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Abstract—In many resource allocation problems, optimal al-
location strategies must be determined when only a quantized
version of the relevant parameters are available, for instance,
power allocation in wireless communications. The contribution of
this work is threefold. First, the quantization problem is revisited
and a framework which encompasses the classical problem of
quantization is proposed. Instead of minimizing the distortion,
the goal is to minimize the gap between the maximum of a
general payoff function (which would be reached by knowing
all parameters of the function) and what is effectively reached
when only the quantized version of the parameters is available.
Then, to determine such a quantizer, the well-known Lloyd-Max
algorithm is generalized. At last, we show how this framework
can be applied to the problem of power control in wireless
communications; the obtained numerical results clearly show the
potential of such a framework.

I. INTRODUCTION

The primary motivation for formulating the technical prob-
lem under consideration in this paper comes from resource
allocation problems in wireless communications. For this type
of problems, quite often, one has to deal with the following
situation. A payoff, reward or utility function fpx; gq has to
be maximized with respect to the vector x but its parameters
(which are represented by the vector g) are not perfectly
known. In this paper, we restrict our attention to the case where
what is available to maximize f is a quantized version of the
function parameters. Although it has not been addressed from
the technical perspective proposed in the present paper, this
scenario is well motivated by numerous papers in the literature
of wireless communications (see e.g., [1] [2] [3]). For instance,
it is fully relevant when a transmitter has to perform power
allocation by exploiting a quantized version of the channel
which is sent by the receiver (through a feedback mechanism);
in this example, the receiver needs to quantize the channel
gains or matrix to meet some constraints e.g., linked to the
feedback channel capacity.

The problem we introduce in this paper is the design of the
quantizer which produces the distorted vector of parameters
which is effectively available to maximize the payoff function
f ; in the power allocation problem which has been mentioned
previously, the receiver has to quantize the downlink channel
and send it to the transmitter whose role is to perform
power allocation based on the quantized channel sent by the
receiver. More precisely, we want to minimize the impact of
quantization noise on the optimality loss which occurs when

using the quantized version of g to maximize the payoff
function f . Of course, this design is performed under a
resource constraint which is the number of quantization bits.
The design of a quantizer consists in finding a partition and
the corresponding representatives. Indeed, the space in which
the vector of parameters lies has to be partitioned into cells
or regions. For any input g which belongs to a given cell,
the quantizer produces the same output pg, which is called the
representative of the considered cell.The maximum number of
cells the quantizer can use is given by the total number of bits
available for quantizing.

To determine the best quantizer in the sense of minimizing
the optimality loss induced by using pg instead of g, we
generalize the well-known Lloyd-Max algorithm (LMA) [4]
[5]. Indeed, the LMA-based quantizer aims at minimizing
the distortion i.e., the mean square error between the source
and its reconstructed version. But, note that this design is
independent of the use of the quantized quantity. It turns out
that the quantizer design might be improved when measured
in terms of the final utility of payoff. The original version
of the LMA has been generalized in many diverse ways. For
instance, it has been generalized to scenarios where the source
to be quantized has to be sent through a noisy channel (see
e.g., [6] [7]) and the source is itself noisy [8]. However, almost
always, the performance criterion is the distortion. There exist
some other works where a different performance criterion is
considered such as [9] where the Lp´ norm is considered
(instead of the Euclidean norm) or some specific performance
criterion such as in [10] where the goal is to obtain a quan-
tized beamforming vector. More generally, in [11], the author
considers the problem of minimizing an arbitrary function of
the difference between the actual vector of parameters and its
quantized version but, again, this problem does not correspond
to the framework of payoff-oriented quantization we propose
here. Recently, several works like [12] adrress the issue of
quantization noise as a primary concern in resource allocation
problems. As a result, some new studies like [13], optimize
the allocation of quantization bits specifically for sum-rate
maximization. However, in these works the goal is not to
design the complete quantization scheme for their payoff (i.e.,
the allocation of bits, partitions and representatives). Finally,
some papers study situations where specific control-theoretic
performance criteria are optimized (see e.g., [14]) but the
quantization problem is not stated in general and not solved



by using a generalized version of the LMA. To the best
knowledge of the authors, the quantization problem has not
been formulated as in the present work.

The paper is structured as follows. In Sec. 2, the proposed
quantization problem formulation is provided. In Sec. 3, a
generalized version of the LMA is provided and in Sec. 4
some specific applications of our scheme in wireless resource
allocation problems is discussed. Finally, in Sec. 5 we provide
a numerical performance analysis.

II. PROBLEM STATEMENT

We consider a function fpx; gq : XˆGÑ R, referred to as
the payoff function. Both x P X and g P G may be vectors in
general with X Ă RN and G Ă RK . The ultimate goal is to
maximize f with respect to x while only knowing a quantized
version of g, which is denoted by Qpgq. Here, the objective
is to find a good quantizer namelely a quantizer which allows
to mimimize the impact of quantization on the optimality loss
induced by using Qpgq in the final optimization problem.

A quantizer Q is given by a partition of G into cells and their
representatives. We denote by M the maximum number of
cells. The cells are denoted by tC1, ...,CMu and verify Cm Ă

G such that C1 Y C2 Y ¨ ¨ ¨ Y CM “ G and Cm X Cn “ H

for any m ‰ n. The quantization rule is assumed to be as
follows: Qpgq “ rm if g P Cm where m “ 1, 2, ...,M . The
conventional approach consists in determining Q so that the

distortion is minimized i.e., to minimize D “
ż

φpgq}Qpgq ´

g}2dg where φ is the probability density function (p.d.f.) of g.
The advantage of such an approach is that it may be possible
to make explicit the quantizer (namely the representatives and
cells) and this leads to a scheme which is independent of the
payoff. However, if the payoff is known, it is generally possible
to further improve the performance when it is measured in
terms of final payoff. Indeed, if one denotes by F the actual
maximum of f

F pgq “ max
x

f px; gq (1)

and by pF
pF pQ pgqq “ max

x
f px;Q pgqq (2)

the level which is effectively attained by only knowing Qpgq
and not g, it is relevant to determine Q through the following
relation:

Q‹ P arg min
Q

Eg}F pgq ´ pF pQ pgqq }2. (3)

The purpose of the next section is precisely to provide results
in order to minimize the quantity defined in (3). Just as in the
LMA, in general there is no guarantee for global optimality.
This classical issue is left as an extension of the present work,
the goal being here to focus on what is really novel.

III. GENERAL QUANTIZATION SCHEME

When g is a K´dimensional vector (K ą 1), finding jointly
the cells and the representatives which minimize (3) is a highly
non-trivial problem. This is the main reason why we take

inspiration from classical quantization schemes such as the
LMA, in order to search for a scheme that can find the most
suitable representatives tr1, ..., rMu (locally optimal) for a
given set of cells tC1, ...,CMu, and to find locally optimal cells
for a given set of representatives. Once these can be found, we
can iteratively solve for tr1, ..., rMu and tC1, ...,CMu, to find
a locally optimal solution (not necessarily globally optimal).

Finding the optimal cells for a given set of representatives
tr1, ..., rMu, can be done in a manner similar to the classical
LMA, and by constructing the partitions that are similar to
Voronoi partitions:

Cm “
!

g P RK : rF pgq ´ F prmqs
2
ď rF pgq ´ F prnqs

2
)

(4)
where n ‰ m. Clearly, the motivation for this choice is that
instead of the Euclidean distance or distortion of G as taken
in the classical Voronoi partition, here we look for the set with
the minimum distortion in terms of F pgq. On the other hand,
finding the optimal representative rm for a given cell Cm,
might not be as straightforward. Indeed, when G is a scalar
and F is invertible, and if Cm is defined by an interval of the
form rtm, tm`1s, then the best representative r‹m is given by

F pr‹mq “

ż tm`1

tm

φpgqF pgqdg

ż tm`1

tm

φpgqdg

. (5)

The above result can be shown to be true by differentiating
Egp}F ppgq´F pgq}2q w.r.t rm in a given cell Cm “ rtm, tm`1s.
Since F is invertible, its derivative never vanishes and thus
(5) can be obtained. Although F is typically an invertible
function when g is scalar, this property is generally lost
when g becomes a vector and the K elements of rm can
not be recovered from only one equation (1 equation for K
unknowns). For this reason, when g is the vector of the form
g “ pg1, g2, . . . , gKq

T , some assumptions have to be added to
make the identification procedure possible. The next result is
precisely based on one reasonable assumption which allows
identifiability to be possible.

Assumption III.1 (Decomposability assumption). The func-
tion F can be written as F “

řK
k“1 uk with uk : G Ñ

R and it is such that then the vector function V pgq :“
pu1pgq, ..., uKpgqq

T is invertible in Cm.

This assumption is well suited for several applications where
the total payoff is the sum of several components, for example,
when the payoff is the sum of the rates over each band. Indeed,
the function V may not be globally invertible, but our results
can be applied to partitions Cm such that this assumption holds
as we will illustrate in Sec. 4. For wireless systems, this suf-
ficient condition is often met due to the monotonicity of most
payoff functions; indeed, many payoff functions in wireless
communications are typically monotonically increasing w.r.t.
the signal-to-interference plus noise ratio (SINR).



Proposition III.2 (Optimal representatives). If Assumption
III.1 holds for a partition Cm, with the decomposed invertible
function being V pgq “ pu1pgq, ..., uKpgqq

T, then the optimal
representative r˚m which minimize Egp}V ppgq ´ V pgq}2q also
minimize Egp}F ppgq ´ F pgq}2q where pg “ Qpgq, and can be
obtained by solving the following system of K equations

ukpr
˚
mq “

ż

Cm

φpGqukpGqdG

ż

Cm

φpGqdG

(6)

Proof. For a given quantization region Cm, the gradient of
Egp}V ppgq ´ V pgq}

2q with respect to rm can be written as:

∇Egp}V ppgq ´ V pgq}2q

“
BEgp}V ppgq ´ V pgq}

2q

Brm

“

ż

Cm

φpgq
B}V prmq ´ V pgq}

2

Brm
dg

“

ż

Cm

φpgqJV prmq
B}V prmq ´ V pgq}

2

BV prmq
dg

“

ż

Cm

2φpgqJV prmqrV prmq ´ V pgqsdg

(7)

where JV is the Jacobian matrix of V evaluated at rm, i.e.,

JV prmq “

»

—

–

Bu1

g1
prmq . . . Bu1

gK
prmq

...
...

...
BuK
g1
prmq . . . BuK

gK
prmq

fi

ffi

fl

. (8)

At the local minimum, we must have the gradient of
Egp}V p pGq ´ V pGq}2q, become zero. Since, we assume that
V p¨q is invertible in Cm, we can use the inverse function
theorem to conclude that JV pLmq is invertible at all points
in Cm. As a result, we have

ż

Cm

φpgqrV prmq ´ V pgqsdg “ 0. (9)

Hence, the optimum representatives can be obtained as

V prmq “

ż

Cm

φpgqV pgqdg

ż

Cm

φpgqdg

(10)

which is equivalent to

ukprmq “

ż

Cm

φpgqukpgqdg

ż

Cm

φpgqdg

(11)

which must hold for all k “ 1, 2, ...,K. Taking the sum of
(11) with respect to k, we have

K
ÿ

k“1

ukpLmq “

řK
k“1

ż

Cm

φpGqukpGqdG

ż

Cm

φpGqdG

(12)

Knowing F ‹pGq “
řK
k“1 ukpGq, the optimum representatives

to minimize Egp}V p pGq ´ V pGq}2q satisfy the following con-
dition

F ‹pLmq “

ż

Cm

φpGqF ‹pGqdG

ż

Cm

φpGqdG

(13)

which is the expression to minimize the payoff gap
Egp}F

‹p pGq ´ F ‹pGq}2q.

The scalar case (3) can be checked to obtained by setting
K to 1. Now, we exploit Proposition III.2 to derive a suitable
algorithm to find a payoff-oriented quantizer knowing F .

Inputs: φpGq : RK Ñ Rě0, F ‹ “
ř

k uk satisfying
assumption III.1, trp0q1 , ..., r

p0q
M u

Outputs: tr‹1, ..., r‹Mu, tC‹1 , ..., C‹Mu
Initialization: Set iteration index q “ 0. Initialize the
quantization representatives according to trp0q1 , ..., r

p0q
M u.

Set rp´1q
m “ 0 for all m P t1, ...,Mu.

while
M
ÿ

m“1

prpqqm ´ rpq´1q
m q2 ą δ and q ă Q do

Update the iteration index: q Ð q ` 1.
For all m P t1, 2, ..,Mu, update Cqm from rq´1

m using
(4).

For all m P t1, 2, ..,Mu, update
rqm for each partition Cqm using (6).

end
@m P t1, ...,Mu, r‹m “ r

pqq
m , t‹m “ t

pqq
m , t‹M`1 “ `8

Algorithm 1: Algorithm to obtain the payoff-oriented quantizer

The new quantizer can be summarized by the following
algorithm. It is also important to note that the LMA can be
treated as the first order Taylor approximation of the proposed
algorithm, or just a special case in which F is a linear function.
Note that Assumption III.1 may not hold over the entire set
G, in this case, G can be partitioned into several sub-regions
where each region can be quantized specifically. For example,
as seen in the next section, when energy maximization is
pursued, solutions are such that only the best channel is picked
in which case just the best channel needs to be quantized and
then the minimum number of bits can be allocated to the other
channels.

IV. APPLICATION TO TYPICAL WIRELESS PAYOFF
FUNCTIONS

A. Energy-efficiency maximization

In this subsection, we consider a particular payoff function,
the energy efficiency function, for a multi-band scenario. The
quantizers of interest for the transmitter to allocate its power
are given by the channel gains. The channel gain in band
k is denoted by gk “ |hk|

2 where hk may typically be the
realization of a complex Gaussian random variable if Rayleigh
fading is considered. The power emitted in band k is denoted
by pk and is assumed to be subject to power limitation as:



pk ě 0 and
řK
k“1 pk ď Pmax. The K-dimensional column

vector formed by the transmit power levels and channel gains
will be denoted by p “ pp1, ..., pKq

T and g “ pg1, ..., gKq
T,

respectively. Here we choose the efficiency function of [15],
which is defined as

fpp, gq “

K
ÿ

k“1

e

´

´ cσ2

gkpk

¯

K
ÿ

k“1

pk

(14)

where σ2 is the receive noise variance and c “ 2r ´ 1 with r
being the spectral efficiency. To find F in the case of energy-
efficiency maximization, we first derive the optimal power
control policy. This is the purpose of the next proposition.

Proposition IV.1. In multi-band scenario, to maximize the sys-
tem energy-efficiency of, the optimal power allocation scheme
is

p‹kpgkq “

$

’

’

’

&

’

’

’

%

0 k ‰ arg max
i

gi

min
´

cσ2

gk
, Pmax

¯

k “ arg max
i

gi
(15)

Proof. The proof is omitted because of the lack of space. It
can be done by applying the scalar version of Proposition IV.1
to quantize the selected channel gk and selectively picking Cm
as subsets of tgku.

According to Proposition IV.1, to maximize energy-
efficiency, the transmitter will only transmit through the best
channel. To better estimate the payoff at the transmitter
side, we can use the vector quantization method proposed
in the previous subsection. However, this will entail a high
complexity if the number of bands is very large. Since only
one band is active in each time-slot, this property can be
used to design a special quantization scheme. Firstly, we
divide the whole region into K sub-regions pC1, ..., pCK , where
pCk “ tg P RK : gk “ max

i
giu. The region pCk corresponds

to the region in which gk is the best channel. Without loss
of generality, we consider the quantization scheme for region
pCk. If the channel realization belongs to pCk, then only band
k will be active. It implies that only selection of band k and
the value of gk are useful to improve the energy efficiency.
Suppose Qpgq “ ppg1, ..., pgKq

T, the first issue can be easily
solved by setting the largest element of the representatives in
pCk as pgk, i.e. maxQpg P pCkq “ pgk. Note that the optimal
energy efficiency function in pCk can be simplified as

F pg P pCkq “ max
p

fpp, g P pCkq “
e

ˆ

´ cσ2

gkp
‹
k

˙

p‹kpgkq
. (16)

Hence, the second issue, to find the optimal quantized value
of pgk, can be solved by minimizing dppgkq defined as

dppgkq “ Egk|gkěg1,...,gkěgK rF pgkq ´ F ppgkqs
2
. (17)

Proposition IV.2. Define the M-level scalar quantizer of gk
transition levels set as ttk,1, ..., tk,M`1u and its corresponding
representatives set as trk,1, ..., rk,Mu. Suppose each channel
gk is i.i.d. with p.d.f. φpgkq “ γe´γgk . Assume Pmax is
sufficiently large, for fixed representatives trk,mu, the intervals
(cells) which minimize dppgkq can be obtained by

tk,m “
rk,m´1 ` rk,m

2
(18)

with fixed transition levels ttk,mu, the optimum representatives
to minimize dppgkq can be obtained by

rk,m “

ż tk,m`1

tk,m

gp1´ e´γgqK´1γe´γgdg

ż tk,m`1

tk,m

p1´ e´γgqK´1γe´γgdg

.
(19)

Proof. The proof is omitted because of the lack of space.

Obtaining this scalar quantizer, dppgkq can be minimized
knowing gk is the best channel. Without loss of generality,
we assume that each region pCk will be divided to M different
quantization cells tCk,1, ...,Ck,Mu. The corresponding repre-
sentative of the quantization region Ck,m is defined as a K-
dimensional vector rk,m “ pr1k,m, ..., r

K
k,mq

T. Based on the
results in the previous section, the vector quantization region
Ck,m can be expressed as

Ck,m “ tg P RK : tk,m ă gk ď tk,m`1u X
pCk. (20)

The corresponding representative Lk,m can be chosen as:

rkk,m “ rk,m (21)

rk
1

k,m “ const ă rkk,mpk
1 ‰ kq. (22)

For the vector quantization of g, the quantization region set
C “ tC1,1,C1,2, ...,CK,Mu and the representatives set r “
tr1,1, r1,2, ..., rK,Mu can be found using (20)(21)(22). With
this new approach, the complexity of the computation has been
considerably reduced.

B. Spectral efficiency maximization

Using the same notations as in the previous section, here
we consider the following well-known sum-rate function

usum´ratepp, gq “
K
ÿ

k“1

log p1` SINRkpp, gqq (23)

where SINRkpp, gq “
gkpk
σ2 . The optimum power allocation

policy is given by the water-filling solution, i.e.,

p‹k “

„

µ´
σ2

gk

`

(24)

where the water level µ can be obtained by solving
řK
k“1 pk “

Pmax and the function rxs` “ maxpx, 0q. However, due to
the incertitude of the function rxs`, it is difficult to obtain the
explicit expression for the function F ‹pGq. To express F ‹pGq



explicitly, we can firstly divide the whole region to specific
partitions for each case corresponding to if p˚k “ 0 or not.
In each of these partitions, a different quantization scheme
must be ideally used for optimal results as we cannot find uk
satisfying Assumption III.1 for the general channel space. So,
we focus on a practically relevant case of high signal-to-noise
ratio (SNR) for the purpose of this work. Studying the general
case is left as an extension which can be solved by treating
each partition (corresponding to p˚k “ 0 or not) separately.

In the high SNR case, i.e., when Pmax

σ2 Ñ8 we have p˚k ą 0
for all k. Further, it can be observed that the sum-rate can be
decomposed to individual payoff. Substituting (24) into (23),
the individual payoff can be expressed as follows:

usum´rate
k “ logp1` SINRkq

“ log

˜

1` gkSNR`
ÿ

j‰k

gk
gj

¸

´ logp2q
(25)

with SNR :“ Pmax

σ2 . This V “ pu1, u2, . . . , uKq
T is clearly

invertible w.r.t g satisfying Assumption III.1, and we can
therefore directly apply proposition III.2 and algorithm 1 to
obtain the payoff oriented quantizer.

V. NUMERICAL PERFORMANCE ANALYSIS

In this section, we present simulation results to illustrate
the performance of the proposed quantizer for a single user
multi-band scenario. For comparison with the classical LMA,
we look at the optimality loss induced by quantization defined
as

∆F p%q “ EG

«
ˇ

ˇ

ˇ

ˇ

ˇ

F pGq ´ pF pQ pGqq

F pGq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ˆ 100 (26)

which we term the relative optimality loss, where expectation
is calculated by Monte-Carlo simulations for the channel
gain G. For all k, the channel gain gk in band k is as-
sumed to be exponentially distributed, namely, its p.d.f. writes
φpgkq “ expp´gkq; this corresponds to the well known
standard Rayleigh fading assumption. The considered scenario
for all simulations is such that the transmit power Pmax “
20 dBm and a normalized receive noise power σ2 “ 0 dBm,
resulting in SNR“ 20 dB.

In Fig. 1, the energy-efficiency payoff function defined in
(14) is considered as the payoff function f and the relative
optimality loss is plotted against the number of quantization
bits when the number of bands K “ 16. Our quantizer is
obtained by using the proposition IV.1 we have provided.

In Fig. 2 we look the at the sum-rate payoff function as
defined in (23). There are two bands available for communi-
cation, i.e. K “ 2. We plot the relative optimality loss induced
by quantization w.r.t the number of quantization bits used.

As expected, when the number of bits increases, the
relative optimality loss of both quantizers decreases. The
proposed quantizer in Sec. 4 outperforms the classical LM
vector quantizer. It is also important to note that the relative
optimality loss of our quantizer is very close to 0 when we
have more than 7 quantization bits, but the relative optimality
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Fig. 1. Comparison of the performance in terms of final payoff between the
conventional paradigm-based quantizer (which aims at minimizing distortion)
and the proposed payoff-oriented quantizer. The figure represents the relative
optimality energy-efficiency loss against number of quantization bits. The
proposed quantizer results in a relative optimality loss (w.r.t. the case where
the channel is known perfectly to the transmitter) of just 5% with 5
quantization bits compared to over 40% when using the classical.
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Fig. 2. Relative optimality spectral efficiency loss (sum-rate) based payoff
against number of quantization bits. The proposed quantizer achieves a better
performance and the loss is less than 5% with more than 5 quantization bits.

loss of LM quantizer still remains significant even with 9
quantization bits. Meanwhile, it can be predicted the novel
quantizer will have the same performance as LM quantizer
when the number of quantization bits tends to infinity since
the relative optimality loss tends to 0 for both quantizer.

Finally, we study the relative optimality loss as a function
of the number of bands with a fixed number of quantization
bits. The number of quantization bits is set to five for this
simulation. Fig. 3 illustrates the relative optimality loss against
different number of bands. In single band scenario, the pro-
posed quantizer coincides with the LM quantizer as minimiz-
ing the relative optimality loss is identical to minimization
of distortion. In the multi-band case however, our quantizer
achieve a better performance in terms of relative optimality
loss and the difference becomes more significant as number
of bands increases. Since the number of quantization bits is
fixed, the accuracy of each component pgk will degrade as the
number of bands increases for the LMA.



0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

Number of bands

R
el

at
iv

e 
op

tim
al

ity
 lo

ss
(%

)

 

 

LMA Quantizer

Proposed quantizer

Fig. 3. Relative optimality energy-efficiency loss against number of bands.
The proposed quantizer improves the performance in multi-band scenario and
the improvement becomes more significant as the number of bands increases.

VI. CONCLUSION

In this paper, the classical problem of quantization is
revisited. Instead of considering the distortion or minimum
mean square error to design the quantizer, the final use of the
quantized parameters is considered. This approach is fully rel-
evant in problems such as power control since the transmitter
has often only access to an estimate or quantized version of the
parameters (e.g., the channel gains). To effectively determine
a good payoff-oriented quantizer in the vector case, we make
some sufficient but reasonable sufficient conditions on the
payoff function (such as the decomposability assumption)
and resort to a suboptimal iterative algorithm. The benefit
from implementing the proposed payoff-oriented quantization
approach is illustrated with the problem of energy-efficient and
spectral efficient power control problem. Significant gains can
be obtained in terms of payoff especially when the number
of bits decreases. Extending the proposed iterative algorithm
to obtain the global optimum solution for a given class of
payoff functions constitutes a challenging but very important
extension.
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