Rong Yang 
  
Claude Jauffret 
email: jauffret@univ-tln.fr
  
Annie-Claude Pérez 
email: annie-claude.perez@univ-tln.fr
  
Wah Gee 
  
Ng 
  
  
  
  
  
Keywords: Propagation delay, continuous active sonar, unscented Gauss-Helmert filter, numerical Jacobian

, which estimates the trajectory of a constant velocity target. The results showed that the estimate bias caused by the propagation delay is not negligible, especially for a bistatic system. This paper develops an interacting multiple model unscented Gauss-Helmert filter with numerical Jacobian (IMM-UGHF-NJ) to track a maneuvering target with propagation delay using a bistatic sonar system. The IMM-UGHF-NJ can overcome the two tracking challenges introduced by the delay, namely, implicit state transition model and lack of analytical expression of the Doppler shifted frequency in the measurement model. Simulation tests have been conducted, and the results show that the IMM-UGHF-NJ can reduce the estimation error significantly, especially for fast moving targets.

I. INTRODUCTION

Continuous active sonar (CAS), also known as high duty cycle (HDC) sonar, with multistatic setup has attracted the research interest recently. In such a system, the signal is transmitted almost in a full duty cycle. Compared to the commonly used pulse active sonar (PAS) system, which transmits only a short pulse in a cycle, the CAS system has continuous detection capability, and is less disturbing to underwater fauna through using a low intensity signal.

There are two main types of CAS systems according to the signal waveforms transmitted, namely, frequency modulated (FM) waveforms and continuous constant frequency waveforms (CW). The FM-CAS can provide good target bistatic range information, whereas the CW-CAS has good Doppler shifted frequency measurement (linked to target range rate). The FM-CAS needs to separate indirect path signal from strong direct path signal via methods, such as m-sequence modulation [START_REF] Deferrari | The Application of m-Sequences to Bi-static Active Sonar[END_REF] and Dopplergram [START_REF] Yang | Acoustic Dopplergram for Intruder Defense[END_REF]. The FM-CAS has a frequency bandwidth limitation issue in multistatic system, as broadband waveforms are transmitted repeatedly [START_REF] Grimmett | Multistatic Tracking for Continous Active Sonar using Doppler-Bearing Measurements[END_REF]. The CW-CAS transmits a single fixed frequency waveform, so that it has no frequency bandwidth limitation problem as the FM-CAS. Yaakov Bar-Shalom was supported by ARO Grant W911NF-10-1-0369.

However, due to lack of range information, the observability of a target trajectory in CW-CAS is not as good as FM-CAS, especially for bistatic (a single transmitter-receiver pair) system.

We focus on target tracking using CW-CAS in this paper. A few approaches on this problem have been proposed in literature before. A Gaussian mixture probability hypothesis density (GMPHD) filter was developed in [START_REF] Grimmett | Multistatic Tracking for Continous Active Sonar using Doppler-Bearing Measurements[END_REF]. It tracks multiple constant velocity (CV) targets using bearings and Doppler frequencies detected by multistatic CW-CAS. Results show that CV targets can be tracked using more than two transmitterreceiver pairs when target range is not available. This research does not take signal propagation delay into consideration. The effect of propagation delay of CW-CAS has been studied in [START_REF] Jauffret | Doppler-only Target Motion Analysis in a High Duty Cycle Sonar System[END_REF] recently. An exact Doppler frequency model with propagation delay was proposed. and a maximum likelihood (ML) estimator based on this model was developed to perform batch estimation for a CV target. The simulation results showed that the estimation bias induced by the propagation delay is not negligible, especially for a bistatic system.

In this paper, the propagation delay problem raised in [START_REF] Jauffret | Doppler-only Target Motion Analysis in a High Duty Cycle Sonar System[END_REF] is studied further. We extend the target CV trajectory estimation using a batch parameter estimation technique to the dynamic recursive estimation, which can handle not only CV motion but also maneuvering motion. This extension faces two challenges. Firstly, the "target time" t k and target position (x k ,y k ) in the state [defined later in (1) and ( 2)] are highly correlated after propagation delay is introduced. This leads to a state transition equation in an implicit form instead of the commonly used explicit form in [START_REF] Yang | Interacting multiple model unscented Gauss-Helmert filter for bearings-only tracking with state-dependent propagation delay[END_REF] [START_REF] Yang | UGHF for acoustic tracking with state-dependent propagation delay[END_REF]. Secondly, the Doppler shifted frequency (one of the measurements) does not have an analytical expression in terms of the target state. This is because the Doppler frequency is a function of the bistatic range rate which cannot be described analytically after propagation delay is introduced. Details will be given later in Section II-B. The two challenges mentioned above were overcome in [START_REF] Jauffret | Doppler-only Target Motion Analysis in a High Duty Cycle Sonar System[END_REF] through solving a 2nd order polynomial equation for CV target. However, the approach in [START_REF] Jauffret | Doppler-only Target Motion Analysis in a High Duty Cycle Sonar System[END_REF] cannot be applied to a maneuvering target with coordinated turn (CT) motion, and the new approach in this paper will be shown to handle this.

A dynamic estimation problem uses two basic models, We will develop an interacting multiple model unscented Gauss-Helmert filter with numerical Jacobian (IMM-UGHF-NJ) to cope with the challenges mentioned above. The IMM [START_REF] Bar-Shalom | Tracking and Data Fusion: A Handbook of Algorithms[END_REF] is a well known hybrid algorithm to handle motion model uncertainty in maneuvering target tracking. The UGHF [START_REF] Yang | Interacting multiple model unscented Gauss-Helmert filter for bearings-only tracking with state-dependent propagation delay[END_REF][10] is a recently developed algorithm for bearings-only tracking (BOT) with implicit state transition model introduced by the acoustic propagation delay. It can be applied to our problem. For the measurement model without analytical form, the NJ (numerical Jacobian) algorithm, which computes the Jacobian numerically, can be utilized [START_REF] Xiong | The linear fitting Kalman filter for nonlinear tracking[END_REF][11] [START_REF] Xiong | Linear fitting Kalman filter[END_REF]. The Doppler shifted frequency is a function of the bistatic range rate, ṙ, which has no analytical form due to the unknown time delay. We can compute ṙ (derivative of range r) using the NJ.

The structure of the rest of paper is as follows. Section II formulates the problem. Section III presents the IMM-UGHF-NJ. Simulation results and conclusions are in Sections IV and V, respectively.

II. PROBLEM FORMULATION

The problem is illustrated in Fig. 1. At dynamic estimation cycle k, the transmitter emits a CW signal with constant frequency f T at time t T k , and the receiver receives the Doppler shifted frequency f R at time t R k via the target reflection at time t k . We assume the transmitter and receiver are stationary and located at (x T ,y T ) and (x R ,y R ), respectively. The target is moving and its location is [x(t k ),y(t k )] at reflection time t k . The ranges between the target at t k to the transmitter and the receiver are r T k and r R k , respectively. The target states to be estimated for the CV and CT models at time t k are

x CV (t k )=[ x(t k ) y(t k )ẋ(t k )ẏ(t k ) t k ] ′ (1) x CT (t k )=[ x(t k ) y(t k )ẋ(t k )ẏ(t k ) ω(t k ) t k ] ′ (2)
where x, y, ẋ and ẏ are the target positions and velocities in the x and y coordinates, respectively, ω is the target turn rate, and t k is the target time (or reflection time) corresponding to the emission time t T k and the reception time t R k of the transmitter and receiver, respectively. The measurement vector at time

t R k is z(t R k )=[b(t R k ) f R (t R k )] ′ (3) 
where b is the target bearing from the receiver at time t R k to the target at time t k , measured clockwise from True North, and f R is the Doppler shifted frequency at the receiver.

A. State transition models

The state transition model describes the evolution of the target state with time. For a generic discrete problem, it is an explicit form given by

x(t k )=f [x(t k-1 )]+Γv(t k-1 ) ( 4 
)
where k is the discrete estimation cycle index, v(t k-1 ) is the process noise, and Γ is the process noise gain. However, there is no explicit state transition model for our problem. It can be seen from Fig. 2 that the target time, t k , is unknown due to the unknown propagation delay τ R . There is an implicit constraint between the known t R k and unknown t k given by

t k = t R k -τ R k ( 5 
)
where

τ R k = [x(t k ) -x R ] 2 +[y(t k ) -y R ] 2 c p (6) 
and c p is the signal propagation speed in the medium. It can be seen that t k is on the both sides of the constraint equation ( 5), since x(t k ) and y(t k ) are functions of t k .I ti s difficult to obtain an explicit express of t k . This leads to use a Gauss-Helmert (GH) state transition model, which describes an implicit constraint systemically [9][10]. The GH model is given by g

[x(t k ), x(t k-1 )]+Γv(t k-1 )=0 (7) 
The GH models for the CV motion 1 and CT motion are given next.

1) Constant velocity Gauss-Helmert model

The GH model for CV motion is given by

g CV x CV (t k ), x CV (t k-1 ) +Γ CV v CV (t k-1 )=0 5 (8) 
where g CV [•] is the implicit GH state transition function, which combines the CV motion constraints and the delay constraint between x(t k ) and x(t k-1 ).I ti sg i v e nb y

g CV (•)= g CV 1 (•) g CV 2 (•) g CV 3 (•) g CV 4 (•) g CV 5 (•) ′ (9) 
where

g CV 1 (•)=x(t k ) -[x(t k-1 )+ ẋ(t k-1 )Δ k ] (10) g CV 2 (•)=y(t k ) -[y(t k-1 )+ ẏ(t k-1 )Δ k ] (11) g CV 3 (•)= ẋ(t k ) -ẋ(t k-1 ) (12) g CV 4 (•)= ẏ(t k ) -ẏ(t k-1 ) (13) g CV 5 (•)=t k -(t R k -τ R k ) (14) 
with τ R k given in [START_REF] Xiong | The linear fitting Kalman filter for nonlinear tracking[END_REF] and

Δ k = t k -t k-1 (15) 
Based on the discrete white noise acceleration (WNA) model [START_REF] Bar-Shalom | Tracking and Data Fusion: A Handbook of Algorithms[END_REF], the gain matrix Γ CV and the zero-mean white Gaussian process noise v CV in (8) compensate for small accelerations and the uncertainty of the sound speed. The noise gain matrix Γ CV is given by

Γ CV = ⎡ ⎢ ⎢ ⎢ ⎣ 1 2 (Δ k ) 2 00 0 1 2 (Δ k ) 2 0 Δ k 00 0Δ k 0 00 1 ⎤ ⎥ ⎥ ⎥ ⎦ (16) 
The covariance of v CV is

q CV =diag(σ 2 ẍ σ 2 ÿ σ 2 t ) (17) 
where σ 2 ẍ and σ 2 ÿ are the variances on small target accelerations in the x and y coordinates respectively, and σ 2 t is the process noise variance on the target time. The covariance of the error in the model ( 8) is given by

Q CV (Δ k )=Γ CV q CV (Γ CV ) ′ (18)

2) Coordinated Turn Gauss-Helmert model

The GH state transition model for the CT motion is given by

g CT [x CT (t k ), x CT (t k-1 )]+Γ CT v CT (t k-1 )=0 6 ( 19 
)
where

g CT (•)= g CT 1 (•) g CT 2 (•) g CT 3 (•) g CT 4 (•) g CT 5 (•) g CT 6 (•) ′ (20) with g CT 1 (•) = x(t k ) -x(t k-1 )+ sin[ω(t k-1 )Δ k ] ω(t k-1 ) ẋ(t k-1 ) - 1 -cos[ω(t k-1 )Δ k ] ω(t k-1 ) ẏ(t k-1 ) (21) 
g CT 2 (•)=y(t k ) -y(t k-1 )+ sin[ω(t k-1 )Δ k ] ω(t k-1 ) ẏ(t k-1 ) + 1 -cos[ω(t k-1 )Δ k ] ω(t k-1 ) ẋ(t k-1 ) (22) g CT 3 (•)= ẋ(t k ) -{cos[ω(t k-1 )Δ k ]ẋ(t k-1 ) -sin[ω(t k-1 )Δ k ]ẏ(t k-1 )} (23) g CT 4 (•)= ẏ(t k ) -{sin[ω(t k-1 )Δ k ]ẋ(t k-1 ) + cos[ω(t k-1 )Δ k ]ẏ(t k-1 )} (24) g CT 5 (•)=ω(t k ) -ω(t k-1 ) (25) g CT 6 (•)=t k -(t R k -τ R k ) (26) 
The noise gain matrix Γ CT is given by

Γ CT = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 2 (Δ k ) 2 00 0 0 1 2 (Δ k ) 2 00 Δ k 00 0 0Δ k 00 00 Δ k 0 00 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (27) q CT =diag(σ 2 ẍ σ 2 ÿ σ 2 ω σ 2 t ) (28) 
where σ 2 ω is the variance of the Gaussian process noises of ω. The covariance of the error in (19) for the (nearly) CT motion,

Q CT (Δ k ), is computed by Q CT (Δ k )=Γ CT q CT (Γ CT ) ′ (29) 

B. Measurement model

The measurement model relates the state at time t k to the measurement at time t R k , which is given by

z(t R k )=h[x(t k )] + w(t R k ) (30) 
where w(t R k ) is the measurement noise, and

h(•)=[h 1 (•) h 2 (•)] ′ (31) 
with

h 1 (•)=b(t R k )=tan -1 x(t k ) -x R y(t k ) -y R (32) h 2 (•)=f R (t R k )=f T (t T k ) 1 - ṙ(t R k ) c P ( 33 
)
The challenge is how to obtain ṙ(t R k ) in (33). We know

r(t R k )=r T k + r R k = [x(t k ) -x T ] 2 +[y(t k ) -y T ] 2 + [x(t k ) -x R ] 2 +[y(t k ) -y R ] 2 (34)
and

ṙ(t R k )= d[r(t R k )] d(t R k ) = ẋ(t k )[x(t k ) -x T ]+ ẏ(t k )[y(t k ) -y T ] r T k dt k d(t R k ) + ẋ(t k )[x(t k ) -x R ]+ ẏ(t k )[y(t k ) -y R ] r R k dt k d(t R k ) (35) 
When the signal propagation delay is negligible (for example, for a radar signal), one has

t k = t R k and dt k d(t R k ) =1 (36) 
The analytical form of ṙ(t R k ) is then

ṙ(t R k )= ẋ(t k )[x(t k ) -x T ]+ ẏ(t k )[y(t k ) -y T ] r T k + ẋ(t k )[x(t k ) -x R ]+ ẏ(t k )[y(t k ) -y R ] r R k (37)
However, the acoustic signal in our problem has significant propagation delay and

t k = t R k . The analytical function t k = f (t R k ) (38) 
is impossible to obtain for a target in CT motion. This causes a major challenge for mapping the state to the measurement. An appropriate filter to cope with this challenge will be developed next.

III. INTERACTING MULTIPLE MODEL UNSCENTED GAUSS-HELMERT FILTER WITH NUMERICAL JACOBIAN

The IMM estimator [START_REF] Bar-Shalom | Tracking and Data Fusion: A Handbook of Algorithms[END_REF] is the most commonly used hybrid approach to handle model uncertainty in target tracking. This section describes an IMM-UGHF-NJ filter with the implicit CV and CT models described in Section II and lack of analytical expression for the measurement function.

Similarly to the original IMM estimator, the IMM-UGHF-NJ performs the state estimation in four steps: mixing, modematched filtering, mode probabilities updating and final state combination:

1) In the mixing step, the m hypotheses (where m is the the number of models in the filter) at time k-1 expand to m 2 hypotheses using the mixing probabilities based on the mode Markov chain, which is governed by the m × m mode probability transition matrix Π consisting of the mode transition probabilities, p ij . The m 2 hypotheses are then merged into m hypotheses based on the mixture equations [START_REF] Bar-Shalom | Tracking and Data Fusion: A Handbook of Algorithms[END_REF]. 2) In the mode-matched filtering step, the mixed state estimates are updated by UGHF-NJs (given later) in parallel.

3) The mixing probabilities are obtained, and the updated mode probabilities are computed based on the innovations in the mode-matched UGHF-NJs.

The updated mode probabilities together with the mode-conditioned estimated states and covariances are brought to the next step. 4) The final state estimate and its covariance for the current time cycle are computed based on the mixture equations using the latest mode probabilities in the combination step.

Since the states in the CV and CT models described in Section II have different dimensions, the unbiased mixing approach [START_REF] Yuan | A multiple IMM estimation approach with unbiased mixing for thrusting projectiles[END_REF] is applied in the IMM filter to increase the CV state from 5 to 6. Before the mixing step, the CV state estimate and its error covariance are augmented with the turn rate information from the CT model.

The IMM-UGHF-NJ differs from the standard IMM in the mode-matched filters, which are UGHF-NJ. The UGHF-NJ handles the implicit GH state transition model and evaluates f R (t R k ) in the measurement vector (3) numerically. The UGHF-NJ prediction, state-to-measurement mapping and update steps are given in Algorithms 1-3, respectively. In these algorithms, the model superscripts "CV" and "CT" for the states and GH functions are omitted for simplicity.

Algorithm 1 UGHF-NJ prediction

Generate (2n x +1) sigma points for x(t k-1 ):

[{x i ( ti k-1 )}, {w i }]=SigPt[x( tk-1 ), P( tk-1 ),κ]
Predict sigma points using Gauss-Newton algo.:

for all xi ( ti k-1 ), i ∈{1,...,2n x +1} do x 0 = xi ( ti k-1 ) xi ( ti k | ti k-1 ) = GaussN[g(x 1 , x 0 )] end for
Regenerate sigma points with process noise:

x( tk | tk-1 )= 2nx+1 i=1 w i xi ( ti k | ti k-1 ) P( tk | tk-1 )= 2nx+1 i=1 w i xi ( ti k | ti k-1 )(x i ( ti k | ti k-1 )) ′ + Q(Δ k ) [{x i ( ti k | ti k-1 )}, {w i }]= SigPt[x( tk | tk-1 ), P( tk | tk-1 ),κ] where xi ( ti k | ti k-1 )=x i ( ti k | ti k-1 ) -x( tk | tk-1 )
κ is a spread scalar of the sigma points.

Algorithm 1 predicts the state x( tk-1 ) from time tk-1 to an unknown target time, t k , corresponding to the signal reception time t R k . The relationship between t k and t R k is given by the implicit constraint [START_REF] Julier | A new extension of the Kalman filter to nonlinear systems[END_REF]. An unscented Gauss-Helmert approach is used for the state prediction with the implicit constraint. Firstly, 2n x +1 sigma points of x( tk-1 ) are generated using SigPt(•) (given in the Appendix), where n x is the dimension of the state vector. Secondly, each sigma point is predicted to ti k using the Gauss-Newton algorithm GaussN(•) (also given in the Appendix) based on the Gauss-Helmert function g(x 1 , x 0 ), where i is the index of the sigma points. The

2n x + 1 GaussN(•) find x 1 = xi ( ti k | ti k-1 ) from x 0 = xi ( ti k-1
) iteratively. Thirdly, the predicted sigma points are re-generated with considering also the process noise (with the approprate larger prediction covariance).

Algorithm 2 maps the predicted state to the measurement space. The challenge here is that we cannot obtain the Doppler shifted frequency f R (t R k ) in the measurement from the predicted state directly. The range rate ṙ(t R k ) in (33) cannot be derived from the bistatic range r(t R k ), which has no analytical form in terms of t R k . We use an numerical approach, called numerical Jacobian (NJ), to obtain ṙ(t R k ) from r(t R k ).I ti s known that the slope of the tangent line is the derivative of a Algorithm 2 UGHF-NJ mapping the predicted state to measurement

[{t R,j k }, {w j }] = SigPt[t R k ,σ t R k ,κ] for all xi ( ti k | ti k-1 ), i ∈{1,...,2n x +1} do x 0 = xi ( ti k | ti k-1 ) for j =1:3do xi,j ( tj k | ti k-1 ) = GaussN g(x 1 , x 0 )| t R k =t R,j k ri,j (t R k ) ← xi,j ( tj k | ti k-1 ) end for ri (t R k ) = NJ[{t R,j k }, {r i,j (t R k )}, {w j }] f R,i (t R k ) ← using (33) bi (t R k ) ← using (32) z i (t R k )=[ bi (t R k ) f R,i (t R k )] ′ end for ẑ(t R k )= 2nx+1 i=1 w i ẑi (t R k )
nonlinear function at a point of interest. The principle of the NJ(•) (given in the Appendix) is to find the best linear fit to a nonlinear function based on a few weighted points around the point of interest. If we can provide these weighted points around [t R k ,r(t R k )], its derivative ṙ(t R k ) can then be computed using NJ(•). Firstly, we generate the reception time set around

t R k using SigPt(•), i.e., {t R,j k } = {t R k ,t R k -σ t R k ,t R k + σ t R k } j =1, 2, 3 (39) 
where σ t R k is a very small shift from t R k . Its weight set is {w j }. Secondly, we use GaussN(•) to obtain the predicted state set {x i,j ( tk | tk-1 )} corresponding to the reception time set {t R,j k } for the ith sigma point of the predicted state (obtained from Algorithm 1). The bistatic range can then be computed using (34). The set of bistatic ranges corresponding to {t R,j k } for the ith sigma point of the predicted state is

{r i,j (t R k )} = {r i (t R k ), ri (t R k -σ t R k ), ri (t R k + σ t R k )} j =1, 2, 3 (40) 
Thirdly, we use these two sets, {t R,j k } and {r i,j (t R k )}, which form three points around

[t R k , ri (t R k )] to evaluate the range rate ri (t R k ) using NJ(•). Once ri (t R k ) is obtained, f R,i (t R k
) can be computed using (33), and the predicted measurement z i (t R k ) follows.

Algorithm 3 updates the predicted state based on the measurment z(t R k ). This step is the same as the conventional UKF.

IV. SIMULATION RESULTS

The IMM-UGHF-NJ is tested by simulated data in this section. The simulated scenarios are shown in Fig. 3. Three targets move in CV-CT-CV motion with different speeds 30m/s, 20m/s and 10m/s, respectively. All three targets have two CV legs linked by a CT arc. The durations of the first CV, CT and the second CV are 130s, 60s and 90s, respectively. The CT arc is a 120 o right turn with turn rate 2 o /s. The transmitter and receiver are located at (-3500m,0m) and (3500m,0m), respectively. The transmitter emits a CW signal with frequency 1000Hz. The

Algorithm 3 UGHF-NJ update x( tk )=x( tk | tk-1 )+K k ν(t R k ) P( tk )=P( tk | tk-1 ) -K k S(t R k )K ′ k where ν(t R k )=z(t R k ) -ẑ(t R k ) K k = P xz S(t R k ) -1 S(t R k )=R + P zz P xz = 2nx+1 i=1 w i xi ( ti k | ti k-1 )z i (t R k ) ′ P zz = 2nx+1 i=1 w i [z i (t R k )z i (t R k ) ′ ] zi (t R k )=ẑ i (t R k ) -ẑ(t R k ) xi ( ti k | ti k-1 )=x i ( ti k | ti k-1 ) -x( tk | tk-1 )
sampling interval of the receiver is T =1s. The measurement errors of bearing and Doppler shifted frequency at receiver are assumed Gaussian with standard deviations σ b =1 o and σ f =0 .25Hz, respectively. The sound propagation speed in water is c p = 1484m/s. The following two algorithms are used in testing:

• IMM-UKF: The mode-matched filters are UKF. They estimate target position and velocity only. The propagation delay is not taken into consideration at all. The Doppler shifted frequency in the measurement model is based on (37) which is commonly used in multistatic radar tracking system. The target times are the signal reception times by the receiver.

• IMM-UGHF-NJ: This is the new algorithm proposed in this paper. The propagation delay is taken into consideration in the state estimation, and the target times attached to the target trajectory are estimated from multiple UGHF-NJs.

One CV model and one CT model are used in the two IMM estimators. The initial mode probabilities for both models are 0.5. The probability transition matrix Π is Π= 0.95 0.05 0.05 0.95

The measurement error covariance R is

R =diag[(1 o ) 2 (0.25Hz) 2 ] (42) 
The process noise covariances q CV and q CT in the UGHF-NJs are, respectively,

q CV =diag[(0.1m/s 2 ) 2 (0.1m/s 2 ) 2 (0.1s) 2 ] ( 43 
)
q CT =diag[(0.1m/s 2 ) 2 (0.1m/s 2 ) 2 (0.1 o /s) 2 (0.1s) 2 ] (44)
κ is set to 1 in all SigPt(•), and σ t R k is set to 0.1s in Algorithm 2.

The initial state estimates are

xCV (t 0 )=[r 0 sin b 0 r0 cos b 0 00 t0 ] ′ (45) xCT (t 0 )=[r 0 sin b 0 r0 cos b 0 000 .1 o /s t0 ] ′ (46) 
where

r0 ∼N (r R 0 ,σ 2 r ) (47) b 0 = b(t R 0 ) (48) t0 = t R 0 -r0 /c p (49) 
with r R 0 is the true value of the range from the target at time t 0 to the receiver at time t R 0 , σ r = 600m, and b(t R 0 ) is the measured bearing at time t R 0 . The initial state error covariances for the two models are 

P CV (t 0 )= ⎡ ⎢ ⎢
P xx =( r0 σ b cos b 0 ) 2 +(σ r sin b 0 ) 2 (52) P yy =( r0 σ b sin b 0 ) 2 +(σ r cos b 0 ) 2 (53) P xy = P yx =(σ 2 r -r2 0 σ 2 b )sinb 0 cos b 0 (54) 
The simulation results present the root mean square errors (RMSE) of the estimated target positions obtained from 100 Monte Carlo runs. The estimated position error at time tk is computed by

pos err ( tk )= [x( tk ) -x( tk )] 2 +[ŷ( tk ) -y( tk )] 2 (55)
where x( tk ) and ŷ( tk ) are the estimated target positions in the x and y coordinates respectively, x( tk ) and y( tk ) are the true target positions in the x and y coordinates respectively, and tk is the estimated target time in estimation cycle k. I andII. It can be seen that the IMM-UGHF-NJ outperforms the IMM-UKF for all the three targets. The accuracy improvement is target speed dependent. For a fast target there is more improvement than for a slow one. This is because that estimation error of the IMM-UKF relates to the target speed and propagation delay τ R k (details can be found in Section V-C, [START_REF] Yang | UGHF for acoustic tracking with state-dependent propagation delay[END_REF]). From the results we can say that the estimation error without considering propagation delay for fast targets, such as a speed boat or torpedo, is significant. The mode probability of the two IMM filters is also investigated. Figs. 789show the mode probability of CT model versus time for the three targets, respectively. It can be seen that the mode probabilities of CT for both filters increase when target is maneuvering. The IMM-UGHF-NJ reacts slightly faster than the IMM-UKF. However, the mode probability does not match the ground truth very well when the target is in CV motion. This is because that the turn rate ω can adapt to a small value when the target is in CV motion. This leads to target motion patterns that are marginally observable from bearing and Doppler frequency measurements. We also observed that the mode probability during CT is imperfect. It is not steady for targets 1 and 2 (shown in Figs 7 and8), and has slow adaptation for target 3 (shown in Fig 9). This is because the turn rate ω cannot adapt to the correct value, and leads to target motion patterns marginally observable. Further study on this issue has been conducted [START_REF] Yang | Maneuvering target tracking using continuous wave bistatic sonar with propagation delay[END_REF].

V. C ONCLUSIONS

This paper developed the IMM-UGHF-NJ filter to track maneuvering target using bistatic CW-CAS in the presence of propagation delay. The IMM-UGHF-NJ can overcome two challenges of this tracking problem, namely, the implicit state transition model and absence of analytical expression of the Doppler shifted frequency in the measurement model. Simulation tests were conducted on targets with different speeds. Results show that the IMM-UGHF-NJ outperforms the IMM-UKF which does not take the propagation delay into consideration. It is also found that the estimate accuracy improvement of the IMM-UGHF-NJ over the IMM-UKF is more significant for a higher speed target. This is because the effect of the propagation delay is speed dependent. A faster target (such as a speed boat or a torpedo) needs an appropriate filter (IMM-UGHF-NJ) to handle the propagation delay.

APPENDIX

The three algorithms SigPt(•), GaussN(•) and NJ(•) used in IMM-UGHF-NJ are given next. a)S i g P t ( •) generates the sigma points for a random variable x with covariance P x [START_REF] Julier | A new extension of the Kalman filter to nonlinear systems[END_REF].

[x i ,w i ]=SigPt(x, P x ,κ) i =1,...,2n x +1 (56) where

x 1 = x (57)

x i = x + (n x + κ)P x i-1 i =2, •••,n x +1 (58) 
x i = x -(n x + κ)P x i-nx-1 i = n x +2, •••, 2n x +1(59)

w 0 = κ n x + κ i =1 (60) 
w i = 1 2(n x + κ) i =2, •••, 2n x +1 (61)
where n x is the dimension of x, (n x + κ)P x 

where x 0 is known. The iteration procedure is

xj+1 1 = xj 1 -(A j ) -1 g(x j 1 , x 0 ) ( 63 
)
where j is the iteration index, A j is the Jacobian matrix defined by 

at a point of interest x 0 numerically [START_REF] Xiong | The linear fitting Kalman filter for nonlinear tracking[END_REF][11] [START_REF] Xiong | Linear fitting Kalman filter[END_REF]. There is no analytical form for h(•),b u tz can be obtained through numerical method from a given x. The Jacobian is

H =NJ[{x i }, {z i }, {w i }] (66) 
where {x i } is the sigma point set around x 0 generated from a very small covariance, {z i } is its corresponding set after transformation and {w i } is the set of weights. The NJ is implementing through the following steps: 1) Form the sigma point set

X = x 1 x 2 ••• x 2nx+1 11••• 1 - x 1 0 (67) Z = ⎡ ⎢ ⎢ ⎣ z1 z2 . . . zl ⎤ ⎥ ⎥ ⎦ = [ z 1 z 2 ••• z 2nx+1 ] (68) 
where x 1 = x 0 , and l is the dimension of z.

2) Estimate H using the weighted least squares (WLS) algo-rithm a j =( XW X′ ) -1 XW(z j ) ′ (69)

Ĥ = a 1 a 2 ••• a l ′ (70) Ĥ = Ĥ(1 : l, 1:n x ) (71) 
where W =diag({w i }), j ∈{1,...,l}, and Ĥ is Ĥ without the last column.
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 56 Fig. 5. Position estimate RMSEs versus time for target 2 with speed=20m/s.
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 4 Figs. 4-6 show the position RMSE versus time of the two algorithms for the three simulated targets. The averages
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 9 Fig. 9. Mode probability of CT model versus time for target 3 (speed=10m/s).

  i * indicates the i * th column of the matrix [•], and κ is a scalar that determines the spread of sigma points. b) GaussN(•) is a Gauss-Newton algorithm to obtain the solution of an implicit equation g(•)=0 iteratively [9][10] and yields x1 = GaussN[g(x 1 , x 0 )]

  J ( •) calculates the Jacobian (or derivative) H of a function z = h(x)

  IMM-UGHF-NJ for Continuous Wave Bistatic Sonar Tracking with Propagation Delay namely, the state transition model and the measurement model. The state transition model describes the evolution of the target state with time, and it is (in most cases) an explicit expression of the state at the current time in terms of the state at the previous time. The measurement model relates the measurement to the state. The two challenges of the dynamic estimation problem considered in this paper are: (i) the implicit state transition model; (ii) the lack of an analytical measurement model. These make this problem impossible to solve using existing filters.

TABLE I

 I 

	.	AVERAGES OF POSITION RMSE PER RUN
	Target	IMM-UKF IMM-UGHF-NJ
	1 (30m/s)	571.7m	339.6m
	2 (20m/s)	556.8m	509.4m
	3 (10m/s)	246.9m	237.8m

Although an explicit state transition model for the CV motion can be obtained through solving a

2nd order polynomial equation[START_REF] Jauffret | Doppler-only Target Motion Analysis in a High Duty Cycle Sonar System[END_REF], the GH model is a systematical way which is suitable for both CV and CT motions.