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Abstract: 

Grain boundaries play an important role in determining the mechanical properties of metallic 
materials. The impedance of dislocation motion at the boundary results in a strengthening 
mechanism. In addition, dislocations can pile-up, be transmitted or be absorbed by the grain 
boundaries based on the local stress state and grain boundary character. In this study, a 
dislocation density based crystal plasticity finite element model is applied to incorporate the 
interaction between the dislocations and the grain boundaries, and a simulation is conducted on 
polycrystalline alpha iron deformed to 12% in uniaxial tension. The results indicate that the 
geometrically necessary dislocation density is generally higher near the grain boundary than 
within the grain interior. Taylor factor mismatch sometimes reveals strong localization effects 
near the grain boundaries. 

Introduction: 

Plastic deformation in metallic materials is controlled by dislocations. The dislocation movement 
on a slip plane and along a given slip direction under the influence of the local stress give rise to the 
permanent deformation, and the interaction between the dislocations results in forest hardening [1][2]. 
The dislocations also interact with the grain boundaries and can be absorbed, transmitted, or piled up at 
the boundaries, based on their character [3][4]. 

In order to investigate the effects of grain boundaries in metallic materials and the relationship between 
the microstructure and the mechanical properties, a uniaxial tension test has been applied to a 
polycrystalline alpha iron specimen, and the corresponding crystal plasticity finite element modeling is 
conducted based on the microstructure of the tested material. 

Crystal Kinematics: 

The kinematics of crystal plasticity formulation is based on the developments of Asaro and Rice 
[5], where the total deformation gradient  is decomposed into an elastic component  and a plastic 
component : 

. 
The plastic deformation gradient is the part due to slip, it corresponds to a stress free 
intermediate configuration, where the crystal lattice is undeformed and unrotated.  The elastic 
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deformation gradient involves the stretching and rotation of the crystal lattice. 
The rate of plastic deformation gradient is given as: 

 and  are the slip direction and slip plane normal of slip system  respectively.  is 
known as the Schmid tensor. In the current study, only 12 <111>(110) slip systems are 
considered, and compared with the 24 and 48 slip system, it is more cost saving and follows the 
full model prediction in spite of a relatively higher local error. 

Constituitive Law: 

For a single crystal, the second Piola-Kirchoff stress is defined in the intermediate configuration: 

 is the Cauchy stress, the Piola-Kirchhoff stress is related to the work conjugate elastic Green strain 
through: 

Dislocation Density Based Framework: 

The dislocation density based formulation proposed by Arsenlis and Parks [6][7] is adopted, and 
as is briefly stated here. The dislocation evolves in the form of a square loop and each dislocation 
segment has pure edge or pure screw character with different polarities. The plastic strain rate 
from the Orowan equation is given as:         

where  is the Burgers vector and  is the average velocity of the dislocation. 

The evolution of dislocation includes generation, annihilation and dislocation flux terms: 

It is assumed that the generation of dislocation density mainly results from  the expansion of the 
dislocation loop as shown in Fig.1, so the dislocation generation rate depends on the current 
dislocation state, such as density, velocity and average segment length. 

Fig.1 Illustration of the square dislocation loop assumed in the model framework. [7] 
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Dislocation annihilation results from the dipole interactions: 

 and  are the critical radii of interactions for edge and screw dislocations, respectively. 
In a discrete dislocation basis, the dislocation tensor is calculated as: 

and it is related to plastic deformation by: 

by taking the time rate form of the above two equations and making some physical 
considerations, for example, accumulation of a certain amount of is equal to loss of the same 
amount of , the dislocation flux divergence of each type of dislocation can be calculated [7]. 
In the current study, it is assumed that the GND is only a subset of total dislocation density, and 
the GND density of a specified type of dislocation can be quantified by the net polarity of that 
type of dislocation. In other words, both the dislocation flux and the GND density mainly depend 
on the local plastic deformation history. 
Dislocation resistance is mainly controlled by forest dislocations, and is represented in a Taylor 
type equation of hardening: 

where  is the dislocation strength interaction matrix. Dislocation velocity is calculated as: 

where  is the absolute temperature,  is Boltzmann’s constant,  is segment length,  is the 
critical length for double kink nucleation,  is the Debye frequency.  is the Peierls stress on 
screw dislocations. is the Schmid stress. It should emphasized here that although the Schmid 
rule is often a good approximation for simple metals, the violation of Schmid law in BCC metals  
is inevitable.[8].  

Grain Boundary Effect: 

The grain boundaries act as obstacles for dislocation motion. When they encounter a grain 
boundary, mobile dislocations will accumulate at the grain boundary in the form of pile ups and 
give rise to the stress concentration there. Among all the types of interactions between 
dislocations and grain boundaries, slip transmission makes important contribution to the 
polycrystalline deformation, and  the grain boundary effect is included in the model by 
introducing an thermally activated slip transmission concept [9]. The activation enthalpy 
quantifies the transmission probability for the mobile dislocations and it is considered as an 
energy barrier for those grain boundary elements. This energy barrier  is equal to the elastic 
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energy of forming the misfit dislocation at the interface [9][10]. 

is incoming dislocation segment, and is outgoing dislocation segment,: 

It is likely that the slip transmission will occur at the minimum energy expenses, thus for the 
grain boundary elements, for each incoming slip system, all the possible outgoing slip system 
will be investigated, the one with minimum energy barrier will be considered as the 
corresponding outgoing slip system. 

The grain boundaries in the model are represented by the bi-crystal volume elements [11], each 
having the crystallographic lattice orientations of its adjacent crystals. The grain boundary effects 
are considered on the near boundary bi-crystal volume elements. The will be used instead of 

or  compared with the ingrain elements. 

Uniaxial Tensile Test: 

The uniaxial tension test was conducted on polycrystalline ferrite. The material was subjected to 
12% strain, and the simulation was conducted only on a small region with about 6 grains. The 
crystal orientation map of the small region was taken before and after the experiment in order to 
investigate the microstructure evolution.  

 a.       b. 

Fig.3 a) Orientation image map and b) Pole figure of alpha-iron before 
deformation. 

Fig.2 Illustration of slip transmission behavior.[9] 
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Simulation Results and Concusions: 

The effective stress and the statistical dislocation density distribution is shown in the following 
Fig.4a and Fig.4b, respectively. Statistical dislocation density is another subset of the total 
dislocation density and it is about the same as the total dislocation density, since most of the 
dislocation in the total dislocation density do not contribute to geometric effect such as lattice 
curvature. A high stress state is likely to be located at grain boundaries. As a result of the stress 
concentration at these boundaries, a high dislocation density state is more favored there. 

a.         b. 

Fig.5a is micromechanical Taylor factor [12] determined from the simulation, it is calculated 
from the local stress and strain state. Most of the region has a Taylor factor between 1 to 4, and 
the Taylor factor near the grain boundaries is higher than the grain interior, indicating a higher 
plastic effect near these regions. 

a. b. 

One 
important role of geometrically necessary dislocations is to maintain the lattice curvature 
[13][14], thus the geometrically necessary dislocation here is derived from the plastic strain 
gradient [15]. Fig.5b is the GND density determined from the model, it is about 1% of the total 
dislocation density, and higher GND density is localized near the grain boundaries and triple 
junctions. 

Fig.6b is the predicted texture of the polycrystal after deformation, compared with the 
experimental result in Fig.6a. The results are similar, and both of them indicate orientation 
spread during deformation. 

Fig.4 The simulation result of a) Effective stress and b) statistical dislocation 
distribution of alpha-iron after tension 

Fig.5 a) Taylor factor and b) Geometrically necessary dislocation determined 
from the model 
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a. b. 

The simulation shows the stress localization and increased dislocation concentration at grain 
boundaries, and the high Taylor factor at the interfaces and triple junctions indicates the higher 
hardness there. The texture prediction is acceptable in this model. 
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Fig.6 The 001 pole figure from a) experimental result and b) simulation result. 
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