Dr Emad Fatemi

AN EFFICIENT, INTERFACE PRESERVING LEVEL SET RE-DISTANCING ALGORITHM AND ITS APPLICATION TO INTERFACIAL INCOMPRESSIBLE FLUID FLOW

Keywords: Distance function, Incompressible, Level Sets AMS subject classi cations. 65M06, 76D05, 76T05

, A n umerical scheme was presented for computing incompressible air-water ows using the level set method. Crucial to the above method was a new iteration method for maintaining the level set function as the signed distance from the zero level set. In this paper we implement a \constraint" along with higher order di erence schemes in order to make the iteration method more accurate and e cient. Accuracy is measured in terms of the new computed signed distance function and the original level set function having the same zero level set. We apply our redistancing scheme to incompressible ows with noticeably better resolved results at reduced cost. We v alidate our results with experiment and theory. We s h o w that our \distance level set scheme" with the added constraint competes well with available interface tracking schemes for basic advection of an interface. We perform basic accuracy checks and more stringent tests involving complicated interfacial structures. As with all level set schemes, our method is easy to implement.

1. Introduction. Given an interface separating two regions in space, one would like t o b e a b l e to e ciently compute the distance to the closest point on the interface from many p o i n ts surrounding the interface. If the interface is moving, as in propagation of an air/water interface, one would like to use the previous distance function in order to speed up the computation of distance from the new interface. For applications of incompressible two-phase ow [START_REF] Sussman | A level set approach for computing solutions to incompressible twophase ow[END_REF][START_REF] Shu | E cient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes, II[END_REF], it is important to know the distance from an air/water interface in a small strip about the interface. This is needed for robustly computing with sti surface tension e ects. In 2], the distance from the zero level set, the interface, is needed in a small tube about the zero level set for determining which points need to be updated during propagation of the level set function. Other applications that need the shortest distance to a curve i n volve computer aided design (CAD, shape o sets see 7]), and computing minimal surfaces (see 3]). A brute force approach for nding the signed distance in a strip of k cells about the interface could be the following scheme:

1. Assume the computational domain is discretized into cells (i j). We wish to assign the variable d i j the value that is the signed distance between the closest point o n t h e i n terface and the the center of cell (i j).

2. Represent the interface as a collection of piecewise linear segments (a cell can contain a maximum of one linear segment).

3. Let d i j = + 1 if the center of cell (i j) lies on one side of the interface and let d i j = ;1 if the center of cell (i j) lies on the other side.

4. For each c e l l (i j) t h a t c o n tains a linear segment o f t h e i n terface, update the values of d i 0 j 0 within the strip ji ; i 0 j < k and jj ; j 0 j < k. The new value of d i 0 j 0 will be the signed distance that has a magnitude equal to the smaller of the original value of jd i 0 j 0 j and the distance from the line segment in cell (i j) to the center of cell (i 0 j 0).

The above s c heme has two drawbacks. First, the above process has to be repeated every time, even if the interface has moved a small amount. Secondly, the above method involves explicitly reconstructing the interface which c a n i n troduce error (see table 6.1, error for least squares reconstruction vs. L1 w/ x).

More elegant means for nding the signed distance can be found in the work of 4], 7], 6]

and 12]. In the work of 4], an O(N) method for redistancing the whole domain (N cells total)

was devised in which the distance from \marked" cells (pixels) were computed. Unfortunately, this method would not yield sub-pixel information thus the method is O(x) accurate.

I n 7 , 6 , 1 2], the levelset method is used to represent the interface between two regions. In level set methods 9], one represents an n-1 dimensional interface as the zero contour of an n-dimensional smooth function. For any i n terface, one can nd a reasonably smooth level set function such that (x y) = 0 on the interface. We note that a levelset function is a distance function if jr j = 1 . The redistance scheme in 7] would advect normal to itself for a speci ed time t. One then would know that all points on the zero level set of (x y t) are a distance t from the interface. This process can be repeated up to the required time. In the work done concurrently by 6 , 9], \fast-marching" methods were presented in which the equation jr j = 1 could be solved over the whole computational domain in O(N log N) operations. In \fast-marching" methods, a binary tree data structure is created that allows one to march through cells in a special order that allows only one pass per cell.

As opposed to the methods described above, the scheme presented in this paper is an iteration scheme designed to enforce j r j= 1 . The advantage of an iteration scheme is the fact that if the interface moves a little, one can e ectively use information from the previous value of distance to update the new values. Common to the levelset redistance methods described above 9 , 6] is the fact that the zero levelset has to be \re-anchored" every time the redistance operation is called. This is done by piecewise linear reconstruction of the zero-contour or by other means (see 1] page 6). Every time the interface is \re-anchored" the error is accumulated.

In 11], an iteration method based on the level set method was used to solve the equation j r j = (x) i n + = 0 o n @ + The method presented in 11] w as designed for shape from shading applications. If (x) 1, then the method can be applied to nding the distance from the zero level set on one side of the interface.

In 14], we p r e s e n ted a scheme in the same spirit as the scheme of 11], for maintaining the values of a level set function as the signed distance from the interface. The following equation was solved until j r j= 1 + O(h 2):

(x 0) = 0 t = s i g n (0)(1; j r j)
This enabled us to solve for the signed distance on both sides of the interface. In this paper, we improve the above s c heme in the following ways:

We formulate a constraint designed to prevent t h e straying of the zero level set from the initial position even after many iterations. This is very important, because we d o n o t w ant errors to accumulate due to repeated redistance operations on a level set function that changes little (as when used in conjunction with the advection equation for) i n b e t ween operations.

We will demonstrate (see gure 9.1) that we only need to solve t h e a b o ve equation up to time t = L where L is the thickness of the strip about the interface in which we need a distance function.

We use high order methods in time (Runge-Kutta) as well as space for solving the above equation.

2. Reinitialization. We assume that we h a ve a n i n terface de ned implicitly by the equation 0 (x y) = 0

(2.1)

The function, 0 is a level set function, but it is not a distance function. In order to compute the distance function from the initial 0 , w e can solve the following time dependent P D E t = sign(0)(1 ; j r j)

(2.2) with the initial condition (x y 0) = 0 (x y):

The steady state solution of this problem is the signed distance function from the boundary of the curve de ned implicitly by equation 2.1. To g a i n i n tuition about the above P D E , w e can solve the above problem for small time using the method of characteristics. In the domain where 0 (x y) i s p o s i t i v e, the solution is (x y t) = t + 0 (x ; tp= p p 2 + q 2 y ; tq= p p 2 + q 2) if t t 0 t 0 if t > t 0

(2.3) p = @ x 0 (x ; tp= p p 2 + q 2 y ; tq= p p 2 + q 2) q = @ y 0 (x ; tp= p p 2 + q 2 y ; tq= p p 2 + q 2) t 0 = Shortest distance from (x y) to the zero level set 0 (x ; t 0 p 0 = q p 2 0 + q 2 0 y ; t 0 q 0 = q p 2 0 + q 2 0) = 0

In the domain where 0 (x y) is negative, we h a ve (x y t) = ;t + 0 (x + tp= p p 2 + q 2 y + tq= p p 2 + q 2) if t t 0 ;t 0 if t > t 0

(2.4) p = @ x 0 (x + tp= p p 2 + q 2 y + tq= p p 2 + q 2) q = @ y 0 (x + tp= p p 2 + q 2 y + tq= p p 2 + q 2) t 0 = Shortest distance from (x y) to the zero level set 0 (x + t 0 p 0 = q p 2 0 + q 2 0 y + t 0 q 0 = q p 2 0 + q 2 0) = 0

If we assume regularity of the initial condition 0 and its rst and second derivatives, we can solve for (p q) for small time, t, using the implicit function theorem for the last two equations. Near the boundary, de ned by 0 (x y) = 0 the solution is extended from the point (x 0 y 0) b y (x 0 + tn x (x 0 y 0) y 0 + tn y (x 0 y 0)) = t (x 0 ; tn x (x 0 y 0) y 0 ; tn y (x 0 y 0)) = ;t where (n x n y) = (0x 0y)= q 2 0x + 2 0y :

We can see that this de nes a solution near the boundary for time small enough such t h a t t maxj j < 1 where is the curvature of the boundary de ned by 0 (x y) = 0 . If the boundary is parameterized by x(s) y (s), then the map x(s t) = x(s) tn x (s) y(s t) = y(s) tn y (s) (s t) (s(x y) t (x y)) = t can be de ned as long as we can invert the transformation to solve f o r (s t) in terms of (x y). For tj j 1, the determinant of the Jacobian, det(@(x y) @(s t)) = p x 2 s + y 2 s (1 t) is not zero. The Jacobian is computed using the fact that n x , n y and can be represented as: n x = y s p x 2 s + y 2 s n y = ;x s p x 2 s + y 2 s = y ss x s ; x ss y s (x 2 s + y 2 s) 3 2 :

3. Gradient Projection . The evolution equation for the interface t = L(0) = sign(0)(1 ; j r j)

(3.1) (x 0) = 0 (x)
conserves the volume of the domain bounded by the curve de ned implicitly by the equation 0 (x y).

This is due to the fact that it does not change the position of the boundary. In numerical computations this is not true anymore. We conserve the volume of the domain by requiring that:

@ t Z H() = 0 (3.2)
where H is a smoothed out approximation to the sign function and is any xed domain. We modify the evolution equation by t = L(0) + f()

(3.3)
is a function of t only, determined by requiring

@ t Z H() = Z H 0 () t = Z H 0 ()(L(0) + f()) = 0: (3.4)
Then is calculated to be = ; R H 0 ()L(0) R H 0 ()f() :

(3.5)

In our calculations we c hoose f() H 0 ()jr j:

(3.6)
This insures that we only correct at the interface, without disturbing the distance function property away f r o m t h e i n terface.

We note that if (3.1) is solved perfectly then will be zero. This is because L(0) as it appears in (3.1) will be zero in regions where H 0 () is not zero (the zero levelset of). Discretely, this is not true anymore, since the zero levelset of 0 may di er from that of due to numerical error.

Since the zero level set should be preserved by the reinitialization step, we require numerically that the mass remain unchanged in any subset of the domain . For numerical purposes, when we discretize the above equation, we wish to preserve the value R H() in every grid cell ij = ((x y)jx i;1=2 < x < x i+1=2 and y j;1=2 < y < y j+1=2). In light of this, our new form for equations (3.3) and (3.5) is:

t = L(0) + ij f() f o r x in ij (3.7) ij = ; R ij H 0 ()L(0) R ij H 0 ()f() (3.8)
ij is assumed to be piecewise constant constant in each c e l l ij . Thus, at a discrete level, is a function of both space and time, vanishing outside of a small neighborhood of the front.

4. Numerical Implementation . We describe how to discretize (3.7) and (3.8) for 0 already close to a distance function. That is, j 1; j r 0 jj= O(t advect) near the interface (j 0 j < x).

This will be the case for problems in which t h e l e v elset function is advected due to a velocity eld, and one needs to maintain the levelset function as a distance function. If one starts o a problem with a l e v elset function that is far from a distance function (e.g. = 1 i n uid 1 and = ;1 i n uid 2), then an initial \once-only" redistance step must be performed at t = 0 . We refer the reader to methods presented by 4 , 6 , 1 2] and ourselves (see Appendix A) for doing the initial redistance step. While our method for doing the \once-only" redistance step may not be the most e cient, it requires the least extra programming. It is a slight modi cation of the method presented here for the case when 0 is already close to a distance function.

We assume h = x = y, where h is the spacing between grid points.

We rst de ne the discretized version of the Heaviside function H() and sign function sign(0) as they appear in (3.7) and (3.8):

H x () 8 < : 1 if > x 0 if < ; x 1 2 (1 + x + 1 sin(= x)) otherwise (4.1) sign x () 2(H x () ; 1=2) (4.2)
If we w ant t o r e c o ver the distance function a distance x from the zero level set of , w e need to solve equation (3.1) for t = 0 : : : x. This is apparent i f w e put equation (3.1) in the form t + w r = sign(0)

(4.3) w = (r = j r j)sign(0) (4.4)
The vector w has magnitude one and points away from the zero level set, hence the characteristics propagate away from the interface with speed one. This can be seen in gure 9.1 where an initially discontinuous levelset function becomes a distance function for points within x of the initial levelset function after time t = x. We also deduce from equation (4.4) that a valid time-step obeying the CFL condition is t = x=2. Equation 4.4 has the form of an advection equation with velocity w so we use upwinded ENO type schemes (see [START_REF] Sethian | A m a r ching level set method for monotonically advancing fronts[END_REF][START_REF] Danielsson | Euclidean Distance Mapping[END_REF]) to approximate the spatial derivatives. Given n we s o l v e for ~ n+1 using second or third order ENO plus second or third order Runge-Kutta. [START_REF] Chopp | Computing Minimal Surfaces Via Level Set Curvature F l o w[END_REF].1. First order discretization . We will present the rst order method below and refer the reader to Appendix B for a description of the third order method. For rst order we h a ve:

1. Let 0 be initial data at time t 0 = 0 . Repeat the following steps up to t N = x.

2. compute an approximation to j r n j. x i j ; i;1 j x :

(4.6) (b) @ n @ x 8 < : D + x n if D + x n sign(0) < 0 a n d (D ; x n + D + x n)sign(0) < 0 D ;
x n if D ;

x n sign(0) > 0 and (D + x n + D ;

x n)sign(0) > 0 0 if D ;

x n sign(0) < 0 and D + x n sign(0) > 0

The approximation for @ n @y is computed in a similar manner.

3. Let L(0 n) = s i g n (0)(1; j r n j). 4. Let ~ n+1 = n + (t)L(0 n) 5. Gradient projection step: n+1 = ~ n+1 + t i j H 0 x (0) j r 0 j (4.7)
where,

i j = ; R ij H 0 x (0) ~ n+1; 0 t R ij H 0 x (0)] 2 j r 0 j : (4.8)
The numerical integration over the domain ij = ((x y)jx i;1=2 < x < x i+1=2 and y j;1=2 < y < y j+1=2) is computed using a nine point stencil:

Z ij g h 2 24 (16g ij + 1 X m n=;1 (m n)6 =(0 0) g i+m j+n):
4.2. Discretization of the Constraint . In (4.7) and (4.8), we c hose to discretize the constraint (see (3.7) and (3.8) for the non-discretized formulation) by discretizing H 0 () as H 0 x (0), L(0 n) as ~ n+1; 0 t and f() as H 0 x (0) j r 0 j. For high order Runge-Kutta methods where we h a ve m ultiple \predictor" steps per time-step (see Appendix B), we still only apply the gradient projection (constraint) once per timestep. Thus, for an r-th order Runge-Kutta scheme, we h a ve:

(i) = i;1 X k=0 ik (k) + ik tL(0 (k)) i = 1 : : : r (0) = n ~ n+1 = (r)
The constraint is then applied as in (4.7) to ~ n+1 .

In this section we rst give a justi cation as to why our constraint: maintains the zero levelset of n to be very close to that of 0 .

Does not disturb the distance property o f n . That is to say, i f jr ~ n j = 1 + O(t advect), then jr n j = 1 + O(t advect).

We designed the discretization of the constraint i n s u c h a w ay a s t o remove t h e leading order term of the error in the quantity Z ij (H x (n+1) ; H x (0)): (4.9)

If we write the Taylor expansion of (4.9) we h a ve:

Z ij H x (n+1) ; Z ij H x (0) = (4.10) Z ij H 0 x (0)(n+1 ; 0) + Z ij
H 00 x (0)(n+1 ; 0) 2 =2 + : : :

If we assume that i j is piecewise constant i n e a c h c e l l i j , then the leading order term,

Z ij H 0 x (0)(n+1 ; 0) can be written as, Z ij H 0 x (0)(~ n+1 + t i j H 0 (0) j r 0 j ; 0) = t Z ij (H 0 x (0) ~ n+1 ; 0 t) + i j Z ij (H 0 x (0)] 2 j r 0 j)]
If we plug in our expression for i j (4.8), we h a ve cancellation and the above leading order term is zero.

Since we assumed at the outset of this section that j 1; j r 0 jj= O(t advect) near the interface (j 0 j < x), we can provide a justi cation of why the constraint does not disturb the distance property of n . For this discussion, we only need to concern ourselves with points in which the constraint term is not zero that is, H 0 x (0) 6 = 0. This will be the case if j 0 j x. For our explanation, we assume that:

jr n;1 j = 1 + O(t advect)

Due to the fact that the constraint r e m o ves the leading order term of the mass error, Z i j (n;1 ; 0)H 0 x (0) = 0 we assume that we h a ve the bound j n;1 ; 0 j = O(h t advect) (4.11)

for j 0 j < x. We rst note that since jr n;1 j = 1 + O(h t advect) t h e n w e assume, jr ~ n j = 1 + O(h t advect):

According to 11] (see eqn. [START_REF] Pilliod | Second Order Volume of Fluid Algorithms for Tracking Material Interfaces[END_REF] of 11]), the rst order discretization

~ n = n;1 + t(1 ; j r n;1 j) (4.12)
is a monotone, consistent s c heme that leads to convergence of jr ~ n j ; 1 t o z e r o . As pointed out in 14], this can carry over to the case when is positive or negative:

~ n = n;1 + tS x (0)(1 ; j r n;1 j):

(4.13)
So, if jr n;1 j = 1 + O(t advect), then we will also have jr ~ n j = 1 + O(t advect). We also gather from (4.13), that since jr n;1 j = 1 + O(t advect), we h a ve j ~ n ; n;1 j = O(h t advect).

The assumption in (4.11) implies that j ~ n ; 0 j < j ~ n ; n;1 j + j n;1 ; 0 j = O(h t advect):

(4.14)
In order to show that the constraint term does not disturb the distance function property near the interface, we will show that the constraint term is O(h t advect).

From (4.7), we h a ve: n = ~ n + t H 0 x (0)jr 0 j:

(4.15)
By making use of the fact that jr 0 j ; 1 = O(t advect) and also making use of the fact that ~ n ; 0 t = O(t advect) (4.14), we h a ve the resulting discretization of the constraint term (denoting H 0 x ((0) i j) b y H 0 i j): tj i j H 0 x ((0) i j)jr 0 j i j j tj i j H 0 x ((0

) i j)j = t R ij H 0 x (0)j ~ n; 0 t j R ij H 0 x (0) 2 jr 0 j H 0 i j < h max ij j ~ n ; 0 t j R ij H 0 x (0)H 0 i j R ij H 0 x (0) 2 (1 + O(h)) = O(h t advect) 16(H 0 i j) 2 + P 1 m n=;1 (m n)6 =(0 0) H 0 i+m j+n H 0 i j 16(H 0 i j) 2 + P 1 m n=;1 (m n)6 =(0 0) (H 0 i+m j+n) 2 = O(h t advect) 16 + P 1 m n=;1 (m n)6 =(0 0) (H 0 i+m j+n =H 0 i j) 16 + P 1 m n=;1 (m n)6 =(0 0) (H 0 i+m j+n =H 0 i j) 2 < 2 O(h t advect)
] So, using the fact that the constraint term is O(h t advect), we see from (4.14) and (4.15) that j n ; ~ n j x = O(t advect) and thus, jr n j = 1 + O(t advect) 4.2.1. Redistance step coupled to advection equation. In the discussion above, we showed that the constraint eliminated the leading order term in the mass error (4.11). We also showed that, so long as the following condition was met, j1; j r 0 j j < O (t advect): then the constraint w ould not disturb the distance function property o f ~ n . For applications involving a moving interface we can show that the above bound is satis ed after every advective time step using the following heuristic argument. We assume that we h a ve calculated a distance function in the previous computational cycle, d 0 . Then we compute the new level set by computing t = ;u r (x 0) = d 0 (x)

The new level set is 0 = (x t advect).

We claim that jr 0 j = 1 + O(t advect). This can be seen by @ t jr j = (r =jr j) r (u r) Now this is of order one, since u r is the component o f t h e v elocity eld normal to the interface and it is continuous even around the interface. Therefore its gradient is of order one and @ t jr j = O(1): This implies that j r 0 j= 1 + O(t advect). We note, that if t advect (time step for the scheme that moves the interface) approaches zero, then our bound on the mass error gets stricter. [START_REF] Chopp | Computing Minimal Surfaces Via Level Set Curvature F l o w[END_REF].2.2. Alternative discretizations for the constraint. Other alternatives to our discretization exist. For example, we could choose to replace (4.7) and (4.8) with:

n+1 = ~ n+1 + t i j H 0 x (~ n+1)jr ~ n+1 j i j = ; R ij H 0 x (~ n+1) ~ n+1 ; n t R ij H 0 x (~ n+1)] 2 jr ~ n+1 j :
Unfortunately, the above discretization would not have the cancellation of the error term appearing in (4.10) as does the discretization of (4.7) and (4.8). We could also apply the redistance after each i n termediate step of the Runge-Kutta iteration. We h a ve found results in either of the above variations not to be as good as that described in (4.7) and (4.8).

Numerical Examples in one dimension.

Our tests use a one dimensional version of the above re-distance scheme. We use second order ENO along with second order Runge-Kutta for discretizing the redistance equations. All our 1d tests take place on a periodic domain where 0 x 1. We discretize the domain with a staggered grid. If n is the number of intervals in the domain, then we h a ve:

x = 1 n x i = x(i + 1
2) i = 0 : : : n ; 1 As will become apparent below, we nd that the redistance scheme is very accurate in one-dimension, and the addition of the constraint does not help much. In fact, in 1d, we d o n o t h a ve the problem where repeated calls to the redistance function will cause the zero level set to stray. The reason that the 1d redistance scheme is so accurate is because the signed distance function near the zero levelset is represented exactly as a linear function of x. If one already has an exact distance function in 1d, then even a rst order method would not disturb the distance function property. Thus the constraint is not really needed until we go to higher dimensions.

For the ensuing 1d tests, the L1 error will be measured as n;1 X i=0 j compute i ; actual i j=n

We will do two tests. The rst test will involve the redistance of an initially parabolic levelset function 0 = ;2(x ; 1=4)(x ; 3=4):

(5.1)

The second test will be a test of how the redistance procedure behaves when coupled with the advection of a levelset function.

For the rst test we h a ve (x 0) = 0 (x) w h e r e 0 is speci ed in (5.1). We wish to apply our re-distance scheme such t h a t will be a distance function on the whole domain. That is: (x) t=1 = 1 =4 ; j x ; 1=2j Tables 5.1 and 5.2 contain a convergence study of the L 1 error at t = 1 . The data displayed in gure 5.2 use values for the number of cells that are one more than those used for the data in gure 5.1. This is to test for possible grid e ects. We run cases with and without the constraint and compare the errors. Figure 9.3 contains a graph of the initial pro le and the nal pro le for x = 1 =21. As shown in our results, we h a ve second order accuracy for both cases. The error using the constraint is about 3/5 that as without the constraint. For our second test, we will couple the redistance scheme with the advection of a levelset function. Our main application of the redistance scheme is for maintaining a level set function as a distance function as the zero level set is advected around. So for our next tests, we h a ve as initial data: 0 = ; j x ; 1=2j is e ectively our \bubble radius". We s o l v e the following equation:

t + x = 0 f o r 0 t 1
We use the algorithm from 13] for discretization of the advection step:

n+1 i ; n i = ;(k=h)(n i+1=2 ; n i;1=2) (k)L advect (n) n+1 i ; n i = (k=2)(L advect (n) + L advect (n)):
(5.2) i+1=2 is computed using third order ENO as described in 13] and the CFL numberk=his 1=4.

After each step of equation (5.2), we perform a redistance operation for 0 t

x where 2 x (= 1 for our 1d tests) is the total thickness of the interface: 0 n+1 = n+1 t = sign(0 n+1)(1 ; j x j) + f()

(5.3) t = x=2 n+1 = 2 n+1
The second order discretization of (5.3) is described in appendix B. The discretization of the constraint is described in section 4.

Table 5.3 displays the errors for = 1=4 1=8 1=12. We also show a diagram comparing the computed solution to the expected value for the case of = 1 =8 a n d x = 1 =21 (see g. 9.4). For = 1 =4, the results with and without the constraint are similar. Since the center of the \bubble" is far from the zero level set, the re-distance scheme without the constraint d o e s o k . For = 1 =8 and = 1=12, the constraint helps improve the results as compared to the non-constraint case (x = 1=21 for = 1=8 and x 1=41 for = 1=12). The constraint appears to \correct" errors in the redistance algorithm when one is near the center of a \bubble" (where the ow can be underresolved). This is an important test because we w ould like good behavior of the re-distance scheme when the zero level set is near singularities of the level set function. 6. Numerical Examples in two dimensions. In this section we will show h o w the constraint added to the redistance scheme substantially helps the accuracy. Error will be measured in terms of L is the perimeter size of the expected interface. The error is computed by:

1. partitioning the domain into many t i n y pieces (e.g. 1000 1000) 2. interpolating the values of expect and compute , o n to the newly created pieces.

3. numerically integrating equation (6.1), where H(x) 1 i f x < 0 and H(x) 0 otherwise.

We will also be comparing the \average mass error" for solutions using the redistance scheme with the constraint and without the constraint. The average mass error is de ned as:

M error = Z t f t=0 jM(t) ; M(0)j t f dt (6.2)
where M(t) = Z jH((x y t))jdxdy:

We shall discretize the domain of computation using a staggered grid. We assume the dimensions of our domain are L 1 L 2 . If n represents the number of cells in the y-direction and m represents the number of cells in the x-direction, then we h a ve:

x = L 1 m y = L 2 n x i j = x(i + 1
2) i = 0 : : : m ; 1 y i j = y(j + 1 2) j = 0 : : : n ; 1 6.1. two-dimensional test . A previous problem with the redistance scheme was the fact that the more the iterations, the more the zero level set would stray from the expected position. This would pose a problem for applications involving incompressible ow with sti surface tension e ects. The time step of the advection routine would be quite small which means the redistance scheme would be called often even if the interface has not advected very far. Thus, the errors caused by the redistance scheme would override the errors derived from the advection scheme. For the following test we s h a l l use second order ENO and second order Runge Kutta for discretizing the redistance equations. We show h o w the repeated application of the redistance scheme does not cause the interface to stray when the constraint is active. In our tests, the redistance time step is x=2. The number of steps in our experiment v aried in multiples of M = 2 = x. After every M steps, we replace 0 with the current v alue M . By doing this, we w ould verify that the error does not grow as the number of iterations grows or grow a s t h e n umber of times that the redistance operation is called grows. We test our scheme on a 4 4 domain containing a circle of radius one: 0 (x y) = p x 2 + y 2 ; 1:

We refer the reader to table 6.1. It can be seen that the errors with the constraint a r e m uch smaller than the other errors, and more importantly, the error does not grow at all when the number of iterations is increased. We also note that the error is smaller than the error incurred by simply reconstructing the interface using a Volume of Fluid reconstruction (see 10]). 6.2. two dimensional advection. For moving an interface with speci ed velocity ũ, w e solve t + ũ r = 0 : (6.3) This equation moves the zero level set of in accordance with the input velocity (s e e 9 , 8 , 1 4]). Equation (6.3) is discretized using third order Runge-Kutta for the temporal discretization and third order ENO for the spatial discretization:

1. set (0) = n , repeat steps (2) and (3) for i = 1 : : : r (r = 3 , r is the order of the method): 2. De ne L advect ((i;1)) a s L advect () ; u ij (i+1=2j ; i;1=2j)= x ; v ij (ij+1=2 ; ij;1=2)= y:

The uxes i+1=2j and ij+1=2 are computed using third order ENO as described in 13]. 3.

(i) = i;1 X k=0 ik (k) + ik tL advect ((k))
The coe cients and for third order Runge Kutta, are de ned in appendix B.

x error w/o constraint error w/constraint order w/constraint 1/4 After each t i m e step, we apply the redistance operation for 0 t x where 2 x is the total thickness of the interface:

0 n+1 = n+1 t = sign(0 n+1)(1 ; j r j) + f() t = x=2 n+1 = 2 n+1
We shall also discretize the redistance equations using third order ENO and third order Runge-Kutta as described in Appendix B. The constraint is discretized as described in section 4.

6.2.1. Steady Advection . For steady advection, we specify a velocity eld that doesn't change in time. We d o c o n vergence tests for the diagonal translation of a circle and also for Zalesak's (see 16]) problem. Zalesak's problem involves the rotation of a notched disc, which is a good test of how w ell we a d v ect interfaces in the presence of high curvature.

For the translating circle, we c o m p u t e the solution in a 4 4 periodic box. We initialize our domain with the following: u(x y) = v(x y) = 1 (x y) = p x 2 + y 2 ; 1:

The interfacial thickness parameter is = 2 . We run the above problem up to t = 4 and then measure the error (error calculated according to (6.1)). In table 6.2 we measured third order accuracy when coupling the advection of the levelset function with the redistance step that uses the constraint:

We n o w t e s t o u r a d v ection scheme for computing \Zalesak's problem" (see 16]). The domain size is 100 100 and it contains a slotted circle centered at (50,75) with slot width 15. We initialize ũ and as follows:

u 0 = (=314)(50 ; y) v 0 = (=314)(x ; 50) 0 = signed distance from object
We compute up to t = 628 (one full revolution) on a 100 100 grid the same as that used in 16]. We then re ne the grid in order to measure accuracy. In all cases, the time step t is equal to

x. In table 6.3, we display the error when advecting the notched disk. The error is measured for the case when the redistance constraint is not used and also for the case when it is used. For the case when the constraint i s used, we g e t an order of accuracy of ranging from 1.3 to 2.6 which i s

x error w/o constraint error w/constraint order w/constraint

1 1.22 2.62E-1 N/A 1/2 2.76E-1 4.18E-2 2.6 1/3 1.31E-1 2.43E-2 1.3 Table 6.3
Convergence study: Rotation of cutout circle (Zalesak's problem) good considering the sharp corners in the initial data. We o verlayed the coarse grid results with the expected solution in gure 9.5. The maximum mass uctuation ranged from 1.3 percent on the coarse grid to 0.1 percent on the nest grid. In gure 9.8, we plot the area of the notched disc over time.

The e ectiveness of our constraint is demonstrated in gures 9.6 and 9.7. In gure 9.6, we o verlay the computed results on the 200x200 grid with the expected results. The redistance constraint w as used in this case. We s e e v ery good agreement. In gure 9.7, we display the corresponding 200x200 results when the redistance constraint is turned o . In this case, the corners become rounded.

6.2.2. Unsteady Advection: incompressible two-phase ow. The redistance iteration is necessary for computing incompressible two-phase ow using the level set formulation (see 14]).

The purpose of the redistance scheme is to allow u s t o p r o vide the interface with a thickness xed in time such that ows with large density ratios and surface tension driven forces can be robustly computed.

We repeat some of the examples from 14] in order to show the improved accuracy and e ciency due to our redistance constraint. In 14] and in our \non-constraint" tests below the redistance time step is x=10. The redistance timestep when using the constraint i s x=2. The constraint allows us to iterate with a larger timestep and with less error. In gure 9.7 it is clear that without the constraint, but yet leaving the redistance time step at x=2, ne features of the ow (corners) will be smeared. The non-constraint v ersion we will be using is di erent in a few ways from 14]:

we are using a third order accurate scheme in time (Runge-Kutta) and space (ENO) for the redistance iteration. When computing the error for determining the stopping criteria, we scale the error at points that have a large curvature.

If the redistance time reaches a value equal to the thickness of the interface, then the iteration is stopped. The improvements above will cause results using the non-constraint v ersion to slightly outperform results from 14]. We will see below that results using the constraint will be considerably better than the result where the constraint w as not used.

Brie y we describe how the velocity eld is computed for the level set implementation of incompressible two-uid ow:

We s o l v e the following equations for ũ on the interior of the domain: Convergence s t u d y : R ise of 2d gas bubble in liquid, t=4.8, 1 = 2 = 1 0 0 0 : 1 , Re = 100, Bd= 2 0 0 ũ = (u v) is the uid velocity, = () is the uid density, = () is the uid viscosity, D is the viscous stress tensor, and g represents the gravitational force of magnitude 1. The surface tension term is considered to be a force concentrated on the interface. is the curvature of the front, and H is the Heaviside function. The equation is in non dimensional form where Re, Bd, 1 = 2 , and 1 = 2 need to be speci ed.

We will do two examples. The rst problems will involve the collision of two drops (see gure 9.9) and the second problem will involve the rise of a gas bubble in liquid (see gure 9.11). In both examples, we will assume the ow is 2d and symmetric about the line x = 0 .

For our rst problem, we h a ve t wo drops collide (gure 9.9) and then undergo surface tension driven oscillations. The grid spacing is 22 44 with x = y = 7 =44. This test is identical to a test done in 14] (gure 23). The density r a t i o i s 1 = 2 = 1 4 =1 and the viscosity r a t i o i s 1 = 2 = 3 3 3 =1.

The Reynolds number is 20 and the Bond numberis2. In gure 9.10, we compare the mass for the version without the constraint t o t h e mass for the version with the constraint. The average mass error for the version with the constraint is 0.03 (.5% error) and the error without the constraint i s 0.08 (1.3% error).

For our second problem, we compute the rise of a gas bubble in liquid (see gure 9.11). We measure the relative error (6.1) on successively ner meshes in order to determine the convergence rate. As for the drop merge problem, we perform the computation rst with the redistance constraint active and then with the redistance constraint turned o . The density ratio is 1 = 2 = 1 0 0 0 =1 and the viscosity ratio is 1 = 2 = 1 0 0 =1. The Reynolds number is 100 and the Bond numberis200. In table 6.4 we display the error between successively ner grids at time t = 4 :4. The order of accuracy here is 1:6. In table 6.5, we display the error at t = 4 :8 the time after the bubble has begun to break up. The order accuracy here is 1:1. In gure 9.12, we compare the mass for the version without the constraint to the mass for the version with the constraint. As before, we see signi cant improvement in the results when using the redistance algorithm along with the new constraint. This is clearly seen in gure 9.13 where the version with the constraint has qualitatively the same results as without the constraint except that the ne features during pinch o remain for the case when using the constraint. The average mass error for the constraint v ersion and the non-constraint version are 0.01 (0.3% error) and 0.03 (1%) respectively when comparing results on the nest grid x = y = 6 =200.

Conclusion.

We h a ve s h o wn that the addition of our \constraint" improves the accuracy of the redistance iteration. This in turn helps when applied to the basic advection of a level set function steps x L1 w/ x 0 1/10 error for repeated r edistance o f a c i r cle where the initial level set function is the re s u l t o f r edistancing a color function. The initial error at steps = 0 is the error of our initial level set function as compared to the level set function (x y) = (x 2 + y 2) 1=2 ; 1. 9. Appendix B Details of high order accurate methods for discretizing the redistance step . In section 4.1, the rst order discretization of the redistance scheme was presented.

In our computations, we will be using third order methods in space and time. The rst order timediscretization presented in steps (2) through (5) in section 4.1 will be replaced by a third order Runge-Kutta scheme 13]. The rst order discretization of the spatial derivatives in equations (4.5) and (4.6) will be replaced by third order ENO (upwind) schemes 5, 13]. The resulting modi cations to steps (2) through (5) in section 4.1 are: 2. set (0) = n , repeat steps (3) and (4) for i = 1 : : : r (r = 3 , r is the order of the method):

3. Compute L(0 (i;1)) which will be a third order approximation to sign(0)(1; jr (i;1) j). The spatial derivatives of jr (i;1) j are computed using third order ENO as described below.

4.

(

i) = i;1 X k=0 ik (k) + ik tL(0 (k))
For 3rd order Runge-Kutta: The high order discretization of the spatial derivatives are based on upwinded ENO schemes 5, 13]. The rst order discretization in equations (4.5) and (4.6) are replaced as follows:

For @ @x we rst compute the divided di erence table : x i x i] = ij x i;k x i+l] = (x i;k+1 x i+l] ; x i;k x i+l;1])=(x i+l ; x i;k)

For a method of spatial accuracy r we h a ve: 1. let Q 0 (x) = x i x i] 2. Do the following steps for k (1) min equal to i ; 1 a n d i: Results after t = 1 of a translating triangle function. The redistance scheme along with the constraint, helps maintain the initial pro le even when it's close to the tip of the triangle. x = 1 =21, t = x=4, t = x=2, = 1 =8, the thickness of the interface is two points total (2 x). 'mass_constraint' 'mass_no_constraint' Fig. 9.10. Mass conservation for drop collision problem. When the redistance scheme with the constraint was used, the average mass error was less than without the constraint x-axis is time and y-axis represents mass. Fig. 9.11. two-dimensional rising gas bubble redistance scheme with constraint was used. Re=100 Bd=200 density 1000:1 grid 100x200, x = 6=200 (symmetric boundary conditions). Time increases from left to right, bottom to top starting at t=2.8 and ending at t=6.0. 'mass_constraint' 'mass_no_constraint' Fig. 9.12. Mass conservation for rising gas bubble problem. When the redistance scheme with the constraint was used, the average mass error was signi cantly less than without the constraint x-axis is time and y-axis represents mass.

 ũt = ;ũ r ũ ; r p= () + g + (1=Re)r (2 D)= ; (1=Bd) ()rH() r ũ = 0 We h a ve free-slip solid wall boundary conditions: ũ ñ = 0 x mass w/o x error w/o x mass w/ x error w

10 = 1

 1 20 = 3 =4 21 = 1 =4 30 = 1 =3 31 = 0 32 = 2 =3 10 = 1 20 = 0 21 = 1 =4 30 = 0 31 = 0 32 = 2 =3 5. ~ n+1 =(r)

Fig. 9 .Fig. 9 .Fig. 9 . 3 .

 9993 Fig. 9.1. Result of redistancing an initially discontinuous 2d function 0 (x y) which is +1 outside of a unit circle and ;1 inside. Contours are spaced x = 1 =10 apart, pictures represent level set function after time t =

Fig. 9 . 7 .

 97 Fig. 9.7. Zalesak's problem, Redistance c onstraint not implemented here, Comparison of a notched disc that has been rotated one revolution about the center of the domain. x = t = 1 =2 (200x200)

Fig. 9 . 8 .

 98 Fig. 9.8. Zalesak's problem, Comparison of mass for di erent levels of resolution x-axis is time and y-axis represents mass.

Fig. 9 .

 9 Fig.9.9. two-dimensional drop collision redistance scheme with constraint was used. Re=20 Bd=2.0 density 14/1 grid 22x44 (symmetric boundary conditions). Time increases from left to right, bottom to top starting at t=2.0 and ending at t=9.5.

Fig. 9 .

 9 Fig. 9.13. Comparison at t = 4 :8 of rising gas computations: result on the left used t h e c onstraint version of the redistance scheme and the re s u l t o n t h e r i g h t d i d n o t . x = 6 =200, 100x200 (symmetric boundary conditions)

Table 6 . 5

 65

	/ x order w/ x

Table 8 . 1

 81

	20 100 1/10 1/10	3.1E-2 3.1E-2 3.1E-2

Fig. 9.5. Zalesak's problem, Comparison of a notched disc that has been rotated o n e r evolution about the center of the domain. x = t = 1 (100x100)

Fig. 9.6. Zalesak's problem, Comparison of a notched disc that has been rotated o n e r evolution about the center of the domain. x = t = 1 =2 (200x200)

Work performed under the auspices of the U.S. Department of Energy by t h e L a wrence Livermore National Laboratory under contract No. W-7405-Eng-48. Support under contract No. W-7405-Eng-48 was provided by the Applied Mathematical Sciences Program of the O ce of Energy Research. Center for Computational Sciences and Engineering, LLNL, Livermore, CA 94550 y work supported in part by NSF # DMS 94-04942, DARPA URI-ONR-N00014-92-J-1890.

and when applied to interfacial incompressible ow. We w ould like t o p o i n t out that, with the onset of our \constraint", mass conservation errors incurred during advection of a level set function when used in conjunction with the redistance iteration are now primarily due to the di erence methods used in solving the equation t + ũ r = 0 : (7.1) We demonstrated that higher order methods plus the use of the redistance iteration in conjunction with equation (7.1) will improve the accuracy of a (7.1), but will not conserve 100% mass. An open problem would be to nd more e ective s c hemes for handling (7.1). The advantage of our level set scheme still remains that we n e v er have to explicitly reconstruct the interface and that quantities such as the gradient of the level set function and the curvature can be more accurately computed from a smooth level set function.

8. Appendix A rst-time only redistance step . We propose the following simple modi cation to the scheme presented in section 4 for redistancing a function 0 which is not close to a distance function. This can be the case when the initial interface for a uid problem is much t o o complicated to come up with an initial guess for the level set function. This modi cation will only beinvoked once for the duration of the problem. As shown in section 4.2, for ensuing time steps the level set function will stay within O(h) of a distance function in-between redistancing operations.

We start o with a 0 which is 1 in the rst uid and -1 in the second uid.

1. We compute j r 0 j exactly the same way as for the term appearing in section 4.1 (see Appendix B for higher order discretizations).

2. At points where j r 0 j> 0, we l e t 0 = 0 = j r 0 j.

3. We perform the iteration as in section 4 except with the constraint disabled. We iterate up to t n = L where L is the length of the domain. otherwise In this test, we convert the above initial data into a distance function using the scheme described in section 8. We display the results in gure 9.2. We had x = 1 =21 and t = x=2. The numberof iterations was 40.

2d examples.

In this section we display the e ectiveness of the rst-time only redistance step when applied to a circle. We test our scheme on a 7 7 domain containing a circle of radius one: 0 (x y) = ;1 if p x 2 + y 2 < 1 1 otherwise For this test, x = 1 =10 and t = x=2. From equation (4.4), we claim that our redistance scheme \updates" expanding outward/inward from the zero level at a rate of one. This is apparent if one looks at gure 9.1 where one sees after time t = 1, the rst ten level sets are updated on either side of the interface (level sets spaced x apart). After time t = 2 , the rst 20 level set are updated. Finally at time t = 7, represents a distance function over the whole domain. The ending area of the unit circle is 3.05 which is a %3 error that will only be incurred once during an advection problem. As shown in table 8.1, ensuing redistance operations using the constraint d o n o t a d d t o the error.