually cyclic, then the group 〈Ge, Ge′〉 is not virtually cyclic.

2.5.2. The modular group. Let G be a one-ended finitely generatedK-CSA group that does
not contain Z2. The modular group Mod(G) of G is the subgroup of Aut(G) composed of
all automorphisms that act by conjugaison on non-QH vertex groups of the Z-JSJ splitting,
and on finite subgroups of G, and that act trivially on the underlying graph of the Z-JSJ
splitting.

2.6. Stallings-Dunwoody splitting. Let G be a finitely generated group. Suppose that
there exists a constant K such that every finite subgroup of G has order less than K. Then
G splits over finite groups as a graph of groups all of whose vertex groups are finite or
one-ended. Such a splitting is called a Stallings-Dunwoody splitting of G; it is not unique,
but the conjugacy classes of one-ended vertex groups do not depend on the splitting. A
one-ended subgroup of G that appears as a vertex group of a Stallings-Dunwoody splitting
is called a one-ended factor of G.

If G is a Γ-limit group, where Γ is hyperbolic, one can prove that there exists a uniform
bound on the order of finite subgroups of G (see [RW14] Lemma 1.18). As a consequence,
G has a Stallings-Dunwoody splitting.

2.7. Preliminaries on orbifolds. In the sequel, all orbifolds are compact, 2-dimensional,
hyperbolic and conical (i.e. without mirrors).

2.7.1. Cutting an orbifold into elliptic components.

Definition 2.23. A set C of simple closed curves on a conical orbifold is said to be
essential if its elements are non null-homotopic, two-sided, non boundary-parallel, pairwise
non parallel, and represent elements of infinite order (in other words, no curve of C circles
a singularity).

Proposition 2.24. Let O be a hyperbolic orbifold. Suppose that S = π1(O) acts minimally
on a tree T in such a way that its boundary elements are elliptic. Then there exists an
essential set C of curves on O, and a surjective S-equivariant map f : TC → T , where TC
stands for the Bass-Serre tree associated with the splitting of S dual to C. In other words:

• every element of S corresponding to a loop of C fixes an edge of T ;
• every fundamental group of a connected component of O \ C is elliptic.
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The proposition above is proved in [MS84] for surfaces (see Theorem 3.2.6), and the
generalization to compact hyperbolic 2-orbifolds of conical type is straightforward. Then,
Proposition 2.24 extends to finite-by-orbifold groups through the following observation: if
G is a finite extension F ↪→ G � π1(O) acting minimally on a tree T , then the action
factors through G/F ' π1(O), because F acts as the identity on T . Indeed, since F is
finite, it fixes a point x of T . Since F is normal, the non-empty subtree of T pointwise-fixed
by F is invariant under the action of G. Since this action is minimal, F fixes T pointwise.

2.7.2. Non-pinching homomorphisms.

Definition 2.25. Let G and G′ be conical finite-by-orbifold groups. A homomorphism
from G to G′ is called a morphism of finite-by-orbifold groups if it sends each extended
boundary subgroup injectively into an extended boundary subgroup, and if it is injective
on finite subgroups.

Definition 2.26. Let G be a conical finite-by-orbifold group F ↪→ G
q
� π1(O). Let p be

a homomorphism from G to a group G′. Let α be a two-sided and non-boundary-parallel
simple loop on O representing an element of infinite order, and let Cα = q−1(α) ' F o Z
(well defined up to conjugacy). The curve α (or Cα) is said to be pinched by p if p(Cα) is
finite. The homomorphism p is said to be non-pinching if it does not pinch any two-sided
simple loop. Otherwise, p is said to be pinching.

Proposition 2.27. Let O and O′ be conical hyperbolic orbifolds. Let G and G′ be their
fundamental groups. Let p : G→ G′ be a non-pinching morphism of orbifolds. Suppose that
p(G) is not contained in a conical or boundary subgroup of G′. Then [G′ : p(G)] < +∞.

Proof. Suppose that p(G) has infinite index in G′. Then p(G) is the fundamental group of
a geometrically finite hyperbolic conical orbifold of infinite volume. Therefore, p(G) splits
as a graph of groups ∆ whose edge groups are trivial, whose vertex groups are conical or
boundary subgroups of G′, and such that each boundary subgroup of p(G) is elliptic in
the Bass-Serre tree T of ∆. This splitting is non-trivial because p(G) is not contained in
an extended boundary subgroup or an extended conical subgroup of G′. By definition of a
morphism of orbifolds, each boundary subgroup of G is contained in a boundary subgroup
of p(G), so is elliptic in T . Then it follows from Proposition 2.24 that there exists a simple
loop on O pinched by p. This is a contradiction. �

Let G be the fundamental group of a conical hyperbolic orbifold with boundary. We
will associate to G a number, denoted by k(G) and called the complexity of G, such that
the following proposition holds.

Proposition 2.28. Let O and O′ be conical hyperbolic orbifolds, with non-empty boundary.
Denote by G and G′ their fundamental groups. Let p : G→ G′ be a morphism of orbifolds.
If p(G) has finite index in G′, then k(G) ≥ k(G′), with equality if and only if p is an
isomorphism.

We need two definitions.

Definition 2.29 (Euler characteristic). Let O be a conical orbifold with m conical points
of orders p1, . . . , pm, and let Σ be the underlying surface. The Euler characteristic of O is

χ(O) := χ(Σ)−
m∑
i=1

(
1− 1

pi

)
.

A compact orbifold is hyperbolic if and only if χ(O) < 0.

Definition 2.30 (Complexity of a virtually free group). Let G be a virtually free group,
and let ∆ be a Stallings decomposition of G. Denote by V (∆) the set of vertices of ∆, and
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by E(∆) its set of edges. We define the complexity k(∆) of ∆ as follows:

k(∆) :=
∑

e∈E(∆)

1

|Ge|
−

∑
v∈V (∆)

1

|Gv|
.

This number does not depend on ∆. We define the complexity of G as k(G) := k(∆) for
any decomposition ∆ of G as a graph of groups with finite edge groups and finite vertex
groups.

The Euler characteristic and the complexity k defined above are linked through the
following lemma.

Lemma 2.31. Let O be a conical hyperbolic orbifold. Assume that O possesses at least
one boundary component, so that π1(O) is virtually free. Then k(π1(O)) = −χ(O).

Proof. Let C be a maximal set of properly embedded arcs in O that are pairwise non
parallel and non boundary-parallel. Let n be the cardinality of C. Let m be the number
of connected components of O \ C, denoted by O1, . . . , Om. Each connected component
Oi of O \ C is an annulus or a disc with one singular point. One can see that χ(O) is
equal to

∑
1≤i≤m χ(Oi) − n, and that k(π1(O)) is equal to

∑
1≤i≤m k(π1(Oi)) + n (since

k(A ∗B) = k(A) + k(B) + 1 for any virtually free groups A and B). So the lemma follows
from the following observation: for each 1 ≤ i ≤ m, k(π1(Oi)) = −χ(Oi). �

Now, Proposition 2.28 follows easily from the lemma below.

Lemma 2.32. Let G and G′ be two free products of finite groups and of a free group.
Let ∆ and ∆′ be two Stallings decomposition of G and G′ respectively. Assume that edge
groups of ∆ and ∆′ are trivial. Let φ : G � G′ be an epimorphism that is injective on
finite subgroups of G. Then k(G) ≥ k(G′), with equality if and only if φ is injective.

Proof of Proposition 2.28. Denote by d the index of p(G) in G′. There exists a covering
orbifold O′′ of O′ of degree d such that p(G) ' π1(O′′). As a consequence, χ(O′′) = dχ(O′),
so k(p(G)) = dk(G′) thanks to Lemma 2.31. According to Lemma 2.32, k(G) ≥ k(p(G)).
Now, assume that k(G) = k(G′). Then d = 1, so p is surjective, and p is injective by
Lemma 2.32. Hence, p is an isomorphism. �

Proof of Lemma 2.32. If ∆ is reduced to a point, then φ is obviously injective. From now
on, we will suppose that ∆ has at least two vertices. Let T, T ′ be Bass-Serre trees of ∆,∆′

respectively. We build a φ-equivariant map f : T → T ′ in the following way: for every
vertex v of T , there exists a vertex v′ of T ′ such that φ(Gv) = G′v′ . Moreover, v′ is unique
since φ is injective on finite subgroups, and edge groups of ∆′ are trivial. We let f(v) = v′.
Next, if e is an edge of T , with endpoints v and w, there exists a unique path e′ from f(v)
to f(w) in T ′. We let f(e) = e′. Let us denote by d′ the natural distance function on T ′.
Up to subdivising the edges of T , we can assume that, for every adjacent vertices v, w ∈ T ,
d′(f(v), f(w)) ∈ {0, 1}. We will prove that φ can be written as a composition i◦πn◦· · ·◦π0,
with n ≥ 0, π0 = id and i injective, such that k(π` ◦ · · · ◦ π0(G)) ≥ k(π`+1 ◦ · · · ◦ π0(G))
for every 0 ≤ ` < n (if n > 0), with equality if and only if π`+1 = id.
Step 1. Assume that there exist two adjacent vertices v, w such that d′(f(v), f(w)) = 0.

Let e be the edge between v and w. We collapse e in T , as well as all its translates under
the action of G. Collapsing e gives rise to a new vertex x labelled by 〈Gv, Gw〉 if v and
w are not in the same orbit, or 〈Gv, g〉 if w = g · v. Call S1 the resulting tree. Now,
let N be the kernel of the restriction of φ to Gx, let T1 := S1/〈〈N〉〉, G1 := G/〈〈N〉〉
and h1 : T � T1, π1 : G � G1 the associated surjections. The homomorphism φ factors
through π1 as φ = φ1 ◦ π1, and the map f factors through h1 as f = f1 ◦ h1. Since T ′
has finite vertex groups, the stabilizer Gx/N ' φ(Gx) of h1(x) in T1 is finite, so T1/G1 is



15

a Stallings splitting of G1. Thus, k(G1) = k(T/G1) by definition. Let us compare k(G1)
with k(G). It is not hard to see that

k(G)− k(G1) =


1− 1

|Gv|
− 1

|Gw|
+

1

|Gx/N |
if v and w are not in the same orbit

1− 1

|Gv|
+

1

|Gx/N |
if v and w are in the same orbit

.

Hence, if v and w are in the same orbit, it is clear that k(G) > k(G1). If v and w are
not in the same orbit, there are four distinct cases: if |Gv| ≥ 2 and |Gw| ≥ 2, it is clear
that k(G) > k(G1); if |Gv| = 1 and |Gw| ≥ 2 (respectively |Gw| = 1 and |Gv| ≥ 2), then
Gx = Gw (respectively Gx = Gv) and k(G) ≥ k(G1) with equality if and only if N = {1},
i.e. π1 = id; if |Gv| = |Gw| = 1, then Gx = N = {1}, i.e. π1 = id.

If the φ1-equivariant map f1 : T1 → T ′ collapses some edge, we repeat the previous oper-
ation. Since T has only finitely many orbits of edges under the action of G, the procedure
terminates after finitely many steps. So we can assume, without loss of generality, that f1

sends adjacent vertices on adjacent vertices.
Step 2. Assume that f1 folds some pair of edges, as pictured below.

w

w′

v

e

e’
f1(w) = f1(w′)

f1(v)

Let us fold e and e′ together in T1, as well as all their translates under the action of G1.
Note that e and e′ are not in the same Gv-orbit since T ′ has trivial edge stabilizers and φ is
injective on Gv. Folding e and e′ together gives rise to a new vertex x labelled by 〈Gw, G′w〉
if w and w′ are not in the same orbit, or 〈Gw, g〉 if w′ = g·w. Call S2 the resulting tree. Now,
let N be the kernel of the restriction of φ1 to (G1)x, let T2 := S2/〈〈N〉〉, G2 := G1/〈〈N〉〉
and h2 : T1 � T2, π2 : G1 � G2 the associated surjections. The homomorphism φ1 factors
through π2 as φ1 = φ2 ◦π2, and the map f1 factors through h2 as f1 = f2 ◦h2. Since T ′ has
finite vertex groups, the stabilizer (G1)x/N ' φ1((G1)x) of h2(x) in T2 is finite, so T2/G2 is
a Stallings splitting of G2. As in the first step, we can see that k(G1) > k(G2). Again, we
can repeat this operation only finitely many times since T has only finitely many orbits of
edges under the action of G. At the end, with obvious notations, we get a φn-equivariant
map fn : Tn → T ′ that is locally injective, so injective. It remains to prove that φn is
injective: if φn(g) = 1, then for every vertex v of Tn, fn(gv) = fn(v), so gv = v. Since Gn
acts on Tn with trivial edge stabilizers, we get g = 1. �

We deduce the following result from Proposition 2.27 and Proposition 2.28.

Proposition 2.33. Let O and O′ be conical hyperbolic orbifolds, with non-empty boundary.
Denote by G and G′ their fundamental groups. If p : G→ G′ is a non-pinching morphism
of orbifolds such that p(G) is not contained in a conical or boundary subgroup of G′, then
k(G) ≥ k(G′), with equality if and only if p is an isomorphism.

We will now generalize the proposition above to finite extensions of conical hyperbolic
orbifolds. First, we need the following lemma.

Lemma 2.34. Let O and O′ be conical hyperbolic orbifolds. Let G and G′ be two finite
extensions F ↪→ G � π1(O) and F ′ ↪→ G′ � π1(O′). If p : G → G′ is a homomorphism
whose restriction to F is injective and whose image is infinite, then p(F ) ⊂ F ′. As a
consequence, p induces a homomorphism q from π1(O) to π1(O′).
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F S π1(O)

F ′ S′ π1(O′)

π

f q

π′

Proof. Firstly, we make the following observation: if A is a finite subgroup of G′ which
is not contained in F ′, then the normalizer NG′(A) of A in G′ is finite. Indeed, if A is
not contained in F ′, then π(A) is a non-trivial finite subgroup of O′, so its normalizer is
a finite cyclic group (since we can see π(A) as an elliptic subgroup of PSL(2,R) acting on
H2). Now, if p(F ) is not contained in F ′, then p(G) ⊂ NG′(p(F )), which is finite. This is
a contradiction. �

Proposition 2.35. Let O and O′ be conical hyperbolic orbifolds, with non-empty boundary.
Let G and G′ be two finite extensions F ↪→ G � π1(O) and F ′ ↪→ G′ � π1(O′). Let
p : G → G′ be a non-pinching morphism of finite-by-orbifold groups such that p(G) is not
contained in an extended conical or boundary subgroup of G′. Then k(G) ≥ k(G′), with
equality if and only if p is an isomorphism.

Proof. k(π1(O)) = |F |k(G) and k(π1(O′)) = |F ′|k(G′). By the previous lemma, p induces
a morphism of orbifolds q : π1(O) → π1(O′). According to Proposition 2.33, k(π1(O)) ≥
k(π1(O′)), so |F |k(G) ≥ |F ′|k(G′). But p(F ) ⊂ F ′, and p is injective in restriction to
F , so |F ′| ≥ |F |. As a consequence, k(G) ≥ k(G′). Moreover, if k(G) = k(G′), then
k(π1(O)) ≥ k(π1(O′)), so q : π1(O)→ π1(O′) is an isomorphism by Proposition 2.33, and
p|F : F → F ′ is an isomorphism, so p is an isomorphism. �

3. How to extract information from the JSJ using first-order logic

3.1. Preliminary examples. Let Γ be a hyperbolic group, and let G be a finitely gener-
ated group such that Th∀∃(Γ) = Th∀∃(G). For convenience, suppose that G is one-ended.
We saw in the previous section that G does not contain Z2, and has a canonical JSJ split-
ting ∆ over Z (the class of virtually cyclic groups with infinite center). Our aim is to
prove that G is a hyperbolic group. Since the JSJ splitting is acylindrical, and since the
QH vertex groups are hyperbolic by definition, it suffices to prove that all non-QH vertex
groups of ∆ are hyperbolic (as a consequence of the Bestvina-Feighn combination theorem,
see proposition 3.11).

Hence, the main issue is to manage to extract information about non-QH vertex groups
of ∆ by means of first-order logic. We shall give two motivating examples. The simplest
example arises when Γ and G are both rigid (that is, they are one-ended, their canonical
JSJ splittings over Z are reduced to a point, and they are not finite-by-orbifold).

Example 3.1. Let Γ be a hyperbolic group, and let G be a finitely generated group such
that Th∀∃(Γ) = Th∀∃(G). Suppose that Γ and G are rigid (i.e. do not split non-trivially
over a virtually cyclic group). We shall prove that Γ and G are isomorphic. Since G
is a Γ-limit group, there exists a discriminating sequence (fn) of homomorphisms from
G to Γ (see Section 2.2). By definition of the modular group, Mod(G) = Inn(G), so it
results easily from Sela’s shortening argument 2.2 that fn is necessarily injective for n large
enough. Hence, G embeds into Γ. Now, using Corollary 2.4, we prove in the same way
that Γ embeds into G. As a one-ended hyperbolic group, Γ is co-Hopfian, so G ' Γ.

The second example below is a little more complicated, and much more instructive.
First of all, note that we cannot express the full statement of the shortening argument 2.4
in first-order logic, since precomposition by a modular automorphism is not expressible
by a first-order formula in general. To deal with this problem, let’s consider the following
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corollary of the shortening argument 2.4, which follows immediately from the definition of
the modular group.

Corollary 3.2. Let Γ be a group that embeds into a hyperbolic group, and let G be a one-
ended finitely generated group. There exists a finite set F ⊂ G \ {1} with the following
property: for every non-injective homomorphism f : G→ Γ, there exists a homomorphism
f ′ : G→ Γ such that

• ker(f ′) ∩ F 6= ∅;
• f and f ′ coincide, up to conjugacy by an element of Γ, on non-QH vertex groups
of the Z-JSJ splitting ∆ of G, and on finite subgroups of G.

We say that f and f ′ are ∆-related (see Definition 3.4 below).

Below is our second example.

Example 3.3. Let Γ be a hyperbolic group, and let G be a finitely generated group such
that Th∀∃(Γ) = Th∀∃(G). Suppose that Γ and G are one-ended, and that there is no QH
vertex in the JSJ decompositions of Γ and G. Then Γ and G are isomorphic. In particular,
G is hyperbolic.

Sketch of proof. First, we prove that G embeds into Γ. Argue by contradiction and suppose
that every homomorphism from G to Γ is non-injective. By Corollary 3.2, there exists a
finite set F ⊂ G such that, for every homomorphism f : G → Γ, there exists f ′ : G → Γ
that kills an element of F and that coincides with f up to conjugacy on every vertex group
of the canonical Z-JSJ splitting ∆ of G. One easily sees that this fact can be expressed by
a ∀∃-sentence verified by Γ (see the next section for details). Since Th∀∃(Γ) ⊂ Th∀∃(G),
this sentence is also verified by G, and its interpretation in G yields the following: for every
endomorphism f : G→ G, there exists an endomorphism f ′ : G→ G that kills an element
of F and that coincides with f up to conjugacy on every vertex group of the canonical Z-
JSJ splitting ∆ of G. Taking f = idG, we get an endomorphism of G that kills an element
of F and that is inner in restriction to every vertex group. But we will prove further that
such an endomorphism is necessarily injective (see Proposition 7.2). This contradicts the
fact that f ′ kills an element of F . Hence, we have shown that G embeds into Γ. Now,
using Corollary 3.2, we prove in the same way that Γ embeds into G. As a one-ended
hyperbolic group, Γ is co-Hopfian, so G ' Γ. �

New difficulties arise when Γ and G are not supposed to be one-ended, or when the
canonical Z-JSJ splittings of Γ and G contain QH vertices. However, the example above
highlights the crucial role played by endomorphims of G that coincide up to conjugacy
with the identity of G on non-QH vertex groups. This example also brings out the key
idea to obtain these special homomorphisms, due to Sela-Perin, that consists in expressing
a consequence of the shortening argument 2.2 by a ∀∃-sentence that Γ verifies (assuming
G is one-ended). Since Γ and G have the same ∀∃-theory, G satisfies this sentence as well,
and its interpretation in G provides us with a special endomorphism of G. This example
leads us to the definition of related homomorphisms.

3.2. Related homomorphisms. The following definition is similar (but slightly different)
to Definition 5.9 and Definition 5.15 of [Per11].

Definition 3.4 (Related homomorphisms). Let G be a one-ended finitely generated K-
CSA group and let G′ be a group. Let ∆ be the canonical JSJ splitting of G over Z. Let
f and f ′ be two homomorphisms from G to G′. We say that f and f ′ are ∆-related if the
two following conditions hold:

• for every non-QH vertex v of ∆, there exists an element gv ∈ G′ such that

f ′|Gv
= ιgv ◦ f|Gv

;
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• for every finite subgroup F of G, there exists an element g ∈ G′ such that

f ′|F = ιg ◦ f|F .

Note that being ∆-related is an equivalence relation on Hom(G,G′).

Remark 3.5. The second condition above can be reformulated as follows: for every QH
vertex v, and for every finite subgroup F of Gv, there exists an element g ∈ G′ such
that f|F = ιg ◦ f ′|F . Indeed, every finite group has Serre’s property (FA), so every finite
subgroup F of G is contained in a conjugate of some vertex group Gw of ∆. Furthermore,
if w is a non-QH vertex, it follows from the first condition that there exists an element
g ∈ G′ such that f|F = ιg ◦ f ′|F .

Definition 3.6 (Preretraction). Let G be a finitely generated K-CSA group and let H
be a one-ended subgroup of G. Let ∆ be the canonical JSJ splitting of H over Z. A
preretraction from H to G is a homomorphism H → G that is ∆-related to the inclusion
of H into G.

The following lemma shows that being ∆-related can be expressed in first-order logic.

Lemma 3.7 (compare with [Per11] Lemma 5.18). Let G be a finitely generated group that
possesses a canonical Z-JSJ splitting ∆, and let {g1, . . . , gn} be a generating set of G. Let
G′ be a group. There exists an existential formula ϕ(x1, . . . , x2n) with 2n free variables
such that, for every f, f ′ ∈ Hom(G,G′), f and f ′ are ∆-related if and only if G′ verifies
ϕ (f(g1), . . . , f(gn), f ′(g1), . . . , f ′(gn)) .

Proof. Firstly, remark that there exist finitely many (say p ≥ 1) conjugacy classes of
finite subgroups of QH vertex groups of ∆ (indeed, a QH vertex group possesses finitely
many conjugacy classes of finite subgroups, and ∆ has finitely many vertices). Denote by
F1, . . . , Fp a system of representatives of those conjugacy classes. Denote by R1, . . . , Rm
the non-QH vertex groups of ∆. Remark that these groups are finitely generated since
G and the edge groups of ∆ are finitely generated. Denote by {Ai}1≤i≤p+m the union of
{Fi}1≤i≤p and {Ri}1≤i≤m. For every i ∈ J1,m+pK, let {ai,1, . . . , ai,ki} be a finite generating
set of Ai. For every i ∈ J1,m+ pK and j ∈ J1, kiK, there exists a word wi,j in n letters such
that ai,j = wi,j(g1, . . . , gn). Let

ψ(x1, . . . , x2n) : ∃u1 . . . ∃um
m+p∧
i=1

ki∧
j=1

wi,j(x1, . . . , xn) = uiwi,j(xn+1, . . . , x2n)ui
−1.

Since f(ai,j) = wi,j(f(g1), . . . , f(gn)) and f ′(ai,j) = wi,j (f ′(g1), . . . , f ′(gn)) for every
i ∈ J1,m + pK and j ∈ J1, kiK, the homomorphisms f and f ′ are ∆-related if and only if
the sentence ψ (f(g1), . . . , f(gn), f ′(g1), . . . , f ′(gn)) is satisfied by G′. �

3.3. Centered graph of groups. We need to define relatedness in a more general context.
In order to deal with groups that are not assumed to be one-ended, we define below the
notion of a centered graph of groups. We denote by Z the class of groups that are either
finite or virtually cyclic with infinite center.

Definition 3.8 (Centered graph of groups). A graph of groups over Z, with at least two
vertices, is said to be centered if the following conditions hold:

• the underlying graph is bipartite, with a QH vertex v such that every vertex dif-
ferent from v is adjacent to v;
• every incident edge group Ge coincides with an extended boundary subgroup or
with an extended conical subgroup of Gv (see Definition 2.21);
• given any extended boundary subgroup B, there exists a unique incident edge e
such that Ge is conjugate to B in Gv;
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• if an element of infinite order fixes a segment of length ≥ 2 in the Bass-Serre tree of
the splitting, then this segment has length exactly 2 and its endpoints are translates
of v.

The vertex v is called the central vertex.

Figure 4. A centered graph of groups. Edges with infinite stabilizer are
depicted in bold.

The following proposition will be crucial in the sequel.

Proposition 3.9. Let G be a group that splits as a centered graph of groups, with central
vertex v. Then the following assertions are equivalent.

• G is hyperbolic
• For every vertex w 6= v, Gw is hyperbolic.

This is an easy consequence of the two following well-known results.

Proposition 3.10 ([Bow98], Proposition 1.2). If a hyperbolic group splits over quasi-
convex subgroups, then every vertex group is quasi-convex (so hyperbolic).

Recall that a subgroup H of a group G is called almost malnormal if H ∩ gHg−1 is
finite for every g in G\H. Note that edge groups in a centered graph of groups are almost
malnormal in the central vertex group.

Proposition 3.11 ([BF92], corollary of the combination theorem).
Let G = A ∗C B be an amalgamated product such that A and B are hyperbolic and C is

virtually cyclic and almost malnormal in A or B. Then G is hyperbolic.
Let G = A∗C be an HNN extension such that A is hyperbolic and C is virtually cyclic

and almost malnormal in A. Then G is hyperbolic.

We also define relatedness for centered splittings.

Definition 3.12 (Related homomorphisms). Let G and G′ be two groups. Suppose that G
possesses a centered splitting ∆, with central vertex v. Let f and f ′ be two homomorphisms
from G to G′. We say that f and f ′ are ∆-related if the two following conditions hold:

• for every vertex w 6= v, there exists an element gw ∈ G′ such that

f ′|Gw
= ιgw ◦ f|Gw

;

• for every finite subgroup F of G, there exists an element g ∈ G′ such that

f ′|F = ιg ◦ f|F .
Note that being ∆-related is an equivalence relation on Hom(G,G′).

Remark 3.13. Let G be a one-ended finitely generated K-CSA group and let ∆ be the
canonical JSJ splitting of G over Z. Let v a be a QH vertex of ∆, and let star(v) be the
subgraph of ∆ composed of v and all its incident edges. Let us denote by Λ the splitting
of G obtained by collapsing to a point each connected component of the complement of
star(v) in ∆. This new splitting is obviously a centered splitting of G. Moreover, if two
homomorphisms are ∆-related, then they are Λ-related.
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4. Torsion-saturated groups

In the presence of torsion, the universal theory of a hyperbolic group is not closed
under HNN extensions and amalgamated free products over finite groups. This is a simple
example: the universal sentence ∀x∀y (x2 = 1) ⇒ (xy = yx), which means that any
involution is central, is verified by F2×Z/2Z but not by (F2×Z/2Z)∗{1} = (F2×Z/2Z)∗Z.
For the same reason, (F2 × Z/2Z) ∗ (F2 × Z/2Z) does not have the same universal theory
as F2 × Z/2Z.

To control this phenomenon, we will prove that every hyperbolic group G embeds into
a hyperbolic group G that possesses the following property: the class of G-limit groups is
closed under HNN extensions and amalgamated free products over finite groups.

Definition 4.1. We say that a group G is torsion-saturated if the two following conditions
hold.

(1) For every isomorphism α : F1 → F2 between finite subgroups F1, F2 of G, there
exists an element g ∈ G such that gxg−1 = α(x) for every x ∈ F1.

(2) For every finite subgroup F of G, there exists an infinite subset {g1, g2, . . .} of G
such that gn has infinite order,M(gn) = 〈gn〉×F for every n, andM(gn) 6= M(gm)
whenever n 6= m.

Remark 4.2. The second condition is equivalent to the following: there exist two elements
a, b ∈ G generating a free group, and such that M(a) = 〈a〉 × F and M(b) = 〈b〉 × F .

We shall see that every hyperbolic group embeds into a torsion-saturated hyperbolic
group (see Theorem 4.8 below). The main interest of torsion-saturated groups resides in
the following result.

Theorem 4.3. Let G be a torsion-satured hyperbolic group. Then the class of G-limit
groups is closed under HNN extensions and amalgamated free products over finite groups.

Proof. Let H be a G-limit group. Let α : F1 → F2 be an isomorphism between two finite
subgroups F1, F2 of H. We shall prove that the HNN extension H∗α is a G-limit group.
According to Lemma 4.4 below, there exists an isomorphism β : F ′1 → F ′2 between finite
subgroups F ′1, F ′2 of G such that H∗α is a G∗β-limit group. But G∗β is a G-limit group
thanks to Lemma 4.6 below, so H∗α is a G-limit group. It remains to treat the case of
an amalgamated free product. Let A,B be G-limit groups. Let F be a finite group that
embeds into A and B. According to Lemma 4.5 below, there exists a finite subgroup F ′
of G such that A ∗F B is a G∗F ′-limit group, and G∗F ′ is a G-limit group by Lemma 4.6,
so A ∗F B is a G-limit group as well. �

Lemma 4.4. Let G be a hyperbolic group and let H be a G-limit group. Let α : F1 → F2

be an isomorphism between finite subgroups F1, F2 of H. Then there exists an isomorphism
β : F ′1 → F ′2 between finite subgroups F ′1, F

′
2 of G such that H∗α is a G∗β-limit group.

Lemma 4.5. Let G be a hyperbolic group. Suppose that the first condition of Definition
4.1 holds, that is: for every isomorphism α : F1 → F2 between finite subgroups F1, F2 of
G, there exists an element g ∈ G such that gxg−1 = α(x) for every x ∈ F1. Let A,B be
G-limit groups. Let F be a finite group that embeds into A and B. Then there exists a
finite subgroup F ′ of G such that A ∗F B is a G∗F ′-limit group.

Lemma 4.6. Let G be a hyperbolic group, and let α : F1 → F2 be an isomorphism between
finite subgroups F1, F2 of G. Suppose that the two following conditions hold:

(1) there exists an element g ∈ G such that gxg−1 = α(x) for every x ∈ F1;
(2) there exists an infinite subset E = {g1, g2, . . .} ⊂ G such that gn has infinite order,

M(gn) = 〈gn〉 × F1 for every n, and M(gn) 6= M(gm) whenever n 6= m.
Then G∗α is a G-limit group.
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Proof of Lemma 4.4. Let (φn) be a discriminating sequence of homomorphisms from H
to G. Without loss of generality, we can suppose that φn is injective in restriction to F1

and F2. We will construct a discriminating sequence (ρn) of homomorphisms from H∗α to
G∗β , for some β that will be defined below. Since G has finitely many conjugacy classes of
finite subgroups, there exist two finite subgroups F ′1, F ′2 of G such that, up to extracting
a subsequence, φn(F1) is conjugate to F ′1 and φn(F2) is conjugate to F ′2 for every n. Up
to composing φn by an inner automorphism of G, one can assume that φn(F1) = F ′1 and
ιgn ◦ φn(F2) = F ′2 for some gn ∈ G. Denote by βn the isomorphism from F ′1 to F ′2 making
the following diagram commute:

F1 F ′1

F2 F ′2

φn|F1

α βn

ιgn◦φn|F2

Since Isom(F ′1, F
′
2) is finite, there exists an isomorphism β between F ′1 and F ′2 such that

(up to extracting a subsequence) βn = β for every n. Let t and u be the stable letters of
H∗α and G∗β , i.e. txt−1 = α(x) for all x ∈ F1 and uyu−1 = β(y) for all y ∈ F ′1. For every
n, we define a map ρn from H∗α to G∗β as follows:

ρn(x) =

{
φn(x) if x ∈ H
g−1
n u if x = t

.

The map ρn clearly extends to a homomorphism since the diagram commutes, and we
claim that the sequence (ρn) is discriminating. Let x be a non-trivial element of H∗α.
If x lies in H, it is obvious that ρn(x) is non-trivial for every n large enough since (φn)
is discriminating. Assume now that x /∈ H. Then x can be written in reduced form as
x = h0t

ε1h1t
ε2h2 · · · with n > 0, hi ∈ H, εi = ±1, hi /∈ F1 if εi = −εi+1 = 1 and hi /∈ F2

if εi = −εi+1 = −1. One has:

ρn(x) = φn(h0)(gnu)ε1φn(h1)(gnu)ε2φn(h2) · · · .

One has to prove that ρn(x) 6= 1 for every n large enough. In order to apply Britton’s
lemma, one verifies that, for every subword of w of the form uvu−1 with v not involving
u, v does not lie in F ′1, and that for every subword of w of the form u−1vu with v not
involving u, v does not lie in F ′2.

• If uvu−1 is a subword of w with v not involving u, then v is of the form φn(hi) with
hi /∈ F1, and φn(hi) /∈ F ′1 for every n large enough because (φn) is discriminating.
• Similarly, if u−1vu is a subword of w with v not involving u, then v is of the form
gnφn(hi)g

−1
n with hi /∈ F2, and gnφn(hi)g

−1
n /∈ F ′2 = gnφn(F2)g−1

n for every n large
enough because (ιgn ◦ φn) is discriminating.

Hence, it follows from Britton’s lemma that ρn(x) 6= 1 for every n large enough. �

Remark 4.7. Note that in the previous proof, the hypothesis that G is hyperbolic is only
used to ensure that G has finitely many classes of finite subgroups.

Proof of Lemma 4.5. Let (φn) be a discriminating sequence from A to G, and let (ψn)
be a discriminating sequence from B to G. For every n large enough, φn(F ) and ψn(F )
are isomorphic to F . By hypothesis, there exists an element gn ∈ G making the following
diagram commute:
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φn(F )

F

ψn(F )

ιgn

φn

ψn

Let χn = ιg−1
n
◦ψn. So χn and φn coincide on F . Since (φn) and (χn) are discriminating, we

can assume that φn and χn are injective on F . Since G has only finitely many conjugacy
classes of finite subgroups, we can assume that φn(F ) = χn(F ) = F ′ for every n, for some
finite subgroup F ′ of G, up to extracting a subsequence and precomposing by an inner
automorphism.

Let G∗F ′ = 〈G, t | [t, x] = 1 ∀x ∈ F ′〉 be the HNN-extension of G over the identity of
F ′. For every n, we define a homomorphism ρn from A ∗F B to G∗F ′ as follows:

ρn(x) =

{
φn(x) if x ∈ A
ιt ◦ χn(x) if x ∈ B

.

We claim that the sequence (ρn) is discriminating, i.e. that for every non-trivial element
x ∈ A ∗F B, ρn(x) 6= 1 for every n large enough. If x ∈ F \ {1}, then ρn(x) = φn(x),
so ρn(x) is non-trivial for every n large enough since (φn) is discriminating. Assume now
that x /∈ F . Then x can be written in a reduced form a1b1a2b2 · · · akbk with ai ∈ A \ F
and bi ∈ B \ F (except maybe a1 and bk). The following holds:

ρn(x) = φn(a1)tχn(b1)t−1φn(a2)tχn(b2)t−1 · · ·φn(ak)tχn(bk)t
−1.

Since (φn) and (χn) are discriminating, φn(ai) /∈ F ′ and χn(bi) /∈ F ′ for every n large
enough (except maybe φn(a1) and χn(bk)). Hence, it follows from Britton’s lemma that
ρn(x) 6= 1 for every n large enough. �

Proof of Lemma 4.6. Let G = 〈S | R〉 be a presentation of G, and let

G∗α = 〈S, t | R, txt−1 = α(x) ∀x ∈ F1〉
be a presentation of G∗α. By hypothesis, there exists an element g ∈ G such that gxg−1 =
α(x) for every x ∈ F1. Up to replacing t by g−1t, we can assume that F1 = F2 and that α
is the identity of F1. The presentation of G∗α becomes 〈S, t | R, [t, x] = 1 ∀x ∈ F1〉.

For every gn ∈ E, and for every integer p, we define a map φp,n from G∗α to G by

φp,n :

{
z 7→ z if z ∈ G
t 7→ gpn

.

The map φp,n clearly extends to a homomorphism since ιt and ιgpn coincide on F1 for every
p, because M(gn) = 〈gn〉 × F1 by hypothesis.

Denote by Bm the ball of radius m in G∗α (for a given generating set). We shall prove
the existence of two sequences (nm) ∈ NN and (pnm) ∈ NN such that φpnm ,nm(x) 6= 1 for
every x ∈ Bm \ {1}, for every m. Let x ∈ Bm \ {1}. If x lies in G, φp,n(x) 6= 1 for all p and
n. Assume now that x does not belong to G. Then x can be written in a reduced form as

x = y0t
ε1y1t

ε2 · · · tεkyk
with k > 0, εi = ±1, yi /∈ F1 if εi = −εi+1. We claim that for p and n sufficiently large,
the homomorphism φp,n verifies φp,n(x) 6= 1. In order to prove this, we will use Baumslag’s
lemma 2.20 with c = gn. We have

φp,n(x) = y0g
ε1p
n y1g

ε2p
n · · · gεkpn yk.

First, let us rewrite φp,n(x) under a more convenient form. Let i ∈ J1, k−1K, and suppose
that εi = εi+1 = 1, and that yi lies in F1. Then, we replace the subword gpnyig

p
nyi+1 by
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g2p
n yiyi+1. In the case where εi+2 = −1, note that yiyi+1 does not belong to F1, since
yi ∈ F1 and yi+1 /∈ F1. In the case where εi+2 = 1, we repeat the previous operation, and
so on. Similarly, if εi = εi+1 = −1 and yi lies in F1, we replace the subword g−pn yig

−p
n yi+1

of φp,n by g−2p
n yiyi+1, and so on. At the end of this process, we have

φp,n(x) = z0g
ε1n1p
n z1g

ε2n2p
n · · · gε`n`p

n z`,

with n1, . . . , n` ∈ N∗, and zi /∈ F1 for every i ∈ J1, `− 1K.
We can now use Baumslag’s lemma 2.20 with c = gn. We claim that there exists n(x)

such that zi does not belong to M(gn) for every n ≥ n(x) and for every i ∈ J1, ` − 1K.
Indeed, suppose that zi lies in M(gn) = 〈gn〉 × F1, for some n. Since zi does not belong
to F1, it has infinite order, so M(zi) is well-defined and M(zi) = M(gn). Then the claim
follows from the fact that M(gm) 6= M(gn) if n 6= m (by hypothesis).

Let nm := max{n(x) | x ∈ Bm}. By Corollary 2.20, there exists an integer pnm such
that ker(φpnm ,nm) ∩Bm = {1}. This concludes the proof. �

We conclude this section by proving that every hyperbolic group embeds into a torsion-
saturated hyperbolic group.

Theorem 4.8. Every hyperbolic group embeds into a torsion-saturated hyperbolic group.

Proof. Let G be a hyperbolic group and denote by F1, . . . , Fm a system of representatives
of the conjugacy classes of finite subgroups of G. We build a graph of groups as follows:
begin with a vertex v labelled by G, then for every pair {i, j} ⊂ J1,mK (including {i, i}),
if Fi and Fj are isomorphic, then for every isomorphism α ∈ Isom(Fi, Fj) add two edges
from v to itself labelled by α. Denote by G the fundamental group of this graph of groups.
It is hyperbolic by Bestvina-Feighn’s combination theorem [BF92]. Let us prove that it
is torsion-saturated. By definition, for every isomorphism α : F1 → F2 between finite
subgroups of G, there exists an element g of G such that gxg−1 = α(x), for all x ∈ F1.
Hence the first condition of Definition 4.1 is satisfied by G. It remains to verify that the
second condition holds. Let F be a finite subgroup of G. We can assume that F = Fi
for some 1 ≤ i ≤ m. Let a and b be the two stable letters associated with the two
HNN extensions over the identity of Fi. The group 〈a, b〉 is free, and M(a) = 〈a〉 × F ,
M(b) = 〈b〉 × F . This concludes the proof. �

5. Quasi-floors and quasi-towers

Hyperbolic floors and hyperbolic towers have been introduced by Sela in [Sel01] to solve
Tarski’s problem about the elementary equivalence of free groups (see also Kharlampovich
and Myasnikov’s NTQ groups). Since we want to deal with torsion, we need new definitions.
We introduce below quasi-floors and quasi-towers.

5.1. Definitions.

Definition 5.1 (Quasi-floor). Let G and H be two groups. Let ∆ be a centered splitting
of G. Let VG be the set of vertices of ∆, and v the central vertex. Suppose that H splits
as a graph of groups with finite edge groups, and denote by VH the set of vertices of
this splitting. We say that G is a quasi-floor over H if there exist two homomorphisms
r : G → H and j : H → G, a partition VH = V 1

H t V 2
H and a bijection s : VG \ {v} → V 1

H
such that the following conditions hold:

• j ◦ r is ∆-related to the identity of G;
• for every w in VG \ {v}, r(Gw) = Hs(w);
• for every u ∈ V 2

H , Hu is finite and j is injective on Hu.
If, moreover, there exists a one-ended subgroup A of G such that A ∩ ker(r) 6= {1}, the
quasi-floor is said to be strict.
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Remark 5.2. Recall that the first condition means that j ◦ r is inner on every vertex group
Gw, with w 6= v, and on every finite subgroup of Gv (see Definition 3.12). It is not hard
to see that the three conditions in the previous definition imply the following:

• j is injective in restriction to any one-ended subgroup of H;
• r ◦ j is inner on every Hu, with u ∈ V 1

H ;
• for every u in V 1

H , there exists gu ∈ G such that j(Hu) = Ggu
s−1(u)

.

Note in particular that r sends Gw isomorphically on Hs(w) (for every w 6= v), and that j
sends Hu isomorphically on a conjugate of Gs−1(u) (for every u ∈ V 1

H).

Figure 5. G is a quasi-floor overH. On this figure, |V 1
H | = 3 and |V 2

H | = 1.
The black vertex (on the right) is labelled by a finite group. Edges with
infinite stabilizer are depicted in bold.

Sometimes it is convenient to think of G and H as subgroups of a bigger group G′ that
retracts onto H via an epimorphism ρ : G′ → H such that ρ|G = r, as illustrated below.
However, it should be noted that the existence of ρ does not guarantee the existence of a
homomorphism j : H → G as in the previous definition.

Figure 6. The groups G and H can be viewed as subgroups of a bigger
group that retracts onto H. Edges with infinite stabilizer are depicted in
bold.

We stress that a hyperbolic floor in the sense of Sela (see [Per11], Definition 5.4) is a
quasi-floor in the sense of the previous definition.

Example 5.3. Let G be a group, and H a subgroup of G. Suppose that G is a hyperbolic
floor over H in the sense of Sela. Then G is a quasi-floor over H in the sense of the previous
definition. In this particular case, the set V 2

H is empty, j is the inclusion of H into G, and
r is a retraction from G onto H, i.e. r ◦ j is the identity of H (see Figure 7 below).

It should be noted that in the definition of a quasi-floor, no assumption is made about
the image of the QH group Gv, whereas in the definition of a hyperbolic floor, r(Gv) is
assumed to be non-abelian. It turns out that this hypothesis is not necessary to prove that
hyperbolicity is preserved under elementary equivalence.
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Figure 7. G is a hyperbolic floor over H in the sense of Sela, r ◦ j = idH .

In the definition of a quasi-floor, r is not a retraction (it is not even surjective), j is
not injective and H is not a subgroup of G. However, r can be viewed as a "piecewise
retraction" from G to H, and j can be viewed as a "piecewise inclusion" from H to G.
Indeed, as we mentionned in Remark 5.2, it follows easily from Definition 5.1 that r ◦ j is
inner on every vertex group Hu with u ∈ V 1

H (in particular on every one-ended subgroup of
H), and that j is injective on every vertex group Hu with u ∈ VH (in particular on every
one-ended subgroup of H).

It is important to emphasize that, maybe, our construction of a quasi-floor (in Section
7) might be modified to ensure that r is an epimorphism, and that j is a monomorphism.
However, it seemed to us that this could give rise to a number of new technical difficulties.
These complications will be avoided by using Theorem 4.8 stating that every hyperbolic
group embeds into a torsion-saturated hyperbolic group (see Definition 4.1).

Here below is an example of a quasi-floor in the presence of torsion.

Example 5.4. Let A = (〈x〉 × F (x1, x2)) ∗ (〈y〉 × F (x3, x4)), with x of order 6 and y of
order 10. F (xi, xj) stands for the free group on two generators xi and xj . Let Σ be the
orientable surface of genus two with two boundary components, and let S = π1(Σ). Call
〈b1〉 and 〈b2〉 its two boundary subgroups. Let B = 〈z〉×S with z of order 2. Let us define
a graph of groups with two vertices labelled by A and B, and two edges linking these
vertices, identifying the extended boundary subgroup 〈z〉 × 〈b1〉 with 〈x3, [x1, x2]〉 < A by
z 7→ x3, b1 7→ [x2, x1], and the extended boundary subgroup 〈z〉×〈b2〉 with 〈y5, [x3, x4]〉 < A
by z 7→ y5, b2 7→ [x4, x3]. Call G the fundamental group of this graph of groups.

First, note that G cannot be a quasi-floor over A. To see that, remark that each
involution of G commutes with an element of order 3 and with an element of order 5,
whereas there are two conjugacy classes of involutions in A: those commuting with an
element of order 3, and those commuting with an element of order 5. Hence, there cannot
exist any homomorphism G→ A that is injective on finite subgroups.

We shall prove that G is a quasi-floor over A∗〈x3〉'〈y5〉. Here is a presentation of G:

G =

〈
tx3t−1 = y5, x6 = y10 = 1,

x, y, x1, x2, x3, x4, s1, s2, s3, s4, t [s3, s4][s1, s2][x2, x1]t−1[x4, x3]t = 1,
[x, x1] = [x, x2] = [y, x3] = [y, x4] = 1

〉
The group G retracts onto

H =

〈
tx3t−1 = y5, x6 = y10 = 1,

x, y, x1, x2, x3, x4, t
[x, x1] = [x, x2] = [y, x3] = [y, x4] = 1

〉
' A∗〈x3〉'〈y5〉

via the epimorphism r : G→ H defined as follows:

r :


a 7→ a if a ∈ {x, y, x1, x2, x3, x4, t}
si 7→ xi if 1 ≤ i ≤ 2

si 7→ t−1xit
1 if 3 ≤ i ≤ 4

.

Hence, G is a quasi-floor over H = A∗〈x3〉'〈y5〉. See Figure 8 below.

We now define quasi-towers, which are obtained by successive addition of quasi-floors.
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Figure 8. G is a quasi-floor over H, but not over A.

Definition 5.5 (Quasi-tower). Let G and H be two groups. We say that G is a quasi-
tower over H if there exists a finite sequence of groups (Gm)0≤m≤n, with n ≥ 1, G0 = G
and Gn = H, such that for every integer m in J1, nK, the group Gm−1 is a quasi-floor over
Gm. If, moreover, every quasi-floor is strict, then the quasi-tower is said to be strict.

We end this subsection with two definitions that are comparable to Sela’s elementary
prototype (Definition 7.3 of [Sel09]) and Sela’s elementary core (Definition 7.5 of [Sel09]).

Definition 5.6 (Quasi-prototype). A quasi-prototype is a group G that is not a strict
quasi-floor over any group H.

Example 5.7. A one-ended hyperbolic group whose Z-JSJ splitting does not contain any
QH vertex is a quasi-prototype.

Definition 5.8 (Quasi-core). Let G be a group. If G is not a quasi-prototype, a quasi-core
of G is a group C satisfying the two following conditions:

• G is a strict quasi-tower over C.
• C is a quasi-prototype.

If G is a quasi-prototype, we define G as the only quasi-core of G.

Remark 5.9. Note that if a quasi-core exists, it is not unique a priori.

5.2. Inheritance of hyperbolicity. Here is an easy but essential proposition.

Proposition 5.10. Let G and H be two groups. Suppose that G is a quasi-tower over H.
The following hold:

• G is hyperbolic if and only if H is hyperbolic.
• G embeds into a hyperbolic group if and only if H embeds into a hyperbolic group.
• G is hyperbolic and cubulable if and only if H is hyperbolic and cubulable.

The proof of the third claim is postponed to Section 6.4 (see Proposition 6.13).

Proof. We shall prove the proposition in the case where G is a quasi-floor over H, the
general case follows immediately by induction. Let ∆G and ∆H be the splittings of G
and H associated with the quasi-floor structure. By definition, ∆G is a centered graph of
groups. Let VG be its set of vertices, and let v be the central vertex. Denote by V 1

H the
set of vertices of ∆H whose stabilizers are infinite. By definition, there exists a bijection
s : VG \ {v} → V 1

H such that Gw ' Hs(w) for every w ∈ VG \ {v}.
We prove the first claim. Suppose that H is hyperbolic. Then, by Proposition 3.10, Hu

is hyperbolic for every vertex u of ∆H . As a consequence, the vertex groups of ∆G are
hyperbolic. Since each edge group of ∆G is virtually cyclic and almost malnormal in Gv,
it follows from the Bestvina-Feighn combination theorem (see Proposition 3.11) that G is
hyperbolic. Conversely, if G is hyperbolic, we prove in exactly the same way that H is
hyperbolic.

Now, let us prove the second claim (see Figure 9 below). Suppose that H embeds into
a hyperbolic group Γ. In particular, each Hu embeds into Γ. As a consequence, each Gw
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embeds into Γ, for w ∈ VG\{v}. We construct a graph of groups ∆Γ
G from ∆G by replacing

each vertex group Gw by Γ. Recall that ∆G is 2-acylindrical by definition of a centered
graph of groups 3.8, so ∆Γ

G is 2-acylindrical. Call Ω the fundamental group of ∆Γ
G. It is

clear that G embeds into Ω. Moreover, Ω is hyperbolic by the combination theorem of
Bestvina and Feighn. Conversely, if G embeds into a hyperbolic group, we prove in the
same way that H embeds into a hyperbolic group. �

Figure 9. The group G is a quasi-floor over H. If G embeds into a hyper-
bolic group Γ, then H embeds into a hyperbolic group. Conversely, if H
embeds into a hyperbolic group Γ, then G embeds into a hyperbolic group.
Edges with infinite stabilizer are depicted in bold.

5.3. Every Γ-limit group has a quasi-core. We shall prove the following result:

Proposition 5.11. Let Γ be a hyperbolic group, and G a Γ-limit group. Then G has a
quasi-core C. Moreover, G is hyperbolic if and only if C is hyperbolic.

The second part of the previous proposition is an immediate consequence of Proposition
5.10 above. It remains to prove the first part, that is:

Proposition 5.12. If Γ is a hyperbolic group, then every Γ-limit group has a quasi-core.

In other words, the previous proposition claims that a Γ-limit group is either a quasi-
prototype, either a strict quasi-tower over a quasi-prototype. The proposition is an easy
consequence of the following lemma.

Lemma 5.13. There does not exist any infinite sequence (Gn)n≥0 of finitely generated
groups such that G0 is a Γ-limit group and, for every integer n, Gn is a strict quasi-floor
over Gn+1.

First, note that if Γ is a torsion-free hyperbolic group, it follows from the descending
chain condition 2.7 that there does not exist any infinite sequence (Gn)n≥0 such that G0

is a Γ-limit group and Gn is a hyperbolic floor over Gn+1 (in the sense of Sela).
In the presence of torsion, however, Definition 5.1 has two drawbacks that seem to be

obstacles to the use of the descending chain condition: if G is a Γ-limit group, and if G is
a quasi-floor over H, then in general H is neither a Γ-limit group, nor a quotient of G.

We remedy the first issue using the fact that every hyperbolic group embeds into a
torsion-saturated hyperbolic group (see Theorem 4.8).

Proposition 5.14. Let Γ be a hyperbolic group, and G a Γ-limit group. Let Γ be a torsion-
saturated hyperbolic group containing Γ. Suppose that G is a quasi-floor over a finitely
generated group H. Then H is a Γ-limit group.

Proof. Let ∆H be the splitting of H over finite groups associated to the structure of a
quasi-floor. It follows from the definition of a quasi-floor that every vertex group of ∆H

embeds into G (see Remark 5.2), so is a Γ-limit group. By Theorem 4.3, the class of Γ-limit
groups is closed under HNN extensions and amalgamated free products over finite groups,
so H is a Γ-limit group. �
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The following corollary is immediate.

Corollary 5.15. Let Γ be a hyperbolic group. Let Γ be a torsion-saturated hyperbolic group
containing Γ. Let (Gn)n≥0 be a sequence of finitely generated groups such that G0 is a Γ-
limit group and Gn is a quasi-floor over Gn+1 for every n. Then every Gn is a Γ-limit
group.

Then, the following proposition remedies the lack of surjectivity in the definition of a
quasi-floor, under the assumption that each quasi-floor is a Γ-limit group.

Proposition 5.16. Let Γ be a hyperbolic group. There does not exist any infinite sequence
(Gn)n≥0 of groups such that, for every integer n, Gn is a strict quasi-floor over Gn+1 and
Gn is a Γ-limit group.

Proof. Let (Gn)n≥0 be a sequence of groups such that, for every n, Gn is a strict quasi-
floor over Gn+1 and Gn is a Γ-limit group. Denote by rn : Gn → Gn+1 and jn : Gn+1 →
Gn the associated homomorphisms, for every n. Let G′n = rn ◦ · · · ◦ r0(G0). We shall
apply the descending chain condition 2.7 to the sequence (G′n)n≥0. It follows from the
definition of a strict quasi-floor that there exists a one-ended subgroup An of Gn such that
An ∩ ker(rn+1) 6= {1}. In addition, the restriction of rn ◦ · · · ◦ r0 ◦ j0 ◦ · · · ◦ jn to An is
a conjugation. Consequently, rn ◦ · · · ◦ r0(j0 ◦ · · · ◦ jn(An)) ∩ ker(rn+1) 6= {1}. So the
restriction of rn+1 to G′n = rn ◦ · · · ◦ r0(G0) is not injective. Hence, the descending chain
condition 2.7 implies that the sequence (G′n) is finite, so the sequence (Gn) is finite as
well. �

We can now prove Lemma 5.13, which implies Proposition 5.12.
Proof of Lemma 5.13. Let (Gn)n≥0 be a sequence of finitely generated groups such that
G0 is a Γ-limit group and, for every integer n, Gn is a strict quasi-floor over Gn+1. We
aim to prove that this sequence is finite. By Corollary 5.15, every Gn is a Γ-limit group,
where Γ stands for a torsion-saturated hyperbolic group containing Γ. Then it follows from
Proposition 5.16 that the sequence (Gn)n≥0 is finite. �

5.4. Quasi-floor and relatedness. Here is a result that will be useful in the next section.

Proposition 5.17. Let G and H be two finitely generated groups. Suppose that G is a
quasi-floor over H. By definition, G splits as a centered splitting ∆G. Let r : G→ H and
j : H → G be the homomorphisms associated with the quasi-floor structure. Let K be a
one-ended group having a Z-JSJ splitting, denoted by ∆K . Then,

(1) for every monomorphism f : K ↪→ G, j ◦ r ◦ f and f are ∆K-related;
(2) for every monomorphism f : K ↪→ H, r ◦ j ◦ f and f are ∆K-related.

Proof. We shall prove the first assertion. We have to prove that f and j ◦ r ◦ f coincide,
up to conjugacy by an element of G, on every non-QH vertex group of ∆K , as well as on
every finite subgroup of K. The condition concerning finite subgroups is obvious, since
j ◦ r is inner on each finite subgroup of G. Now, let R be a non-QH vertex group of ∆K .
We shall prove that f(R) belongs to a non-QH vertex of ∆G. By definition, R is elliptic in
every tree on which K acts with edge stabilizers in Z or finite. Therefore, f(R) is elliptic
in the Bass-Serre tree T of ∆G (indeed, the preimage under f of every Z-subgroup (resp.
finite subgroup) of G is a Z-subgroup (resp. finite subgroup) of K, because f is injective).
We make the following observation: let S be a finite-by-orbifold group, and let B be a
subgroup of S. If B is elliptic in every splitting of S over Z, then B is finite or lies in
an extended boundary subgroup (see [GL16] Corollary 5.24 (5)). As a consequence, if R
is rigid, f(R) lies in a conjugate of a non-QH vertex group of ∆G. In the case where R
is virtually cyclic, then f(R) may possibly lie in a boundary subgroup of the central QH
vertex group of ∆G. In any case, f(R) lies in a conjugate of a non-QH vertex group of
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∆G. Hence, since j ◦ r is ∆G-related to the identity of G, there exists an element g in G
such that

j ◦ r ◦ f |R = ιg ◦ f |R.
This finishes the proof of the first assertion.
We now prove the second assertion. By definition, there exists a splitting ∆H of H over

finite groups such that r ◦ j is inner on every one-ended vertex group of this splitting (see
Remark 5.2). Since f(K) ' K is one-ended, it is contained in a one-ended vertex of ∆H .
Thus, r ◦ j is inner on f(K). �

6. Proofs of the theorems

In this section, we shall prove our main results by admitting Proposition 6.2, whose
proof is postponed to Section 7 for sake of clarity.

6.1. How to build a quasi-floor using first-order logic. We shall prove the following
proposition by means of first-order logic.

Proposition 6.1. Let Γ be a group that embeds into a hyperbolic group, and let G be a
finitely generated group such that Th∀∃(Γ) ⊂ Th∀∃(G). Suppose that Γ is a quasi-tower
over a group Γ′, and that G is a quasi-tower over a group G′. Let H be a one-ended
subgroup of G′. Then one of the following holds:

• H embeds into Γ′,
• or there exists a non-injective preretraction H → G′, that is a homomorphism
related to the inclusion of H into G′ (see Definition 3.6).

But before proving the proposition above, let us explain how it will be used in the sequel.
In Section 7, we shall prove the following proposition, whose proof is quite technical.

Proposition 6.2. Let G be a finitely generated group possessing a Z-JSJ splitting. Let H
be a one-ended factor of G (defined in Section 2.6) that is not finite-by-orbifold. If there
exists a non-injective preretraction H → G, then G is a strict quasi-floor.

Propositions 6.1 and 6.2 above are complementary and explain how to build quasi-floors.
The first one states the existence of a non-injective preretraction under certain conditions,
while the second one asserts that a strict quasi-floor can be built using a non-injective
preretraction. Combining these two propositions, we get:

Proposition 6.3. Let Γ be a group that embeds into a hyperbolic group, and let G be
a finitely generated group such that Th∀∃(Γ) ⊂ Th∀∃(G). Let G′ be a quasi-core of G.
Suppose that Γ is a quasi-tower over a group Γ′. Let H be a one-ended factor of G′ that is
not finite-by-orbifold. Then H embeds into Γ′,

Proof of Proposition 6.1. By hypothesis, G is a quasi-tower over a group G′. Denote by
j : G′ → G the associated homomorphism. Let H be a one-ended subgroup of G′, and
let ∆ be its canonical Z-JSJ splitting. Note that j|H is injective (see Remark 5.2). We
suppose that H does not embed into Γ′. We will prove the existence of a non-injective
homomorphism H → G′ related to the inclusion of H into G′.
Step 1. There exist non-trivial elements h1, . . . , hk ∈ H such that every homomorphism

f : H → Γ is ∆-related to a homomorphism f ′ : H → Γ that kills some h`.
Proof of Step 1. Since Γ is a quasi-tower over Γ′, there exists by definition a finite

sequence of groups (Γm)0≤m≤n such that Γ0 = Γ and Γn = Γ′, and for every 1 ≤ m ≤ n
there exist two homomorphisms rm : Γm−1 → Γm and jm : Γm → Γm−1 such that jm ◦ rm
is related to the identity of Gm−1. Let r0 = j0 = idΓ.

Let f be a homomorphism from H to Γ. First, we shall prove that f is related to a non-
injective homomorphism u. Since there is no monomorphism fromH into Γ′, rn◦· · ·◦r0◦f :
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H → Γ′ is non-injective. Let N be the smallest integer such that rN ◦ · · · ◦ r0 ◦ f is non-
injective. If N = 0, f is non-injective, so we define u := f . If N ≥ 1, then f is injective, so
j1 ◦r1 ◦f is related to f by Lemma 5.17. If N = 1, we define u := j1 ◦r1 ◦f . If N ≥ 2, then
r1 ◦f is injective, so j2 ◦r2 ◦r1 ◦f is related to r1 ◦f by Lemma 5.17. Thus j1 ◦j2 ◦r2 ◦r1 ◦f
is related to j1 ◦ r1 ◦ f , which is itself related to f . An easy induction proves that we can
take u := j0 ◦ · · · jN ◦ rN ◦ · · · ◦ r0 ◦ f . Now, it follows from Corollary 3.2 that there exists a
homomorphism f ′ that kills h` for some ` ∈ J1, kK and that is related to u, which is itself
related to f . By transitivity, f ′ is related to f .
Step 2. There exists a non-injective homomorphism p : H → G that is related to j|H .
Proof of Step 2. The proof consists in expressing by a first-order sentence the statement

of Step 1, and by interpreting this sentence in G. Let H = 〈s1, . . . , sn | w1, w2, . . .〉 be a
(possibly infinite) presentation of H. Let Wi = {w1, . . . , wi} for every i ≥ 0. Denote by Hi

the finitely presented group 〈s1, . . . , sn | Wi〉. By hypothesis, Γ embeds into a hyperbolic
group Ω. As a hyperbolic group, Ω is equationally noetherian (see [RW14], Corollary 6.13).
Then Γ and G are equationally noetherian, as Ω-limit groups (see [OH07] Corollary 2.10).
As a consequence, the sets Hom(H,Γ) and Hom(H,G) are respectively in bijection with
Hom(Hi,Γ) and Hom(Hi, G) for i large enough (see Lemma 5.2 of [RW14]). Hence, there
exists an integer i such that Hom(H,Γ) (resp. Hom(H,G)) is in bijection with the n-tuples
in Γn (resp. Gn) solutions of the following system of equations, denoted by Σi(x1, . . . , xn):

Σi(x1, . . . , xn) :


w1(x1, . . ., xn) = 1

...
wi(x1, . . ., xn) = 1

.

Let f and f ′ be homomorphisms from H to Γ. Recall that there exists an existential
formula φ(x1, . . . , x2n) with 2n free variables such that

Γ |= φ
(
f(s1), . . . , f(sn), f ′(s1), . . . , f ′(sn)

)
if and only if f and f ′ are ∆-related (see Lemma 3.7).

We can write a ∀∃ first-order sentence µ, verified by Γ, whose interpretation in Γ is the
statement of Step 1: for every homomorphism f : H → Γ, there exists a homomorphism
f ′ : H → Γ that is ∆-related to f and that kills some h`. The sentence µ is the following:

µ : ∀x1 . . . ∀xn∃y1 . . . ∃yn

Σi(x1, . . . , xn)⇒


Σi(y1, . . . , yn)

∧ φ(x1, . . . , xn, y1, . . . , yn)
∧
∨

i∈J1,kK
hi(y1, . . . , yn) = 1


 .

Since µ ∈ Th∀∃(Γ) ⊂ Th∀∃(G), the sentence µ is true in G as well. The interpretation of
µ in G is the following: for every homomorphism f : H → G, there exists a homomorphism
f ′ : H → G that is ∆-related to f and that kills some h`.

By taking f = j|H , we get a non-injective homomorphism p : H → G that is related to
j|H .
Step 3. We have proved the existence of a non-injective homomorphism p : H → G

that is related to j|H . Let r : G→ G′ be the homomorphism associated with the structure
of a quasi-tower. r ◦ p : H → G′ is related to (r ◦ j)|H , which is related to the inclusion
of H into G′ by the second assertion of Lemma 5.17 (note that this assertion is stated for
a quasi-floor, but it extends obviously to the case of a quasi-tower). This concludes the
proof. �
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6.2. Being a subgroup of a hyperbolic group is a first-order invariant. We shall
prove that the property of being a subgroup of a hyperbolic group is preserved under
elementary equivalence, among finitely generated groups. More precisely, we will prove the
following theorem.

Theorem 6.4. Let Γ be a group that embeds into a hyperbolic group Ω, and let G be a
finitely generated group. If Th∀∃(Γ) ⊂ Th∀∃(G), then G embeds into a hyperbolic group.

Proof. Since G is a Ω-limit group, it possesses a quasi-core G′ (according to Proposition
5.12). Notice that every one-ended factor of G′ that is finite-by-orbifold is hyperbolic, as
a consequence of Corollary 2.17. If each one-ended factor of G′ is finite-by-orbifold, then
G′ is hyperbolic, so G embeds into a hyperbolic group by Proposition 5.10. Otherwise, let
H1, . . . ,Hp be the one-ended factors of G′ that are not finite-by-orbifold. It follows from
Proposition 6.3 that each Hk embeds into Γ, so into Ω. Let Ω′ be the group obtained by
replacing by Ω each Hk in a Stallings-Dunwoody splitting of G′. It is clear that G′ embeds
into Ω′. In addition, Ω′ is hyperbolic. So by Proposition 5.10, G embeds into a hyperbolic
group Ω′′. �

Let us observe that, if Ω is locally hyperbolic, then Ω′′ is locally hyperbolic as well. As
a consequence, the following theorem holds.

Theorem 6.5. Let Γ be a locally hyperbolic group, and let G be a finitely generated group.
If Th∀∃(Γ) ⊂ Th∀∃(G), then G is a locally hyperbolic group.

Remark 6.6. We stress that the theorem above can be derived more directly from Sela’s
shortening argument, without using quasi-towers. In [Sel01], Sela proved (Corollary 4.4)
that a limit group is hyperbolic if and only if it does not contain Z2. Therefore, a finitely
generated group G satisfying Th∀∃(F2) ⊂ Th∀∃(G) is hyperbolic (thanks to Corollary 2.17).
In fact, Sela’s proof shows that G is locally hyperbolic, and it turns out that this proof
remains valid if we replace F2 by a given locally hyperbolic group.

6.3. Being hyperbolic is a first-order invariant. Let G be a finitely generated group
with the same first-order theory as a hyperbolic group Γ. In this section, we shall prove
that G is hyperbolic. Let G′ be a quasi-core of G, and Γ′ a quasi-core of Γ (these groups
exist thanks to Proposition 5.12). According to Proposition 5.10, it is enough to prove
that G′ is hyperbolic. Denote by G′1, . . . , G′n the one-ended vertex groups of a Stallings-
Dunwoody decomposition ∆G′ of G′ that are not finite-by-orbifold. It is enough to prove
that G′1, . . . , G′n are hyperbolic, because the finite-by-orbifold vertex groups of ∆G′ are
hyperbolic. Indeed, by Theorem 6.4, G embeds into a hyperbolic group, so G′ embeds into
a hyperbolic group as well (thanks to Proposition 5.10).

Denote by Γ′1, . . . ,Γ
′
m the one-ended vertex groups of a Stallings-Dunwoody splitting of

Γ′ that are not finite-by-orbifold. We aim to prove that each G′k is isomorphic to some Γ′`.
Since G embeds into a hyperbolic group, it follows from Proposition 6.3 that there exist
two applications τ : J1, nK → J1,mK and σ : J1,mK → J1, nK such that G′k embeds into
Γ′τ(k) for every k ∈ J1, nK, and Γ′` embeds into G′σ(`) for every ` ∈ J1,mK.

We will prove that we can choose τ and σ so that σ ◦ τ is a permutation of J1, nK. It
will be enough to conclude (see Proposition 6.8). For example, suppose that n = m = 1.
Then G′1 embeds into Γ′1 and Γ′1 embeds into G′1. Since Γ is assumed to be hyperbolic,
Γ′ is hyperbolic as well, by Proposition 5.10. As a one-ended hyperbolic group, Γ′1 is
co-Hopfian, so G′1 is isomorphic to Γ′1. Recall that the co-Hopf property for one-ended
hyperbolic groups has been proved by Sela in the torsion-free case (see [Sel97]) and by
Moioli in the general case, in his PhD thesis (see [Moi13]).

In order to prove the existence of τ and σ such that σ ◦ τ is a permutation of J1, nK, we
need to strenghten Proposition 6.3.
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Proposition 6.7. Let Γ be a group, and let G be a finitely generated group. Suppose that
• Γ embeds into a hyperbolic group Ω;
• Th∀∃(Γ) ⊂ Th∀∃(G);
• Γ is a quasi-tower over a group Γ′.

As a Ω-limit group, G has a quasi-core G′. Denote by G′1, . . . , G
′
n the one-ended vertex

groups of a Stallings-Dunwoody splitting of G′ that are not finite-by-orbifold, and denote
by Γ′1, . . . ,Γ

′
m the one-ended vertex groups of a Stallings-Dunwoody splitting of Γ′ that are

not finite-by-orbifold.
• There exists a homomorphism f : G′ → Γ′ and an application τ : J1, nK → J1,mK
such that, for every k ∈ J1, nK, the restriction of f to G′k is injective and f(Gk) is
contained in Γ′γkτ(k) for some γk ∈ Γ′.
• Denote by I ⊂ J1, nK the set of indices i ∈ J1, nK such that f(G′i) = Γ′γiτ(i) and Γ′τ(i) is
hyperbolic. If i lies in I, then for every j 6= i, and for every γ ∈ Γ′, f(G′j) 6⊂ f(G′i)

γ.
As a consequence, for every i ∈ I and j ∈ J1, nK, τ(i) = τ(j)⇔ i = j.

Proof. Suppose for the sake of contradiction that the proposition is false. Then, for every
homomorphism f : G′ → Γ′, one of the following holds:

• there exists k ∈ J1, nK such that f|G′k is non-injective,
• or I 6= ∅, the restriction of f to each G′k is injective, and there exist i ∈ I,j ∈ J1, nK
with i 6= j, and γ, γ′ ∈ Γ′ such that f(G′j) ⊂ f(G′i)

γ = Γ′γ
′

τ(i).
Let’s find a contradiction.
Step 1. We will prove that there exist some finite subsets X1 ⊂ G′1, . . . , Xn ⊂ G′n

containing only elements of infinite order, and a finite set F ⊂ G′ \{1} such that, for every
homomorphism f : G′ → Γ, one of the following claims is true:

• there exists k ∈ J1, nK such that f|G′k is ∆k-related to a homomorphism f ′ : G′k → Γ

that kills an element of F (where ∆k stands for the Z-JSJ splitting of G′k),
• or there exist an element γ ∈ Γ and two elements xk ∈ Xk and x` ∈ X` (with
k 6= `) such that f(xk) = γf(x`)γ

−1.

Proof of Step 1. In a first time, we will define the set F and the sets X1, . . . , Xn.
Definition of F . Since Γ embeds into a hyperbolic group, for each k ∈ J1, nK, Corollary

2.4 to Sela’s shortening argument 2.2 provides us with a finite set Fk ⊂ G′k such that every
non-injective homomorphism from G′k to Γ kills an element of Fk, up to precomposition
by a modular automorphism of G′k. We let F := F1 ∪ · · · ∪ Fn.
Definition of X1, . . . , Xn. In the case where I is empty, let X1 = · · · = Xn = ∅.

Now, assume that I is non-empty. For each k ∈ J1, nK, since G′k is not finite-by-orbifold,
there exists at least one non-QH vertex group Ak in the Z-JSJ splitting ∆k of G′k. Fix
an element of infinite order xk ∈ Ak. For each ` ∈ J1, nK \ {k}, if G′` is not hyperbolic, let
Xk,` := ∅; if G′` is hyperbolic, let Yk,` := {f(xk) | f ∈ Mono(G′k, G

′
`)} and let Xk,` be a set

of representatives for the orbits of Yk,` under the action of G′` by conjugation. Note that
Xk,` is finite thanks to Sela’s shortening argument 2.5. Last, we let

Xk := {xk} ∪
⋃

1≤`6=k≤n
Xk,`.

Now, we will prove that these sets have the expected property. The group Γ being a
quasi-tower over Γ′, there exists a finite sequence of groups (Γp)0≤p≤N such that Γ0 = Γ
and ΓN = Γ′, and such that Γp−1 is a quasi-floor over Γp, for each p ∈ J1, NK. Let
rp : Γp−1 → Γp and jp : Γp → Γp−1 be the homomorphisms associated with the quasi-floor
structure, for each p ∈ J1, NK.

Let f ∈ Hom(G′,Γ). If there exists a vertex group G′k such that f|G′k is non-injective,
then it follows from Corollary 2.4 that there exists f ′ : G′k → Γ that is ∆k-related to f|G′k
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and kills an element of F . Otherwise, if there exists a vertex group G′k such that (r1 ◦f)|G′k
is non-injective, then (j1 ◦r1 ◦f)|G′k is non-injective as well, so it follows from Corollary 2.4
that there exists f ′ : G′k → Γ that is ∆k-related to (j1 ◦r1 ◦f)|G′k and kills an element of F .
But (j1 ◦ r1 ◦ f)|G′k is ∆k-related to f|G′k according to Proposition 5.17, so f ′ is ∆k-related
to f|G′k and satisfies the first claim. Otherwise, we look at r2 ◦ r1 ◦ f , etc.

If, after N steps, we have not found any f ′ satisfying the first claim, then the morphism
f ′ = rN ◦ · · · ◦ r1 ◦ f ∈ Hom(G′,Γ′) is injective on each G′j . So, by hypothesis, the set I is
non-empty and there exist k, ` ∈ J1, nK with k 6= `, i ∈ I and γ, γ′ ∈ Γ′ such that f ′(G′k) is
contained in ιγ(f ′(G′`)) = ιγ′(Γ

′
i). As a consequence, G′` is hyperbolic and(

f ′|G′`

)−1
◦ ιγ−1 ◦

(
f|G′k

)
∈ Mono(G′k, G

′
`).

Hence, by definition of Xk and X`, there exist xk ∈ Xk and x` ∈ X` such that f ′(xk) =
ιγ(f ′(x`)). So j1 ◦ · · · ◦ jN ◦ f ′(xk) = ιγ′ ◦ j1 ◦ · · · ◦ jN ◦ f ′(x`) for some γ′ ∈ Γ. But
j1 ◦ · · · ◦ jN ◦ f ′ = j1 ◦ · · · ◦ jN ◦ rN ◦ · · · ◦ r1 ◦ f is related to f thanks to Proposition 5.17.
Therefore, f(xk) = ιγ′′ ◦ f(x`) for some γ′′ ∈ Γ. This concludes the proof of the first step.
Step 2. The statement of Step 1 is expressible by a ∀∃-sentence, denoted by φ, which

is true in Γ (as in the proof of Proposition 6.1, Step 2). Since Th∀∃(Γ) ⊂ Th∀∃(G), φ is
true in G as well. Thus, for every f ∈ Hom(G′, G), one of the following claims is true:

• there exist a vertex group G′k together with a homomorphism f ′ : G′k → G which
is ∆k-related to f|G′k and kills an element of F ,
• or there exist an element g ∈ G and two elements xk ∈ Xk and x` ∈ X` (with
k 6= `) such that f(xk) = gf(x`)g

−1, with xk of infinite order.
By definition, G is a quasi-tower over G′. Let r : G → G′ and j : G′ → G be the two

homomorphisms associated with this structure of a quasi-tower.
Taking f := j, the second claim above is false. Otherwise, j(G′k) ∩ j(G′`)g is infinite, so

r ◦ j(G′k) ∩ r ◦ j(G′`)r(g) is infinite, since r is injective in restriction to j(G′k). But r ◦ j
is inner on G′k and on G′`. Hence, there exists an element h ∈ G′ such that G′k ∩ hG′`h−1

is infinite. This is a contradiction, since G′k and G′` are two different vertex groups of a
Stallings-Dunwoody decomposition of G′.

As a consequence, the first claim is necessarily true (for f := j). There exist a vertex
group G′k together with a homomorphism f ′ : G′k → G which is ∆k-related to j|G′k and kills
an element of F . Then (r ◦ f ′)|G′k : G′k → G′ is a non-injective preretraction, by Lemma
5.17. It follows from Proposition 6.2 that G′ is a strict quasi-floor. This is a contradiction,
since G′ is a quasi-core by hypothesis. �

We can now prove that hyperbolicity is preserved under elementary equivalence.

Proposition 6.8. Let Γ be a hyperbolic group and G a finitely generated group such that
Th∀∃(Γ) = Th∀∃(G). Let G′ be a quasi-core of G and Γ′ a quasi-core of Γ. Then every
one-ended factor of G′ that is not finite-by-orbifold is isomorphic to a one-ended factor of
Γ′. Therefore, G′ is hyperbolic.

Thanks to Proposition 5.10 about inheritance of hyperbolicity, the corollary below is
immediate.

Corollary 6.9. Let Γ be a hyperbolic group and G a finitely generated group such that
Th∀∃(Γ) = Th∀∃(G). Then G is hyperbolic.

Proof of Proposition 6.8. Let G′1, . . . , G′n be the one-ended vertex groups of a Stallings-
Dunwoody splitting of G′ that are not finite-by-orbifold, and let Γ′1, . . . ,Γ

′
m be the one-

ended vertex groups of a Stallings-Dunwoody splitting of Γ′ that are not finite-by-orbifold.
Since Γ is hyperbolic, Γ′ is hyperbolic (by Proposition 5.10), so Γ′1, . . . ,Γ

′
m are hyperbolic.
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Let f : G′ → Γ′ and h : Γ′ → G′ be the homomorphisms given by Proposition 6.7 (note
that f exists because G embeds into a hyperbolic group, by Proposition 6.4).

Let τ : J1, nK→ J1,mK be the map such that, for every i ∈ J1, nK, f(G′i) is contained in
a conjugate of Γ′τ(i). As in Proposition 6.7, denote by I ⊂ J1, nK the set of indices i ∈ J1, nK
such that f(G′i) = Γ′τ(i) up to conjugacy (and Γ′τ(i) is hyperbolic).

Let σ : J1,mK → J1, nK be the map such that, for every j ∈ J1,mK, h(Γ′j) is contained
in a conjugate of G′σ(j). Denote by J ⊂ J1,mK the set of indices j ∈ J1,mK such that
h(Γ′j) = G′σ(j) up to conjugacy, and G′σ(j) is hyperbolic.

If i ∈ J1, nK is periodic under σ ◦ τ , then f induces an isomorphism between G′i and
f(G′i) = Γ′τ(i), because one-ended hyperbolic groups are co-Hopfian. As a consequence, i
belongs to I. So it follows from Proposition 6.7 that i is the unique preimage of τ(i) under
the map τ . Similarly, if j ∈ J1,mK is periodic under τ ◦ σ, then h induces an isomorphism
between Γ′j and h(Γ′j) = G′σ(j). Therefore, G

′
σ(j) is hyperbolic and j lies in J . So it follows

from Proposition 6.7 that j is the unique preimage of σ(j) under the map σ.
One easily checks that any such pair of maps σ, τ between finite sets are necessarily

bijective, and that every element is periodic. Hence, for every i ∈ J1, nK, f induces an
isomorphism between G′i and Γ′τ(i) (up to conjugacy), which is hyperbolic. This concludes
the proof. �

6.4. Being hyperbolic and cubulable is a first-order invariant. In this section, we
shall prove the following theorems.

Theorem 6.10. Let Γ be a hyperbolic group and let G be a finitely generated group. Suppose
that Th∀∃(Γ) = Th∀∃(G). Then Γ is cubulable if and only if G is cubulable.

Theorem 6.11. Let Γ and G be two finitely generated groups. Suppose that Th∀∃(Γ) =
Th∀∃(G). Then Γ is hyperbolic and cubulable if and only if G is hyperbolic and cubulable.

Note that Theorem 6.11 above follows immediately from Theorem 6.10 and from the
fact that hyperbolicity is preserved under elementary equivalence, among finitely generated
groups (see Theorem 6.8).

We refer the reader to [Sag14] for a definition of CAT(0) cube complexes.

Definition 6.12. A group G is said to be cubulable if it acts properly and cocompactly
on a CAT(0) cube complex.

Before proving Theorem 6.10, we shall prove the following proposition.

Proposition 6.13. Let G be a hyperbolic group. If G is a quasi-tower over a group H,
then G is cubulable if and only if H is cubulable.

In order to prove this result, we need a combination theorem for hyperbolic and cubulable
groups, analogous to that of Bestvina and Feighn for hyperbolic groups (see 3.11).

Recall that a subgroup H of a group G is called almost malnormal if H ∩ gHg−1 is
finite for every g in G\H. Note that edge groups in a centered graph of groups are almost
malnormal in the central vertex group (see Definition 3.8).

In [HW15], Hsu and Wise proved the following result, as a special case of their main
theorem.

Proposition 6.14 (Combination theorem for hyperbolic and cubulable groups).
Let G = A ∗C B be an amalgamated product such that A and B are hyperbolic and

cubulable, and C is virtually cyclic and almost malnormal in A or in B. Then G is
hyperbolic and cubulable.

Let G = A∗C be an HNN extension such that A is hyperbolic and cubulable, and C is
virtually cyclic and almost malnormal in A. Then G is hyperbolic and cubulable.
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We also need the following proposition, proved by Haglund, claiming that cubulability
is inherited by quasi-convex subgroups.

Proposition 6.15 ([Hag08], Corollary 2.29). Let G be a cubulable group. If H is a quasi-
convex subgroup of G, then H is cubulable.

Let us now prove Proposition 6.13 and Theorem 6.10.
Proof of Proposition 6.13. We shall prove the proposition in the case where G is a quasi-
floor over H, the general case follows immediately. Since G is assumed to be hyperbolic,
by Proposition 5.10, the group H is hyperbolic.

Let ∆G and ∆H be the splittings of G and H associated with the quasi-floor structure.
By definition, ∆G is a centered graph of groups. Let VG be its set of vertices, and let v be
the central vertex. Denote by V 1

H the set of vertices of ∆H whose stabilizers are infinite.
By definition, there exists a bijection s : VG \ {v} → V 1

H such that Gw ' Hs(w) for every
w ∈ VG \ {v}.

Suppose that H is cubulable. Then, by Proposition 6.15, Hu is cubulable for every
vertex u of ∆H . As a consequence, the vertex groups of ∆G are cubulale. Since each edge
group of ∆G is virtually cyclic and almost malnormal in Gv, it follows from the combination
theorem 6.14 that G is cubulable. Conversely, if G is cubulable, we prove in exactly the
same way that H is cubulable. �

Proof of Theorem 6.10. Let Γ be a hyperbolic group and let G be a finitely generated
group such that Th∀∃(Γ) = Th∀∃(G). Suppose that Γ is cubulable. We will prove that G is
cubulable. Let us denote by G′ a quasi-core of G and by Γ′ a quasi-core of Γ. According to
Proposition 6.13, Γ′ is cubulable, so each vertex group of a Stallings-Dunwoody splitting of
Γ′ is cubulable, by Proposition 6.15. Moreover, according to Proposition 6.8, every vertex
group of a Stallings-Dunwoody splitting of G′ (that is not finite-by-orbifold) is isomorphic
to a vertex group of a Stallings-Dunwoody splitting of Γ′. Consequently, by Theorem 6.14
the group G′ is cubulable. Then, it follows from Proposition 6.13 that G is cubulable.
Symmetrically, if G is cubulable, then so is Γ (because G is hyperbolic, by Theorem 6.8).
�

7. From a preretraction to a quasi-floor

In the previous section, we proved our main theorems by admitting that we can build a
strict quasi-floor by means of a non-injective preretraction. This is a precise statement:

Proposition 7.1. Let G be a finitely generated K-CSA group that does not contain Z2.
Suppose that G has a one-ended factor H that is not finite-by-orbifold. Let ∆ be the Z-JSJ
splitting of H. Suppose that there exists a non-injective homomorphism p : H → G that is
∆-related to the inclusion of H into G. Then G is a strict quasi-floor.

The goal of this section is to prove the proposition above.

7.1. A preliminary proposition.

Proposition 7.2. Let G be a one-ended finitely generated K-CSA group that does not
contain Z2, so that G has a Z-JSJ splitting denoted by ∆. Let p be an endomorphism of
G. If p is ∆-related to the identity of G and sends every QH group isomorphically to a
conjugate of itself, then p is injective.

Proof. Let T be the Bass-Serre tree of ∆. We denote by V the set of vertices of T . First
of all, let us recall some properties of ∆ that will be useful in the sequel (see Section 2.5).

(1) The graph ∆ is bipartite, with every edge joining a vertex carrying a virtually
cyclic group to a vertex carrying a non-virtually-cyclic group.
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(2) Let v be a vertex of T , and let e, e′ be two distinct edges incident to v. If Gv is not
virtually cyclic, then the group 〈Ge, Ge′〉 is not virtually cyclic.

(3) The action of G on T is 2-acylindrical: if an element g ∈ G fixes a segment of
length > 2 in T , then g has finite order.

If ∆ is reduced to a point, then p is obviously injective. From now on, we will suppose
that ∆ has at least two vertices.

As a first step, we build a p-equivariant map f : T → T . Let v1, . . . , vn be some
representatives of the orbits of vertices. For every 1 ≤ k ≤ n, there exists gk ∈ G such that
p(Gvk) = gkGvkg

−1
k . We let f(vk) = gk · vk, so that p(Gvk) = Gf(vk). Then we define f

on each vertex of T by equivariance. Next, we define f on the edges of T in the following
way: if e is an edge of T , with endpoints v and w, there exists a unique path e′ from f(v)
to f(w) in T . We let f(e) = e′.

Now we will prove that f is injective, which allows to conclude that p is injective. Indeed,
if p(g) = 1 for some g ∈ G, then for every vertex v ∈ V one has p(g) ·f(v) = f(g ·v) = f(v),
thus g · v = v for every v. Since the action of G on ∆ is 2-acylindrical, g has finite order.
Moreover the restriction of p to every element of finite order is injective (by definition of
∆-relatedness), so g = 1, which proves that p is injective.

We now prove that f is injective. The proof will proceed in two steps: first, one shows
that f sends adjacent vertices on adjacent vertices, then one proves that there are no
foldings.
f sends adjacent vertices to adjacent vertices: let’s consider two adjacent vertices

v and w of T . One has d(f(v), f(w)) ≤ 2, because the action of G on T is 2-acylindrical
and p is injective on edge groups, which are virtually cylic and infinite. Since the graph is
bipartite, d(f(v), f(w)) and d(v, w) = 1 have the same parity. Hence d(f(v), f(w)) = 1.
There are no foldings: let v be a vertex of T , let w and w′ be two distinct vertices

adjacent to v. Denote by e and e′ the edges between v and w, and between v and w′

respectively. Argue by contradiction and suppose that f(w) = f(w′), then f(e) = f(e′)
since there are no circuits in a tree.

w

w′

v

e

e′
f(e) = f(e′)

f(w) = f(w′)f(v)

If Gv is not virtually cyclic, then 〈Ge, Ge′〉 is not virtually cyclic (see the second property
of ∆ recalled above), thus p(〈Ge, Ge′〉) is not virtually cyclic since 〈Ge, Ge′〉 is contained in
Gv, and p is injective on Gv. Hence one can assume now that Gv is virtually cyclic. There
exists an element g ∈ G such that w′ = g ·w. Since f is p-equivariant, p(g) · f(w) = f(w),
i.e. p(g) ∈ Gf(w) = p(Gw). As a consequence, there exists an element h ∈ Gw such that
p(g) = p(h). Up to multiplying g by the inverse of h, one can assume that p(g) = 1. Then
g does not fix a point of T , because p is injective on vertex groups and g 6= 1. It follows
that g is hyperbolic, with translation length equal to 2.
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w

w′

v

gv

e

e′

ge

The group 〈Ge′ , Gge〉 is not virtually cyclic since Gw′ is not virtually cyclic. It follows
that p(〈Ge′ , Gge〉) is not virtually cyclic (indeed, p is injective on Gw′). On the other hand,
p(〈Ge′ , Gge〉) is equal to p(〈Ge′ , Ge〉) because p(g) = 1. Thus p(〈Ge′ , Ge〉) is not virtually
cyclic. It is a contradiction. �

7.2. Building a quasi-floor from a non-injective preretraction.

Definition 7.3 (Maximal pinched set, pinched quotient, pinched decomposition). Let G
be a group that splits as a centered splitting ∆G, with central vertex v. The stabilizer Gv
of v is a conical finite-by-orbifold group F ↪→ Gv � π1(O). Denote by q the epimorphism
from Gv onto π1(O). Let G′ be a group, and let p : G → G′ be a homomorphism. Let S
be an essential set of curves on O (see Definition 2.23). Suppose that each element of S is
pinched by p (meaning that p

(
q−1(α)

)
is finite for every α ∈ S), and that S is maximal

for this property. The set S is called a maximal pinched set for p. Note that S may be
empty.

For every α ∈ S, q−1(α) is a virtually cyclic subgroup of Gv, isomorphic to F o Z. Let
Nα = ker

(
p|q−1(α)

)
, and let N be the subgroup of G normally generated by {Nα}α∈S .

The quotient group Q = G/N is called the pinched quotient of G associated with S. Let
π : G � Q be the quotient epimorphism. Since each Nα has finite index in q−1(α), and
since p is injective on finite subgroups, killing N gives rise to new conical points and new
QH vertices. The group Q splits naturally as a graph of groups ∆Q obtained by replacing
the vertex v in ∆G by the splitting of π(Gv) over finite groups obtained by killing N (see
Figure 10 below). ∆Q is called the pinched decomposition of Q.

Figure 10. For convenience, on this figure, F is trivial. For each α ∈ S,
there exists a smallest integer n ≥ 1 such that p(αn) = 1. Killing 〈αn〉 gives
rise to a conical point of order n. The new QH vertices coming from v are
denoted by v1, v2, v3.

We keep the same notations. Suppose that there exists an endomorphism p of G that is
∆G-related to the identity of G. Let S be a maximal pinched set for p, let Q be the pinched
quotient and let ∆Q be its pinched decomposition. Denote by v1, . . . , vn the new vertices
coming from v (see Figure 10 above). Let π : G� Q be the quotient epimorphism. There
exists a unique homomorphism φ : Q → G such that p = φ ◦ π. This homomorphism is
non-pinching since S is assumed to be maximal. We will need a lemma.
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Lemma 7.4. We keep the same notations. Assume that p does not send Gv isomorphically
to a conjugate of itself, and denote by F the set of edges of ∆Q with finite stabilizer. Let Y
be a connected component of ∆Q \ F , and let QY be its stabilizer. Then φ(QY ) is elliptic
in the Bass-Serre tree of ∆G. Moreover, Y contains at most one vertex w different from
the vertices vk coming from the central vertex v. If it does, then φ(QY ) = φ(Qw).

Proof. First, we shall prove that φ(Qvk) is elliptic in the Bass-Serre tree T of ∆G, for every
k ∈ J1, nK. Denote by Ok the underlying orbifold of Qvk . We shall use Proposition 2.24
to split Qvk as a graph of groups all of whose vertex groups are elliptic in T via φ. If
C is an extended boundary subgroup of Qvk , C is of the form π(C ′) where C ′ stands for
an extended boundary subgroup of Gv, so φ(C) = p(C ′) is elliptic in T by definition of
∆G-relatedness. Consequently, by Proposition 2.24, there exists a set Ck of disjoint simple
loops on Ok such that, if X is a connected component of Ok \ Ck, and if H is the preimage
of π1(X) in Qvk , then φ(H) is elliptic in the Bass-Serre tree T .

Let ∆Q(Ck) be the splitting of Q obtained by replacing vk in ∆Q by the splitting of Qvk
dual to Ck. First, note that if Ck is empty, then φ(Qvk) is obviously elliptic in T . Assume
now that Ck is non-empty and denote by vk,1, . . . , vk,m the new vertices coming from vk.
Let T ′ be the Bass-Serre tree of ∆Q(Ck). Let wk,i, wk,j ∈ T ′ be two representatives of
vk,i, vk,j ∈ ∆Q(Ck) that are adjacent in T ′ and linked by an edge with infinite stabilizer.
By the previous paragraph, there exists a non-empty subset I ⊂ T pointwise-fixed by
φ
(
Qwk,i

)
, and a non-empty subset J ⊂ T pointwise-fixed by φ

(
Qwk,j

)
. Let x ∈ I and

y ∈ J such that d(x, y) = d(I, J), where d is the natural metric on T . By definition of
a centered splitting, if an element of G of infinite order fixes a segment of length ≥ 2 in
T , then this segment has length exactly 2 and its endpoints are translates of the central
vertex v. Therefore, since f is non-pinching on Qvk , d(x, y) ∈ {0, 1, 2}, and d(x, y) = 2 if
and only if x and y are translates of v. We will prove that d(x, y) = 0.

First, suppose that d(x, y) = 2. Then we can assume without loss of generality that
x = v, i.e. φ

(
Qwk,i

)
< Gv. Since f is non-pinching on Qwk,i

, the group φ
(
Qwk,i

)
is

infinite, so it is not contained in an extended conical subgroup of Gv. If φ
(
Qwk,i

)
is not

contained in an extended boundary subgroup of Gv, then it follows from Proposition 2.35
that k(Qwk,i

) ≥ k(Gv), with equality if and only if f induces an isomorphism from Qwk,i

to Gv. This is a contradiction since the complexity decreases as soon as we cut along a
loop or pinch a loop (so k(Qwk,i

) ≤ k(Gv)), and Qwk,i
is not isomorphic to Gv. Therefore,

φ
(
Qwk,i

)
is necessarily contained in an extended boundary subgroup of Gv. Then φ

(
Qwk,i

)
fixes a point z in T such that d(x, z) = 1. As a consequence, d(z, y) = 1 or d(z, y) = 3.
This last case is impossible since an element of G of infinite order fixes a segment of length
≤ 2 in T . So d(z, y) = 1, and this contradicts the definition of x.

Now, suppose that d(x, y) = 1. Since ∆G is bipartite, one can assume, up to composing φ
by an inner automorphism and permuting x and y, that x = v. If φ

(
Qwk,i

)
is not contained

in an extended boundary subgroup of Gv, we get a contradiction thanks to Proposition
2.35, as above. Thus φ

(
Qwk,i

)
is contained in an extended boundary subgroup of Gv. So

φ
(
Qwk,i

)
has a fixed point z in T such that d(x, z) = 1, so d(z, y) = 0 or d(z, y) = 2. This

last case is impossible since z and y are not translates of v. As a consequence, d(z, y) = 0,
and this contradicts the definition of x.

Hence, we have proved that d(x, y) = 0. As a conclusion, φ(Qvk) is elliptic in the
Bass-Serre tree T of ∆G, for every k ∈ J1, nK.

Now, let w be a vertex of ∆Q, different from the vertices vi, such that w and vk are linked
by an edge with infinite stabilizer. Let T ′′ be the Bass-Serre tree of ∆Q. For convenience,
we still denote by w and vk two adjacent representatives of w and vk in T ′′ linked by
an edge with infinite stabilizer. We shall prove that φ(Qvk) is contained in φ(Qw). We
have proved the existence of a subset I ⊂ T pointwise-fixed by φ(Qvk). Since p|Gw

is
inner, φ(Qw) fixes a vertex y = g · w of T , and φ(Qw) = Gy = gGwg

−1. Let x be a
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point of T such that d(x, y) = d(I, y). Since y is not a translate of v, it follows from the
definition of a centered splitting that d(x, y) ≤ 1. Suppose for the sake of contradiction
that d(x, y) = 1. Then we can assume without loss of generality that x = v. Hence, φ
induces a non-pinching morphism of finite-by-orbifold groups from Qvk to Gv. Since φ is
non-pinching, the group φ

(
Qwk,i

)
is infinite, so it is not contained in an extended conical

subgroup of Gv. If φ
(
Qwk,i

)
is not contained in an extended boundary subgroup of Gv,

it follows from Proposition 2.35 that k(Qwk,i
) ≥ k(Gv), with equality if and only if φ is

an isomorphism. On the other hand, the complexity decreases as soon as we cut along a
loop or pinch a loop, so k(Gv) = k(Qwk,i

) and p sends Gv isomorphically to a conjugate
of itself. This contradicts the hypothesis. We have proved that φ

(
Qwk,i

)
is contained in

an extended boundary subgroup of Gv, so it fixes a point z in T such that d(x, z) = 1.
As a consequence, z = y or d(z, y) = 2. This last case is impossible since y and z are not
translates of v, so z = y and this contradicts the definition of x. Hence, we have proved
that φ

(
Qwk,i

)
fixes y, i.e. φ(Qvk) < φ(Qw).

Now, let w1 and w2 be two vertices of ∆Q, different from the vertices vi, such that w1

and vk are linked by an edge with infinite stabilizer, and w2 and vk are linked by an edge
with infinite stabilizer. We have shown that φ(Qvk) < φ(Qw1) and φ(Qvk) < φ(Qw2).
Remark, in addition, that Qvk has an extended boundary subgroup C such that φ(C)
is infinite. Hence, φ(Qw1) ∩ φ(Qw2) is infinite. By definition of a centered splitting, if
an element of G of infinite order fixes a segment of length ≥ 2 in T , then this segment
has length exactly 2 and its endpoints are translates of the central vertex v. Therefore,
w1 = w2. This completes the proof. �

Proposition 7.5. Let G be a group possessing a centered splitting ∆G, with central vertex
v. Suppose that G is not finite-by-orbifold, and that there exists an endomorphism p of
G that is ∆G-related to the identity of G and that does not send Gv isomorphically to a
conjugate of itself. Suppose that there exists a one-ended subgroup A of G such that Gv < A
and p|A is non-injective. Then G is a strict quasi-floor.

Proof.
A. The non-pinching case.
Suppose that p is non-pinching on Gv. By hypothesis, p does not send Gv isomorphically

to a conjugate of itself, so it follows from Lemma 7.4 that ∆G has only one vertex w different
from v, and that p(Gv) < p(Gw). Since p is inner on Gw, there exists an element g ∈ G
such that ιg ◦p is a retraction from G onto Gw. Hence, G is a quasi-floor over Gw, and this
quasi-floor is strict since, by hypothesis, there exists a one-ended subgroup A of G such
that Gv < A and p|A is non-injective.

B. The pinching case.
Step 1: pinching a maximal set of simple loops.
Let S be a maximal pinched set for p, let Q be the pinched quotient and let ∆Q be

its pinched decomposition. Denote by v1, . . . , vn the new vertices coming from v (see
Figure 11 below). Let π : G � Q be the quotient epimorphism. There exists a unique
homomorphism φ : Q→ G such that p = φ ◦π. This homomorphism is non-pinching since
S is assumed to be maximal.

By Lemma 7.4, for every k ∈ J1, nK, there exists a vertex w of ∆G such that φ(Qvk) is
contained in a conjugate of Gw. If w is unique, let wk := w. If w is not unique, then we
can assume that w 6= v (since ∆G is bipartite), and we let wk := w.

Our construction consists in eliminating the new vertices v1, . . . , vn coming from the
central vertex v. We will illustrate each step of the construction in the case of the example
pictured above (Figure 11).
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Figure 11. Step 1. Edges with infinite stabilizer are depicted in bold.

Step 2: eliminating orbifolds with non-empty boundary.
Let F be the set of edges of ∆Q with finite stabilizer. For every k ∈ J1, nK, we denote

by Yk the connected component of ∆Q \ F containing vk.
By Lemma 7.4, φ(QYk) = φ (Qwk

) for each k ∈ J1, nK such that the underlying orbifold
of Qvk has non-empty boundary. Therefore, the quotient of Q by the subgroup normally
generated by{

ker
(
φ|QYk

)
| the underlying orbifold of Qvk has non-empty boundary

}
splits naturally as a graph of groups Λ obtained by replacing in ∆Q each subgraph Yk as
above by a new vertex labelled by φ(QYk) = φ(Qwk

) = φ ◦ π (Gwk
) = p (Gwk

) = Ggwk for
some g ∈ G. For the sake of clarity, this new vertex is still denoted by wk (see Figure 12
below). Call Q′ the fundamental group of Λ, and let ∆Q′ := Λ. Note that this graph of
groups has finite edge groups. Let π′ : Q� Q′ be the quotient epimorphism. There exists
a unique homomorphism φ′ : Q′ → G such that p = φ′ ◦ π′ ◦ π.

Figure 12. Step 2. Edges with infinite stabilizer are depicted in bold.
Note that, by construction, ∆Q′ has finite edge groups.

Step 3: eliminating vertices vk such that wk = v.
Let vk be a vertex such that wk = v. Note that, by definition of wk, φ′(Q′vk) is not

contained in an extended boundary subgroup of Gv. Since φ′ is non-pinching on Q′vk (by
maximality of S), and since the complexity of Q′vk is strictly less than the complexity of Gv,
it follows from Proposition 2.35 that φ′(Q′vk) is contained in an extended conical subgroup
of Ggv. As in the previous step, we replace the vertex vk by a new vertex labelled by φ′(Q′vk).
This new vertex is called xk (see Figure 13 below). We perform the previous operation for
each QH vertex vk such that wk = v. Let Λ be the resulting graph of groups. Call Q′′ its
fundamental group, and let ∆Q′′ := Λ. Let π′′ : Q′ � Q′′ be the quotient epimorphism.
There exists a unique homomorphism φ′′ : Q′′ → G such that p = φ′′ ◦ (π′′ ◦ π′ ◦ π).

Step 4: eliminating the remaining QH vertices.
Denote by V the set of vertices of Λ = ∆Q′′ coming from v and that have not been

treated yet. For each vk ∈ V , recall that wk stands for a vertex of ∆G such that φ(Qvk) is
contained in a conjugate of Gwk

. Note that wk is not a translate of the central vertex v of
∆G (see Step 3).
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Figure 13. Step 3. In this example, w2 = v. The vertex v2 is replaced by
a vertex x2 labelled by the finite group φ′

(
Q′v2

)
.

To complete the proof, it is convenient to adopt a topological point of view. Let XG

be a K(G, 1) obtained as a graph of spaces using, for each vertex or edge w of ∆G, a
K(Gw, 1) denoted by Xw

G (see [SW79]). Let XQ′′ be a K(Q′′, 1) obtained in the same
way. There exists a continuous map f : XQ′′ → XG inducing φ′′ : Q′′ → G at the level
of fundamental groups and such that f

(
Xvk
Q′′

)
⊂ f

(
Xwk
Q′′

)
for each remaining vertex vk

coming from v, and f induces an homeomophism between Xw
Q′′ and Xw

G for each vertex
w that does not come from v. We define an equivalence relation ∼ on XQ′′ by x ∼ y if
x = y, or if x ∈ Xvk

Q′′ , y ∈ X
wk
Q′′ and f(x) = f(y). Let g : XQ′′ � (XQ′′/ ∼) be the quotient

map. There exists a unique continuous function h : (XQ′′/ ∼)→ XG such that f = h ◦ g.
Hence φ′′ = h∗ ◦ g∗. Note that the homomorphism g∗ is not surjective in general. Call H
the fundamental group of XQ′′/ ∼, let j = h∗ and r = g∗ ◦ π′′ ◦ π′ ◦ π, so that p = j ◦ r.
Note that XQ′′/ ∼ naturally has the structure of a graph of spaces, and denote by ∆H the
corresponding splitting of H. We claim that G is a strict quasi-floor over H (see below).

Let us explain the topological construction above from an algebraic point of view in the
case of our example. The only remaining vertex coming from the central vertex v is v3 (see
Figure 13). Up to replacing Q′′ by Q′′/〈〈ker(ϕ)〉〉, where ϕ stands for the restriction of
φ′′ to the stabilizer Q′′v3 of v3 in Q′′, we can assume that φ′′ is injective on Q′′v3 . We know
that φ′′(Q′′v3) is contained in Ggw3 for some g ∈ G. Moreover, φ′′ sends Q′′w3

isomorphically
onto Ghw3

for some h ∈ G. As a consequence, i := (φ′′)−1 ◦ ιhg−1 ◦ φ′′ : Q′′v3 → Q′′w3

is a monomorphism. We add an edge e to the graph of groups ∆Q′′ between v3 and
w3 identifying Q′′v3 with its image i(Q′′v3) in Q′′w3

(see Figure 14 below). Call H the
fundamental group of this graph of groups. In other words, we obtain H by adding a new
generator t to Q′′, as well as the relation ιt(x) = i(x) for every x ∈ Q′′v3 . Last, we collapse
the edge e, and we call ∆H the resulting splitting of H (see Figure 15 below). We define
r : G → H as the composition of π′′ ◦ π′ ◦ π : G → Q′′ with the natural homomorphism
from Q′′ to H. Note that r is not surjective in general. Then, we define a morphism j
from H to G that extends φ′′ : Q′′ → G by sending t to hg−1. Since p = φ′′ ◦ (π′′ ◦ π′ ◦ π),
we have p = j ◦ r.

Figure 14. In this example, w3 = w1. We define H as the fundamental
group of the graph of groups obtained by adding an edge e to the graph
∆Q′′ , identifying Q′′v3 with i(Q′′v3) < Q′′w3

. The natural homomorphism from
Q′′ to H is not surjective in general.
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Figure 15. After collapsing the edge e, we get the desired splitting ∆H of H.

It remains to verify that (G,H,∆G,∆H , r, j) is a strict quasi-floor.
• j ◦ r = p is ∆-related to the identity of G by definition of p.
• Let VG be the set of vertices of ∆G, and let VH be the set of vertices of ∆H . Recall
that v stands for the central vertex of ∆G. By construction of H and ∆H , the
homomorphism r : G → H induces a bijection s between VG \ {v} and a subset
V1 ⊂ VH such that r(Gw) = Hs(w), for every w ∈ VG \ {v}.
• Let V2 = VH \V1. By construction (see Step 3 above), for every w ∈ V2, the vertex
group Hw is finite and j is injective on Hw.
• By hypothesis, there exists a one-ended subgroup A of G such that Gv < A and
p|A is non-injective, with p = j ◦ r. So A ∩ ker(r) 6= {1}. Hence, the quasi-floor is
strict.

�

Before proving Proposition 6.2, we need an easy lemma.

Lemma 7.6. Let G be a group with a splitting over finite groups. Denote by T the asso-
ciated Bass-Serre tree. Let H be a group with a splitting over infinite groups, and let S be
the associated Bass-Serre tree. If p : H → G is a homomorphism injective on edge groups
of S, and such that p(Hv) is elliptic in T for every vertex v of S, then p(H) is elliptic in
T .

Proof. Consider two adjacent vertices v and w in S. Let Hv and Hw be their stabilizers.
The group Hv ∩Hw is infinite by hypothesis. Moreover, p is injective on edge groups, thus
p(Hv ∩Hw) is infinite. Hence p(Hv) ∩ p(Hw) is infinite. Since edge groups of T are finite,
p(Hv) and p(Hw) fix necessarily the same unique vertex x of T . As a consequence, for each
vertex v of S, p(Hv) fixes x. It follows that the group p(H) fixes the vertex x. �

We shall now prove the main result of this section.

Proposition 7.1. Let G be a finitely generated K-CSA group that does not contain Z2.
Suppose that G has a one-ended factor H that is not finite-by-orbifold. Let ∆ be the Z-JSJ
splitting of H. Suppose that there exists a non-injective homomorphism p : H → G that is
∆-related to the inclusion of H into G. Then G is a strict quasi-floor.

Proof. Let Λ be a Stallings-Dunwoody splitting of G containing a vertex vH with stabilizer
H. Let T be its Bass-Serre tree.
Step 1. We shall prove that there exists a QH vertex v of ∆ such that Hv is not sent

isomorphically to a conjugate of itself by p. Suppose for the sake of contradiction that
each stabilizer Hv of a QH vertex v of ∆ is sent isomorphically to a conjugate of itself by
p. As a consequence, p(Hv) is elliptic in T , for every QH vertex v. On the other hand, if w
is a non-QH vertex of ∆, p(Hw) is elliptic in T by definition of ∆-relatedness. Therefore,
it follows from Lemma 7.6 above that p(H) is elliptic in T , because p is injective on edge
groups of ∆, and T has finite edge groups. Moreover, since p is inner on non-QH vertices
of ∆, p(H) is contained in gHg−1 for some g ∈ G (note that there exists at least one
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non-QH vertex since H is not finite-by-orbifold by hypothesis). Up to composing p by
the conjugation by g−1, one can thus assume that p is an endomorphism of H. Now, by
Proposition 7.2, p is injective. This is a contradiction. Hence, we have proved that there
exists a QH vertex v of ∆ such that Hv is not sent isomorphically to a conjugate of itself
by p.
Step 2. We shall complete the proof using Proposition 7.5. For this purpose, we shall

construct a centered splitting of G, together with an endomorphism of G satisfying the
hypotheses of Proposition 7.5.

First, we refine Λ by replacing the vertex vH by the splitting ∆ of H. With a little abuse
of notation, we still denote by v the vertex of Λ corresponding to the QH vertex v of ∆
defined in the previous step. Then, we collapse to a point every connected component of
the complement of star(v) in Λ (where star(v) stands for the subgraph of Λ constituted of v
and all its incident edges). The resulting graph of groups (still denoted by Λ) is non-trivial,
since H is not finite-by-orbifold (by hypothesis). So Λ is a centered splitting of G, with
central vertex v.

The homomorphism p : H → G is well-defined on Gv because Gv = Hv is contained in
H. Moreover, p restricts to a conjugation on each edge e of Λ incident to v. Indeed, either
e is an edge coming from ∆, either Ge is a finite subgroup of H ; in each case, p|Ge

is a
conjugation since p is ∆-related to the inclusion of H into G. Therefore, one can define
an endomorphism q : G → G that coincides with p on Gv = Hv and coincides with a
conjugation on every vertex group Gw of Λ, with w 6= v. Hence, the endomorphism q is
Λ-related to the identity of G (in the sense of Definition 3.12), and q does not send Gv
isomorphically to a conjugate of itself, by Step 1.

Let us prove that the restriction of q to H is non-injective. In the case where q kills
an element of Hv, the claim is obvious. If the restriction of q to Hv is injective, then q
is a fortiori non-pinching on Hv, and it follows that q(Hv) is elliptic in T . Indeed, by
Proposition 2.24, one can cut the underlying orbifold of Hv into connected components
that are elliptic in T via q ; but edge groups of T are finite, and q is non-pinching on Hv, so
q(Hv) is elliptic in T by Lemma 7.6. Again by Lemma 7.6, q(H) is contained in H (up to
conjugacy), so q induces an endomorphism of H. Now, we are ready to find a non-trivial
element in ker(q)∩H. Let ∆′ be the splitting of H obtained by collapsing every connected
component of the complement of star(v) in the Z-JSJ splitting ∆ of H. With abuse of
notation, we still denote by v the vertex of ∆′ coming from the vertex v of ∆. The splitting
∆′ is centered, with central vertex v, and q|H is an endomorphism of H that does not send
Hv isomorphically to a conjugate of itself. Moreover, q|H is ∆′-related to the identity of H
(in the sense of Definition 3.12); indeed, if w is a vertex of ∆′ different from v, there exists
a vertex w̃ ∈ Λ such that Hw is contained in Gw̃, and q restricts to a conjugation on Gw̃
since q is Λ-related to the identity of G, by construction. So it follows from Lemma 7.4
that ∆′ has only one vertex w different from v, and that q(Hv) < q(Hw). Since q is inner
on Hw, there exists an element h ∈ H such that ιh ◦ q is a retraction from H onto Hw. Let
x be an element of Hv that does not belong to Hw. Let y = ιh ◦ q(x); we have seen that
y lies in Hw, so ιh ◦ q(y) = y. Hence, ιh ◦ q(xy−1) = 1, with xy−1 ∈ H \ {1}. We have
proved that the restriction of q to H is non-injective. Now, it follows from Proposition 7.5
that G is a strict quasi-floor. This concludes the proof. �
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[Os93] A. Yu. Ol′ shanskĭı. On residualing homomorphisms and G-subgroups of hyperbolic groups.

Internat. J. Algebra Comput., 3(4):365–409, 1993.
[Per11] Chloé Perin. Elementary embeddings in torsion-free hyperbolic groups. Ann. Sci. Éc. Norm.

Supér. (4), 44(4):631–681, 2011.
[RW14] Cornelius Reinfeldt and Richard Weidmann. Makanin-razborov diagrams for hyperbolic groups.

2014.
[Sag14] Michah Sageev. CAT(0) cube complexes and groups. In Geometric group theory, volume 21 of

IAS/Park City Math. Ser., pages 7–54. Amer. Math. Soc., Providence, RI, 2014.
[Sel97] Z. Sela. Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie

groups. II. Geom. Funct. Anal., 7(3):561–593, 1997.
[Sel01] Zlil Sela. Diophantine geometry over groups. I. Makanin-Razborov diagrams. Publ. Math. Inst.

Hautes Études Sci., (93):31–105, 2001.
[Sel06] Zlil Sela. Diophantine geometry over groups. VI. The elementary theory of a free group. Geom.

Funct. Anal., 16(3):707–730, 2006.
[Sel09] Zlil Sela. Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group.

Proc. Lond. Math. Soc. (3), 99(1):217–273, 2009.
[SW79] Peter Scott and Terry Wall. Topological methods in group theory. In Homological group theory

(Proc. Sympos., Durham, 1977), volume 36 of London Math. Soc. Lecture Note Ser., pages 137–
203. Cambridge Univ. Press, Cambridge-New York, 1979.

[Szm55] W. Szmielew. Elementary properties of Abelian groups. Fund. Math., 41:203–271, 1955.

Simon André
Université de Rennes 1, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France.
E-mail address: simon.andre@univ-rennes1.fr


	1. Introduction
	2. Preliminaries
	3. How to extract information from the JSJ using first-order logic
	4. Torsion-saturated groups
	5. Quasi-floors and quasi-towers
	6. Proofs of the theorems
	7. From a preretraction to a quasi-floor
	References

