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Extinction time of CB-processes with competition in a

Lévy random environment

H. Leman∗ and J.C. Pardo†

January 25, 2018

Abstract

In this paper, we are interested on the extinction time of continuous state branching processes
with competition in a Lévy random environment. In particular we prove, under the so-called Grey’s
condition together with the assumption that the Lévy random environment does not drift towards
infinity, that for any starting point the process gets extinct in finite time a.s. Moreover if we replace
the condition on the Lévy random environment by a technical integrability condition on the competition
mechanism, then the process also gets extinct in finite time a.s. and it comes down from infinity under
the condition that the negative jumps associated to the environment are driven by a compound Poisson
process.

Then the logistic case in a Brownian random environment is treated. Our arguments are base on
a Lamperti-type representation where the driven process turns out to be a perturbed Feller diffusion
by an independent spectrally positive Lévy process. If the independent random perturbation is a
subordinator then the process converges to a specified distribution; otherwise, it goes extinct a.s. In
the latter case and following a similar approach to Lambert [11], we provide the expectation and
the Laplace transform of the absorption time, as a functional of the solution to a Riccati differential
equation.

Key words and phrases: Continuous state branching processes in random environment, compe-
tition, population dynamics, logistic process, extinction, Continuous state branching processes with
immigration, Ricatti differential equations

MSC 2000 subject classifications: 60J80, 60J70, 60J85.

1 Introduction and main results.

The prototypical example of continuous state branching processes (or CB-processes) with competition
is the so-called logistic Feller diffusion which is defined as the unique strong solution of the following
stochastic differential equation (SDE),

Yt = Y0 + b

∫ t

0
Ysds+

∫ t

0

√
2γ2YsdB

(b)
s − c

∫ t

0
Y 2
s ds, t ≥ 0,

where b ∈ R, c > 0 and B(b) = (B
(b)
t ; t ≥ 0) is a standard Brownian motion. Such family of processes

has been studied by several authors, see for instance [2, 11, 14] and the references therein. An important
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feature of the logistic Feller diffusion is that it can also be constructed as scaling limits of Bienaymé-
Galton-Watson processes with competition which are continuous time Markov chains where time steps
are the non overlapping generations with individuals behaving independently from one another and each
giving birth to a random number of offspring (belonging to the next generation) but also considering
competition pressure, in other words each pair of individuals interact at a fixed rate and one of them
is killed as result of such interaction. For further details of such convergence we refer to section 2.4 in
Lambert [11]

Using a Lamperti-type random time change representation, Lambert [11] generalised the logistic Feller
diffusion by replacing the diffusion term by a general CB-process. More precisely, Lambert considered the
following generalised Ornstein-Uhlenbeck process starting from x > 0, which is described as the unique
strong solution of the SDE

dRt = dXt − cRtdt,

where c > 0 and X = (Xt, t ≥ 0) denotes a spectrally positive Lévy process, that is to say a càdlàg
stochastic process with independent and stationary increments with no negative jumps. We denote by
Px for the law of X started from x ∈ R. For simplicity, we let P = P0. It is known that the law of
any spectrally positive Lévy process X is completely characterized by its Laplace exponent ψ which is
defined as ψ(λ) = logE[e−λX1 ] for λ ≥ 0, and satisfies the so-called Lévy-Khintchine formula

ψ(u) = −bu+ γ2u2 +

∫
(0,∞)

(
e−ux − 1 + ux1{x<1}

)
µ(dx), (1.1)

where b ∈ R, γ ≥ 0 and µ is a Radon measure concentrated on (0,∞) satisfying∫
(0,∞)

(1 ∧ z2)µ(dz) <∞. (1.2)

It is well known that the triplet (b, γ, µ) characterises the law of X. According to Theorem 17.5 in Sato
[20], the following log-moment condition

E
[

log+X1

]
<∞,

is necessary and sufficient for the process R to possess an invariant distribution. It is also important to
note that this log-moment condition is equivalent to∫ ∞

1
log(u)µ(du) <∞, (1.3)

see for instance Theorem 25.3 in [20]. For further details on Lévy and generalised Ornstein-Uhlenbeck
processes, we refer the monograph of Sato [20].

Let TR0 denotes the first hitting time of 0 of the generalised Ornstein-Uhlenbeck process R, i.e.
TR0 = inf{s : Rs = 0}, and consider the random clock

ηt =

∫ t∧TR0

0

ds

Rs
, for t > 0.

Let C denotes the right-continuous inverse of the clock η. According to Lambert [11] the logistic branching
process is defined as follows

Yt =

{
RCt if 0 ≤ t < η∞
0 if η∞ <∞ and t ≥ η∞.
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It is important to note that the above definition is inconsistent with the fact that the process R is
positive, drifts to ∞ and η∞ < ∞ a.s. The latter may occur when X is a subordinator and the log-
moment condition (1.3) is not satisfied. Actually, the process Y does not explode if the log-moment
condition (1.3) holds.

The function ψ is also known as the branching mechanism of the logistic branching process Y . We
also note that when c = 0, the process Y is a CB-process and the latter time change relationship is the
so-called Lamperti transform which was established by Lamperti [12]. Some interesting path properties of
the logistic branching processes were derived by Lambert [11] as consequence of this path transformation.
For instance, in the case when the process X is a subordinator i.e. its Laplace exponent is of the form

ψ(u) = −δu−
∫

(0,∞)
(1− e−ux)µ(dx), u ≥ 0,

with δ ≥ 0, the log-moment condition (1.3) is satisfied and one of the following conditions δ 6= 0,
µ(0,∞) = ∞ or c < µ(0,∞) < ∞ holds then the process Y is positive recurrent on (δ/c,∞) and
possesses a stationary distribution which can be computed explicitly. Moreover if (1.3) holds but none
of the latter conditions are satisfied, then the process Y is null recurrent in (0,∞) and converges to 0 in
probability (see Theorem 3.4 in [11]).

When X is not a subordinator and condition (1.3) is satisfied, then the process Y goes to 0 a.s.
Moreover, the process Y gets extinct in finite time a.s. accordingly as∫ ∞ du

ψ(u)
<∞, (1.4)

which is the so-called Grey’s condition. Let T Y0 denotes the time to extinction of the process Y , i.e
T Y0 = inf{t ≥ 0 : Yt = 0}. In [11], under Grey’s condition, the Laplace transform of T Y0 was computed
explicitly and the law of the process coming down from infinity was also determined.

More general competition mechanisms were considered by Ba and Pardoux [1] in the case when the
branching mechanism is of the form ψ(u) = γ2u2, for u ≥ 0, see also Chapter 8 in the monograph of
Pardoux [16]. In this case, the CB-process with competition can be written as the unique strong solution
of the following SDE

Yt = Y0 +

∫ t

0
h(Ys)ds+

∫ t

0

√
2γ2YsdB

(b)
s ,

where h is a continuous function satisfying h(0) = 0 and such that

h(x+ y)− h(x) ≤ Ky, x, y ≥ 0,

for some positive constant K. According to Ba and Pardoux, the process Y gets extinct in finite time if
and only if ∫ ∞

1
exp

{
−1

2

∫ u

1

h(r)

r
dr

}
du =∞.

Recently, for a general branching mechanism ψ satisfying (1.1) with∫
(0,∞)

(z ∧ z2)µ(dz) <∞, (1.5)

or equivalently −ψ′(0+) < ∞, Ma [14] (see also Berestycki et al. [2]) considered a general competition
mechanism g which is a non-decreasing continuous function on [0,∞) with g(0) = 0 and proved that the
associated branching process with competition satisfies the following SDE

Yt = Y0 +

∫ t

0
bYsds−

∫ t

0
g(Ys)ds+

∫ t

0

√
2γ2YsdB

(b)
s +

∫ t

0

∫
(0,∞)

∫ Ys−

0
zÑ (b)(ds, dz,du),

3



where B(b) is a standard Brownian motion which is independent of the Poisson random measure N (b)

which is defined on R3
+, with intensity measure dsµ(dz)du such that (1.5) is satisfied, and Ñ (b) denotes

its compensated version.
Our aim is to study the time to extinction of a generalized version of the previous family of processes

that we call CB-processes with competition in a Lévy random environment. Such family of processes has
been introduced recently by Palau and Pardo [15] as the unique strong solution of the following SDE

Zt = Z0 + b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s +

∫ t

0
Zs−dSs

+

∫ t

0

∫
[1,∞)

∫ Zs−

0
zN (b)(ds, dz, du) +

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ (b)(ds, dz,du),

(1.6)

where g is a non-decreasing continuous function on [0,∞) with g(0) = 0, B(b) and N (b) are defined as
before but with the difference that the measure µ satisfies integral condition (1.2) and S is a Lévy process
independent of B(b) and N (b) which can be written as follows

St = dt+ σB
(e)
t +

∫ t

0

∫
(−1,1)c

(ez − 1)N (e)(ds, dz) +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz), (1.7)

with d ∈ R, σ ≥ 0, B(e) = (B
(e)
t , t ≥ 0) is a standard Brownian motion and N (e) is a Poisson random

measure taking values on R+ × R independent of B(e) and with intensity dsπ(dz) satisfying∫
R\{0}

(1 ∧ z2)π(dz) <∞. (1.8)

For our purposes, we also introduce the auxiliary Lévy process

Kt = βt+ σB
(e)
t +

∫ t

0

∫
(−1,1)c

zN (e)(ds, dz) +

∫ t

0

∫
(−1,1)

zÑ (e)(ds, dz), t ≥ 0,

where

β = d− σ2

2
−
∫

(−1,1)
(ez − 1− z)π(dz).

It is important to note that according to Palau and Pardo [15], we can take the competition mechanism g
to be a real-valued continuous function satisfying some technical conditions and not necessarily positive
and non-decreasing. In other words, if we consider g to be negative and non-increasing then the com-
petition mechanism can be interpreted as cooperation in the sense of Gonzalez-Casanova et al. [6]. We
treat more general competition mechanisms in Section 2 only in the diffusion case, that is to say, when
there are no jumps coming neither from the branching mechanism or the random environment.

We denote by Px the law of Z starting from x > 0, and define the first hitting time to 0 of Z as
follows

T0 = inf{t ≥ 0, Zt = 0},

with the convention that inf{∅} = ∞. If there is no competition i.e. g ≡ 0, He et al. [19] proved
that Grey’s condition (1.4) is a necessary and sufficient condition for CB-processes in a Lévy random
environment to become extinct with positive probability, see Theorem 4.1 in [19]. Moreover, if the
auxiliary process K does not drift to ∞ or equivalently

lim inf
t→∞

Kt = −∞,
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and Grey’s condition (1.4) holds, then its associated CB-process in a Lévy random environment becomes
extinct at finite time a.s., see Corollary 4.4 in [19].

For simplicity of exposition, we first present our results for the case when the random environment is
driven by a general Lévy process and the competition mechanism is a non-decreasing positive continuous
function. Then we deal with the logistic case, i.e. g(x) = cx2 for c > 0, in a Brownian random environment
where more details can be provided about the extinction time and the asymptotic behaviour for large
times.

1.1 Lévy random environment case.

Here, we assume that the Lévy measure µ satisfies (1.5) or equivalently |ψ′(0+)| < ∞. Hence, the SDE
(1.6) can be simplified as follows

Zt = Z0 − ψ′(0+)

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s

+

∫ t

0

∫
(0,∞)

∫ Zs−

0
zÑ (b)(ds, dz, du) +

∫ t

0
Zs−dSs,

(1.9)

where

ψ′(0+) = −b−
∫

[1,∞)
zµ(dz),

S is defined by (1.7) and its associated Lévy measure satisfies (1.8), and g is a non-decreasing continuous
function with g(0) = 0.

Our first result provides a comparison criteria for CB-processes with competition in a Lévy random
environment and implicitly gives a necessary condition under which they become extinct. Before we state
our results, we introduce the CB-process in a Lévy random environment Z] = (Z]t , t ≥ 0) as the unique
strong solution of the following SDE

Z]t =Z]0 − ψ(0+)

∫ t

0
Z]sds+

∫ t

0

√
2γ2Z]sdB

(b)
s +

∫ t

0
Z]s−dSs

+

∫ t

0

∫
(0,1)

∫ Z]s−

0
zÑ (b)(ds, dz,du) +

∫ t

0

∫
[1,∞)

∫ Z]s−

0
zN (b)(ds, dz,du).

(1.10)

For simplicity, we denote its law starting from x ≥ 0 by P]x.

Theorem 1.1. Assume that the Lévy measure µ associated to the branching mechanism ψ satisfies (1.5).
For y ≥ x ≥ 0, we have that (Z,Px) is stochastically dominated by (Z,Py). Moreover, the process (Z,Px)

is stochastically dominated by (Z],P]y).
In particular if the branching mechanism ψ satisfies Grey’s condition (1.4), then (Z,Px) becomes

extinct with positive probability. Furthermore if K does not drift to ∞, i.e.

lim inf
t→∞

Kt = −∞,

then (Z,Px) becomes extinct at finite time a.s.

For our next result, we assume the following integral condtion on the competition mechanism g.
Assume that there exists z0 > 0 such that g(z0) > 0 and∫ ∞

z0

dy

g(y)
<∞. (1.11)
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Under an integral condition on the negative jumps of the random environment, the following result says
that a CB-process with competition in a Lévy random environment comes down from infinity. This
phenomena has been observed and studied by several authors in branching processes with interactions,
see for instance González-Casanova et al. [6], Lambert [11] and Pardoux [16]. Formally, we define the
law P∞ starting from infinity with values in R+ ∪ {∞} as the limits of the laws Px of the process issued
from x. When the limiting process is non-degenerate, it hits finite values in finite time with positive
probability. This behaviour is captured by the notion of coming down from infinity.

We now state the main result of this part.

Theorem 1.2. Assume that the Lévy measure µ associated to the branching mechanism satisfies (1.5).
We also suppose that Grey’s condition (1.4) and the integral condition on the competition mechanism
(1.11) hold, then

sup
x≥0

Ex
[
T0

]
<∞.

In addition, if
∫

(−1,0) π(dz) <∞, the process comes down from infinity.

The integrability condition in the previous Theorem implies that the negative jumps of the random
environment are driven by a compound Poisson process. The intuition of the necessity of this condition
comes from the fact that a negative jump of the process Z is proportional to its size and if the random
environment has infinite activity and the process Z starts from a very large value then immediately after,
the process Z may have a massive negative jump even if the jump size of the random environment is
very small. In other words, any large threshold from below may be cross by Z by a very large jump even
if the size of the jumps of the environment are very small. This situation does not seem very easy to
control and it is crucial to take the starting point of Z to go to infinity. The integrability condition that
we impose intuitively implies that negative jumps of Z are allowed after an exponential holding time
meaning that the process has enough time to “come down from infinity” and then produces negative
jumps of finite size.

We point out that the finiteness of the expected value of the extinction time when there is no random
environment was first considered by Le [17].

1.2 Logistic case in a Brownian random environment.

In the sequel, we assume that the random environment is driven by a Brownian motion and that the
competition mechanism is logistic, that is to say g(x) = cx2, for x ≥ 0 and c > 0. Since the structure of
the random environment allow us to have a better understanding of the process, as we will see in Section
4, here we allow to the Lévy measure, associated to the branching mechanism, to satisfy (1.2), in other
words ψ′(0+) may take the value −∞.

For this particular case, the SDE (1.9) can be rewritten as follows

Zt = Z0 + b

∫ t

0
Zsds− c

∫ t

0
Z2
sds+

∫ t

0

√
2γ2ZsdB

(b)
s + σ

∫ t

0
ZsdB

(e)
s

+

∫ t

0

∫
[1,∞)

∫ Zs−

0
zN (b)(ds, dz,du) +

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ (b)(ds, dz,du),

(1.12)

with c > 0 and σ ≥ 0. Observe that when there is no environment, i.e. σ = 0, the process Z corresponds to
the so-called logistic branching process which was already described at the beginning of the introduction
and deeply studied by Lambert [11] . We also observe that the linear drift case, i.e ψ(u) = −bu for u ≥ 0,
corresponds to the monomorphic model of a single population living in a patchy environment which was
studied recently in Evans et al. [5].
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It is also important to note that in this case a Lamperti-type representation is satisfied for Z and
it is very useful for the development of the next results. For simplicity, we provide such time-change
representation in Section 4 which is established for more general competition mechanisms than the logistic
case, and we continue here with the exposition of our results.

We first deal with the case when the branching mechanism is associated to the Laplace transform of
a subordinator, that is to say

ψ(z) = −δz −
∫

(0,∞)
(1− e−zu)µ(du), (1.13)

where ∫
(0,∞)

(1 ∧ u)µ(du) <∞ and δ = b−
∫

(0,1)
uµ(du) ≥ 0.

Under this assumption, we deduce the following identity for the total population size of process Z up to
time Ta, the first hitting time of process Z at a, which was defined in (1.20). Let us define

ω(x) = cx+
σ2x2

2
and fλ(x) =

∫ ∞
0

dz

ω(z)
exp

{
−xz +

∫ z

`

λ− ψ(u)

ω(u)
du

}
, x ≥ 0, (1.14)

where ` is an arbitrary constant larger than 0.

Proposition 1.3. Let Z be the unique strong solution of (1.12) with branching mechanism given by
(1.13). For every λ > 0 and x ≥ a ≥ 0, we have

Ex
[
exp

{
−λ
∫ Ta

0
Zsds

}]
=
fλ(x)

fλ(a)
. (1.15)

The following Lemma is needed for the description of the invariant distribution of Z whenever it
exists. We point out that the following two results focus on the case σ2 > 0 since the case σ2 = 0 has
been already treated by Lambert [11]. Before we continue with our exposition, we introduce the following
notation. Let

m(λ) :=

∫ λ

0

ψ(u)

ω(u)
du, for λ ≥ 0, (1.16)

which is well defined under the log-moment condition (1.3).

Lemma 1.4. Assume that σ2 > 0 and that the branching mechanism is given by (1.13) and satisfies the
log-moment condition (1.3). Then the following identity holds

−m(λ) =
2

σ2

∫ ∞
0

(
1− e−λz

)e− 2c
σ2
z

z

(
δ +

∫ z

0
e

2c
σ2
uµ̄(u)du

)
dz, (1.17)

where µ̄(x) = µ(x,∞), and ∫
(0,∞)

e−λzν(dz) = em(λ), λ ≥ 0,

defines a unique probability measure ν on (0,∞) which is infinitely divisible. In addition, it is self-
decomposable whenever µ̄(0) ≤ δ.

We recall that self-decomposable distributions on (0,∞) is a subclass of infinitely divisible distribu-
tions whose Lévy measures have densities which are decreasing on (0,∞). We refer to Sato [20] for further
details of self-decomposable distributions. It is also important to note that condition (1.3) guarantees
that m(λ) is well defined (see Corollary 3.21 in Li [13]).
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In order to introduce the limiting distribution associated to Z, when it exists, we first provide con-
ditions under which

∫
(0,∞) s

−1ν(ds) is finite. For any z sufficiently small, we define two sequences of
functions as follows

l(1)(z) = | ln(z)| and l(k)(z) = ln(l(k−1)(z)), k ∈ N, k ≥ 2,

I(1)(z) = l(1)(z)

∫ z

0
µ̄(w)dw and I(k)(z) = l(k)(z)

(
I(k−1)(z)− σ2

2

)
, k ∈ N, k ≥ 2.

Observe that for any k ∈ N, I(k)(z) is well defined for z sufficiently small. On the other hand l(k)(z) is
well defined for both, z sufficiently small and large. Then, for any continuous function f taking values
in R, we set

Adh(f) =

[
lim inf
z→0

f(z), lim sup
z→0

f(z)

]
⊂ R.

We are now ready to establish the following two conditions:

(∂) There exists n ∈ N such that inf(Adh(I(n))) >
σ2

2
and Adh(I(k)) =

{
σ2

2

}
, for all k ∈ {1, .., n− 1},

(ð) There exists n ∈ N such that sup(Adh(I(n))) <
σ2

2
and Adh(I(k)) =

{
σ2

2

}
, for all k ∈ {1, .., n− 1}.

For instance if µ̄(0) <∞, that is to say ψ is the Laplace exponent of a compound Poisson process, then
condition (ð) holds.

Proposition 1.5. Assume that 2δ ≥ σ2 > 0, c > 0 and that the branching mechanism is given by (1.13).
Then the point 0 is polar, that is to say Px(T0 <∞) = 0 for all x > 0. Moreover if∫ 1

0

dz

z
exp

{
−
∫ 1

z

∫ ∞
0

(1− e−us)
ω(u)

µ(ds)du

}
=∞ (1.18)

Z is recurrent. Additionally,

a) If 2δ > σ2 then the process Z is positive recurrent in (0,∞). Its invariant distribution ρ has a finite
expected value if and only if (1.3) holds. If the latter holds, then ρ is the size-biased distribution of
ν, in other words

ρ(dz) =

(∫
(0,∞)

s−1ν(ds)

)−1

z−1ν(dz), z > 0. (1.19)

b) Assume that 2δ = σ2 and (1.3) holds,

b.1) if condition (∂) is also satisfied, then Z is positive recurrent in (0,∞) and its invariant prob-
ability is defined by (1.19),

b.2) or if condition (ð) is satisfied, then the process Z is null recurrent and converges to 0 in
probability.

Finally, if (1.18) is not satisfied, then Z is transient and for any x ≥ a > 0,

Px
(

lim
t≥0

Zt =∞
)

= 1 and Px
(

inf
t≥0

Zt < a

)
=
f0(x)

f0(a)
.

It is important to note that (1.18) is satisfied as soon as (1.3) holds.
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Proposition 1.6. Assume that σ2 > 2δ but σ2 > 0, c > 0 and X is a subordinator, then the process
converges to 0 with positive probability, in other words Px(limt→0 Zt = 0) > 0, for all x > 0.

Finally, we consider the case when the process X is not a subordinator, in other words the branching
mechanism ψ satisfies that there exist ϑ ≥ 0 such that ψ(z) > 0 for any z ≥ ϑ. For simplicity if the
branching mechanism ψ satisfies the latter property together with the log-moment condition (1.3), we
say that it is general.

Our last result provides a complete characterization of the Laplace transform of the stopping time

Ta = inf{t ≥ 0 : Zt ≤ a}, (1.20)

for a ≤ 0. Our results strengthen those of Lambert [11] in the following way, it treats the time before
hitting any level, and not only for the extinction time, and also it considers the presence of the Brownian
environment.

Recall the definition of m from (1.16) and introduce the functional

I(λ) :=

∫ λ

0
em(u)du, for λ ≥ 0. (1.21)

Observe from our assumptions that m is positive on (ϑ,∞) implying that I(z) is a bijection from R+

into itself. We denote its inverse by ϕ and a simple computation provides

ϕ′(z) = exp(−m ◦ ϕ(z)). (1.22)

The formulation of the Laplace transform of Ta will be written in terms of the solution to a Ricatti
equation. Similarly to Lemma 2.1 in [11], we deduce the following Lemma on the Ricatti equation of our
interest.

Lemma 1.7. For any λ > 0, there exists a unique non-negative solution yλ to the equation

y′ = y2 − λr2, (1.23)

where r(z) = ϕ′(z)√
ω(ϕ(z))

such that it vanishes at ∞. Moreover, yλ is positive on (0,∞), and for any z

sufficiently small or large, yλ(z) ≤
√
λr(z). As a consequence, yλ is integrable at 0, and it decreases

initially and ultimately.

We now state our last result. Recall that the infinitesimal generator U of the process Z satisfies that
for any f ∈ C2

Uf(x) = (bx−cx)f ′(x)+

(
γ2x+

σ2

2
x2

)
f ′′(x)+x

∫
(0,∞)

(
f(x+ z)− f(x)− zf ′(x)1{z<1}

)
µ(dz), (1.24)

see for instance Theorem 1 in Palau and Pardo [15].

Theorem 1.8. Assume that the branching mechanism ψ is general and that condition (1.5) holds. Hence
the function

hλ(x) := 1 + λ

∫ ∞
0

e−xz−m(z)

ω(z)
exp

{
−
∫ I(z)

0
yλ(v)dv

}∫ z

0
exp

{
m(u) + 2

∫ I(u)

0
yλ(v)dv

}
dudz (1.25)

is well defined and positive for any x > 0 and λ > 0 and it is a non-increasing C2-function on (0,∞).
Moreover it solves

Uhλ(x) = λhλ(x), for any x > 0. (1.26)
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Furthermore, if ψ satisfies the Grey’s condition (1.4), hλ is also defined at 0,

hλ(0) = exp

{∫ ∞
0

yλ(v)dv

}
<∞,

and, for any x ≥ a ≥ 0,

Ex
[
e−λTa

]
=
hλ(x)

hλ(a)
, (1.27)

and for any x > 0,

Ex[T0] =

∫ ∞
0

du em(u)

∫ ∞
u

e−m(z)

ω(z)
(1− e−zx)dz. (1.28)

Moreover under our assumptions, the process comes down from infinity.

The remainder of this paper is organised as follows. Section 2 is devoted to branching diffusions
with interactions in a Brownian random environment. We decide to treat this case separately since the
competition mechanism g may take negative and positive values and the techniques we use here are
different from the rest of the paper. Our methodology are based on the theory of scale functions for
diffusions. This allow us to provide a necessary and sufficient condition for extinction and moreover, the
Laplace transform of hitting times is computed explicitly in terms of a Ricatti equation. Such results
seems complicated to obtain with the presence of jumps coming from the branching mechanism or the
random environment. In Section 3, the proofs Theorems 1.1 and 1.2 are provided. Sections 4 and 5 are
devoted to the case when the random environment is driven by a Brownian motion. In particular, Section
4 treats the Lamperti-type representation and finally, Section 5 deals with the logistic case.

2 Branching diffusion with interactions in a Brownian random envi-
ronment

Here, we focus on the Feller diffusion case and general competition mechanism where more explicit
functionals of the process can be computed. In this particular case, the SDE (1.9) is simplified as follows

Zt = Z0 + b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s +

∫ t

0
σZsdB

(e)
s . (2.1)

It is important to note that in this case g is a real-valued continuous function satisfying the conditions
in Proposition 1 in [15] (see also (3.1)).

Proposition 2.1. Assume that Z is the unique strong solution of (2.1), then

Px
(
T0 <∞

)
= 1 if and only if

∫ ∞
exp

{
2

∫ u

1

g(z)− bz
2γ2z + σ2z2

dz

}
du =∞. (2.2)

Moreover
Px
(

lim
t→∞

Zt =∞
)

= 1− Px
(
T0 <∞

)
.

In particular, we may have the following situations

i) If there exist z0 > 0 and w < b− σ2

2 such that for any z ≥ z0, g(z) ≤ wz, then Px(T0 <∞) < 1. An

example of this situation is the cooperative case, that is to say when g(z) is decreasing and b > σ2

2 .
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ii) If there exist z0 > 0 and w > b− σ2

2 such that for any z ≥ z0, g(z) ≥ wz, then Px(T0 <∞) = 1.
An example of this situation are large competition mechanisms, that is to say for g(z) ≥ bz for any
z large enough. For instance, the latter holds for the so-called logistic case i.e. g(z) = cz2.

Proof of Proposition 2.1. We first observe from Dubins-Schwarz Theorem, that the law of Z is equal to
the law of the following diffusion

dYt = (bYt − g(Yt))dt−
√

2γ2Yt + σ2Y 2
t dWt,

where W is a standard Brownian motion. Associated to Y , we introduce for any z ∈ R,

b(z) := g(z)− bz, d(z) :=
1

2

(
2γ2z + σ2z2

)
,

as well as the following functions related with the scale function of Y , for any x, l ∈ R+

s(l) = exp

{∫ l

1

b(z)

d(z)
dz

}
, S(l, x) =

∫ x

l
s(u)du and Σ(l, x) =

∫ x

l

(∫ x

u

1

d(η)s(η)
dη

)
s(u)du.

Observe that for any x ∈ R+,

S(0, x) =

∫ x

0
exp

{
2

∫ u

1

g(z)− bz
2γ2z + σ2z2

dz

}
du. (2.3)

For simplicity, we denote S(x) = S(0, x).
In order to prove the first statement of this proposition, we follow the approach of Chapter 15 in

Karlin and Taylor [10] which ensures that the equivalence (2.2) follows from the study of liml→0 Σ(l, x).
Indeed, According to Lemma 15.6.3 in [10], the finiteness of liml→0 Σ(l, x) for an x > 0 implies the
finiteness of liml→0 S(l, x) = S(0, x) for all x ≥ 0. Thus Lemma 15.6.2 in [10] guarantees that for any
y ≥ x, T0 ∧ Ty <∞, a.s., and Section 3 of Chapter 15 provides the following formulation

Px(T0 < Ty) =
S(x)− S(y)

S(0)− S(y)
. (2.4)

By making y tend to ∞, we find the equivalence (2.2) as required.
Hence let us show that liml→0 Σ(l, x) is finite. In order to do so, we fix ε > 0 and x ∈ (0, 1) in such a

way that for any z ≤ x, |b(z)| ≤ ε. Therefore

Σ(l, x) =

∫ x

l

(∫ x

u

1

d(η)
exp

{∫ 1

η

b(z)

d(z)
dz

}
dη

)
exp

{
−
∫ 1

u

b(z)

d(z)
dz

}
du

≤ C1(x)

∫ x

l

(∫ x

u

1

d(η)
exp

{∫ x

η

ε

d(z)
dz

}
dη

)
exp

{∫ x

u

ε

d(z)
dz

}
du

≤ C2(x)

∫ x

l

∫ x

u

1

d(η)

(
1 + σ2

2γ2
η

η

)ε/γ2
dη

(1 + σ2

2γ2
u

u

)ε/γ2
du,

(2.5)

where C1(x) and C2(x) are positive constants that only depend on x. Moreover, in a neighbourhood of
0, we have

1

d(η)

(
1 + σ2

2γ2
η

η

)ε/γ2
∼
η→0

1

2γ2

1

η1+ε/γ2
,
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which is not integrable at 0. Hence,

∫ x

u

1

d(η)

(
1 + σ2

2γ2
η

η

)ε/γ2
dη ∼

u→0
C3(x)

1

uε/γ2
,

where C3(x) is a positive constant that only depends on x. This implies that the integrand on the right-
hand side of the last inequality in (2.5) is equivalent to u−2ε/γ2 which is integrable at 0 as soon as ε is
chosen small enough. The latter implies that liml→0 Σ(l, x) < ∞ which completes the first statement of
this proposition.

In order to finish the proof, note that for any y > x,

Px
(

lim
t→∞

Z(t) =∞
)
≥ Px(Ty < T0) =

S(0)− S(x)

S(y)− S(0)
.

Since it holds for any y ≥ x, we can take y goes to ∞. By writing S(∞) := limy→∞ S(y) ∈ (0,∞], we
deduce

Px
(

lim
t→∞

Z(t) =∞
)
≥ S(0)− S(x)

S(∞)− S(0)
,

and the right-hand side is equal to 1 − Px(T0 < ∞) according to (2.4), whenever S(∞) is finite or not.
This ends the proof.

Furthermore, we are able to compute the Laplace transform of the first passage time Ta, for a ≥ 0,
defined in (1.20), by using the solution to the Ricatti equation described in the next Lemma. With this aim
in mind, we recall the definition of the scale function S from (2.3) and observe that the proof of Proposition
2.1 guarantees that it is well-defined. Moreover, it is clear that the function S : R+ → (0, S(∞)) is
continuous and bijective, and under condition (2.2), S(∞) equals ∞. We denote by ϕ̄(x) the inverse of
S on (0, S(∞)). Following similar arguments to those provided in the proof of Lemma 2.1 in Lambert
[11], we deduce the following properties on the solution to the Ricatti equation that we are interested in.

Lemma 2.2. For any λ > 0, there exists a unique non-negative solution ȳλ on (0, S(∞)) to the equation

y′ = y2 − λr̄2,

where

r̄(z) =
ϕ̄′(z)√

γ2ϕ̄(z) + σ2

2 (ϕ̄(z))2
,

such that it vanishes at S(∞). Moreover, ȳλ is positive on (0, S(∞)), and for any z sufficiently small or
close to S(∞), ȳλ(z) ≤

√
λr̄(z). In particular, ȳλ is integrable at 0 if γ 6= 0, and it decreases initially

and ultimately.

From Lambert [11], it is enough to study the behaviour of r in order to deduce Lemma 2.2. Using
κ(z) = r̄2(S(z)), we prove that r̄(z) goes to ∞ or to 0 accordingly as z goes to 0 or S(∞) and that it is
integrable at 0. Moreover r decreases initially and ultimately.

Our next result provides explicitly the Laplace transform of Ta in terms of the function ȳλ.

Proposition 2.3. Assume that γ > 0. Then, for any x ≥ a ≥ 0, and for any λ > 0,

Ex
[
e−λTa

]
= exp

{
−
∫ S(x)

S(a)
ȳλ(u)du

}
. (2.6)

Note that if (2.2) is satisfied, then Ta <∞ a.s.
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Proof. Let x ≥ a > 0, then (Zt∧Ta , t ≥ 0), under Px, is a process with values in [a,∞). For any y ≥ a,
we define

fλ,a(y) = exp

{
−
∫ S(x)

S(a)
ȳλ(u)du

}
.

A direct computation ensures that fλ,a is a C2-function on [a,∞), bounded by 1, fλ,a(a) = 1 and such
that it solves

d(y)f ′′(y)− b̄(y)f ′(y)− λf(y) = 0. (2.7)

Applying Itô Formula to the function F (t, y) = e−λtfλ,a(y) and the process (Zt∧Ta , t ≥ 0), we obtain by
means of (2.7)

e−λtfλ,a(Zt∧Ta) = fλ,a(x) +

∫ t∧Ta

0
f ′λ,a(Zs)

√
2γ2ZsdB

(b)
s + σ

∫ t∧Ta

0
f ′λ,a(Zs)ZsdB

(e)
s .

We then use a sequence of stopping time (Tn, n ≥ 1) that reduces the two local martingales of the
right-hand side and from the optimal stopping theorem, we obtain for any n ≥ 1

Ex
[
e−λTn∧Tafλ,a(ZTn∧Ta)

]
= fλ,a(x).

Letting n goes to ∞ gives (2.6) for any x ≥ a > 0. We finally let a goes to 0 to deduce the result for
a = 0 and conclude the proof.

3 Proofs of Theorems 1.1 & 1.2

In order to prove Theorem 1.1, we introduce the following stochastic processes as unique strong solutions
of the SDE’s. For i = 1, 2, we let

Z
(i)
t = Z

(i)
0 +

∫ t

0
gi(Z

(i)
s )ds+

∫ t

0

√
2γ2Z

(i)
s dB(b)

s +

∫ t

0

∫
(0,∞)

∫ Z
(i)
s−

0
zÑ (b)(ds, dz,du) +

∫ t

0
Z

(i)
s−dS(i)

s ,

where

S
(i)
t = dt+ σB

(e)
t +

∫ t

0

∫
(−1,1)c

bi(z)N
(e)(ds, dz) +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz),

with g1(z) ≥ g2(z), for z ≥ 0, and b1(z) ≥ b2(z) for z ∈ R such that, for i = 1, 2

bi(z) + 1 ≥ 0, for z ∈ R.

We also assume that for each m ≥ 0, there is a non-decreasing concave function z 7→ rm(z) on R+

satisfying
∫

0+ rm(z)dz =∞ and

|gi(x)− gi(y)|+ d|x− y|+ |x− y|
∫

(−1,1)c

(
|bi(z)| ∧m

)
π(dz) ≤ rm(|x− y|), for i = 1, 2, (3.1)

for every 0 ≤ x, y ≤ m. According to Proposition 1 in Palau and Pardo [15], the previous SDE’s possess
unique positive strong solutions that we denote by Z(i) for i = 1, 2.

Lemma 3.1. If Z
(1)
0 ≥ Z(2)

0 , a.s. then

P
(
Z

(2)
t ≤ Z(1)

t for all t ≥ 0
)

= 1.
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Proof. Our arguments follow similar reasonings as those used in Theorem 2.2 in [3]. For each integer
n ≥ 1, define an = exp{−n(n + 1)/2}. Then an decreases to 0 as n increases and

∫ an−1

an
z−1dz = n, for

any n ≥ 1. Let x 7→ hn(x) be a positive continuous function with support on (an, an−1) such that∫ an−1

an

hn(z)dz = 1,

and hn(x) ≤ 2(nx)−1, for x > 0. For n ≥ 0, we introduce

fn(z) =

∫ z

0
dy

∫ y

0
hn(x)dx, z ∈ R.

Observe that 0 ≤ f ′n(z) ≤ 1 and 0 ≤ zf ′′n(z) ≤ 2
n , for any z > 0. It is also clear that for any y > 0 and

x ∈ R
|fn(x+ y)− fn(y)| ≤ |x|,

in addition, from Taylor expansion formulas, we have for any y > 0 and x ∈ R such that x+ y > 0,

|fn(x+ y)− fn(y)− xf ′n(y)| ≤ 2

(
|x| ∧ x

2

n

∫ 1

0

(1− u)

y + ux
du

)
, (3.2)

in particular fn(x+ y)− fn(y)− xf ′n(y) converges to 0 when n goes to ∞. Moreover, we have that fn(z)
converge towards z+ = 0 ∨ z non-decreasingly as n increases.

Let τm = inf{t ≥ 0 : Z
(1)
s ≥ m or Z

(2)
s ≥ m} for m ≥ 1. According to the proof of Proposition 1 in

Palau and Pardo [15], for i = 1, 2, we have Z
(i)
t = Z

(i,m)
t for t < τm, where Z(i,m) is the unique strong

solution to

Z
(i,m)
t = Z

(i)
0 +

∫ t

0
gi(Z

(i,m)
s ∧m)ds+

∫ t

0

√
2γ2Z

(i,m)
s ∧m dB(b)

s

+

∫ t

0

∫
(0,∞)

∫ Z
(i,m)
s− ∧m

0
(z ∧m)Ñ (b)(ds, dz, du) +

∫ t

0

(
Z

(i,m)
s− ∧m

)
dS(i,m)

s ,

where

S
(i)
t = dt+ σB

(e)
t +

∫ t

0

∫
(−1,1)c

(
bi(z) ∧m

)
N (e)(ds, dz) +

∫ t

0

∫
(−1,1)

(
(ez − 1) ∧m

)
Ñ (e)(ds,dz).

In other words for m ≥ 1, we have

P
(
Z

(1)
t ≥ Z(2)

t , for all t < τm

)
= P

(
Z

(1,m)
t ≥ Z(2,m)

t , for all t < τm

)
.

We now prove that the latter probability equals one. For t ≥ 0, we let ζ(t) = Z
(2,m)
t − Z(1,m)

t and

ζm(t) = Z
(2,m)
t ∧m− Z(1,m)

t ∧m.

For ζ(s) ≤ 0, we observe fn(ζ(s)) = f ′n(ζ(s)) = f ′′n(ζ(s)) = 0 and

ζ(s) + Z(2,m)
s g2(z) ∧m− Z(1,m)

s g1(z) ∧m ≤ ζ(s) + ζ(s)g2(z) ∧m ≤ ζ(s)
(
1 + g2(z) ∧m

)
≤ 0.
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We also note that if ζ(s) ≤ 0, then ζm(s) ≤ 0. Hence by Itô’s formula, we have

fn(ζ(t)) = fn(ζ(0)) +

∫ t

0
f ′n(ζ(s))

((
g2(Z(2,m)

s ∧m)− g1(Z(1,m)
s ∧m)

)
+ dζm(s)

)
1{ζ(s)>0}ds

+
1

2

∫ t

0
f ′′n(ζ(s))

(
2γ2

(√
Z

(2,m)
s ∧m−

√
Z

(1,m)
s ∧m

)2

+ σ2ζ2
m(s)

)
1{ζ(s)>0}ds

+

∫ t

0

∫
(0,∞)

ζm(s)
(
fn(ζ(s) + z ∧m)− fn(ζ(s))− (z ∧m)f ′n(ζ(s))

)
1{ζ(s)>0}µ(dz)ds

+

∫ t

0

∫
(−1,1)

(
fn(ζ(s) + `1(z,m)ζm(s))− fn(ζ(s))− `1(z,m)ζm(s)f ′n(ζ(s))

)
1{ζ(s)>0}π(dz)ds

+

∫ t

0

∫
(−1,1)c

(fn(ζ(s) + `2(s, z,m))− fn(ζ(s)))1{ζ(s)>0}π(dz)ds+Mn(t),

(3.3)

where `1(z,m) = (ez − 1) ∧m,

`2(s, z,m) = (Z(2,m)
s ∧m)(b2(z) ∧m)− (Z(1,m)

s ∧m)(b1(z) ∧m),

and

Mn(t) =
√

2γ2

∫ t

0
f ′n(ζ(s))

(√
Z

(2,m)
s ∧m−

√
Z

(1,m)
s ∧m

)
dB(b)

s + σ

∫ t

0
f ′n(ζ(s))ζm(s)dB(e)

s

+

∫ t

0

∫
(0,∞)

∫ Z
(2,m)
s− ∧m

Z
(1,m)
s− ∧m

(fn(ζ(s−) + z ∧m)− fn(ζ(s−)) Ñ (b)(ds, dz,du)

+

∫ t

0

∫
(−1,1)

(fn(ζ(s−) + `1(z,m)ζm(s))− fn(ζ(s−)) Ñ (e)(ds, dz)

+

∫ t

0

∫
(−1,1)c

(fn(ζ(s−) + `2(s, z,m))− fn(ζ(s−)) Ñ (e)(ds, dz).

Hence the process (Mn(t ∧ τm), t ≥ 0) is a martingale. If Z(1)(0) ≥ Z(2)(0) a.s., we take expectations in
both sides of (3.3) at time t ∧ τm and let n goes to ∞. Let us prove that the expectation of the second
line of (3.3) converges to 0 as n increases. Indeed, since ζ(t) = ζm(t) for t < τm, we find the following
upper bounds on {s ≤ τm} whose last is independent from n,

f ′′n(ζ(s))

(
2γ2

(√
Z

(2,m)
s ∧m−

√
Z

(1,m)
s ∧m

)2

+ σ2ζ2
m(s)

)
1{ζ(s)>0}

≤ (2γ2 +mσ2)f ′′n(ζm(s))ζm(s) ≤ 2(2γ2 +mσ2)

n
≤ 2(2γ2 +mσ2).

Hence, the dominated converge theorem implies the convergence of the expectation of the second term in
(3.3) towards 0 as n goes to ∞. Similarly the expectation of the third and fourth terms in (3.3) converge
also weakly to 0. Indeed, from (3.2) we obtain the following upper bound on {s ≤ τm}, for any z ≥ 0,

ζm(s)
(
fn(ζ(s) + z ∧m)− fn(ζ(s))− (z ∧m)f ′n(ζ(s))

)
1{ζ(s)>0}

≤ 2

(
ζm(s)(z ∧m) ∧ (z ∧m)2

n

∫ 1

0

ζm(s)(1− u)

ζm(s) + u(z ∧m)
du

)
1{ζ(s)>0} ≤ 2

(
mz ∧ z

2

n

)
,
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and since `1(z,m) ≥ −1 and |`1(z,m)| ≤ e|z| for any z ∈ [−1, 1], we deduce(
fn(ζ(s) + `1(z,m)ζm(s))− fn(ζ(s))− `1(z,m)ζm(s)f ′n(ζ(s))

)
1{ζ(s)>0}

≤ 2|`1(z,m)ζm(s)| ∧
(
|`1(z,m)ζm(s)|2

n

∫ 1

0

(1− u)

ζm(s) + u`1(z,m)ζm(s)
du

)
1{ζ(s)>0}

≤ 2me

(
|z| ∧ e |z|

2

n

)
.

Putting all the pieces together, we obtain

E[ζ(t ∧ τm)+] ≤ E
[∫ t∧τm

0

((
g2(Z(2,m)

s ∧m)− g2(Z(1,m)
s ∧m)

)
+ dζm(s)

)
1{ζ(s)>0}ds

]
+ E

[∫ t∧τm

0
ζm(s)

∫
(−1,1)c

(|b2(z)| ∧m)π(dz)1{ζ(s)>0}ds

]
.

In other words from the inequality (3.1), we have

E[ζ(t ∧ τm)+] ≤ E
[∫ t∧τm

0
rm(ζm(s))1{ζ(s)>0}ds

]
,

and since ζ(t) = ζm(t) for t < τm and rm is non-decreasing, concave with rm(0) = 0, we finally get

E[ζ(t ∧ τm)+] ≤ E
[∫ t∧τm

0
rm(ζ(s))1{ζ(s)>0}ds

]
≤ E

[∫ t

0
rm(ζ(s)1{ζ(s)>0,s≤τm})ds

]
≤
∫ t

0
rm
(
E
[
ζ(t ∧ τm)+

])
ds.

Then E[ζ(t ∧ τm)+] = 0 for all t ≥ 0. In other words,

P
(
Z

(1)
t ≥ Z(2)

t , for all t < τm

)
= 1,

which implies our result since the latter holds for any m ≥ 1.

Proof of Theorem 1.1. The first statement follows directly from Lemma 3.1 by taking

g1(z) = g2(z) = (d− ψ(0+))z − g(z) for z ≥ 0 and b1(z) = b2(z) = ez − 1 for z ∈ R.

For the second statement, we recall that the competition mechanism g is positive and non-decreasing
implying that we can take g1(z) = (d−ψ(0+))z, g2(z) = (d−ψ′(0+))z−g(z) and b1(z) = b2(z) = ez−1.

Again from Lemma 3.1, we deduce that the process (Z,Px) is stochastically dominated by (Z],P]y) for
y ≥ x.

The last part of the statement follows from Theorem 4.1 and Corollary 4.4 in [19] applied to (Z],P]y)
and the fact that the latter stochastically dominates (Z,Px).

We now prove Theorem 1.2.
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Proof of Theorem 1.2. First of all from Lemma 3.1, it is enough to prove our result for a process without
downward jumps larger than 1− e−1. Hence, we assume in all this proof that Z is solution to (1.9) with

St = dt+ σB
(e)
t +

∫ t

0

∫
(1,∞)

(ez − 1)N (e)(ds, dz) +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz), (3.4)

Let us denote by TM for the first passage time for the process Z below a level M > 0 defined in (1.20).
As we will see below, the finiteness of the first moment of such random times will be useful for deducing
our result. Hence, we first show

sup
x≥0

Ex
[
TM
]
<∞. (3.5)

With this goal in mind, we observe from assumption (1.11) that

lim
y→+∞

g(y)

y
=∞ and lim

y→+∞

θy − g(y)

y
= −∞, (3.6)

for θ := −ψ′(0+) + d. In addition from Lemma 2.3 in Le and Pardoux [18], we deduce that there exists
a0 > 0 such that g(y)− θy > 0 for any y ≥ a0 and∫ ∞

a0

dy

g(y)− θy
<∞. (3.7)

We then introduce A > θ(e− 1) in such a way that the inequality below holds

C(A) := 1−

(
θ(2γ2 + σ2)

2A2
+

θ

A(A− θ)

∫
(0,1)

z2µ(dz)

+
1

A

(∫
(1,∞)

zµ(dz) + π(1)

)
+

(
θ

A2
+

θ

A(A− θ(e1 − 1))

)∫
(−1,1)

z2π(dz)

)
> 0,

(3.8)

where π(x) = π((x,∞)), x ≥ 0. From the way we choose A and from (3.6) and (3.7), it is clear that
there exists a constant M > (a0 + 1)e such that∫ ∞

Me−1

dw

g(w)− θw
≤ 1

A
and g(y)− θy ≥ Ay, for all y ≥Me−1. (3.9)

Such constant M will be our threshold. We also observe that (3.9) implies that for any y ≥Me−1,

0 ≤ 1

g(y)− θy
≤ y

g(y)− θy
≤ 1

A
and A ≤ g(y)− θy. (3.10)

For our purposes, we define the function G in C2(R) as follows

G(y) =


∫ y

a0

dw

g(w)− θw
if y ≥ a0 + 1,

0 if y ≤ a0,
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and such that G is non-negative and non-decreasing. Thus applying Itô’s formula to G(Zt∧TM ), we find

G(Zt∧TM )−G(Z0) = −t ∧ TM −
∫ t∧TM

0

g′(Zs)− θ
(g(Zs)− θZs)2

(
γ2Zs +

σ2

2
Z2
s

)
ds

+

∫ t∧TM

0

√
2γ2Zs

g(Zs)− θZs
dB(b)

s +

∫ t∧TM

0

σZs
g(Zs)− θZs

dB(e)
s

+

∫ t∧TM

0

∫
(0,∞)

Zs

(
G(Zs + z)−G(Zs)−

z

g(Zs)− θZs

)
µ(dz)ds

+

∫ t∧TM

0

∫
(0,∞)

∫ Zs−

0
[G(Zs− + z)−G(Zs−)]Ñ (b)(ds, dz, du)

+

∫ t∧TM

0

∫
(1,∞)

[G(ezZs−)−G(Zs−)]N (e)(ds, dz)

+

∫ t∧TM

0

∫
(−1,1)

[G(ezZs−)−G(Zs−)]Ñ (e)(ds, dz)

+

∫ t∧TM

0

∫
(−1,1)

(
G(ezZs)−G(Zs)−

(ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds.

(3.11)

Next, we take expectations under the assumption that the process Z starts at x ≥M , in both sides of the
previous identity and we study separately each term of the right-hand side. For simplicity, we enumerate
the lines in order of appearance.

(1) For the first integral of the right hand side of (3.11), we recall that Zs ≥ Me−1 for s ≤ t ∧ TM ,
that g is non-decreasing and use (3.10) to deduce

Ex
[∫ t∧TM

0

θ − g′(Zs)
(g(Zs)− θZs)2

(
γ2Zs +

σ2

2
Z2
s

)
ds

]
≤ θ(2γ2 + σ2)

2A2
Ex
[
t ∧ TM

]
. (3.12)

(2) For the two Itô integrals of the second line of the right-hand side of (3.11), we first observe that
both are continuous local martingales. Since their quadratic variations satisfy

Ex

∫ t∧TM

0

∣∣∣∣∣
√

2γ2Zs
θZs − g(Zs)

∣∣∣∣∣
2

ds

 ≤ 2γ2t

A2
and Ex

[∫ t∧TM

0

∣∣∣∣ σZs
θZs − g(Zs)

∣∣∣∣2 ds

]
≤ σ2t

A2
,

then both processes are martingales and therefore their expectations are equal to 0.
(3) We study the integral that appears in the third line in (3.11) by separating (0,∞) into two parts

(0, 1] and (1,∞). Note that Zs ≥ Me−1 > a0 + 1 for any s ≤ t ∧ TM , in other words have an explicit
formula for G(Zs). Now we deal with the integral restricted to (0, 1). Since g is non-decreasing and from
the second inequality in (3.9), we obtain the following upper bound

Ex

[∫ t∧TM

0

∫
(0,1)

Zs

[
G(Zs + z)−G(Zs)−

z

g(Zs)− θZs

]
µ(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(0,1)

θz2Zs
(g(Zs)− θ(Zs + z))(g(Zs)− θZs)

µ(dz)ds

]

≤ Ex
[
t ∧ TM

] θ

A(A− θ)

∫
(0,1)

z2µ(dz) <∞.

(3.13)
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where the last inequality follows from (3.10). Concerning the integral restricted to (1,∞), we have

Ex

[∫ t∧TM

0

∫
(1,∞)

Zs

[
G(Zs + z)−G(Zs)−

z

g(Zs)− θZs

]
µ(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(1,∞)

Zs [G(Zs + z)−G(Zs)]µ(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(1,∞)

∫ z

0

Zs
A(Zs + w)

dwµ(dz)ds

]

≤
Ex
[
t ∧ TM

]
A

∫
(1,∞)

zµ(dz).

(3.14)

(4) For the integral in the fourth line of the right-hand side of (3.11), we prove that it is a martingale
and thus has expectation equals 0. Again, we split the interval (0,∞) into (0, 1] and (1,∞) and use
similar computations as in part (3) in order to deduce that the integral restricted to (0, 1] is a square
integrable martingale and the integral restricted to (1,∞) is a martingale. In other words, we manipulate

Ex

[∫ t∧TM

0

∫
(0,∞)

Zsf(G(Zs + z)−G(Zs), z)µ(dz)ds

]
,

with f(x, z) = x21(0,1](z) and f(x, z) = |x|1(1,∞)(z) respectively.
(5) The stochastic integral in the fifth line in (3.11) can be studied using Fubini’s Theorem. Indeed,

using the first inequality in (3.9), we deduce

Ex

[∫ t∧TM

0

∫
(1,∞)

|G(ezZs−)−G(Zs−)|π(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(1,∞)

∫ ezZs

Zs

dw

g(w)− θw
π(dz)ds

]

≤ Ex
[∫ t∧TM

0

∫ ∞
Zs

dw

g(w)− θw

(∫ ∞
1

π(dz)

)
ds

]
≤ tπ(1)

(∫ ∞
Me−1

dw

g(w)− θw

)
≤ t

A
π(1).

This ensures that the stochastic integral can be written as the sum of a martingale and a finite variation
process. In other words, we have

Ex

[∫ t∧TM

0

∫
(1,∞)

(
G(ezZs−)−G(Zs−)

)
N (e)(ds, dz)

]
≤ E[t ∧ TM ]

π(1)

A
. (3.15)

(6) Observe that the integral term of the sixth line is a square integrable martingale. Indeed, similarly
as for the fourth line case, we get

E

[∫ t∧TM

0

∫
(−1,1)

(∫ ezZs

Zs

dw

g(w)− θw

)2

π(dz)ds

]
≤ E

[∫ t∧TM

0

∫
(−1,1)

(∫ ezZs

Zs

dw

Aw

)2

π(dz)ds

]

≤ t

A2

∫
(−1,1)

z2π(dz) <∞,
(3.16)
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which implies that its expectation equals 0.
(7) Finally, we study the last line in (3.11) by splitting again the integral into two parts, i.e. we

split (−1, 1) into (−1, 0] and (0, 1). Thus, using again the second inequality of (3.9) and the fact that
A > θ(e− 1), we deduce that for any w ∈ [0, y(ez − 1)], y ≥ 1 and z ∈ (−1, 1),

g(y + w)− θ(y + w) ≥ g(y)− θyez ≥ Ay − θ(e− 1)y > 0.

Hence,

Ex

[∫ t∧TM

0

∫
(0,1)

(
G(ezZs)−G(Zs)−

(ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]

= Ex

[∫ t∧TM

0

∫
(0,1)

(∫ Zs(ez−1)

0

dw

g(Zs + w)− θ(Zs + w)
− (ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(0,1)

(
(ez − 1)Zs

g(Zs)− θZsez
− (ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(0,1)

θ(ez − 1)2(Zs)
2

(AZs − θ(e1 − 1)Zs)(g(Zs)− θZs)
π(dz)ds

]

≤ Ex
[
t ∧ TM

] θ

A(A− θ(e1 − 1))

∫
(0,1)

z2π(dz) <∞.

Similarly, we deal with the second part of the integral and deduce

Ex

[∫ t∧TM

0

∫
(−1,0)

(
G(ezZs)−G(Zs)−

(ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]

≤ Ex
[
t ∧ TM

] θ
A2

∫
(−1,0)

z2π(dz) <∞.

In other words, the expectation of the last line in (3.11) is bounded by

Ex

[∫ t∧TM

0

∫
(−1,1)

(
G(ezZs)−G(Zs)−

(ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]

≤ Ex
[
t ∧ TM

]( θ

A2
+

θ

A(A− θ(e1 − 1))

)∫
(−1,1)

z2π(dz).

(3.17)

Thus putting all pieces together (i.e. inequalities (3.12), (3.13), (3.14), (3.15) and (3.17) together with
(3.11), (3.8) and the three null-expectations), we deduce

Ex
[∫ Zt∧TM

x

dw

g(w)− θw

]
≤ −C(A)E[t ∧ TM ],

with C(A) > 0. In other words, for any x, t ≥ 0,

Ex
[
t ∧ TM

]
≤ 1

C(A)
Ex

[∫ x

Zt∧TM

dw

g(w)− θw

]
≤ 1

C(A)

∫ ∞
Me−1

dw

g(w)− θw
.

Hence using the Monotone Convergence Theorem, as t goes to ∞, we obtain

sup
x≥M

Ex
[
TM

]
≤ 1

C(A)

∫ +∞

Me−1

dw

g(w)− θw
.
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Finally we deduce (3.5) by noting that TM = 0 whenever the process Z starts at x ≤M .
In order to finish the proof of the first statement, we first show that the time to extinction for the

process Z starting from M is not almost surely infinite. We recall that we assumed that the environment
has no negative jumps larger than 1− e−1. Using Theorem 1.1 (both processes with the same restriction
on the negative jumps of the environment), we observe that for any x ≤ M , the process (Z,Px) is

stochastically dominated by (Z],P]x). The process Z] is a CB-process in a Lévy random environment
which is characterized by the branching mechanism ψ](λ) = ψ(λ)−ψ′(0+)λ. Since ψ satisfies the Grey’s
condition and is positive for any z sufficiently large, Lemma 2.3 in Le and Pardoux [18] guarantees that
ψ] satisfies also Grey’s condition. Then Theorem 4.1 of [19] ensures that there is t0 > 0 for which

0 < P]M
(
Z]t0 = 0

)
≤ inf

x≤M
Px
(
Zt0 = 0

)
:= p.

Next, we introduce an independent geometric random variable ξ with parameter p that counts the number
of random steps needed in order that Z becomes extinct. For simplicity, we denote by T xM for the stopping
time TM under Px. The length of the random steps are bounded from above by a random variable
distributed as t0 + supx≥0 T xM . To be more precise, the algorithm is as follows: we start from x and then
we wait a random time τ1 until the process is below the level M (note that if x ≤ M , τ1 = 0). Hence
τ1 is stochastically dominated by a random variable τ̄1 with the same distribution as T xM . Then either
the shifted process Z ◦ θτ1 become extinct before time t0, with probability larger than p, and we stop
the algorithm or it survives and we start again the procedure for the shifted process Z ◦ θt0+τ1 which has
the same law as the process Z starting from Zt0+τ1 thanks to the Markov property. In other words, the
extinction time of Z is stochastically dominated from above by the random variable

ξ∑
i=1

(t0 + τ̄i),

where {τ̄i}i≥0 are i.i.d. and independent of ξ. Hence,

sup
x≥0

Ex[T0] ≤ 1

p

(
t0 + sup

x≥0
Ex
[
TM

])
<∞,

which ends the first part of the proof of Theorem 1.2.
It remains to prove that the process comes down from infinity under the assumption that

∫
(−1,0) π(dz) <

∞. Let us introduce the semigroup (Pt, t ≥ 0) associated to the process Z as follows: for any continuous
function f , we have Ptf(x) = Ex[f(Zt)] which is well defined on [0,∞). Our aim is to prove that it can
be extended on [0,∞]. With this aim in mind, we set t ≥ 0 and a continuous function f and we prove
that (Ptf(x), x ≥ 0) is a Cauchy sequence in R when x goes to ∞.

First, we fix ε > 0 and take t0 ≤ t ∧ ε(2‖f‖
∫

(−1,0) π(du))−1. Then we use the sequence of stopping

times {Tm}m≥0 together with the Markov property, to find

Ptf(x) = Ex
[
1{Tm>t0}f(Zt)

]
+ Ex

[
1{Tm≤t0}EZTm [f(Zt−Tm)]

]
= Ex

[
1{Tm>t0}f(Zt)

]
+ Ex

[
1{Tm≤t0}Pt−Tmf(ZTm)

]
.

For simplicity, we define the function h as follows

h(x, s) := 1{s≤t0}Pt−sf(x) + 1{s>t0}Pt−t0f(x),

which is a continuous with respect to s and deduce

Ptf(x) = Ex
[
1{Tm>t0}

(
f(Zt)− Pt−t0f(m)

)]
+ Ex [h(m,Tm)]

+ Ex
[
1{Tm≤t0}

(
h(ZTm , Tm)− h(m,Tm)

)]
.
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Hence for any x, y ∈ [m,∞), we observe

|Ptf(x)− Ptf(y)| ≤
∣∣∣Ex[h(m,Tm)

]
− Ey

[
h(m,Tm)

]∣∣∣+ 2‖f‖
(
Px(Tm > t0) + Py(Tm > t0)

)
+
∣∣∣Ex[1{Tm≤t0}(h(ZTm , Tm)− h(m,Tm)

)]∣∣∣+
∣∣∣Ey[1{Tm≤t0}(h(ZTm , Tm)− h(m,Tm)

)]∣∣∣. (3.18)

We deal with the first two terms of the right hand side of the previous inequality by using similar
arguments to those of the proof of Theorem 20.13 in [8]. Indeed, Theorem 1.1 ensures that the sequence
of random variables (Tm,Px) is increasing with respect to x. Thus, it converges almost surely to a random
variable here denoted by T∞m . Then, from the first part of this proof, for any m ≥M ,

sup
x≥m

Ex[Tm] ≤
∫ ∞
me−1

dw

g(w)− θw
−→
m→∞

0. (3.19)

Together with the fact that (Tm,Px) ≤ (Tm′ ,Px) for any m ≤ m′, we deduce that the sequence {T∞m }m≥0

is decreasing and converges to 0 a.s. Then we can fix m > M such that there exist m0 > m satisfying
for any x, y ≥ m0,

2‖f‖
(
Px(Tm > t0) + Py(Tm > t0)

)
≤ ε. (3.20)

Moreover, (3.19) implies that Px ◦ (Tm)−1 converges weakly when x goes to ∞. Since the mapping
s 7→ h(m, s) is continuous, for m0 is sufficiently large we have for any x, y ≥ m0,∣∣∣Ex[h(m,Tm)

]
− Ey

[
h(m,Tm)

]∣∣∣ ≤ ε. (3.21)

It remains to treat the two last terms of (3.18). Note that both terms are different from 0 if and only
if the process has a negative jump at time Tm. Moreover, recall that Z is solution to (1.9) where S is
the random environment defined by (3.4), in other words there are no negative jumps for S smaller than
(1− e−1). Hence, under the assumption

∫
(−1,0) π(du) <∞, we find∣∣∣Ex[1{Tm≤t0}(h(ZTm , Tm)− h(m,Tm)

)]∣∣∣ ≤ 2‖f‖Px
(
Tm ≤ t0, ZTm < ZTm−

)
≤ 2‖f‖Px

(
∃s ∈ [0, t0], Zs < Zs−

)
≤ 2‖f‖Px

(∫ t0

0

∫
(−1,0)

N (e)(ds, du) ≥ 1

)

≤ 2‖f‖Ex

[∫ t0

0

∫
(−1,0)

N (e)(ds, du)

]

= 2‖f‖t0
∫

(−1,0)
π(du) ≤ ε.

This completes the proof of Theorem 1.2.

4 Lamperti-type transform for CB-processes with competition in a
Brownian random environment.

Here, we take g to be a continuous function on [0,∞) with g(0) = 0. Under this assumption, the SDE
(1.6) can be written as follows

Zt = Z0 + b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s + σ

∫ t

0
ZsdB

(e)
s

+

∫ t

0

∫
[1,∞)

∫ Zs−

0
zN (b)(ds, dz, du) +

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ (b)(ds, dz,du),

(4.1)
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with σ ≥ 0. It is important to note that Proposition 1 in Palau and Pardo [15] guarantees that the above
SDE has a unique strong positive solution.

The main result in this section is the Lamperti-type representation of a CB-process with competition
in a Brownian random environment. Such random time change representation will be very useful to
study path properties of the so-called logistic case. In order to state the Lamperti-type representation,
we introduce the family of processes which are involved in the time change.

Let X = (Xt, t ≥ 0) be a spectrally positive Lévy process with characteristics (−b, γ, µ) and such
that its Lévy measure µ satisfies (1.2). We also consider W = (Wt, t ≥ 0) a standard Brownian motion
independent of X and assume that g is a continuous function on [0,∞) with g(0) = 0 and such that
limx→0 x

−1g(x) exists. According to Proposition 1 in Palau and Pardo [15] for each x > 0, there is a
unique strong solution to

dRt = 1{Rr−>0:r≤t}dXt − 1{Rr−>0:r≤t}
g(Rt)

Rt
dt+ 1{Rr−>0:r≤t}σ

√
RtdWt, (4.2)

with R0 = x. The assumption that limx→0 x
−1g(x) exists, is not necessary but it implies that we can use

directly Proposition 1 of Palau and Pardo [15]. We can relax this assumption but further explanations
are needed. Indeed a similar approach to Theorems 2.1 and 2.3 in Ma [14] will guarantee that the SDE
defined above for a more general competition mechanism g has a unique strong solution.

It is important to note that in the logistic-case i.e. g(x) = cx2, for x ≥ 0 and some constant c > 0, the
process R is a Feller diffusion which is perturbed by the Lévy process X. Moreover if the Lévy process
X is a subordinator, then the process R turns out to be a CB-process with immigration.

We now state the Lamperti-type representation of CB-processes with competition in a Brownian
random environment.

Theorem 4.1. Let R = (Rt, t ≥ 0) be the unique strong solution of (4.2) and TR0 = sup{s : Rs = 0}.
We also let C be the right-continuous inverse of η, where

ηt =

∫ t∧TR0

0

ds

Rs
, t > 0.

Hence the process defined by

Zt =


RCt , if 0 ≤ t < η∞
0, if η∞ <∞, TR0 <∞ and t ≥ η∞,
∞, if η∞ <∞, TR0 =∞ and t ≥ η∞,

satisfies the SDE (4.1).
Reciprocally, let Z be the unique strong solution to (4.1) with Z0 = x and let

Ct =

∫ t

0
Zsds, t > 0.

If η denotes the right-continuous inverse of C, then the process defined by

Rt = Zηt∧T0 for t ≥ 0.

satisfies the SDE (4.2).

Proof of Theorem 4.1. Since X is a spectrally positive Lévy process and Rt− = 0 implies Rt = 0, we get
Rt− > 0 if and only if t ∈ [0, TR0 ). We also observe that X can be written as follows

Xt = bt+
√

2γBt +

∫ t

0

∫
(0,1)

zM̃(ds, dz) +

∫ t

0

∫
[1,∞)

zM(ds, dz),
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where B is a standard Brownian motion and M is a Poisson random measure with intensity dsµ(dz) and

M̃ denotes its compensated version. Then from the latter identity and (4.2), we have

Zt = x+ b

∫ Ct∧TR0

0
ds−

∫ Ct∧TR0

0

g(Rs)

Rs
ds+

√
2γ

∫ Ct∧TR0

0
dBs +

∫ Ct∧TR0

0
σ
√
RsdWs

+

∫ Ct∧TR0

0

∫
(0,1)

z1{Rs−>0}M̃(ds, dz) +

∫ Ct∧TR0

0

∫
[1,∞)

z1{Rs−>0}M(ds, dz), t ≥ 0.

On the one hand, by straightforward computations we deduce

Ct ∧ TR0 =

∫ t

0
Zsds,

implying that ∫ Ct∧TR0

0

g(Rs)

Rs
ds =

∫ t

0
g(Zs)ds,

and

L
(1)
t =

√
2γ

∫ Ct∧TR0

0
dBs and L

(2)
t = σ

∫ Ct∧TR0

0

√
RsdWs,

are independent continuous local martingales with increasing processes

〈L(1)〉t = 2γ2

∫ t

0
Zsds and 〈L(2)〉t = σ2

∫ t

0
Z2
sds.

On the other hand, we define the random measure N(ds, dz) on (0,∞)2 as follows

N((0, t]× Λ) =

∫ Ct∧TR0

0

∫
(0,∞)

1Λ(z)1{Rs−>0}M(ds, dz).

Then N(ds, dz) has predictable compensator

Zs−dsµ(dz).

By Theorems 7.1 and 7.4 in Ikeda and Watanabe [7], on an extension of the original probability space there
exist two independent Brownian motions, B(1) and B(2), and a Poisson random measure N(ds,du,dz)
on (0,∞)3 with intensity dsµ(dz)du such that for any t ≥ 0,∫ Ct∧TR0

0

∫
[1,∞)

z1{Rs−>0}M(ds, dz) =

∫ t

0

∫
[1,∞)

∫ Zs−

0
zN(ds, dz,du),

∫ Ct∧TR0

0

∫
(0,1)

z1{Rs−>0}M̃(ds, dz) =

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ(ds, dz,du),

L
(1)
t =

∫ t

0

√
2γ2ZsdB

(1)
s and L

(2)
t = σ

∫ t

0
ZsdB

(2)
s .

Putting all the pieces together, we deduce that (Zt, t ≥ 0) is a solution of (4.1).
For the reciprocal, we first observe that since Z has no negative jumps and Zt− = 0 implies Zt = 0,

we get Zt− > 0 if and only if Zt > 0 for t ∈ [0, T0). Thus Rt− > 0 if and only if Rt > 0 for t ∈ [0, ηT0),
then for any t ∈ [0, ηT0), the equation (4.2) is equivalent to

Rt = dXt −
g(Rt)

Rt
dt+ σ

√
RtdWt. (4.3)
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Since the process Z satisfies the SDE (1.6) and Rt = Zηt , we have

Rt =Z0 + b

∫ ηt∧T0

0
Zsds+

∫ ηt∧T0

0

√
2γ2ZsdBs + σ

∫ ηt∧T0

0
ZsdB

(e)
s

+

∫ ηt∧T0

0

∫
[1,∞)

∫ Zs−

0
zN(ds, dz, du) +

∫ ηt∧T0

0

∫
(0,1)

∫ Zs−

0
zÑ(ds, dz, du)−

∫ ηt∧T0

0
g(Zs)ds.

(4.4)

On the one hand, by straightforward computations we deduce∫ ηt∧T0

0
Zsds = t ∧ ηT0 , and

∫ ηt∧T0

0
g(Zs)ds =

∫ t∧ηT0

0

g(Rs)

Rs
ds.

The latter identities imply

M
(1)
t =

∫ ηt∧T0

0

√
2γ2ZsdBs and M

(2)
t = σ

∫ ηt∧T0

0
ZsdB

(e)
s ,

are independent continuous local martingales with increasing processes

〈M (1)〉t = 2γ2

∫ ηt∧T0

0
Zsds = 2γ2(t ∧ ηT0) and 〈M (2)〉t = σ2

∫ ηt∧T0

0
Z2
sds = σ2

∫ t∧ηT0

0
Rsds.

On the other hand, we define the random measure M(ds, dz) on (0,∞)2 as follows

M((0, t]×Λ) =

∫ ηt∧T0

0

∫
(0,∞)

∫ Zs−

0
1Λ(z)N(ds, dz, du) +

∫ t

ηT0

∫
(0,∞)

∫ Zs−+1

Zs−

1Λ(z)1{t>ηT0}N(ds,dz,du).

(4.5)
Then M(ds, dz) has predictable compensator dsµ(dz). By Theorems 7.1 and 7.4 in Ikeda and Watanabe
[7], on an extension of the original probability space there exist two independent Brownian motions, B(1)

and B(2), and a Poisson random measure M(ds, dz) on (0,∞)2 with intensity dsµ(dz) such that for any
t ≥ 0,

M
(1)
t = B

(1)
t∧ηT0

and M
(2)
t = σ

∫ t∧ηT0

0

√
RsdB

(2)
s . (4.6)

Putting all the pieces together, we deduce that (4.3) holds for t ∈ [0, ηT0). Recall that ZT0− = ZT0 = 0.
Then on {ηT0 < ∞} by using (4.4)-(4.6), we deduce that the right hand side of (4.3) is equal to 0 for
t = ηT0 and then for all t ≥ ηT0 .

5 Proofs of the logistic case

We first present the proofs of the case when the branching mechanism is associated with a subordinator.

5.1 Subordinator case

In this part, we provide the proofs of Lemma 1.4 and Proposition 1.5. The proof of Proposition 1.3 will
follow directly from the Lamperti-type representation and the discussion below.

In the particular case when the spectrally positive Lévy process X is a subordinator in the Lamperti-
type representation (see Theorem 4.1), the process R turns out to be a Feller diffusion with immigration.
In other words, it is the unique positive strong solution of the following SDE

Rt = R0 +Xt − c
∫ t

0
Rsds+

∫ t

0

√
σ2RsdWs. (5.1)
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The branching mechanism ω and the immigration mechanism φ associated to the process R, are given
by

ω(z) = cz +
σ2z2

2
and φ(z) = −ψ(z) = δz +

∫
(0,∞)

(1− e−zu)µ(du),

where ∫
(0,∞)

(1 ∧ u)µ(du) <∞ and δ = b−
∫

(0,1)
uµ(du) ≥ 0.

This type of processes have been studied recently by many authors, see for instance the papers of
Keller-Ressel and Mijatovic [9] and Duhalde et al. [4] and the references therein. In [9], the authors were
interested in the invariant distribution associated to the process R and Duhalde et al. [4] studied first
passage times problems and provide necessary and sufficient conditions for polarity and recurrence.

We now proceed with the proofs of Propositions 1.3, 1.5 and Lemma 1.4.

Proof of Proposition 1.3. The proof of this result is a direct consequence of the Lamperti-type represen-
tation (Theorem 4.1) and Theorem 1 in Duhalde et al. [4].

Proof of Lemma 1.4. First of all, we recall that m introduced as in (1.16) is well defined under the
log-moment condition (1.3) since a similar computation as in Corollary 3.21 in Li [13] guarantees the
integrability of φ/ω at 0. Then, from (1.14), we have

−m(λ) =

∫ λ

0

φ(z)

ω(z)
dz =

2

σ2

∫ λ

0

(
δz

2c
σ2 z + z2

+
1

2c
σ2 z + z2

∫ ∞
0

(1− e−zu)µ(du)

)
dz. (5.2)

For simplicity, we define K := 2c/σ2. Since all terms in (5.2) are positive, we can separate the above
integral into two terms and study each of them independently. For the first term, we observe∫ λ

0

δz

Kz + z2
dz = δ

∫ λ

0

∫ ∞
0

e−v(z+K)dvdz =

∫ ∞
0

(1− e−λv)δe
−Kv

v
dv,

where the last equality follows from an application of Fubini-Tonelli’s theorem. For the second term, we
use again Fubini-Tonelli’s theorem, to deduce∫ λ

0

1

Kz + z2

(∫ ∞
0

(1− e−zu)µ(du)

)
dz =

1

K

∫ ∞
0

(∫ λ

0

K(1− e−zu)

Kz + z2
dz

)
µ(du).

Now, we fix u > 0 and study the integral inside the brackets. Since the map z 7→ (1−e−zu)/z is integrable
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at 0, we have∫ λ

0

K(1− e−zu)

Kz + z2
dz =

∫ λ

0

(
1− e−zu

z
− 1− e−zu

K + z

)
dz

=

∫ u

0

1− e−λv

v
dv −

∫ K+λ

K

1− eKue−zu

z
dz

=

∫ u

0

1− e−λv

v
dv − (1− eKu)

∫ K+λ

K

1

z
dz − eKu

∫ K+λ

K

1− e−zu

z
dz

=

∫ u

0

1− e−λv

v
dv − (1− eKu)

∫ K+λ

K

∫ ∞
0

e−zvdvdz

+ eKu
(∫ K

0

1− e−zu

z
dz −

∫ K+λ

0

1− e−zu

z
dz

)
=

∫ u

0

1− e−λv

v
dv − (1− eKu)

∫ ∞
0

e−Kv

v
(1− e−λv)dv − eKu

∫ u

0

e−Kv

v
(1− e−λv)dv

=

∫ u

0

1− e−λv

v
(1− e−Kv)dv + (eKu − 1)

∫ ∞
u

1− e−λv

v
e−Kvdv

where the second identity follows from the change of variables zu = λv, the third identity is obtained by
adding and subtracting eKu, the fifth identity follows from Fubini-Tonelli’s Theorem and the change of
variables Kv = zu and (K + λ)v = zu and finally, the last identity follows by adding and subtracting∫ u

0

1− e−λv

v
e−Kvdv.

In other words, we get∫ λ

0

K(1− e−zu)

Kz + z2
dz =

∫ ∞
0

1− e−λv

v
e−Kv(eK(v∧u) − 1)dv =

∫ ∞
0

1− e−λv

v
e−Kv

(∫ v∧u

0
KeKzdz

)
dv.

Putting all pieces together and using twice Fubini-Tonelli’s theorem, we obtain∫ λ

0

1

Kz + z2

(∫ ∞
0

(1− e−zu)µ(du)

)
dz =

∫ ∞
0

1− e−λv

v
e−Kv

(∫ ∞
0

(∫ v∧u

0
eKzdz

)
µ(du)

)
dv

=

∫ ∞
0

1− e−λv

v
e−Kv

(∫ v

0
eKzµ̄(z)dz

)
dv.

Finally from identity (5.2) and the previous computations, we find (1.17).
Next, we define the positive measure Π(dz) as follows

Π(dz) =
2e−Kz

σ2z

(
δ +

∫ z

0
eKvµ̄(v)dv

)
dz, (5.3)

and prove that
∫

(0,∞)(1 ∧ z)Π(dz) is finite. From Fubini-Tonelli’s theorem, we observe∫ 1

0
zΠ(dz) ≤ 2

σ2

(
δ + eK

∫ 1

0
µ̄(v)dv

)
=

2

σ2

(
δ + eK

∫ +∞

0
(1 ∧ u)µ(du)

)
<∞.
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Moreover, ∫ ∞
1

Π(dz) =
2

σ2

(
δ

∫ ∞
1

e−Kz

z
dz +

∫ ∞
1

e−Kz

z

∫ z

0
eKvµ̄(v)dvdz

)
≤ 2

σ2

(
δ

K
e−K +

∫ ∞
1

eKvµ̄(v)

∫ ∞
v

e−Kz

z
dzdv

)
≤ 2

σ2

(
δ

K
e−K +

∫ ∞
1

eKvµ̄(v)

∫ ∞
v

e−Kz
(

1

z
+

1

Kz2

)
dzdv

)
≤ 2

σ2

(
δ

K
e−K +

1

K

∫ ∞
1

µ̄(v)

v
dv

)
,

which is finite since the right-hand side of the last integral is equal to
∫∞

1 ln(u)µ(du) which is finite under
(1.3). In other words, the probability measure ν is infinitely divisible with support on (0,∞) and with
Laplace exponent −m. Finally, if µ̄(0) ≤ b, a simple computation ensures that k defined by

k(z) =
2e−Kz

σ2

(
δ +

∫ z

0
eKvµ̄(v)dv

)
,

is non-increasing and Theorem 15.10 in Sato [20] implies the self-decomposability of ν.

Proof of Proposition 1.5. Recall that the process R, which is the unique strong solution to (5.1), is a
CB-process with immigration. According to Theorem 2 in Duhalde et al. [4], the point 0 is polar for R,
i.e. TR0 =∞ almost surely, accordingly as∫ ∞

1

dλ

ω(λ)
exp

{∫ λ

1

φ(z)

ω(z)
dz

}
=∞. (5.4)

Here, we show that the above integral condition is equivalent to 2δ ≥ σ2. Recall that K = 2c/σ2, then
for any λ > 1, we have∫ λ

1

φ(z)

ω(z)
dz =

2δ

σ2
ln

(
K + λ

K + 1

)
+

2

σ2

∫ ∞
0

µ(du)

∫ λ

1

1− e−zu

Kz + z2
dz

≤ 2δ

σ2
ln

(
K + λ

K + 1

)
+

2

σ2

∫ x0

0
µ(du)

∫ λ

1

zu

Kz + z2
dz +

2

σ2

∫ ∞
x0

µ(du)

∫ λ

1

1

z2
dz

≤ 2δ

σ2
ln

(
K + λ

K + 1

)
+

2

σ2

(∫ x0

0
uµ(du)

)
ln

(
K + λ

K + 1

)
+

2

σ2
µ̄(x0).

The above inequality holds for any x0 > 0, hence for any ε > 0, we can choose x0 > 0 such that∫ x0

0
uµ(du) ≤ σ2

2
ε.

Then for any λ > 1, the following inequalities hold

K1(x0)
(K + λ)

2δ
σ2

λ2
≤ 1

ω(λ)
exp

{∫ λ

1

φ(z)

ω(z)
dz

}
≤ K2(x0)

(K + λ)
2δ
σ2

+ε

λ2
,

where K1(x0) and K2(x0) are positive constants which are independent from λ. Therefore we conclude
that (5.4) holds if and only if 2δ ≥ σ2.

Now, we deduce under which condition the process Z is recurrent. Recall from Theorem 3 in [4] that
the process R is recurrent if and only if∫ 1

0

dλ

ω(λ)
exp

{
−
∫ 1

λ

φ(z)

ω(z)
dz

}
=∞. (5.5)

28



From the definition of functions φ and ω and the fact that 2δ ≥ σ2, we deduce that (5.5) holds if and
only if (1.18) is satisfied.

We recall that 2δ ≥ σ2 implies that TR0 =∞ a.s. and thus for any t ≥ 0,

ηt =

∫ t

0

1

Rs
ds→ η∞, as t→∞.

Hence if we also assume that (1.18) holds, then R is recurrent in (0,∞) and η∞ = ∞ a.s. Indeed, if we
define recursively the sequences of finite stopping times as follows τ+

0 = 0, and for any k ≥ 1,

τ−k+1 = inf{t ≥ τ+
k , Rs ≤ 1} and τ+

k+1 = inf{t ≥ τ−k+1, Rs ≥ 2},

we deduce that, since {τ+
k − τ

−
k , k ≥ 1} is a sequence of strictly positive i.i.d random variables,

η∞ =

∫ ∞
0

1

Rs
ds ≥

∑
k≥1

1

2
(τ+
k − τ

−
k ) =∞, a.s..

This implies that Ct, the right inverse of ηt, is well defined on (0,∞) and that Zt = RCt for any t ≥ 0.
Finally Z is also recurrent in (0,∞) and T0 = ∞ almost surely. Moreover Z has an invariant measure
that we denoted by ρ.

In order to characterise the invariant measure ρ, we use the infinitesimal generator U of Z. In other
words, we have that ρ is an invariant measure for Z if and only if∫ ∞

0
Uf(z)ρ(dz) = 0,

for any f in the domain of U . According to Palau and Pardo [15], the infinitesimal generator U satisfies
for any f ∈ C2

b (R+),

Uf(x) = xAf(x)− cx2f ′(x) +
σ2

2
x2f ′′(x),

where A represents the generator of the spectrally positive Lévy process associated to the branching
mechanism ψ. For the particular choice of f(x) = e−λx, for λ > 0, we observe Af(x) = ψ(λ)e−λx

implying that

0 =

∫ ∞
0
Uf(z)ρ(dz) =

∫ ∞
0

(ψ(λ) + ω(λ)z) ze−λzρ(dz).

Then, similarly as in [11], we denote the Laplace transform of zρ(dz) by χ and performing the previous
identity, we observe that χ satisfies the ordinary differential equation ψ(λ)χ(λ)−ω(λ)χ′(λ) = 0 on (0,∞).
Straightforward computations implies that χ satisfies

χ(λ) = K0 exp

{∫ λ

a

ψ(u)

ω(u)
du

}
, (5.6)

for some constants K0 > 0 and a ≥ 0. We can now prove the cases (a) and (b).
Let us assume that (1.3) is satisfied which is equivalent to the integrability of ψ/ω at 0. We take

a = 0 in (5.6) and deduce that χ(λ) = K0 exp(m(λ)) for some constant K0 > 0. In other words, we have
for z ≥ 0

ρ(dz) = K0
1

z
ν(dz),

with a possibility Dirac mass at 0, and where ν is defined as in Lemma 1.4. We can conclude as soon
as we prove that % :=

∫∞
0 z−1ν(dz) is finite if 2b > σ2 or if 2b = σ2 and condition (∂) holds and it is
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infinite if 2b = σ2 and condition (ð) holds. Indeed, if % <∞, ρ defined by (1.19) is the unique invariant
probability measure of Z and consequently Z is positive recurrent. If % =∞, then all invariant measures
of Z are non-integrable at 0, so that Zt converges to 0 in probability and since Z oscillates in (0,∞) then
it is null-recurrent.

Therefore, it remains to prove whether % is finite or not. Note that formally,

% =

∫
(0,∞)

z−1ν(dz) =

∫ ∞
0

em(λ)dλ.

Hence, % is finite if and only if em(λ) is integrable at ∞. From the proof of Lemma 1.4, we deduce

−m(λ) =
2

σ2

∫ λ

0

δ

K + z
dz +

∫ +∞

0

(1− e−λz)
z

h(z)dz, (5.7)

where we recall that K = 2c/σ2, and

h(z) =
2

σ2
e−Kz

∫ z

0
eKwµ̄(w)dw.

Similarly to the proof of Theorem 53.6 in Sato [20] or Theorem 3.4 in Lambert [11], we take x > 0
and λ > 1, an split the interval (0,∞) into (0, x/λ], (x/λ, x] and (x,∞). Recall that in the proof of
Lemma 1.4, we saw∫ ∞ µ̄(w)

w
dw <∞,

∫
0
µ̄(w)dw <∞ and

∫ ∞
u

e−Kz

z
dz ≤ e−Ku

Ku
.

Hence, we deduce ∫ ∞
x

h(z)

z
dz =

2

σ2

∫ ∞
0

eKwµ̄(w)

(∫ ∞
x∨w

e−Kz

z
dz

)
dw

≤ 2

Kσ2

(
1

x

∫ x

0
µ̄(w)dw +

∫ ∞
x

µ̄(w)

w
dw

)
<∞,

which guarantees, together with the Dominated Convergence Theorem, that∫ ∞
x

(1− e−λz)h(z)

z
dz converges as λ→∞.

On the other hand, we observe∫ x/λ

0
(1− e−λz)h(z)

z
dz =

σ2

2

∫ x

0

(1− e−z)
z

e−
Kz
λ

(∫ z/λ

0
eKwµ̄(w)dw

)
dz

≤ σ2

2
eKx

∫ x

0

(1− e−z)
z

dz

∫ x

0
µ̄(w)dw <∞,

which implies the convergence of∫ x/λ

0
(1− e−λz)h(z)

z
dz when λ→∞.

Using a similar change of variables, we can deduce that∫ x/λ

x
e−λz

h(z)

z
dz converges when λ→∞.
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Putting the pieces together in (5.7), we deduce that for any x > 0 and for λ large enough

−m(λ) =
2δ

σ2
ln

(
1 +

λ

K

)
+

∫ x/λ

x

h(z)

z
dz +K1(x) + o(1),

where K1(x) is a non-negative constant. Hence, for λ large enough and for any x > 0,

em(λ) =
K2(x)

(1 + λ)2δ/σ2 exp

{
−
∫ x/λ

x

h(z)

z
dz + o(1)

}
, (5.8)

where K2(x) is a positive constant. It thus remains to study the integral term in (5.8). Since it is positive,
we can find K3(x) > 0 such that for any λ large enough, em(λ) ≤ eK3(x)λ−2δ/σ2

, and we conclude as soon
as 2δ > σ2. This implies part (a).

Next, we prove part (b). Assume that 2δ = σ2. We concentrate on the case (∂) since the case
(ð) uses similar arguments. For the sake of brevity, we left the latter case to the interested readers.
Under condition (∂), there exists n ∈ N such that inf(Adh(I(n))) > σ2/2 and Adh(I(k)) = {σ2/2}, for any
k ∈ {1, .., n− 1}. Let us define by recurrence the collection of functions Ī such that

Ī(1)(z) = l(1)(z)h(z) and Ī(k)(z) = l(k)(z)
[
Ī(k−1)(z)− 1

]
, k ∈ N, k ≥ 2.

Note that the sequences {Ī(k)}k≤n and {I(k)}k≤n satisfy the same recurrences but are initialized on
different values. From the definition of h and a recurrence argument, it is straightforward to compute
that for any k ∈ N, and for z small enough,

2

σ2
e−KzI(k)(z) + (e−Kz − 1)

k∑
j=2

k∏
i=j

l(i)(z) ≤ Ī(k)(z) ≤ 2

σ2
e−KzI(k)(z).

Since (e−Kz − 1) behaves as −Kz, for z small enough, the second term of the left hand side converges to
0 when z converges to 0 and we deduce that the sequences of functions {Ī(k)}k≤n and {I(k)}k≤n satisfy
a similar assumption. Indeed, inf(Adh(Ī(n))) = A > 1 and Adh(Ī(k)) = {1}, for any k ∈ {1, .., n− 1}. Let
us fix ε > 0 such that A− ε > 1 and x > 0 such that Ī(n)(x) ≥ A− ε. Using the definition of {Ī(k)}k≥0

and a recurrence argument, we obtain that for any k ∈ N and for any z sufficiently small,

h(z) =
Ī(k)(z)∏k
i=1 l

(i)(z)
+
k−1∑
j=1

1∏j
i=1 l

(i)(z)
.

Hence, ∫ x

x/λ

h(z)

z
dz ≥ (A− ε)

∫ x

x/λ

dz

z
∏n
i=1 l

(i)(z)
+
n−1∑
j=1

∫ x

x/λ

dz

z
∏j
i=1 l

(i)(z)
. (5.9)

Moreover from the definition of l(j), we have for any j ∈ N,∫ x

x/λ

dz

z
∏j
i=1 l

(i)(z)
= l(j+1)(x)− l(j+1)

(x
λ

)
= l(j+1)(x) + l(j+1)(λ)−R(j+1)(x, λ)

= l(j+1)(λ) + l(j+1)(x) + o(1), as λ→∞,
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where the sequence {R(k)}k≥2 are also constructed by recurrence as follows, for any x small enough and
λ large enough,

R(2)(x, λ) = ln

(
1 +

l(1)(x)

l(1)(λ)

)
and R(k)(z) = ln

(
1 +

R(k−1)(x, λ)

l(k−1)(λ)

)
, k ≥ 3.

We can verify by recurrence that R(j+1)(x, λ) = l(j+1)(x/λ) + l(j+1)(λ) and that R(j+1)(x, λ) converges
to 0 when λ increases to ∞. Finally from (5.9), as soon as λ is sufficiently large, we have∫ x

x/λ

h(z)

z
dz ≥ (A− ε)l(n+1)(λ) +

n−1∑
j=1

l(j+1)(λ) +K4(x),

where K4(x) is a finite constant. Hence using (5.8), we deduce that for λ sufficiently large there exist a
finite constant K5(x) such that

em(λ) ≤ eK5(x)

λ
n−1∏
i=1

l(i)(λ)(l(n)(λ))A−ε

. (5.10)

Since A − ε > 1, the right hand side of (5.10) is integrable at ∞. Indeed, for any a, b sufficiently large
such that l(n)(x) > 0 and l(n)(z) > 0, with the change of variables u = ln(λ), we have∫ b

a

1

λ

n−1∏
i=1

l(i)(λ)(l(n)(λ))A−ε

dλ =

∫ l(n)(b)

l(n)(a)

1

uA−ε
du −→

b→∞

∫ ∞
l(n)(a)

1

uA−ε
du <∞.

Finally, we have proved that under condition (∂),∫ ∞
em(λ)dλ <∞.

This completes the proof of part (b) and the case when condition (1.3) is satisfied.
Now, we deal with the case when the log-moment condition (1.3) does not hold and 2δ > σ2. Under

this assumption we show that Z is still positive recurrent but its invariant distribution has an infinite
expected value. Recall that condition 2δ > σ2 guarantees that Z is recurrent with an invariant distribution
ρ satisfying (5.6). However in this case, ψ/ω is not integrable at 0 and we can not take a = 0 in (5.6),
instead we let a = 1. Formally, the following identity still holds∫ ∞

0
χ(λ)dλ =

∫ ∞
0

ρ(dz).

Our aim is thus to prove that the latter identity is finite but the expected value of ρ is infinite.
On the one hand, recalling that K = 2c/σ2 and taking λ smaller than 1, we use the definition of ψ

and Fubini-Tonnelli’s Theorem to deduce

−
∫ 1

λ

ψ(z)

ω(z)
dz =

2δ

σ2
ln

(
K + 1

K + λ

)
+

2

σ2

∫ ∞
0

(∫ 1

λ

1− e−zu

Kz + z2
dz

)
µ(du)

≤ 2δ

σ2
ln

(
1 +

1

K

)
+

2

σ2

∫ A

0

(∫ 1

λ

zu

Kz
dz

)
µ(du) +

2

σ2

∫ ∞
A

(∫ 1

λ

1

Kz
dz

)
µ(du)

≤ 2δ

σ2
ln

(
1 +

1

K

)
+

2

Kσ2

∫ A

0
uµ(du)− 2

Kσ2
ln(λ)µ̄(A),
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for any A > 0. Thus, we take A > 0 in such a way that µ̄(A) ≤ Kσ2/4. Implying that for any λ ≤ 1, we
get

χ(λ) ≤ K0
eK(A)

λ1/2
,

with K0 and K(A) two positive constants which are independent from λ. In other words, χ is integrable
near 0. On the other hand, since ∫ λ

1

ψ(z)

ω(z)
dz ≤ − 2b

σ2
ln

(
K + 1

K + λ

)
,

we also have

χ(λ) ≤ K0

(
K + 1

K + λ

) 2b
σ2

,

implying that ∫ ∞
0

χ(λ)dλ <∞,

since 2b > σ2. In other words Z has a finite invariant measure and also is positive recurrent. Moreover,
since the log-moment condition (1.3) does not hold, a straightforward computation gives∫ ∞

0
zρ(dz) = lim

λ→0

∫ ∞
0

e−λzzρ(dz) = lim
λ→0

χ(λ) =∞.

It remains to treat the case when (1.18) does not hold and implicitly the log-moment condition (1.3)
neither. Under these assumptions, Theorem 3 by Duhalde et al. [4] guarantees that R is transient and
from Theorem 6 in [4] and Proposition 4.4 by Keller-Ressel [9], we deduce that

lim sup
t→∞

Rt =∞ a.s.,

(see also the comments after Remark 3 in [4]). Thus Rt goes to ∞ a.s., when t goes to ∞, and the same
conclusion holds for the process Z regardless η∞ is finite or not. Finally, note that since the process Z
goes to ∞ almost surely, Ta is finite if and only if TRa =

∫ Ta
0 Zsds is finite. In addition with Proposition

10 in [4], we obtain the following identities, for any x ≥ a > 0,

Px
(

inf
t≥0

Zt < a

)
= Px (Ta <∞) = Px

(
TRa <∞

)
=
f0(x)

f0(a)
.

To conclude the proof of Proposition 1.5, note that in all cases of the proof, T0 = ∞ a.s. and so 0 is
polar.

Proof of Proposition 1.6. Recall from Theorem 2 in Duhalde et al. [4] that 0 is polar for the process R
accordingly as (5.4) holds. From the proof of Proposition 1.5, we know that (5.4) is equivalent to 2δ ≥ σ2.
Thus if we assume that 2δ < σ2, we have that 0 is not polar for R and implicitly this implies that the set
{TR0 < ∞} has positive probability. Therefore, from the Lamperti-type representation, we deduce that
Zt converges to 0 when t increases to ∞ on {TR0 <∞}.

5.2 Non-subordinator case

This last part is devoted to the proof of Theorem 1.8. We recall that the associated Lévy process X
which appears in (5.1) is general, that is to say, there exist ϑ ≥ 0 such that ψ(z) > 0 for any z ≥ ϑ and
the log-moment condition (1.3) is satisfied.
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Proof of Theorem 1.8. Let us fix λ > 0, and denote by Φ the function

Φ(z) :=
e−m(z)

ω(z)
exp

{
−
∫ I(z)

0
yλ(v)dv

}∫ z

0
exp

{
m(u) + 2

∫ I(u)

0
yλ(v)dv

}
du,

in other words, we have

hλ(x) = 1 + λ

∫ ∞
0

e−xzΦ(z)dz,

which was defined in 1.25. We first prove that hλ is well defined on (0,∞) or equivalently, we need to
prove that the mapping z 7→ e−xzΦ(z) is integrable on (0,∞) as soon as x > 0. With this aim in mind,
we observe that from the definition of m and I, (1.16) and (1.21), it is straightforward

exp

{
m(u) + 2

∫ I(u)

0
yλ(v)dv

}
−→ 1, as u→ 0, (5.11)

implying

e−xzΦ(z)∼ z

ω(z)
, as z → 0, (5.12)

which is integrable at 0 since z−1ω(z) goes to 1/c as z goes to 0. Then, in a neighbourhood of ∞, we see

from Lemma 1.7 that yλ(z) ≤
√
λ ϕ′(z)√

ω(ϕ(z))
which is equivalent to

√
2λ ϕ′(z)

σϕ(z) . Hence,

∫ I(z)

0
yλ(u)du = O (ln(z)) and I′(z)yλ(I(z)) = em(z)yλ(I(z))→ 0, as z →∞. (5.13)

Then, for any x > 0 and u ≥ ϑ, we have∣∣∣∣∣∣
exp

{
m(u) + 2

∫ I(u)
0 yλ(v)dv

}
(
x
2 + ψ(u)

ω(u) + I′(u)yλ(I(u))
)

exp
{
xu
2 +m(u) +

∫ I(u)
0 yλ(v)dv

}
∣∣∣∣∣∣ ≤

2 exp
{
−xu

2 +
∫ I(u)

0 yλ(v)dv
}

x
,

which goes to 0 as u goes to ∞. In other words,∫ z

0
exp

{
m(u) + 2

∫ I(u)

0
yλ(v)dv

}
dz = o

(
exp

{
xz

2
+m(z) +

∫ I(z)

0
yλ(v)dv

})
, as z →∞. (5.14)

Finally from the definition of Φ, we obtain

e−zxΦ(z) = o

(
1

ω(z)
e−

xz
2

)
, as z →∞, (5.15)

implying the integrability of z 7→ e−zxΦ(z) at ∞. It is important to note that (5.12) and (5.15), also
imply that the mappings z 7→ ze−xzΦ(z) and z 7→ z2e−zxΦ(z) are integrable on (0,∞) and that hλ is a
C2-function on (0,∞).

Now, we prove (1.26). Recall that the infinitesimal generator of Z satisfies (1.24), i.e. for any
f ∈ C2

b (R+)

Uf(x) = xAf(x)− cx2f ′(x) +
σ2

2
x2f ′′(x) (5.16)
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where A is the generator of the spectrally positive Lévy process associated to branching mechanism ψ.
Since, for f(x) = e−zx, Af(x) = ψ(z)e−zx with z ≥ 0, we deduce using twice integrations by parts that

Uhλ(x)− λhλ(x) = λ

∫ ∞
0

(
xψ(z) + x2ω(z)− λ

)
Φ(z)e−zxdz − λ

= λ

(∫ ∞
0

(
(ψΦ)′(z) + (ωΦ)′′(z)− λΦ(z)

)
e−xzdz − 1

− xw(z)Φ(z)e−xz
∣∣∣∣z=∞
z=0

+
(
ψ(z)Φ(z) + (ωΦ)′(z)

)
e−xz

∣∣∣∣z=∞
z=0

)
.

(5.17)

Let us prove that the right-hand side of the latter expression equals 0. Since m′(z) = ψ(z)
ω(z) and I′(z) =

em(z), we get

(ωΦ)′(z) = −ψ(z)Φ(z)− yλ(I(z))e−
∫ I(z)
0 yλ(v)dv

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu+ e

∫ I(z)
0 yλ(v)dv. (5.18)

In addition with the fact that yλ is solution to (1.23), we deduce that (ωΦ)′′(z) = −(ψΦ)′(z) + λΦ(z) for
any z ≥ 0. On the other hand, using (5.12) and (5.15), we have that

xw(z)Φ(z)e−xz
∣∣∣∣z=∞
z=0

= 0,

and from (5.18), together with (5.13) and (5.14), we deduce

lim
z→∞

(ψ(z)Φ(z) + (ωΦ)′(z))e−xz = 0,

as soon as x > 0. Therefore, it remains to study the previous limit but when z goes to 0. However,
according to (5.18),

lim
z→0

(ψ(z)Φ(z) + (ωΦ)′(z))e−xz = 1− lim
z→0

yλ(I(z))

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu. (5.19)

By Lemma 1.7 and (5.11), we deduce

yλ(I(z))

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu ≤

√
λ

ω(z)
e−m(z)

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu ∼

√
λ

cz
z, as z → 0,

which implies that the right-hand side of (5.19) equals 1. In other words, the right-hand side of (5.17)
equals 0, meaning that Uhλ(x) = λhλ(x) for any x > 0.

The next step is to prove that
∫∞

0 yλ(v)dv is finite under the Grey’s condition, indeed Lemma 1.7 is
not enought to conclude. With this goal in mind, we fix x > 0 and λ ≥ 0 and set the function Gλ,x as
follows,

Gλ,x(v) :=

∫ ∞
0

e−λtEx
[
e−vZt

]
dt, for any v ≥ 0.

This function is related with the Laplace transform of T0, indeed

lim
v→∞

λGλ,x(v) = Ex
[
e−λT0

]
.

From Theorem 1.2 the latter is positive since T0 <∞ a.s.
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Now, we provide some properties of Gλ,x. We first note that for any h belonging to the domain of U ,
the following identity holds

λ

∫ ∞
0

e−λtEx
[
h(Zt)

]
dt = h(x) +

∫ ∞
0

e−λtEx
[
Uh(Zt)

]
dt.

By taking h(x) = e−vx together with identity (5.16), we deduce

λGλ,x(v) = e−vx +

∫ ∞
0

e−λtEx
[
ψ(v)Zse

−vZs + ω(v)Z2
t e
−vZt]dt

= e−vx − ψ(v)G′λ,x(v) + ω(v)G′′λ,x(v).

Moreover λGλ,x(0) = 1 and the dominated convergence theorem implies

G′λ,x(v) = −
∫ ∞

0
e−λtEx[Zte

−vZt1{Zt>0}]dt −→ 0, as v →∞.

We now prove that Gλ,x is the unique solution to ω(v)y′′(v)− ψ(v)y′(v)− λy(v) = e−vx with conditions
λy(0) = 1 and limv→∞ y

′(v) = 0. In order to do so, we prove that the following function, for any v ≥ 0,

k(v) :=
1

λ
e−

∫ I(v)
0 yλ(s)ds

(
1 + λ

∫ v

0

∫ ∞
u

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds+m(u)+2

∫ I(u)
0 yλ(s)dsdzdu

)
(5.20)

satisfies the same conditions as Gλ,x. We first observe that∫ v

0

∫ ∞
u

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds+m(u)+2

∫ I(u)
0 yλ(s)dsdzdu

=

∫ ∞
0

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

(∫ v∧z

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu

)
dz

(5.21)

is finite according to (5.11). In other words, k is well defined. Moreover, λk(0) = 1 and since I′(z) =
exp(m(z)), a straightforward computation gives

k′(v) = −em(v)yλ(I(v))k(v) + em(v)+
∫ I(v)
0 yλ(s)ds

∫ ∞
v

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)dsdz. (5.22)

From (5.14) and (5.21), we deduce that k is bounded by some constant C on R and from Lemma 1.7, we
also see that ∣∣∣em(v)yλ(I(v))k(v)

∣∣∣ ≤ C√ λ

ω(v)
−→ 0, as v → +∞.

For the second term of the right-hand side of (5.22), we use a similar arguments to those used to deduce
(5.14) which gives∫ ∞

v

e−xz

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)dsdz = o

(
e−m(v)−

∫ I(v)
0 yλ(s)ds−xv

2

)
, as v →∞.

That is to say that k′(v) converges to 0 when v goes to ∞. Finally, from (5.22), a straightforward
computation provides

ω(v)k′′(v) = ψ(v)k′(v) + λk(v)− e−vx. (5.23)
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Putting all pieces together, we prove that k and Gλ,x satisfy the same differential equation with conditions
λk(0) = 1 and limv→∞ k

′(v) = 0. However, the set of functions that satisfy ω(v)y′′(v)−ψ(v)y′(v)−λy(v) =
e−vx with conditions λy(0) = 1 is exactly S := {kA, A ∈ R}, with

kA(v) := k(v) +Ae−
∫ I(v)
0 yλ(s)ds

∫ v

0
em(u)+2

∫ I(v)
0 yλ(s)ds,

Let us prove that limv→+∞ k
′
A(v) = 0 if and only if A = 0. Indeed,

k′A(v) = k′(v) +Aem(v)+2
∫ I(v)
0 yλ(s)ds

[
1− 1

α(v)

∫ v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu

]
,

where
1

α(v)
:= yλ(I(v))e−2

∫ I(v)
0 yλ(s)ds.

Using Lemma 1.7, we have

α′(v) = em(v)+2
∫ I(v)
0 yλ(s)ds

[
−
y′λ(I(v))

yλ(I(v))2
+ 2

]
= em(v)+2

∫ I(v)
0 yλ(s)ds

[
1 + λ

e−2m(v)

ω(v)y2
λ(I(v))

]
≥ 2,

for any v large enough. In other words, there exist v0 > 0 such that for any v ≥ v0,

1

α(v)

∫ v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu ≤ 1

2
− α(v0)

2α(v)
+

1

α(v)

∫ v0

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu.

Since limv→∞ α(v) =∞, the latter inequality guarantees

lim sup
v→∞

1

α(v)

∫ v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu ≤ 1

2
.

In addition to the expression of k′A, we deduce that limv→∞ k
′
A(v) = 0 if and only if A = 0. Thus there

exist a unique function in S that satisfies limv→∞ k
′
A(v) = 0. Finally, since both k and Gλ,x belong to S

and satisfy that their respective derivatives go to 0 as v increases then both functions are equals on R.
Furthermore, with a direct application of Fubini’s theorem

lim
v→∞

∫ v

0

∫ ∞
u

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds+m(u)+2

∫ I(u)
0 yλ(s)dsdzdu =

∫ ∞
0

e−zxΦ(z)dz > 0.

In addition with (5.20), we get

e−
∫∞
0 yλ(s)ds

(
1 + λ

∫ ∞
0

e−zxΦ(z)dz

)
= lim

v→∞
λk(v) = lim

v→∞
λGλ,x(v) = Ex

[
e−λT0

]
> 0.

We conclude that
∫∞

0 yλ(v)dv is finite and

Ex
[
e−λT0

]
= e−

∫∞
0 yλ(v)dv

(
1 + λ

∫ ∞
0

e−zxΦ(z)dz

)
. (5.24)

We next prove that hλ(0) = exp{
∫∞

0 yλ(v)dv}. The main issue comes from the following fact: we can
not make x tend to 0 directly in the formula of hλ since we do not know the integrability of Φ(z) near
∞. However, from (5.11) we know that for any u ∈ (0,∞),

λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z∧v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz <∞.
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The goal is to take v near ∞. Using Fubini’s theorem the following two changes of variables z 7→ I(z)
and v 7→ I(v), we find

λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z∧v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz

=

∫ I(v)

0
e2

∫ u
0 yλ(s)ds

∫ ∞
u

λ
e−2m(ϕ(z))

w(ϕ(z))
e−

∫ z
0 yλ(s)dsdzdu.

Recalling that

λ
e−2m(ϕ(z))

w(ϕ(z))
= λ

ϕ′(z)2

w(ϕ(z))
= y2

λ(z)− y′λ(z),

and using integration by parts, we finally deduce

λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z∧v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz = e

∫ I(v)
0 yλ(s)ds − 1.

Since the integrand is positive, we let v tend to ∞ to find

hλ(0) = 1 + λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz = e

∫∞
0 yλ(s)ds (5.25)

which is finite according to the previous step.
We now prove identity (1.27). First, let us assume that x ≥ a > 0. Recalling that Uhλ = λhλ, we

deduce from Itô’s formula

e−λt∧Tahλ(Zt∧Ta) = hλ(x) +

∫ t∧Ta

0
e−λsh′λ(Zs)

√
2γ2ZsdBs +

∫ t∧Ta

0
σe−λsh′λ(Zs)ZsdB

(e)
s

+

∫ t∧Ta

0

∫ ∞
0

∫ Zs−

0
e−λs (hλ(Zs− + z)− hλ(Zs−)) Ñ (b)(ds, dz, du).

Moreover hλ is positive non-increasing, h′λ is negative non-decreasing, and (Zs, s ≤ t ∧ Ta) take values
on [a,+∞). We then use a sequence of stopping time {Tn}n≥1 that reduces the local martingales of the
right-hand side of the previous identity and from the optimal stopping theorem, we obtain for any n ≥ 1

Ex
[
e−λt∧Ta∧Tnhλ(Zt∧Ta∧Tn)

]
= hλ(x).

Since hλ is bounded by hλ(0) <∞, we use the dominated convergence theorem and take n goes to 0 and
t goes to ∞. Since Ta < ∞ a.s. according to Theorem 1.2 and thus ZTa = a a.s., we deduce (1.27) for
x ≥ a > 0. For a = 0, identityt (1.27) has already been obtained in (5.24) and (5.25).

Next, we handle the result on the expectation of T0, i.e. identity (1.28), using similar arguments as
in the proof of Theorem 3.9 in [11]. We denote H(t, λ) for the Laplace transform Ex[e−λZt ], and observe

lim
λ→∞

∫ ∞
0

(1−H(t, λ))dt = Ex
[
T0

]
.

On the other hand, from (5.16), for any t ≥ 0, λ > 0,

∂H

∂t
(t, λ) = −ψ(λ)

∂H

∂λ
(t, λ) + ω(λ)

∂2H

∂λ2
(t, λ) = ω(λ)em(λ) ∂

∂λ

(
∂H

∂λ
(t, λ)e−m(λ)

)
,
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which, by integrating ∂H
∂λ e

−m(λ) with respect to λ yields to

∂H

∂λ
(t, λ) = −em(λ)

∫ ∞
λ

e−m(u)

ω(u)

∂H

∂t
(t, u)du

and then integrating again with respect to λ and t on [0, λ]× R, we obtain∫ ∞
0

(1−H(t, λ))dt =

∫ λ

0
em(u)

∫ ∞
u

e−m(z)

ω(z)
(1− e−zx)dzdu.

Letting λ go to ∞, we deduce (1.28).
Finally the process Z comes down from infinity since, under our assumptions, it satisfies the hypothesis

of Theorem 1.2. The proof of Theorem 1.8 is now complete.
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