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Extinction and coming down from infinity of CB-processes

with competition in a Lévy environment

H. Leman∗ and J.C. Pardo†

June 4, 2019

Abstract

In this note, we are interested on the event of extinction and the property of coming down from
infinity of continuous state branching (or CB for short) processes with competition in a Lévy environ-
ment whose branching mechanism satisfies the so-called Grey’s condition. In particular, we deduce,
under the assumption that the Lévy environment does not drift towards infinity, that for any starting
point the process becomes extinct in finite time a.s. Moreover if we impose an integrability condition
on the competition mechanism, then the process comes down from infinity regardless the long term
behaviour of the environment.

Key words and phrases: Continuous state branching processes in random environment, competi-
tion, extinction, coming down from infinity.
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1 Introduction and main results.

A continuous state branching process (or CB-process for short) is a [0,∞]-valued strong Markov process
Y = (Yt, t ≥ 0) with cádlág paths satisfying the branching property, that is to say, for all θ ≥ 0 and
x, y ≥ 0,

Ex+y

[
e−θYt

]
= Ex

[
e−θYt

]
Ey
[
e−θYt

]
.

This model arises as the scaling limit of Bienaymé-Galton-Watson (or BGW for short) processes; where
individuals behave independently one from each other and each individual gives birth to a random number
of offspring, with the same offspring distribution (see for instance Grimvall [13]). Moreover, its law is
completely characterized by the latter identity, i.e.

Ex
[
e−θYt

]
= e−xut(λ), t ≥ 0,

where u is a differentiable function in t satisfying

∂ut(λ)

∂t
= −ψ(ut(λ)), u0(λ) = λ, (1.1)
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jcpardo@cimat.mx

1



and ψ satisfies

ψ(λ) = −bλ+ γ2λ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
µ(dx), λ ≥ 0, (1.2)

where a, γ ∈ R and µ is a measure concentrated on (0,∞) such that∫
(0,∞)

(z ∧ z2)µ(dz) <∞. (1.3)

The function ψ is known as the branching mechanism of Y . A process in this class can also be defined as
the unique non-negative strong solution of the following stochastic differential equation (SDE for short)

Yt = Y0 + b

∫ t

0
Ysds+

∫ t

0

√
2γ2YsdBs +

∫ t

0

∫
(0,∞)

∫ Ys−

0
zÑ(ds, dz, du),

where B = (Bt, t ≥ 0) is a standard Brownian motion, N(ds, dz,du) is a Poisson random measure
independent of B, with intensity dsµ(dz)du and Ñ is the compensated measure of N . Solutions for this
type of SDE has been studied before, see for instance Dawson and Li [8] and Caballero et al. [7] and the
references therein.

A natural way to extend and make this model more realistic is by considering competition pressure.
Such type of models has been considered recently by several authors, under the name of CB-processes
with competition; see for instance Ba and Pardoux [2], Berestycki et al. [5], Foucart [11], Lambert [18],
Ma [25] and Pardoux [28] and the references therein. A well known example of this family of processes
is the so called logistic Feller diffusion which can be constructed as scaling limits of BGW-processes with
competition, see for instance Lambert [18].

CB-processes with competition can also be defined as the unique strong solution of an SDE and they
are determined by two components; a branching mechanism ψ and a competition mechanism g. The
competition mechanism g is a non-decreasing continuous function on [0,∞) with g(0) = 0. According to
Ma [25] (see also Berestycki et al. [5]) a CB-process with competition Y = (Yt, t ≥ 0) can be defined as
the unique strong solution of the following SDE

Yt = Y0 + b

∫ t

0
Ysds−

∫ t

0
g(Ys)ds+

∫ t

0

√
2γ2YsdB

(b)
s +

∫ t

0

∫
(0,∞)

∫ Ys−

0
zÑ (b)(ds, dz,du), (1.4)

where B(b) is a standard Brownian motion and N (b) is a Poisson random measure which is defined on R3
+,

with intensity measure dsµ(dz)du such that (1.3) is satisfied, and Ñ (b) denotes its compensated version.
Lambert [18] studied the long term behaviour of the logistic case i.e. g(x) = cx2, for x ≥ 0 and c > 0,

using a Lamperti-type representation (random time change) where the driven process turns out to be a
generalised Ornstein-Uhlenbeck process driven by a spectrally positive Lévy process, here denoted by X,
satisfying a logarithmic moment condition. To be more precise when the process X is a subordinator then
the associated logistic branching process Y may converge to a specified distribution or to 0 in probability
(see Theorem 3.4 in [18]). When X is not a subordinator, then the process Y goes to 0 a.s. Moreover,
the process Y gets extinct in finite time a.s. accordingly as∫ ∞ du

ψ(u)
<∞, (1.5)

which is the so-called Grey’s condition. In [18], under Grey’s condition, the Laplace transform of the
extinction time was computed explicitly and the law of the process coming down from infinity was also
determined.
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More general competition mechanisms were considered by Ba and Pardoux [2] in the case where
the branching mechanism is of the form ψ(u) = γ2u2, for u ≥ 0, see also Chapter 8 in the book of
Pardoux [28]. Actually, they allow the competition mechanism g to be a continuous function and not
necessarily monotone and provided a necessary and sufficient condition for the process to become extinct.
In this setting, if g is negative and non-increasing then the competition mechanism can be interpreted as
cooperation in the sense of Gonzalez-Casanova et al. [12].

Branching processes in random environment (BPREs) were first introduced and studied by Smith and
Wilkinson [30] and since then they have attracted considerable interest (see for instance [1, 6] and the
references therein). BPREs are interesting since they are more realistic models compared with classical
branching processes and, from the mathematical point of view, they have new properties such as another
phase transition in the subcritical regime. Scaling limits in the finite variance case were conjectured by
Keiding [16] who introduced Feller diffusions in random environment. This conjecture was proved by
Kurtz [17] and more recently by Bansaye and Simatos [3] in more general cases. The continuous state
version, with an environment driven by a Lévy process, was recently introduced independently by He et
al. [14] and Palau and Pardo [27], as the unique strong solution of an SDE (see below) under the name
of CB-processes in Lévy environment.

In this paper, we are interested in CB-processes with competition in a Lévy environment which are
defined as the unique strong solution of the following SDE

Zt = Z0 + b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s

+

∫ t

0

∫
(0,∞)

∫ Zs−

0
zÑ (b)(ds, dz, du) +

∫ t

0
Zs−dSs,

(1.6)

where g is a non-decreasing continuous function on [0,∞) with g(0) = 0, B(b) and N (b) are defined as
before and S is a Lévy process independent of B(b) and N (b) which can be written as follows

St = dt+ σB
(e)
t +

∫ t

0

∫
(−1,1)c

(ez − 1)N (e)(ds, dz) +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz), (1.7)

with d ∈ R, σ ≥ 0, B(e) = (B
(e)
t , t ≥ 0) is a standard Brownian motion and N (e) is a Poisson random

measure taking values on R+ × R with intensity dsπ(dz) satisfying∫
R\{0}

(1 ∧ z2)π(dz) <∞. (1.8)

In particular, our aim is to determine under which conditions such family of processes becomes extinct
(with positive probability or almost surely) and comes down from infinity.

For our purposes, we also introduce the auxiliary Lévy process which is a modification of S,

Kt = mt+ σB
(e)
t +

∫ t

0

∫
(−1,1)c

zN (e)(ds, dz) +

∫ t

0

∫
(−1,1)

zÑ (e)(ds, dz), t ≥ 0,

where

m = b+ d− σ2

2
−
∫

(−1,1)
(ez − 1− z)π(dz).

It is important to note that the drift term m of the process K provides the interaction between the
demographic and environmental parameters.

We denote by Px the law of Z starting from x > 0, and we define by T0 = inf{t ≥ 0, Zt = 0} the first
hitting time to 0 of Z, with the convention that inf{∅} =∞. In the case without competition i.e. g ≡ 0,
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He et al. [14] proved that the so-called Grey’s condition (1.5) is necessary and sufficient for CB-processes
in a Lévy environment to become extinct with positive probability (see Theorem 4.1 in [14]). Moreover,
if the auxiliary process K does not drift to ∞ or equivalently

lim inf
t→∞

Kt = −∞, (1.9)

and Grey’s condition (1.5) holds, then its associated CB-process in a Lévy environment becomes extinct
at finite time a.s., see Corollary 4.4 in [14]. It is important to note that when condition (1.9) is fullfilled,
the associated CB-process in a Lévy environment is critical or subcritical.

We also point out that under the assumption (1.3), the CB-process in a Lévy environment does not
explode. The proof of this claim follows exactly the same arguments of Proposition 1 in [26] where the
authors consider the specific case of Brownian environment. Indeed, in their arguments the environment
does not play any role, when assumption (1.3) is fulfilled the non-explosion only depends on the branching
mechanism.

Our first result, which follows from a comparison criteria for CB-processes with competition in a
Lévy environment (see Lemma 2.1 below), gives a necessary condition under which they become extinct.

Before stating it, we introduce the CB-process in a Lévy environment Z] = (Z]t , t ≥ 0) as the unique

strong solution of (1.6) but with g ≡ 0. For simplicity, we denote its law starting from x > 0 by P]x.

Proposition 1.1. Assume that the Lévy measure µ associated to the branching mechanism ψ satisfies
(1.3). For y ≥ x ≥ 0, we have that (Z,Px) is stochastically dominated by (Z,Py), i.e.

P
(
Zt(x) ≤ Zt(y) for all t ≥ 0

)
= 1,

where Z(v) denotes (Z,Pv), under P. Moreover, the process (Z,Px) is stochastically dominated by (Z],P]y)
and, in particular, if the branching mechanism ψ satisfies Grey’s condition (1.5), then (Z,Px) becomes
extinct with positive probability and its semigroup is strong Feller. Furthermore if K does not drift to ∞
or equivalently satisfies (1.9) then (Z,Px) becomes extinct at finite time a.s.

For the sequel, we always assume that Grey’s condition is fulfilled. In other words, the CB-processes
with competition in a Lévy environment that we are considering here become extinct with positive prob-
ability and are strong Feller.

We now state our main result which provides a sufficient condition on the competition mechanism
for CB-processes with competition in a Lévy environment to become extinct a.s. even for favorable
environments, i.e. when K drifts to +∞. In other words, the condition on the competition parameter
is so strong that the process become extinct regardless the long term behaviour of the environment. To
this aim, we assume the following integral condition on the competition mechanism g: assume that there
exists z0 > 0 such that g(z0) > 0 and ∫ ∞

z0

dy

g(y)
<∞. (1.10)

Actually, the above condition implies that the associated CB-process with competition in a Lévy random
environment comes down from infinity. This phenomenon has been observed and studied by several
authors in branching processes with interactions, see for instance González-Casanova et al. [12], Lambert
[18], Li [23], Li et al. [24] and Pardoux [28] and also for stable jump diffusions by Döring and Kyprianuo
[9] and some jump diffusions by Bansaye [4]. Formally, we define the property of coming down from
infinity in the sense that ∞ is a continuous entrance point, i.e.

lim
M→∞

lim
x→∞

Px(TM < t) = 1 for all t > 0,
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where TM = inf{t ≥ 0 : Zt ≤ M} and the original process can be extended into a Feller process on
[0,∞] (see for instance Theorem 20.13 in Kallenberg [15] for the diffusion case or Definition 2.2 for Feller
processes in [9]).

Theorem 1.2. Assume that the Lévy measure µ associated to the branching mechanism satisfies (1.3).
If Grey’s condition (1.5) and (1.10) hold, then

sup
x>0

Ex[T0] <∞,

the boundary point ∞ is a continuous entrance point and the process Z comes down from infinity.

The previous result can be applied to the particular case when the competition mechanism is logistic
(i.e. g(x) = cx2) and the random environment is driven by a Brownian motion. Actually, further explicit
computations can be carried out for the Laplace transform of the extinction time under P∞, the law
of the process starting from ∞, as it is done in Leman and Pardo [22] where the case of the logistic
branching process in a Brownian environment is presented.

The remainder of this note is devoted to the proofs.

2 Proofs

In order to prove Proposition 1.1, we introduce the following stochastic processes as unique strong solu-
tions of the SDE’s. For i = 1, 2, we let

Z
(i)
t = Z

(i)
0 +

∫ t

0
gi(Z

(i)
s )ds+

∫ t

0

√
2γ2Z

(i)
s dB(b)

s +

∫ t

0

∫
(0,∞)

∫ Z
(i)
s−

0
zÑ (b)(ds, dz,du) +

∫ t

0
Z

(i)
s−dS(i)

s ,

where

S
(i)
t = dt+ σB

(e)
t +

∫ t

0

∫
(−1,1)c

bi(z)N
(e)(ds, dz) +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz),

with g1(z) ≥ g2(z), for z ≥ 0, and b1(z) ≥ b2(z) for z ∈ R such that, for i = 1, 2

bi(z) + 1 ≥ 0, for z ∈ R.

We also assume that for each m ≥ 0, there is a non-decreasing concave function z 7→ rm(z) on R+

satisfying
∫

0+ rm(z)dz =∞ and

|gi(x)− gi(y)|+ d|x− y|+ |x− y|
∫

(−1,1)c

(
|bi(z)| ∧m

)
π(dz) ≤ rm(|x− y|), for i = 1, 2, (2.1)

for every 0 ≤ x, y ≤ m. According to Proposition 1 in Palau and Pardo, the previous SDE’s possess
unique positive strong solutions that we denote by Z(i) for i = 1, 2.

Our next result can be deduced using similar arguments as those used in the proof of Theorem 2.2 in
[8]. For simplicity on exposition we provide its complete proof.

Lemma 2.1. If Z
(1)
0 ≥ Z(2)

0 , a.s. then

P
(
Z

(2)
t ≤ Z(1)

t for all t ≥ 0
)

= 1.
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Proof. Let τm = inf{t ≥ 0 : Z
(1)
s ≥ m or Z

(2)
s ≥ m} for m ≥ 1. According to the proof of Proposition 1

in Palau and Pardo [27], for i = 1, 2, we have Z
(i)
t = Z

(i,m)
t for t < τm, where Z(i,m) is the unique strong

solution to

Z
(i,m)
t = Z

(i)
0 +

∫ t

0
gi(Z

(i,m)
s ∧m)ds+

∫ t

0

√
2γ2Z

(i,m)
s ∧m dB(b)

s

+

∫ t

0

∫
(0,∞)

∫ Z
(i,m)
s− ∧m

0
(z ∧m)Ñ (b)(ds, dz, du) +

∫ t

0

(
Z

(i,m)
s− ∧m

)
dS(i,m)

s ,

where

S
(i)
t = dt+ σB

(e)
t +

∫ t

0

∫
(−1,1)c

(
bi(z) ∧m

)
N (e)(ds, dz) +

∫ t

0

∫
(−1,1)

(
(ez − 1) ∧m

)
Ñ (e)(ds,dz).

In other words for m ≥ 1, we have

P
(
Z

(1)
t ≥ Z(2)

t , for all t < τm

)
= P

(
Z

(1,m)
t ≥ Z(2,m)

t , for all t < τm

)
.

Then, a direct application of Theorem 2.2 in [8] implies that the latter probability equals one. This ends
the proof of Lemma 2.1.

Proof of Proposition 1.1. The first statement follows directly from Lemma 2.1 by taking

g1(z) = g2(z) = (d + b)z − g(z) for z ≥ 0 and b1(z) = b2(z) = ez − 1 for z ∈ R.

For the second statement, we recall that the competition mechanism g is positive and non-decreasing
implying that we can take g1(z) = (d + b)z, g2(z) = (d + b)z − g(z) and b1(z) = b2(z) = ez − 1. Again

from Lemma 2.1, we deduce that the process (Z,Px) is stochastically dominated by (Z],P]y) for y ≥ x.
In other words, from Theorem 4.1 and Corollary 4.4 in [14], we deduce that (Z,Px) becomes extinct with
positive probability and that if K does not drift to ∞ or equivalently satisfies (1.9) then the process
becomes extinct at finite time a.s.

In order to conclude our proof, it remains to deduce that the process (Z,Px) is strong Feller under
Grey’s condition (1.5). To do so, we use a similar argument as in Theorem 4.5 [14]. We introduce
another formulation of CB-processes with competition in a Lévy environment for all initial values. From
Theorem III.6 in El Karoui and Méléard [10], on an extension of the original probability space we can
define W (ds, du) a time-space Gaussian white noise on (0,∞)2 with intensity dsdu such that (1.6) may
be rewritten as follows

Zt = x+ b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

√
2γ2

∫ t

0

∫ Zs

0
W (ds, du)

+

∫ t

0

∫
(0,∞)

∫ Zs−

0
zÑ (b)(ds, dz, du) +

∫ t

0
Zs−dSs.

According to Proposition 1 in Palau and Pardo [27] (see also the proof of Theorem 4.5 of He et al. [14]
for the case g ≡ 0), for each x ≥ 0, there is a unique strong solution of the previous SDE that we denote

by (Γ
(x)
t , t ≥ 0) with Γ

(x)
0 = x, which is also a Markov process with the same transition semigroup as

(Zt,Px), i.e.

Ptf(z) := Ez[f(Zt)] = E
[
f
(

Γ
(z)
t

)]
.
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Similar arguments as those used in the proof of Lemma 2.1 allow us to conclude that, for y ≥ 0, we have

P
(

Γ
(y)
t ≥ Γ

(x)
t , for all t ≥ 0

)
= 1.

We claim that the process Γ
(x,y)
t := Γ

(y)
t − Γ

(x)
t , for t ≥ 0, satisfies a similar equation. Indeed

Γ
(x,y)
t := y − x+ b

∫ t

0
Γ(x,y)
s ds−

∫ t

0
G

Γ
(x)
t

(Γ(x,y)
s )ds+

√
2γ2

∫ t

0

∫ Γ
(x,y)
s

0
W ′(ds, du)

+

∫ t

0

∫
(0,∞)

∫ Γ
(x,y)
s−

0
zÑ (b)′(ds, dz, du) +

∫ t

0
Γ

(x,y)
s− dSs,

where Gx(z) = g(x+ z)− g(x) is a non-decreasing continuous and positive function on [0,∞),

W ′(ds, du) = W (ds, du+ Γ(x)
s ),

and
Ñ (b)′
x (ds, dz,du) = Ñ (b)

x (ds, dz, du+ Γ(x)
s )

which are respectively a Gaussian white noise with intensity dsdu and a Poisson random measure with
intensity dsµ(dz)du. Using again the version of Lemma 2.1 for the SDE with Gaussian white noise, we
deduce

P
(

Γ
(x,y),]
t ≥ Γ

(x,y)
t , for all t ≥ 0

)
= 1,

where the process Γ(x,y),] is the unique strong solution of

Γ
(x,y),]
t := y − x+ b

∫ t

0
Γ(x,y),]
s ds+

√
2γ2

∫ t

0

∫ Γ
(x,y),]
s

0
W ′(ds, du)

+

∫ t

0

∫
(0,∞)

∫ Γ(x,y),]

0
zÑ (b)′(ds, dz,du) +

∫ t

0
Γ

(x,y),]
s− dSs,

which is equivalent to (Z],P]y−x). In other words, the process Γ(x,y) hits 0 a.s., and from its dynamics we
observe that 0 is an absorbing boundary.

Now, let f ∈ Bb(R), the space of bounded measurable functions, and let

T (x,y) = inf{t ≥ 0 : Γ
(y)
t = Γ

(x)
t }.

Then Γ
(y)
t = Γ

(x)
t for t ≥ T (x,y) and observe,∣∣∣Ptf(y)− Ptf(x)

∣∣∣ ≤ E
[∣∣∣f(Γ

(y)
t )− f(Γ

(x)
t )
∣∣∣1{t<T (x,y)}

]
≤ 2‖f‖∞P(t < T (x,y))

≤ 2‖f‖∞P]y−x(T0 > t)

≤ 2‖f‖∞E
[
1− e−(y−x)vt(0,∞,K)

]
,

where ‖ · ‖∞ denotes the supremum norm and vt(0,∞,K) is a functional of the environment such that

P]y(Zt = 0|K) = e−yvt(0,∞,K) > 0,

see for instance Theorems 4.1 and 4.3 in He et al. [14]. In other words, |Ptf(y) − Ptf(x)| goes to 0 as
|x− y| goes to 0, implying that Ptf is a continuous function on [0,∞). The proof is now complete.
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We now prove Theorem 1.2.

Proof of Theorem 1.2. First of all, from Lemma 2.1, it is enough to prove our result for a process with
a random environment which has no downward jumps larger than 1− e−1. Hence, we assume in all this
proof that Z is solution to (1.6) with

St = dt+ σB
(e)
t +

∫ t

0

∫
(1,∞)

(ez − 1)N (e)(ds, dz) +

∫ t

0

∫
(−1,1)

(ez − 1)Ñ (e)(ds, dz), (2.2)

Our first step is to prove that the expectation of the extinction time of the process is finite. Recall that
TM denotes the first passage time for the process Z below a level M > 0, i.e. TM := inf{t ≥ 0, Zt ≤M}.
As we will see below, the finiteness of the first moment of such random times will be useful for deducing
our result. Hence, we first show that there exist M > 0 such that

sup
x≥0

Ex
[
TM
]

= sup
x≥M

Ex
[
TM
]
<∞. (2.3)

In order to deduce (2.3), we use similar arguments as those used in Le [19]. With this goal in mind, we
observe from Assumption (1.10) that

lim
y→+∞

g(y)− θy
y

=∞, (2.4)

for θ := max{b+ d, 0}. In addition from Lemma 2.3 in Le and Pardoux [20], we deduce that there exists
a0 > 0 such that g(y)− θy > 0 for any y ≥ a0 and∫ ∞

a0

dy

g(y)− θy
<∞. (2.5)

We then introduce A > θ(e− 1) large enough such that the inequality below holds

C(A) := 1−

(
θ(2γ2 + σ2)

2A2
+

θ

A(A− θ)

∫
(0,1)

z2µ(dz) +
1

A

(∫
(1,∞)

zµ(dz) + π(1)

)

+

(
θ

A2
+

θ

A(A− θ(e1 − 1))

)∫
(−1,1)

z2π(dz)

)
> 0,

(2.6)

where π(x) = π((x,∞)), x ≥ 0. From (2.4) and (2.5), it is clear that there exists a constant M > (a0+1)e
such that ∫ ∞

Me−1

dw

g(w)− θw
≤ 1

A
and g(y)− θy ≥ Ay ≥ A, for all y ≥Me−1. (2.7)

Such constant M will be our threshold. For our purposes, we define the function G in C2(R) as follows

G(y) =


∫ y

a0

dw

g(w)− θw
if y ≥ a0 + 1,

0 if y ≤ a0,
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and such that G is non-negative and non-decreasing. Thus applying Itô’s formula to G(Zt∧TM ), we find

G(Zt∧TM )−G(Z0) = −t ∧ TM −
∫ t∧TM

0

g′(Zs)− θ
(g(Zs)− θZs)2

(
γ2Zs +

σ2

2
Z2
s

)
ds

+

∫ t∧TM

0

√
2γ2Zs

g(Zs)− θZs
dB(b)

s +

∫ t∧TM

0

σZs
g(Zs)− θZs

dB(e)
s

+

∫ t∧TM

0

∫
(0,∞)

Zs

(
G(Zs + z)−G(Zs)−

z

g(Zs)− θZs

)
µ(dz)ds

+

∫ t∧TM

0

∫
(0,∞)

∫ Zs−

0
[G(Zs− + z)−G(Zs−)]Ñ (b)(ds, dz,du)

+

∫ t∧TM

0

∫
(1,∞)

[G(ezZs−)−G(Zs−)]N (e)(ds, dz)

+

∫ t∧TM

0

∫
(−1,1)

[G(ezZs−)−G(Zs−)]Ñ (e)(ds, dz)

+

∫ t∧TM

0

∫
(−1,1)

(
G(ezZs)−G(Zs)−

(ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds.

(2.8)

Firstly, note that Zs ≥ Me−1 > a0 + 1 for any s ≤ t ∧ TM , in other words, we have an explicit formula
for G(Zs). Next, we take expectations under the assumption that the process Z starts at x ≥M , in both
sides of the previous identity and we study separately each term of the right-hand side. Our aim is to
show that each expectation can be bounded from above using Ex[t ∧ TM ]. For simplicity, we enumerate
the lines in order of appearance.

(1) For the first integral of the right hand side of (2.8), we recall that Zs ≥ Me−1 for s ≤ t ∧ TM ,
that g is non-decreasing and we use the second formula in (2.7) to deduce

Ex
[∫ t∧TM

0

θ − g′(Zs)
(g(Zs)− θZs)2

(
γ2Zs +

σ2

2
Z2
s

)
ds

]
≤ θ(2γ2 + σ2)

2A2
Ex
[
t ∧ TM

]
. (2.9)

(2) Studying the quadratic variation of both continuous local martingales of the second line of the
right-hand side of (2.8) together with the second formula in (2.7), we observe that both processes are
real martingales. Therefore their expectations are equal to 0.

(3) We study the integral that appears in the third line in (2.8) by separating (0,∞) into two parts
(0, 1] and (1,∞). We first deal with the integral restricted to (0, 1). Since g is non-decreasing, we bound
G(Zs + z)−G(Zs) from above by z(g(Zs)− θ(Zs + z))−1. In addition with the second formula in (2.7),
we obtain the following upper bound

Ex

[∫ t∧TM

0

∫
(0,1)

Zs

[
G(Zs + z)−G(Zs)−

z

g(Zs)− θZs

]
µ(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(0,1)

θz2Zs
(g(Zs)− θ(Zs + z))(g(Zs)− θZs)

µ(dz)ds

]

≤ Ex
[
t ∧ TM

] θ

A(A− θ)

∫
(0,1)

z2µ(dz) <∞.

(2.10)

Concerning the integral restricted to (1,∞), we drop the last term, which is negative, and we use again
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the second formula in (2.7) to bound G(Zs + z)−G(Zs) and find

Ex

[∫ t∧TM

0

∫
(1,∞)

Zs

[
G(Zs + z)−G(Zs)−

z

g(Zs)− θZs

]
µ(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(1,∞)

∫ z

0

Zs
A(Zs + w)

dwµ(dz)ds

]
≤

∫
(1,∞) zµ(dz)

A
Ex
[
t ∧ TM

]
.

(2.11)

(4) Again, we split the interval (0,∞) into (0, 1] and (1,∞) and use similar computations as in part
(3) in order to deduce that the integral restricted to (0, 1] is a square integrable martingale and the
integral restricted to (1,∞) is a martingale. In other words, we manipulate

Ex

[∫ t∧TM

0

∫
(0,∞)

Zsf(G(Zs + z)−G(Zs), z)µ(dz)ds

]
,

with f(x, z) = x21(0,1](z) and f(x, z) = |x|1(1,∞)(z) respectively. Their expectations are thus 0.
(5) Similarly, using Fubini’s Theorem and the first inequality in (2.7), we deduce

Ex

[∫ t∧TM

0

∫
(1,∞)

|G(ezZs−)−G(Zs−)|π(dz)ds

]
≤ Ex

[∫ t∧TM

0

∫ ∞
Zs

dw

g(w)− θw

(∫ ∞
1

π(dz)

)
ds

]
≤ tπ(1)

(∫ ∞
Me−1

dw

g(w)− θw

)
≤ t

A
π(1).

In other words, the stochastic integral of the fifth term can be written as the sum of a martingale and a
finite variation process. Moreover its expectation is bounded from above by E[t ∧ TM ]π(1)/A.

(6) Since g(w) − θw ≥ Aw, we find that the integral term of the sixth line is a square integrable
martingale. Indeed, we observe

E

[∫ t∧TM

0

∫
(−1,1)

(∫ ezZs

Zs

dw

g(w)− θw

)2

π(dz)ds

]
≤ E

[∫ t∧TM

0

∫
(−1,1)

(∫ ezZs

Zs

dw

Aw

)2

π(dz)ds

]

≤ t

A2

∫
(−1,1)

z2π(dz) <∞.

In other words, its expectation is equal to 0.
(7) Finally, we study the last line in (2.8) by splitting again the integral into two parts, i.e. we

split (−1, 1) into (−1, 0] and (0, 1). Thus, using again the second inequality of (2.7) and the fact that
A > θ(e− 1), we deduce that for any w ∈ [0, y(ez − 1)], y ≥ 1 and z ∈ (−1, 1),

g(y + w)− θ(y + w) ≥ g(y)− θyez ≥ Ay − θ(e− 1)y > 0.

Hence,

Ex

[∫ t∧TM

0

∫
(0,1)

(
G(ezZs)−G(Zs)−

(ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(0,1)

(
(ez − 1)Zs

g(Zs)− θZsez
− (ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]

≤ Ex

[∫ t∧TM

0

∫
(0,1)

θ(ez − 1)2(Zs)
2

(AZs − θ(e1 − 1)Zs)(g(Zs)− θZs)
π(dz)ds

]

≤ Ex
[
t ∧ TM

] θ
∫

(0,1) z
2π(dz)

A(A− θ(e1 − 1))
.

(2.12)
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Similarly, we deal with the second part of the integral and deduce

Ex

[∫ t∧TM

0

∫
(−1,0)

(
G(ezZs)−G(Zs)−

(ez − 1)Zs
g(Zs)− θZs

)
π(dz)ds

]
≤ Ex

[
t ∧ TM

]θ ∫(−1,0) z
2π(dz)

A2
. (2.13)

Thus putting all pieces together (i.e. inequalities (2.9), (2.10), (2.11), (2.12), (2.13) and the bound
found in (5) together with (2.8), (2.6) and the three null-expectations), we deduce

Ex
[∫ Zt∧TM

x

dw

g(w)− θw

]
≤ −C(A)E[t ∧ TM ],

with C(A) > 0. In other words, for any x, t ≥ 0,

Ex
[
t ∧ TM

]
≤ 1

C(A)
Ex

[∫ x

Zt∧TM

dw

g(w)− θw

]
≤ 1

C(A)

∫ ∞
Me−1

dw

g(w)− θw
.

Hence using the Monotone Convergence Theorem, as t goes to ∞, we deduce (2.3).
In order to prove that the process becomes extinct almost surely, we first show that the time to

extinction for the process Z starting from M is not almost surely infinite. We recall that we assumed
that the environment has no negative jumps larger than 1− e−1. Using Proposition 1.1 (both processes
with the same restriction on the negative jumps of the environment), we observe that for any x ≤ M ,

the process (Z,Px) is stochastically dominated by (Z],P]x). The process Z] is a CB-process in a Lévy
random environment (without competition) which is characterized by the branching mechanism ψ(λ).
Since ψ satisfies Grey’s condition, Theorem 4.1 of [14] ensures that there is t0 > 0 for which

0 < P]M
(
Z]t0 = 0

)
≤ inf

x≤M
Px
(
Zt0 = 0

)
:= p.

Then we denote by T xM for the stopping time TM under Px. Reasoning by recurrence and using the
Markov property, we prove that the extinction time of Z is stochastically dominated from above by the
random variable

∑ξ
i=1(τ̄i+t0), where ξ is a geometric random variable that counts the number of random

steps before Z becomes extinct and {τ̄i}i≥0 are i.i.d., independent of ξ and have the same distribution
as supx≥0 T

x
M . To be more precise, the algorithm is as follows: we start from x, we wait a random time

τ1 ≤ τ̄1 until the process is below the level M and then the process becomes extinct before an time
interval of size t0 with probability p. If the process is not extinct after the time τ1 + t0, we start again
the procedure thanks to the Markov property. Hence,

sup
x≥0

Ex[T0] ≤ 1

p

(
t0 + E

[
sup
x≥0

T xM

])
=

1

p

(
t0 + sup

x≥0
Ex
[
TM

])
<∞,

and in particular the process becomes extinct a.s.
It remains to prove that the point ∞ is a continuous entrance point and that the process can be

extended to a Feller process on [0,∞]. Proposition 1.1 guarantees that the sequence of random variables
(Tm,Px) is increasing with respect to x. Thus, it converges almost surely to a random variable here
denoted by T∞m . Then, from the first part of this proof, for any m ≥M ,

sup
x≥m

Ex[Tm] ≤
∫ ∞
me−1

dw

g(w)− θw
−→
m→∞

0. (2.14)

From Chebyshev’s inequality and the Monotone Convergence Theorem, we deduce that for any t > 0

lim
m→∞

lim
x→∞

Px(Tm > t) ≤ lim
m→∞

lim
x→∞

Ex[Tm]

t
= 0.
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In other words the point ∞ is a continuous entrance point.
Next, we prove the extension to a Feller process on [0,∞]. Let C0([0,∞]) be the set of continuous

functions on [0,∞] that vanish at ∞ and recall that (Pt, t ≥ 0) denotes the semigroup associated to the
process Z which is Feller on [0,∞).

Let t > 0 be fixed. Recall, from Proposition 1.1, that for any non-decreasing sequence {xn}n≥1 of
strictly positive real numbers the sequence of random variable {Zt,Pxn}n≥1 is non-decreasing. Hence it
converges a.s. to a limit that we denote by Z∞t ∈ [0,∞]. Then, for any f ∈ C0([0,∞]), f is bounded and
from the Dominated Convergence Theorem, we deduce

Ptf(x) = Ex[f(Zt)] −→
x→∞

E[f(Z∞t )].

We denote this limit by Ptf(∞). Let us prove that the extension, defined as previously on [0,∞], gives a
Feller semigroup. The definition through a limit guarantees that P remains a semigroup on [0,∞]. Thus,
according to Chapter III of [29], it is sufficient to prove that for any f ∈ C0([0,∞]),

lim
t→0
‖Ptf − f‖[0,∞] = 0.

Observe that for any t ≥ 0, f ∈ C0([0,∞]), and x > 0, we have

‖Ptf − f‖[0,∞] ≤ ‖Ptf − f‖[0,∞) + |Ptf(∞)|
≤ 2‖Ptf − f‖[0,∞) + |Ptf(∞)− Ptf(x)|+ |f(x)|.

Since P is a Feller semigroup on [0,∞), we conclude that the term of the right hand side of the previous
inequality is small as soon as t is sufficiently small and x is chosen sufficiently large.

This ends the proof of Theorem 1.2.
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