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Abstract: Blind Source Separation (BSS) is an active domain of Classical Information Processing,
with well-identified methods and applications. The development of Quantum Information Processing
has made possible the appearance of Blind Quantum Source Separation (BQSS), with a recent
extension towards Blind Quantum Process Tomography (BQPT). This article investigates the use of
several fundamental quantum concepts in the BQSS context and establishes properties already used
without justification in that context. It mainly considers a pair of electron spins initially separately
prepared in a pure state and then submitted to an undesired exchange coupling between these spins.
Some consequences of the existence of the entanglement phenomenon, and of the probabilistic aspect
of quantum measurements, upon BQSS solutions, are discussed. An unentanglement criterion is
established for the state of an arbitrary qubit pair, expressed first with probability amplitudes and
secondly with probabilities. The interest of using the concept of a random quantum state in the
BQSS context is presented. It is stressed that the concept of statistical independence of the sources,
widely used in classical BSS, should be used with care in BQSS, and possibly replaced by some
disentanglement principle. It is shown that the coefficients of the development of any qubit pair pure
state over the states of an orthonormal basis can be expressed with the probabilities of results in the
measurements of well-chosen spin components.

Keywords: blind source separation (BSS); qubit pair; exchange coupling; entangled pure state;
unentanglement criterion; probabilities in quantum measurements; independence of random
quantum sources

1. Introduction

The book entitled “Do we really understand quantum mechanics?” [1] was published five years
ago. Some fourty years earlier, its author, Laloë, had co-authored a treatise on quantum mechanics,
together with Cohen-Tannoudji, later a Nobel laureate, and Diu [2]. While this recent book illustrates
the present strong interest for the foundations of Quantum Theory (QT), already in 1929, Dirac could
claim: “The general theory of quantum mechanics is now almost complete” and “The underlying physical laws
necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely
known” [3]. Since that time, the development of both telecommunications through electromagnetic
waves and solid state electronics favoured the appearance first of classical Information Theory, and then
of Quantum Information Theory and Processing (QIT, QIP).

This special issue, Quantum Information and Foundations, in the Quantum Information Section
of Entropy, reflects the existence of links between QIP/QIT and the foundations of QT. An instance
of such links is given by the approach adopted e.g., in Timpson’s Thesis [4]. This methodology, in
the framework of Philosophy of Science, is difficult because of its rather general character. For the
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last decade, we have been following another approach. Starting from a problem in the domain of
classical information processing, namely Source Separation (SS) with its more difficult so-called Blind
version (BSS), introduced around 1985 and now a mature field [5,6], we are developing its quantum
counterpart, which we proposed to call Blind Quantum Source Separation (BQSS). Each step of this
more pedestrian approach may be controlled, presently e.g., through simulations. This approach has
been achieved in our 2007 paper introducing BQSS [7], and in those describing the solutions which we
have built since then (see e.g., [6,8–14]), and which led to our recent introduction of Blind Quantum
Process Tomography (cf. [12,14] and more explanations at the end of this section and in Part A.2 of
the Appendix).

A short presentation of the problem of classical (i.e., non quantum) or conventional BSS, and of
its interest, is needed here. In BSS, typically, at first, a set of users (the Writer) presents a set of
simultaneous signals (input signals, or sources) at the input of a multi-user communication system
(the Mixer). The sources, constrained to possess some general properties (e.g., mutual statistical
independence), are combined (mixed, in the SS sense) in the Mixer, often specified through a model,
e.g., the linear memoryless one (cf. Chapter 11 from [15]). Another set of users (the Reader) receives the
signals arriving at the Mixer output. The Writer possibly knows the sources, but the Reader does not
know them, and cannot access the inputs of the Mixer. That Mixer uses one or several parameter values,
unknown to the Reader, who only knows some of its general properties. The Reader’s final task is the
restoration of the sources (possibly up to some so-called acceptable indeterminacies) from the signals
at the Mixer output, during the inversion phase. An intermediate task is the determination of the
unknown parameters of the Mixer, or of its inverse. Before receiving the signals to be separated at the
Mixer output, derived from the sources sent by the Writer, the Reader therefore enters an “adaptation
phase”, during which he knows that the Writer is sending one (or possibly a limited number of)
signal(s) submitted to some definite, and known by the Reader, constraints. The particular signal sent
is not known by the Reader (blind separation problem), who knows the class of the input signal(s)
and the signal(s) at the Mixer output in the adaptation phase, and, of course, the mixed signals to be
separated in the inversion phase.

Conventional BSS is already used to extract some or all source signals in various application
fields, e.g., in some audio systems, or when using radio-frequency signals to transmit digital data, or
in the biomedical field, in the processing of signals such as electrocardiograms, electroencephalograms
or magnetoencephalograms, as explained in Part A.1 of the Appendix. More information on the
applications of conventional BSS may be found in our previous papers [11,14], in [6], and in the papers
or books they cite.

BSS is moreover closely linked to a well-known domain of signal processing technology called system
identification. More precisely, BSS is linked to Blind Mixture Identification (BMI), as briefly explained in
Part A.1 of the Appendix and developed in [6], and BSS may be used in the corresponding applications.

Conventional (B)SS has favoured the introduction of concepts and the development of specific
methods [5,6]. Its extension to the quantum domain seems suitable for at least three reasons. First,
the source concept may be extended from a classical to a quantum context. Secondly, as any classical
phenomenon, conventional (B)SS may be seen as the limit of a quantum phenomenon. When
developing solutions to the BQSS problem, it seems legitimate to try and import concepts and
methods from the classical to the quantum SS domain. However, the presence of entanglement
in a quantum approach should be clearly identified and the consequences of its existence should not
be underestimated. In addition, the concepts of quantum sources and of their statistical independence
deserve some discussion, and consequences of the probabilistic aspect of the results of measurements
in the quantum domain must be drawn. Furthermore, last but not least, since some of the basic
concepts of QT are still open to discussion, when e.g., using measurements, even in an abstract process,
the adopted point of view should once be made explicit, in order to minimize confusion. The nature
of this special issue gave us the opportunity to clarify concepts and justify properties already used
in our previous papers upon BQSS, a task postponed up to now, and which should be of use in the
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BQSS domain, and maybe in other fields. These two motivations stimulate a third natural one, namely
the hope of extending the field of BSS applications toward the quantum world. In the following
sections, in order to illustrate our methods and help reading, some aspects or results of our previous
papers will be occasionally presented, but the building of any specific BQSS solution is outside their
scope. The reader interested in the results from simulations may consult [8,11], obtained through BQSS
methods with classical processing, and [14], with quantum processing in the forward path. This recent
paper moreover contains a table with a detailed comparison of the key features and performance from
the existing methods.

In all of our previous papers, we considered two distinguishable qubits numbered 1 and 2,
and we presently keep this situation. When it is meaningful to speak of the state of a quantum system,
and specifically if this system is a qubit, this state may be either pure or mixed. In order to avoid any
confusion with the meaning of a mixture in the SS context, if it is needed to speak of a (quantum)
mixed state in the following, we will systematically speak of a statistical mixture. A typical situation
is the following one: at an initial time t0, the Writer prepares both qubits, each in a given pure state,
described by some ket. This ket carries information, an idea contained in the expression “quantum
source”. The initial state | Ψ(t0) > of the qubit pair is then the tensor product of the corresponding
kets. The time between t0 (writing) and t1 (reading) is supposed to be short enough for the qubit pair
to be treated as isolated, a choice already made by Feynman [16,17] in the context of the quantum
computer, and presently refined at the beginning of Section 4.1 for qubits physically realized with spins.
At any time t between t0 and t1, the state of the qubit pair may then be described by a ket | Ψ(t) >.
In the Schrödinger picture, this time evolution of the pair is described by a time-dependent unitary
operator U(t0, t1). It is assumed that an undesired coupling exists between these qubits. Because of
this undesired coupling, as time goes on the state of the pair generally becomes entangled. Coupling
is then interpreted as a mixing (in the SS sense), realized by an abstract Mixer depending upon one
or several parameter values, unknown to the Reader, who only knows some general properties of
that Mixer. It is said that the input of the Mixer receives state | Ψ(t0) >, and that its output provides
state | Ψ(t) >. It should be well appreciated that inverting U(t0, t1) in order to get | Ψ(t0) > from
| Ψ(t1) > is not that easy, because U(t0, t1) is unknown (blind QSS). In Section 2, it is first explained why
both state and process quantum tomography are unable to solve this BQSS problem, and secondly
why the Schmidt criterion is ill-suited for following the degree of entanglement of | Ψ(t1) > during
the adaptation phase. The Peres–Horodecki criterion [18,19] is valid for separable statistical mixtures
of bipartite systems, and not specifically for unentangled pure states. A better suited unentanglement
criterion is therefore established in Section 2.

In Section 3, a model situation, for a single spin and then for a pair of spins, in inhomogeneous
magnetic fields with random directions, allows us to speak of random and possibly independent
variables, in that quantum context. We explain why, although this random quantum state corresponds
to a statistical mixture, it is simpler, in the BQSS context, to speak of a random pure state than to
introduce a density operator. In Section 4, we first make brief comments about the description of
quantum states (including the existence of statistical mixtures as source states, in a more general
context), about the act of measurement and about the physical realization of qubits with electron
spins. We then discuss questions related to the probabilities of the possible results obtained in
measurements of spin components, in the context of spins 1/2 as qubits. We first present their use
when the Reader makes measurements at the Mixer output in order to restore the sources (cf. Figure 1).
These measurements establish a link between the output of the Mixer and the classical world. It is
stressed that while the macroscopic support of the results of measurements has a classical behaviour,
the probabilities of these results obey quantum laws. We then establish an unentanglement criterion
using probabilities, equivalent to the one established in Section 2 for the probability amplitudes ci.
It is shown that the ci coefficients can be expressed as functions of the probabilities of results in the
measurements of well-chosen spin components. In Section 5, we derive the expression of the above
unentanglement criterion for all possible source states, at the output of the so-called separating system,
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with respect to the parameters of both the cylindrical Heisenberg coupling, an abstract Mixer largely
used in our previous papers, and that separating system.

| ψ (t)> p
classical

processing
y

mixing stage separating stage

(t  )>0
ψ mixing|

Figure 1. Block diagram of a system using classical-processing BQSS.

In Part A.2 of the Appendix, the question of the applications of BQSS is addressed. Partly
because the appearance of BQSS is recent, the subject of its applications is presently largely speculative.
Two main subdomains should be distinguished. The first one is BQSS in a strict sense. It aims
at recovering the source states and is the quantum counterpart of conventional BSS. The second
subdomain focuses on an intermediate step possibly found in methods developed for BQSS and aiming
at the knowledge of the mixer function or of its inverse. The corresponding classical problem is known
as Blind Mixture Identification (BMI), a subfield of System Identification. The non-blind quantum
version of System Identification is that already mentioned and well-established field of QIP called
Quantum Process Tomography (as opposed to Quantum State Tomography). We recently introduced
the quantum version of BMI, which we proposed to call Blind Quantum Process Tomography (BQPT).

2. An Unentanglement Criterion for a Qubit Pair

A superficial look may suggest that it is possible to restore the initial product state through State
or Process Tomography (ST, PT). ST aims at determining a quantum state if a lot of copies of that state
are available [20]. However, in BQSS, the Reader is unable to access the input of the Mixer, and ST
is therefore obviously presently strictly useless. PT would presently consist of placing (preparing)
successive well-defined and known quantum states at the input of the Mixer, thus operating in the
non-blind mode (cf. [15], p. 202) and observing the corresponding signals at its output. However, in
the BQSS problem, the Reader is strictly unable to operate that way, as he is unable to ask the Writer to
prepare him the quite specific input states asked for by PT. Therefore, quantum tomography is unable
to solve the BQSS problem, which needs dedicated methods (for more details, see [8]).

Up to now, in the BQSS problem, we developed two main approaches for both determination
of the unknown parameter(s) of the mixing or separating system and source separation. In the first
approach [7,8,11], the Reader measures observables, using the signals at the Mixer output (cf. Figure 1).
The results, and properties associated with them, e.g., the probabilities of their occurrences, are kept
upon a macroscopic device, e.g., the memory of a classical computer, and then used in a separating
system. Since this macroscopic device and the separating system have a classical behaviour, we
called this processing aimed at restoring the sources “classical-processing BQSS”. In the second, quite
different, and more recently introduced approach [9,10,14], the quantum state at the Mixer output is
sent to the input of a quantum-processing subsystem (cf. Figure 2), the inverting block of the separating
system. This block is so designed that its output provides a quantum pure state equal to | Ψ(t0) >

(possibly up to some acceptable indeterminacies), after the adaptation phase.
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| ψ (t)>

| φ >

mixing stage separating stage

classical

processing

quantum processing| ψ (t  )>0 mixing

Figure 2. Block diagram of a system using BQSS, with quantum processing in the forward path
(no cloning [14], with permision from Elsevier).

From now on, the state spaces of two arbitrary qubits, called qubits 1 and 2, are denoted as
E1 and E2, respectively. The possible (pure) states of the pair are the kets in E1⊗ E2. We assume
that the qubits are physically realized with spins 1/2, which, e.g., allows us to speak of the spin
component s1z or s2z, but many results established hereafter keep true without this assumption. We
introduce the orthonormal basis B+, {| ++ >, | +− >, | −+ >, | −− >}, where e.g., | +− > means
| 1+ > ⊗ | 2− > and | i,+ >, | i,− > are normed eigenkets of the siz component of (reduced) spin −→si
(with i = 1, 2), for the eigenvalues +1/2 and −1/2, respectively. Any pure pair state, entangled or not,
may be expanded in B+ as

| Ψ >= c1 | ++ > +c2 | +− > +c3 | −+ > +c4 | −− >, (1)

where the complex coefficients cj (j = 1 to 4) respect ∑j | cj |2 = 1. If a pure state or a statistical mixture
of a bipartite system S12 (parts S1 and S2) is described by a density operator ρ, the corresponding
reduced traces ρ1 = Tr2ρ and ρ2 = Tr1ρ have all the mathematical properties of a density operator [2].
In addition, if S12 is in a pure state, ρ1 and ρ2 have the same eigenvalues [21]. This pure state is
unentangled if and only if its Schmidt number NS (the number of non-zero eigenvalues of ρ1 and ρ2)
is equal to 1 [21]. We are particularly interested in the case when | Ψ > is the state found at the
output of the inverting block. Then, any pure state may be expanded in the standard basis B+ as
in Equation (1), where the values of the ci coefficients are affected by both the coupling between
the qubits and, during the adaptation phase, by the adaptation procedure. This adaptation phase
typically consists of an iterative numerical algorithm, which aims at optimizing a continuous-valued
function, traditionally called the “cost function”. For any given values of the adjustable parameters of
the inverting block, the cost function measures a kind of “distance” between | Ψ > at the output of
the inverting block and an unentangled pure state. The Schmidt unentanglement criterion cannot be
used in our problem because the considered state remains (at least slightly) entangled throughout the
adaptation procedure, and the Schmidt number thus remains higher than one. The Schmidt criterion
provides a binary-valued unentanglement detector, with a Schmidt number equal to one or not and,
if taking into account all possible integer values of NS beyond unentanglement detection, the Schmidt
criterion provides a discrete-valued quantity. What we eventually need instead is a quantitative,
continuous-valued, measure of that “distance” of the considered state with respect to unentanglement,
in order to keep the adjustable parameter values of the inverting block, yielding the state which is the
closest to unentanglement. Moreover, even if the Schmidt approach could be modified to this end, it
would yield high computational complexity, as it would require one to diagonalize ρ1 or ρ2 for each of



Entropy 2017, 19, 311 6 of 19

the quite numerous steps of the iterative adaptation algorithm. We avoid these issues as follows. Since
the qubit pair is in a pure state, its partial traces ρ1 and ρ2 satisfy

Trρ2
1 = Trρ2

2 ≤ 1, (2)

and the common value for Trρ2
1 and Trρ2

2 is 1 if and only if the pure state is unentangled (cf. [21]).
One could think of using Trρ2

1 − 1 as a cost function. However, Trρ2
1 depends upon the ci, which

suggests one to try and establish an unentanglement criterion using the ci explicitly. To this end, we
consider state |Ψ〉 defined through Equation (1). When it is assumed that |Ψ〉 is unentangled, i.e., that
it can be written as

|Ψ〉 = (a|+〉+ b|−〉)⊗ (c|+〉+ d|−〉), (3)

then, in Equation (1), c1 = ac, c2 = ad, c3 = bc, c4 = bd, so c1c4 and c2c3 are both equal to abcd:

c1c4 = c2c3. (4)

Conversely, when it is assumed that Equation (4) is satisfied, if c1 6= 0 then |Ψ〉may be written as

|Ψ〉 = c1(|+〉+
c3

c1
|−〉)⊗ (|+〉+ c2

c1
|−〉), (5)

which means that |Ψ〉 is then unentangled. If Equation (4) is satisfied and c1 = 0, then c2 = 0 and
c3 6= 0, or c3 = 0 and c2 6= 0, or c2 = c3 = 0, and in each case |Ψ〉 is unentangled. Therefore, if the qubit
pair is in a pure state |Ψ〉 written as in Equation (1), then:

|Ψ〉 is unentangled⇐⇒ c1c4 = c2c3. (6)

This unentanglement criterion for a qubit pair pure state was used without justification in [9,10].
In Equation (1), |Ψ〉 was expanded in the standard basis. It is possible instead to introduce e.g.,
the normed eigenvectors of s1x and s2x, or more generally those of s1u and s2v, the components of the
spins along respective arbitrary directions −→u (θ1E, ϕ1E) and −→v (θ2E, ϕ2E), defined through their Euler
angles. For each component, the possible results are again ±1/2. The possible results for the pair
may be symbolically written as (+u + v), (+u− v), (−u + v) and (−u− v), and the corresponding
probabilities as P1uv, P2uv, P3uv, P4uv. Equation (1) is replaced by

|Ψ〉 = c1uv|+ u + v〉+ c2uv|+ u− v〉+ c3uv| − u + v〉+ c4uv| − u− v〉. (7)

With the same reasoning within the new basis, (6) is replaced by

|Ψ〉 is unentangled⇐⇒ c1uvc4uv = c2uvc3uv. (8)

3. Random Quantum Sources and Their Independence

The qubits are again supposed to be physically realized with spins 1/2. Standard Electron
Spin and Nuclear Magnetic Resonance (ESR, NMR) use a non-microscopic number of resonant
spins, but methods have been proposed for more than twenty years in order to detect a single spin,
particularly with Optically Detected Magnetic Resonance (ODMR [22,23]) or with Magnetic Resonance
Force Microscopy (MRFM [24]), and more recently at low temperature (0.5 K) with Spin Excitation
Spectroscopy [25], or even with ESR, in extreme conditions [26]. These approaches are still under
development. Here, anticipating upon advances in spintronics, we rather consider a pair of spins, or
even a single spin, submitted to a static magnetic field.

When speaking e.g., of a microwave source for satellite television, one speaks of the device
emitting the microwave carrier. Similarly, the expression “laser source” generally refers to the device
creating the coherent radiation. In conventional SS, “source” is an abbreviation for “source signal”.
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Furthermore, in Quantum SS with abstract qubits corresponding to physical spins 1/2, the word
“source” does not refer to some atomic beam delivering atoms carrying an electron or nuclear magnetic
moment, but still means “source signal”, then referring to some information from the quantum states
of these qubits.

In conventional SS, an important concept is that of statistical independence of the sources, at the
root of the frequent use of Independent Component Analysis (ICA) [27]. In [7,8,11], we postulated
the existence of statistically independent quantum sources when using the classical-processing SS
defined at the beginning of Section 2. Hereafter, we show that statistical independence may exist in
that context. Quantum Mechanics (QM) does e.g., consider random operators, the matrix elements
of which are random quantities (see the random lattice operators F(q) in the quantum description
of the motions of nuclear moments in liquids, in the study of Spin-Lattice Relaxation (SLR), in [28]).
As a simple model situation, a magnetic moment −→µ associated with a single electron spin 1/2, with
−→µ = −G −→s (isotropic g tensor), placed in a Stern–Gerlach device, is now introduced. The static field
is
−→
B0 = B0

−→
Z , with amplitude B0. The system of interest consists of this spin and the magnet. Writing

the Zeeman Hamiltonian as h = −−→µ −→B 0 = GB0sZ indicates that while the spin is a quantum object,
the magnetic field is treated classically. The Writer first prepares the spin in the |+ Z〉 eigenstate of sZ
(eigenvalue +1/2). The moment is then received by the Reader, supposed to ignore the direction of−→
B0 , and who chooses some direction attached to the Laboratory as the quantization direction, called z
(unit vector −→uz ) and introduces a Laboratory-tied cartesian reference frame xyz, used to define θE and
ϕE, the Euler angles of

−→
Z . Since the field is treated classically, θE and ϕE behave as classical variables,

while sZ is an operator. The Reader measures sz =
−→s −→uz (eigenstates: |+〉 and |−〉), and is interested

in the probability p+z of getting +1/2. An elementary calculation indicates that

|+ Z〉 = r|+〉+
√

1− r2eiϕ|−〉, (9)

with
r = cos

θ2E
2

, ϕ = ϕE, (10)

and therefore p+z = cos2 θE/2. Once the direction of the magnetic field has been chosen, state
| + Z〉 is then unambiguously defined. If this direction has a deterministic nature, r and ϕ are
deterministic variables, and |+ Z〉 may then be called a deterministic quantum state. If θE and ϕE,
defining the direction of

−→
B0 chosen by the Writer, obey probabilistic laws, one may consider that

the quantum quantities r and ϕ, which depend upon the classical Random Variables (RV) θE and
ϕE, do possess the properties of conventional, i.e., classical, RV. It may e.g., happen that they be
uncorrelated, or even independent (which happens if θE and ϕE are independent). In addition, if θE
and ϕE depend on time in a random way, r and ϕ are then random time functions. We are not strictly
facing the quantum equivalent of a classical situation here. Rather, the stochastic character of the field
direction, with classical nature, is reflected in the random behaviour of the quantum state expressed
through Equation (9). Therefore, rather than a random operator, we meet here a random quantum
state. The concept of a random state, if not the expression, was already used e.g., in the early and
canonical books [29,30]. The probability p+z, presently a function of the RV θE, is itself an RV. This
results from both the randomness of the field direction and the standard probabilistic interpretation of
QM. Probabilities of results of measurements for a qubit pair were treated as RV, without the present
justification, in most of our previous papers, including [7,8,11].

If one measures the scalar observable O when the spin is in the state |Ψ〉 = α|+〉+ β|−〉 = Σk fk|ϕk〉
(where k is associated with + and −), had the fk been deterministic the mean value would have been:

〈Ψ|O|Ψ〉 = ∑
k,l

f ∗k flOkl , Okl = 〈ϕk|O|ϕl〉. (11)
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Since the fk are random, one must moreover calculate the statistical mean, denoted as 〈Ψ|O|Ψ〉:

〈Ψ|O|Ψ〉 = ∑
k,l

f ∗k flOkl = TrρO, (12)

where ρ is the density operator, the matrix elements of which, in the (|+〉 , |−〉) basis, are ρl,k = f ∗k fl .
Therefore, it is in principle possible to presently introduce a density operator, which is a non-random
operator (its matrix elements are not random quantities, but statistical averages). However, this does
not present any interest, since in the BQSS problem examined up to now, the Reader knows that e.g.,
qubit 1 has been prepared in a pure state, but does not know the values of the ρij coefficients in any
basis, and is consequently unable to choose a basis in which ρ would be diagonal. It is simpler to keep
speaking of a random pure state.

As a model situation, we now consider two spins 1/2 numbered 1 and 2, each with conditions
similar to the previous ones, with fields along directions with respective unit vectors

−→
Z1(θ1E, ϕ1E) and−→

Z2(θ2E, ϕ2E), and each spin initially prepared in the state

|ψi(t0)〉 = ri|i+〉+
√

1− r2
i eiϕi |i−〉, i = 1, 2, (13)

where |i+〉 and |i−〉 are the eigenkets of siz, the component of −→si along the quantization direction,
for the eigenvalues 1/2 and −1/2, respectively. For the same reason, if the field directions are
random, r1, ϕ1, r2 and ϕ2 have the properties of conventional RV. If (θ1E, ϕ1E) and (θ2E, ϕ2E) are
mutually statistically independent, the same is then true for the couples of RV (r1, ϕ1) and (r2, ϕ2).
In addition, if e.g., θ1E and ϕ1E are independent, the same is true for r1 and ϕ1 (cf. Equation (10)). These
properties are of major importance for our quantum-source independent component analysis (QSICA)
methods described in [11]. We may then say that the initial state of each qubit is random, i.e., that in
Equation (13) ri and ϕi are RV. When considering the preparation of a pair of qubits each in a pure state,
one may assume either a deterministic or a random direction for each magnetic field. This discussion
shows that the relevant concept, in the latter case, is that of random quantum states, rather than that of
random quantum operators mentioned earlier in this section.

Keeping our assumption of a pair of qubits each prepared in a pure state, we now consider
the second approach for the adaptation and inversion phases (cf. the beginning of Section 2 and
Figure 2), with a quantum state |Φ〉 present at the output of the inverting block. The presence of |Φ〉
and the Reader’s final aim, the recovery of the initial pure state, prompts the Reader: (1) to speak of
a deterministic or random pure state, rather than to use a density operator; (2) to consider that the
first constraint to be respected in BQSS is then the very existence of an unentangled state at the output
of this inverting block. If unentanglement has first been achieved, then and only then is it possible
to speak of a deterministic or random state for each part of that product state. While entanglement
has no classical counterpart, the following point may be noted here: if a bipartite system is in a pure
(deterministic) state |Φ〉, to which a density operator ρ = |Φ〉〈Φ| corresponds, |Φ〉 is unentangled
if and only if the partial traces ρ1 and ρ2 satisfy the equality ρ = ρ1 ⊗ ρ2 [31]. This unentanglement
condition is reminiscent of the relation ρ = ρ1 · ρ2 between ρ, the joint probability density function
of independent classical RV X1 and X2, and ρ1 and ρ2, the respective marginal probability density
functions. Presently, operators replace functions, a tensor product replaces the ordinary product,
and this reminiscence reflects the existence of a classical analogue to unentangled states. Condition (4)
for unentanglement was established using spins 1/2, but is valid for any pair of two-level systems.
This discussion suggests that, in the BQSS problem, when considering a pair of qubits prepared in a
pure state, and moreover using the second approach of Section 2 for adaptation and inversion, instead
of trying to directly import ICA methods into the BQSS context, one should focus on disentanglement
at the output of the inverting block, which recently led us to introduce a disentanglement-based
separation principle [9,10].
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In the next section, use will be made of the number of real independent parameters necessary to
define an arbitrary normed ket |Ψ〉 in E1⊗E2, written as in Equation (1), and a ket in E1⊗E2 forced to be
unentangled. These numbers are specified hereafter. An arbitrary normed ket |Ψ〉 in E1 ⊗ E2 depends
upon the four complex quantities c1 to c4 linked through two relations between real numbers (∑i | ci |2
is equal to 1, and |Ψ〉 and eiϕ|Ψ〉, with ϕ an arbitrary real quantity, should be considered identical).
An arbitrary normed ket |Ψ〉 in E1 ⊗ E2 therefore depends upon six real independent parameters. If it
is forced to be unentangled, it has to satisfy the equality c1c4 = c2c3 between complex quantities.
An unentangled normed ket |Ψ〉 therefore depends upon four real parameters. This corresponds to the
fact that |Ψ〉 is then restricted to the form |Ψ〉 = |ψ1〉 ⊗ |ψ2〉, where the normed kets |ψ1〉 and |ψ2〉,
describing the state of qubits 1 and 2, respectively, each depend upon two real parameters (r1, ϕ1),
(r2, ϕ2) (cf. Equation (13)).

4. BQSS and Probabilities in Spin Component Measurements

4.1. Some General Considerations

Faced with the variety of existing interpretations of QM, Fuchs and Peres have argued that
“quantum theory needs no interpretation” [32]. Concerning the question of interpreting QM, one
may distinguish between claims that can be experimentally tested (i.e., confirmed or refuted) through
experience, and those which cannot. This may be illustrated by an instance from the early days of QM,
related to the measurement act. At first, Bohr apparently introduced some dichotomy between the
quantum system of interest and the classical behaviour of the apparatus. Chapter VI of Von Neumann’s
1932 book [30] was perhaps the first attempt to treat the system of interest and the apparatus (with a
so-called pointer) as a single system obeying the laws of QM. However, in his book, Von Neumann
also introduced a postulate (wave-function reduction) specifiying the state of the system of interest at
the end of the measurement. Since then, this postulate has been criticized, first by Margenau, who
introduced the concept of preparation, to be distinguished from the one of measurement, and who
insisted that e.g., when a photon is absorbed, the measurement act does not bring the photon into a
new state, but destroys it [33,34]. The measurement act has been largely debated, including recent
discussions through the concept of decoherence (see e.g., [1,21]). When trying to develop the domain of
BQSS, we got some control of the proposed separation methods, through simulations, but we moreover
tried to avoid using ideas linked with some specific “interpretation” of QM. In [8], we did mention
Von Neumann’s book and the irreversible behaviour of the system during measurements, but, after
getting a result through some measurement upon a qubit pair, we never used the state of that qubit
pair at the end of that measurement. On the contrary, after such a measurement, the qubit pair was
often (in an abstract process) submitted to a new preparation, which is not linked to any specific
interpretation of QM.

In the previous sections, the concepts of a pure state and a statistical mixture were both
used. The concept of a statistical mixture may be introduced through a different and more general
situation [35] than the one used in Section 3. The system of interest S and its environment E are viewed
as a global quantum system Σ. If S and E are uncoupled, and isolated from the rest of the world,
and have been separately prepared in a pure state at time ta, then they evolve separetely, each in a
(time-dependent) pure state. If, after ta, a coupling between S and E exists between some times tb and
tc, then from tb on their state generally becomes entangled. In addition, if, starting from tc, one focuses
upon the behaviour of S, use of the partial trace tool shows that everything then occurs as if S were in
a state of statistical mixture described by a well-chosen density operator, obeying the Von Neumann
equation. If one takes the qubit pair as S, up to now we did not discuss the BQSS problem found when
the Writer proposes the qubit pair in a state described by a statistical mixture resulting from some past
interaction with its environment.

In recent discussions about the measurement problem, the concept of decoherence [21] was used
for discussing the effect of a transfer of energy from the system to its environment, an irreversible
phenomenon corresponding to SLR in the ESR/NMR context (with, in the simplest situations,
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a characteristic time called T1) [28,36]. In our previous papers and in the present one, starting from
time t0 when the Writer operates, then, at the chosen time scale, the qubit pair is assumed to be isolated
from its environment.

In the ESR/NMR domain, a well-known situation exists when a collection of identical (nuclear
or electron) spins placed in a fixed resonant magnetic field are transiently submitted to an intense,
oscillating magnetic field with a frequency equal to (or near) its resonant value, and with well-chosen
polarization. If each spin is coupled to the magnetic fields only, at the end of the pulse the density
matrix (written in the basis in which the static Zeeman Hamiltonian is diagonal) describing the state of
these spins possesses non-diagonal elements, called coherences. If a weak internal coupling (spin-spin
coupling) such as the dipolar magnetic coupling exists between the spins, and if it is able to manifest
itself at a time scale allowing one to neglect SLR, it progressively induces a decrease of the coherences,
a reversible phenomenon allowing spin echo techniques.

There is presently a second reason for referring to these behaviours in the MR domain, namely the
fact that DiVincenzo suggested the use of electron spins for the physical realization of qubits more than
twenty years ago [37]. Between two neighbouring electron spins, there may exist a strong exchange
interaction, a strictly quantum phenomenon historically first identified by Heisenberg in magnetically
ordered materials. This is the first reason for our choice of a Heisenberg coupling in the BQSS problem.
The second one is that, on the formal side, the version of the Heisenberg Hamiltonian with spherical or
cylindrical symmetry, simple enough to be used in theoretical works, may serve as a benchmark in
that BQSS problem. It should be recalled that an Ising coupling, simpler to manipulate theoretically
than the Heisenberg one, was present in the DiVincenzo 1995 paper, where it helped in the operating
process, while the presence of the Heisenberg coupling is undesired and should be compensated for in
the BQSS context.

It is well-known that the ESR lines of transition ions in insulators at moderate concentrations are
broadened by the dipolar magnetic coupling between the electron spins, the exchange interaction being
negligible then. In concentrated samples, exchange is stronger than dipolar coupling and produces a
narrowing of the lines [36]. Dipolar coupling is long ranged and anisotropic, which should lead to
heavy theoretical treatments if considering a three-dimensional configuration in the BQSS context.
Future technological developments could possibly make e.g., the consideration of a planar square
lattice of dipolar coupled spins meaningful in that context.

4.2. Probabilities in Measurements, Classical versus Quantum World

In this subsection, we are interested in our first approach as defined in Section 2, with measurements
at the Mixer output (cf. Figure 1). We specifically consider the solutions to BQSS discussed in [7,8,11],
with two spins 1/2, each prepared in a pure state at t0, then submitted to an undesired Heisenberg
cylindrical coupling [28,38] (axial component: Jz, normal component: Jxy, cf. Equation (4) and
Appendix E of [8], and [36]), and measurements of s1z and s2z at the output of the formal Mixer at
t1. The probabilities of obtaining (+1/2,+1/2), (+1/2,−1/2), (−1/2,+1/2) and (−1/2,−1/2) are
denoted, respectively, as p1, p2, p3 and p4 (as in [8], while in [7] e.g., our present p4 was denoted as p2).
We keep Equation (13) for both qubits, with the choice ϕ1 = 0. One then gets [8]:

p1 = r2
1r2

2, p4 = (1− r2
1)(1− r2

2). (14)

p2 depends upon a mixing parameter v = sgn(cos ∆E) sin ∆E, with [8] ∆E = −Jxy(t1 − t0)/h̄. This
expression for ∆E may be vizualized as the opposite of the phase rotation ∆φ = ω(t1 − t0) between
states coupled by a Hamiltonian term with energy Jxy, during the time interval (t1 − t0), with ω given
by the Planck–Einstein relation ω = Jxy/h̄. Probability p2 satisfies

p2 = r2
1(1− r2

2)(1− v2) + (1− r2
1)r

2
2v2 − 2r1r2

√
1− r2

1

√
1− r2

2

√
1− v2v sin ∆I (15)
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and, with our choice for ϕ1, ∆I = ϕ2.
In Equation (13), which describes the initial state of the qubit pair, r1, r2, ϕ1 and ϕ2, are used to

define probability amplitudes, i.e., quantum quantities. Expressions (14) and (15) show that p1, p4 and
p2 depend upon both r1 and r2, and that p2 moreover depends upon ∆I and therefore the probabilities
clearly follow quantum laws. This instance illustrates the distinction to be made between the quantum
status of these probabilities and the validity of the classical approximation for the physical supports
that store them. In [7,8,11], once r1, r2 and ∆I were known, the initially prepared qubit states were
completely known, and in the context of classical-processing BQSS, we called r1, r2 and ∆I the sources
(cf. Section 3) in order to focus on the quantities used in the SS process.

The concept of RV is often used in a classical context. Since on the contrary probabilities
p1, p4 and p2 follow quantum laws, treating them as RV does not go without saying. However,
Equations (14) and (15) establish that when r1, r2, ϕ2 are RV (cf. Section 3) the same is true for p1, p4

and p2. They also indicate that p1, p4 and p2 depend upon both r1 and r2, and that p2 also depends
upon ∆I . When Jxy = 0 (Ising Hamiltonian −2Js1zs2z), then v = 0 and, for the state at the Mixer
output, p1 p4 = p2 p3, which can be interpreted as follows. The four states defining the B+ basis
are then eigenstates of the Hamiltonian, but time evolution introduces phase differences, and it can
be verified that the state at the Mixer output is entangled (except if, accidentally, J(t1 − t0)/h̄ = kπ,
k being an integer). However, when measuring s1z and s2z, the probability of getting (1/2, 1/2) is
then time-independent, which is also true for the probabilities of getting (1/2,−1/2), (−1/2, 1/2) or
(−1/2,−1/2). Therefore, both products p1 p4 and p2 p3 are time-independent, and since p1 p4= p2 p3 at
t0, because the qubit pair is then in a product state, this equality is preserved as time goes on, although
the state has become entangled.

In the end, these measurements made at the output of the Mixer establish a bridge between the
classical and the quantum worlds, the results being kept on macroscopic devices for which the classical
approximation is valid, while the probabilities of their occurrences follow quantum laws.

4.3. An Unentanglement Criterion Using Probabilities

The unentanglement criterion expressed through Equation (4) uses the ci coefficients, i.e.,
probability amplitudes. However, measurements give access to probabilities, not to probability
amplitudes, and the question of establishing whether this unentanglement criterion could be formulated
with probabilities (of the results from spin component measurements) therefore seems relevant. State |Φ〉
being present at the ouput of the inverting block, and the components s1u and s2u being then measured,
we denote the probabilities of obtaining (1/2, 1/2), (1/2,−1/2), (−1/2, 1/2) and (−1/2, −1/2) as
P1u, P2u, P3u, P4u, respectively, and the corresponding eigenstates of s1u.s2u as |+ u,+u〉, |+ u,−u〉,
| − u,+u〉 and | − u,−u〉. If e.g., s1x and s2x are measured, the probabilities are denoted as Pix, with
i = 1 to 4. In Section 3, it was said that an unentangled normed ket |Ψ〉 in E1 ⊗ E2 possesses four
degrees of freedom. Taking the squared modulus of each member of the equality c1c4 = c2c3 leads to

P1zP4z = P2zP3z. (16)

Then, taking −→u and −→v of Section 2 both along direction x, we know that c1xc4x = c2xc3x for an
unentangled state (cf. Equation (8)), and therefore that

P1xP4x = P2xP3x. (17)

Equation (16) together with (17) is however weaker than condition c1c4 = c2c3, as can be tested by
considering the following state:

|Ψi−i11〉 =
1
2
(i|++〉 − i|+−〉+ | −+〉+ | − −〉). (18)
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|Ψi−i11〉 is entangled since c1c4 = − c2c3. It can be written

|Ψi−i11〉 =
1
2
(|+ x,+x〉+ i|+ x,−x〉 − | − x,+x〉+ i| − x,−x〉). (19)

Equation (19) shows that the four probabilities Pix attached to |Ψi−i11〉 are all equal to 1/4. Therefore,
|Ψi−i11〉 satisfies (16) and (17), while being entangled.

The two qubits being in the state |Ψ〉 expressed through (1), one may decide to treat the three
orthogonal directions on the same footing, measuring successively sx for both spins, then, in a new
set of preparations/measurements, sy for both spins, and finally sz for both spins. The probabilities
of obtaining (1/2, 1/2)), (1/2,−1/2), (−1/2, 1/2), (−1/2,−1/2), respectively, when measuring s1k
and s2k (with k successively equal to x, y, and z), will be denoted as P1k, P2k, P3k and P4k. For e.g.,
the entangled state | Ψi−i11〉, as P1zP4z = P2zP3z and P1xP4x = P2xP3x, the hope is that entanglement can
be detected thanks to P1yP4y 6= P2yP3y, but, in fact, the four Piy are equal to 1/4. Therefore, measuring
the same spin component for both qubits, successively for x, y and z, fails to allow us to build up an
unentanglement criterion.

However, since two spins are present, there is still the possibility of not systematically measuring
the same spin component for both spins. One chooses to measure successively sz for both spins, then
s1z and s2x in a new set of preparations/measurements, and finally s1z and s2y. The presence of the
s1z measurement in each of these sets corresponds to recognizing that (1) uses the standard basis.
The probabilities of obtaining (1/2, 1/2), (1/2, −1/2),(−1/2, 1/2), (−1/2, −1/2), respectively, when
measuring s1i and s2j (with i = z, x, or y, and j = z, x, or y) will be denoted as P1ij, P2ij, P3ij and P4ij.
Denoting the ci introduced in Equation (1) as ci = ρieiψi , then from Equation (4) it is known that |Ψ〉 is
unentangled if and only if

{ρ1ρ4 = ρ2ρ3 and ψ1 + ψ4 = ψ2 + ψ3 mod 2π}. (20)

Measuring {s1z, s2z} allows us to know the moduli | ci |2= ρ2
i in (1), and to express the first equality

in Equation (20) as
P1zzP4zz = P2zzP3zz. (21)

The Pkzx and Pkzy (with k = 1 to 4), when expressed as functions of the moduli ρl and angles ψm,
depend upon trigonometric functions of the ψm angles. For instance, for any state |Ψ〉 entangled or not

2P1zx = (ρ2
1 + ρ2

2) + 2ρ1ρ2 cos(ψ1 − ψ2). (22)

When expressing unentanglement through probabilities, one then has to try and respect both
cos α = cos β and sin α = sin β with α and β values compatible with the equality ψ1 + ψ4 = ψ2 + ψ3, rather
than to respect the equality ψ1 + ψ4 = ψ2 + ψ3 (mod 2π) itself. If it is first known that simultaneously
P1zzP4zz = P2zzP3zz and P1zxP4zx = P2zxP3zx are true, then one immediately deduces that
cos(ψ1 − ψ2) = cos(ψ3 − ψ4). In addition, if P1zyP4zy = P2zyP3zy replaces the second equality, one
deduces that sin(ψ1 − ψ2) = sin(ψ3 − ψ4). Therefore, when the three equalities between probability
products are satisfied, then ρ1ρ4 = ρ2ρ3 and ψ1 + ψ4 = ψ2 + ψ3 (mod 2π). Conversely, if |ψ〉 is
unentangled, then Equation (8) implies that P1zjP4zj = P2zjP3zj, with j = z, x, y respectively. Finally,

c1c4 = c2c3 ⇐⇒ {P1zjP4zj = P2zjP3zj, with j = x, y, z}. (23)

The equivalence therefore is between a single relation between probability amplitudes and a
triplet of relations between probabilities. This criterion, although established in the context of BQSS,
has the same general validity as Equation (4).

Use of criterion (23) necessitates successive measurements first of s1z and s2z, then (after new
preparations) of s1z and s2x, and finally (again after new preparations) of s1z and s2y, in order to
successively estimate first the Pizz probabilities, then the Pizx and finally the Pizy. One must measure
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s1z each time, because (1) getting e.g., (+1/2, −1/2) when measuring s1z and s2z is an event to be
distinguished from the one realized when measuring s1z and s2x and getting (+1/2, −1/2), (2) results
of measurements of s1z and s2x are independent only if |Ψ〉 is unentangled, which precisely can’t be
assumed when Equation (23) is to be used.

The two distinguishable spins were made to play different roles in the process, which led to
Equation (23) (systematic measurement of s1z). This dissymmetry is only partial, as Equation (23) can
be replaced by a version obtained by exchanging the spin numbers. The next subsection makes a
symmetrical use of measurements of spin components, allowing one to get the values of both the ρi
moduli and the ψi angles for the ci coefficients in Equation (1).

4.4. Knowing 2-Qubit Pure States from sij Measurements

If a qubit pair physically realized with spins 1/2 is known to be in an arbitrary pure state described
by |Ψ〉 written as in Equation (1), with ci = ρieiψi and i = 1 to 4, then in order to know |Ψ〉, one should
know three moduli ρi and three angles ψi. Accessing these six real quantities is more demanding
than testing |Ψ〉 unentanglement, since once these quantities are known, it is always possible to know
whether |Ψ〉 is unentangled, by testing whether both equalities ρ1ρ4 = ρ2ρ3 and ψ1 + ψ4 = ψ2 + ψ3

are satisfied. On the contrary, when one focuses upon entanglement, these two equalities may be
found to be satisfied, while the values of the ρi and ψi are unknown. In the previous subsection,
an unentanglement criterion using only probabilities in the measurements of the sij components,
equivalent to the c1c4 = c2c3 criterion, was given. Its existence suggests the following question: is
it possible to access these six real quantities using only probabilities of results in the measurements
of the spin components? We are going to show that the answer is yes. It is already known that
measurements of both s1z and s2z give access to the moduli ρi, through the probabilities Pizz introduced
in Section 4.3. One is left with e.g., determining the three angle differences (ψ1 − ψ3), (ψ2 − ψ3) and
(ψ4− ψ3) from well-chosen probabilities. We first consider measurements of s1z and s2i, with i = x or y,
as in Section 4.3. When measuring s1z and s2x, the probabilities of getting (1/2, 1/2) and (−1/2, 1/2)
are, respectively,

P1zx =
1
2
| c1 + c2 |2, P3zx =

1
2
| c3 + c4 |2, (24)

which leads to

cos(ψ1 − ψ2) =
2P1zx − P1zz − P2zz

2
√

P1zzP2zz
, cos(ψ3 − ψ4) =

2P3zx − P3zz − P4zz

2
√

P3zzP4zz
. (25)

Similarly, when measuring s1z and s2y, the probabilities of getting (1/2, 1/2) and (−1/2, 1/2) are,
respectively,

P1zy =
1
2
| c1 − ic2 |2, P3zy =

1
2
| c3 − ic4 |2, (26)

which leads to

sin(ψ1 − ψ2) = −
2P1zy − P1zz − P2zz

2
√

P1zzP2zz
, sin(ψ3 − ψ4) = −

2P3zy − P3zz − P4zz

2
√

P3zzP4zz
. (27)

Expressions (25) and (27) allow us to know both (ψ1 − ψ2) and (ψ3 − ψ4) (mod 2π).
Now, exchanging the roles of spins 1 and 2, we successively measure {s1x, s2z} and (after new

preparations) {s1y, s2z}. The probabilities of getting (1/2, 1/2) in these measurements are, respectively,

P1xz =
1
2
| c1 + c3 |2, P1yz =

1
2
| c1 − ic3 |2, (28)
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which leads to

cos(ψ1 − ψ3) =
2P1xz − P1zz − P3zz

2
√

P1zzP3zz
, sin(ψ1 − ψ3) = −

2P1yz − P1zz − P3zz

2
√

P1zzP3zz
. (29)

(ψ1 − ψ3) is therefore known (mod 2π).
If one wants to identify not the state at the Mixer input but a pure state at the Inverter output,

State Tomography (ST) may in principle be used. However, it is far simpler to make measurements
for the five {s1i, s2j} pairs just considered and to access the corresponding probabilities, than to use ST.
The reason is that ST claims to be valid for any quantum state, and therefore does not take advantage
of the fact that the qubit pair is presently known to be in a pure state. The dimension of the state
space of the qubit pair being four, then, for ST, one has to introduce sixteen operators, namely the
Identity, the six operators s1i and s2j (with i = x, y, z, and j = x, y, z), and the nine products s1is2j [20].
One should determine experimentally fifteen mean values, giving access to fifteen independent real
values together defining the density operator describing the qubit pair state (three diagonal real
elements, and six non-diagonal complex elements).

The simpler state estimation procedure proposed in this section therefore opens the way to new
classes of BQSS methods, that we just started to explore in [12,13], and then applying this procedure to
the Mixer output.

5. Disentanglement and Cylindrical-Symmetry Heisenberg Coupling

In Section 4.2, we considered measurements made at the Mixer output. We now come to the
method for BQSS used, e.g., in [9], with classical processing in the adapting block of the separating
system, using the notations of [9]. |Ψ(t0)〉, the initial product state of the qubit pair, is given by
Equation (1), with the values of the coefficients ci (in the B+ basis) taken at t0 and denoted as ci(t0).
These components form the source vector

C+(t0) = [c1(t0), c2(t0), c3(t0), c4(t0)]
T , T : transpose. (30)

Similarly, the state at the Mixer output at time t, here denoted as |Ψ(t) >, is given by
Equation (1), with the values of the coefficients ci (in the B+ basis) taken at t and denoted as ci(t).
The coupling-induced transition from state |Ψ(t0)〉 to |Ψ(t)〉 is interpreted as the transformation
induced by the Mixer, leading to the appearance of |Ψ(t)〉 at its output. In the same basis, |Ψ(t)〉
is described by the column vector C+(t) given by (30), with t replacing t0. In the matrix formalism,
the relation between C+(t0) and C+(t) is written as

C+(t) = MC+(t0), (31)

where the square fourth-order matrix M describes the effect of the coupling. In [8], it was shown that
when the coupling may be described by a Heisenberg cylindrical Hamiltonian, then M = QDQ−1,
where Q = Q−1 is a square matrix with the following non-zero matrix elements:

Q11 = Q44 = 1, Q22 = −Q33 = Q23 = Q32 =
1√
2

, (32)

and D is a Diagonal square matrix with its diagonal elements equal to Dii = e−iωi(t−t0) (i = 1...4),
the ωi being real quantities depending upon Jz and Jxy, with generally unknown numerical values.
The input of the inverting block then receives this state |Ψ(t)〉. Its output provides a state |Φ〉 described
in the B+ basis by a column vector C, with

C = UC+(t) = UMC+(t0), (33)
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where the square matrix U (Unmixing matrix) describes the effect of the inverting block of the
separating system. If it is possible to choose U in the form U = M−1, then |Φ〉 will be equal to
|Ψ(t0)〉. However, strictly speaking, operating this way is impossible because M = QDQ, and D
is unknown. In [9], the inverting block was formally built using a chain of quantum gates globally
realizing matrix U in the form U = QD̃Q, where D̃ is a diagonal matrix with its four diagonal elements
D̃ii (i = 1...4) equal to

D̃ii = eiγi , γi : free real parameters. (34)

D̃D = ∆ is therefore a diagonal matrix with diagonal elements ∆ii = eiδi , where

δi = γi −ωi(t− t0). (35)

The D̃ matrix and the adaptation phase were introduced because it is not possible to modify the
values of the D matrix. In the following discussion, it is assumed that the ωi are time-independent and
that the adaptation phase has been successful with respect to unentanglement, i.e., that it has been
possible to adjust the γi in such a way that, in the inversion phase, if the Writer has prepared each
qubit of the qubit pair in an arbitrary pure state at time t0, we are then sure that state |Φ〉 at the output
of the inverting block is unentangled. The column vectors C+(t0) and C are associated with |Ψ(t0)〉
and |Φ〉 respectively, and C = Q∆QC+(t0) is therefore the column vector

eiδ1 c1(t0)

[eiδ2(c2(t0) + c3(t0)) + eiδ3(c2(t0)− c3(t0))]/2
[eiδ2(c2(t0) + c3(t0))− eiδ3(c2(t0)− c3(t0))]/2

eiδ4 c4(t0)

 . (36)

State |Φ〉 is unentangled if and only if Equation (4) is fulfilled, i.e., if

ei(δ1+δ4)c1c4 =
1
4
[2c2c3(ei2δ2 + ei2δ3) + (c2

2 + c2
3)(e

i2δ2 − ei2δ3)] (37)

(ci meaning ci(t0), for i = 1 to 4). We want this relation to be satisfied for any unentangled |Ψ(t0)〉.
Starting with a |Ψ(t0)〉 state with c2(t0)c3(t0) 6= 0 and remembering that c1(t0)c4(t0) = c2(t0)c3(t0),
Equation (37) may then be written

ei(δ1+δ4) − 1
2
(ei2δ2 + ei2δ3) =

c2
2(t0) + c2

3(t0)

4c2(t0)c3(t0)
(ei2δ2 − ei2δ3). (38)

Equation (38) is required to be fulfilled for all possible states |Ψ(t0)〉 with c2(t0)c3(t0) 6= 0, and
for fixed δi values (defined once for all during the adaptation phase). The left-hand term does not
depend upon the ci(t0), whereas its right-hand term does depend upon them. Therefore, Equation (38)
is satisfied only if

ei2δ2 − ei2δ3 = 0, i.e., δ3 − δ2 = mπ, m : integer, (39)

and then Equation (38) moreover imposes that

δ1 + δ4 = 2δ2 + 2kπ, k : integer. (40)

If Equations (39) and (40) and relation c1(t0)c4(t0) = c2(t0)c3(t0) are inserted into Equation (36),
it is easy to write |Φ〉 as a product state, which confirms that if Equations (39) and (40) are fulfilled,
and then |Φ〉 is unentangled indeed.

If one now supposes e.g., a |Ψ(t0)〉with c3(t0) = 0, c2(t0) 6= 0, c4(t0) 6= 0, and therefore c1(t0) = 0,
then in order for |Φ〉 to be unentangled Equation (37) has to be fulfilled. Putting c1(t0) = c3(t0) = 0
into Equation (37) leads to Equation (39), and the δi are then not submitted to another constraint.
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The same behaviour is found if c4(t0) = c3(t0) = 0, and c1(t0) 6= 0, c2(t0) 6= 0, and this remains true if
c1(t0) = c2(t0) = c4(t0) = 0, c3(t0) 6= 0.

When one starts with an arbitrary initial unentangled state |Ψ(t0)〉, the following property is a
consequence of the results of the previous discussion. If during the adaptation phase it has been
possible to rightly fix the γi values, one may claim that the corresponding |Φ〉 is unentangled if and
only if during that adaptation phase the choice of the γi has allowed conditions (39) and (40) to be both
fulfilled. This, however, does not guarantee that |Φ〉 is identical to |Ψ(t0)〉. The latter identification
corresponds to source restoration itself, outside the scope of this article.

6. Conclusions

Conventional BSS is a mature field of Signal Processing, with various applications. Its extension
into a quantum context has been developing for a decade, first through the creation of theoretical
methods for Blind Quantum Source Separation (BQSS), with classical and/or quantum processing,
and recently through the use of BQSS in the exploration of Blind Quantum Process Tomography
(BQPT). The present paper examined in detail concepts (e.g., those of quantum sources and of
their independence) and established properties (e.g., an unentanglement criterion) introduced in
our previous papers. In the BQSS context, with qubits supposed to be realized with spins 1/2, one
has to face two major consequences of the quantum behaviour. First, if each qubit of a spin qubit
pair is initially prepared in a pure state, and the time evolution of the pair state is governed by some
undesired coupling between the spins, the Reader at the Mixer output accesses an unknown generally
entangled qubit pair quantum state. This entangled state may be sent to a quantum processing system
in order to restore the initially prepared state. Writing the output state of this processing system as
e.g., |Φ〉 = ∑i ci | i〉 in the standard basis, with well-ordered basis states, we showed that this state is
unentangled if and only if c1c4 = c2c3, a constraint between probability amplitudes. Secondly, results
of measurements of the qubit spin components have a probabilistic nature, and the corresponding
probabilities follow quantum properties even when processed with classical means. This article shows
precautions to be taken when trying to extend to Blind Quantum SS the concept of source statistical
independence used in conventional BSS. Using the probabilities Pizj of getting the different possible
results when measuring s1z and s2j, successively with j = z, x and y, it is shown that the above
unentanglement criterion may be written as {P1zjP4zj = P2zjP3zj}, a set of three constraints between
probabilities. This unentanglement criterion has already been used in the adaptation phase of Blind
Quantum SS, through a disentanglement-based separation principle, before restoration of the initial
unentangled state. The already developed BQSS/BQPT methods do not depend on some specific
interpretation of Quantum Theory, while respecting its general postulates.
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Appendix A. About Applications of Blind Conventional and Quantum Source Separation

Appendix A.1. Conventional BSS

Some audio systems aim at automatic recognition of speech by a processing unit, e.g., in order to
control actuators (for instance, a car driver can thus control various car functions by speech). When
a speech signal is recorded by a set of microphones situated in a noisy environment, each recorded
signal is a mixture of speech and of various noise signals. In order to avoid a degraded recognition
performance in case these plain recordings were directly provided to an automatic speech recognition
(ASR) system, these recordings may be first pre-processed by means of a BSS system, so as to extract
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the speech signal. The denoised speech output of this BSS system is then provided to the ASR system
(see [11] and references therein).

When using radio-frequency signals to transmit digital data, reception antennas may
simultaneously receive several mixed data streams. BSS is then applied to first unmix these signals.
Each extracted signal may then be separately used as required in the considered application. Its use in
the radio-frequency identification (RFID) system instance is briefly presented in [11].

The biomedical field makes a systematic use of signals such as electrocardiograms (ECGs) or
electroencephalograms (EEGs), processed by human experts or computers. This “main task” is often
difficult because each signal in the recorded set is a mixture of various contributions, and the information
of interest thus cannot be easily extracted from any such mixed signal. Again, a solution to this problem
consists of pre-processing the original recordings by means of BSS methods, so as to extract each
signal component of interest separately on each output of this BSS system. In [11], information
is given about the extraction of foetus’s heartbeats from ECG recordings which were mixtures of
large-magnitude mother’s heartbeats, low-magnitude foetus’s heartbeats and noise components.
These foetus’s heartbeats were hardly visible in the original recordings.

BSS is closely related to the so-called Blind System Identification (BSI). The problem of
describing an unknown classical (i.e., non quantum) system through a realistic model is called system
identification. When e.g., this system may be described by a matrix, the task is the determination of
its matrix elements. In Blind System Identification, some properties of the input signals are known,
but the input signals themselves are unknown. Methods for BSS often include the determination of
the unknown mixer function or of its inverse. This is a kind of BSI problem, called Blind Mixture
Identification (BMI).

Appendix A.2. Blind Quantum Source Separation

The acronym BQSS describes the operations aimed at recovering the source state(s) (possibly up
to some accepted indeterminacies), in a context already described in this paper. BQSS with classical
processing can already be used, e.g., by physicists, in possible experiments requiring methods for
retrieving information about individual quantum states from measurements performed after undesired
coupling between these states, e.g., when dealing with quantum phenomena involving electron spins
1/2. BQSS with quantum processing keeps the quantum form of the available mixed data and processes
them by means of quantum circuits in order to retrieve the quantum sources. This version of our QSS
methods could be of interest for the core of future quantum computers, where both the data to be
processed and the processing means will have a quantum form. Quantum-processing BQSS may then
be used as a pre-processing stage, to remove undesired alterations (e.g., due to Heisenberg coupling
between physical qubits made with electron spins) of the data to be provided to the input of the main
processing stage, which then applies the final quantum algorithm to these pre-processed data. It was
explained in Part A.1 of this Appendix that such a two-stage system architecture is already used in
conventional BSS.

Independently from BQSS, the QIP community has already developed what is called Quantum
Process Tomography (QPT), the quantum version of system identification, and which operates in a
non-blind way. It turns out that BQSS, by estimating the inverse of the mixing function, is also able
to estimate this function itself, i.e., the parameters of the considered coupling operator (possibly up
to some residual transforms, called indeterminacies as in classical BSS). BQSS therefore opens the
way to introducing the blind version of QPT (called BQPT), i.e., performing QPT essentially without
knowing the values of the input quantum states of the considered process (but e.g., requesting them to
be unentangled). The applications related to BQSS thus include applications of BQPT, as a spin-off.
In [14], it was recalled that QPT is considered the gold standard for fully characterising quantum
systems, and in particular for characterising the quantum logic gates that form the basic elements of a
quantum computer. Extending the standard QPT tool to BQPT, its blind version, should be of interest,
e.g., when the input states of the considered process indeed cannot be known, or when it is important
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to benefit from the fact that BQSS avoids the intrisic complexity of standard QPT methods. For more
details about the applications of BQSS and BQPT, the interested reader may refer to [11,14], and to
references therein.

References

1. Laloë, F. Comprenons-Nous Vraiment la MéCanique Quantique; EDP Sciences Les Ulis: Les Ulis, France, 2011;
English version: Do We Really Understand Quantum Mechanics? Cambridge University Press: Cambridge,
UK, 2012.

2. Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Mécanique Quantique; Hermann: Paris, France, 1973; English version:
Quantum Mechanics; John Wiley: New York, NY, USA, 1977.

3. Dirac, P. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. A 1929, 123, 714–733.
4. Timpson, C.G. Quantum Information Theory and the Foundations of Quantum Mechanics. Ph.D. Thesis,

University of Oxford, Oxford, UK, 2004.
5. Comon, P.; Jutten, C. (Eds.) Handbook of Blind Source Separation: Independent Component Analysis and Applications;

Academic Press: Oxford, UK, 2010.
6. Deville, Y. Blind Source Separation and Blind Mixture Identification Methods. In Wiley Encyclopedia of Electrical

and Electronics Engineering; Webster, J., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 1–33.
7. Deville, Y.; Deville, A. Blind separation of quantum states: Estimating two qubits from an isotropic Heisenberg

spin coupling model. In Proceedings of the 7th International Conference on Independent Component
Analysis and Signal Separation, London, UK, 9–12 September 2007; Davies, M.E., James, C.J., Abdallah, S.A.,
Plumbley, M.D., Eds.; Springer: Berlin, Germany, 2007; pp. 706–713.

8. Deville, Y.; Deville, A. Classical-processing and quantum-processing signal separation methods for qubit
uncoupling. Quantum Inf. Process. 2012, 11, 1311–1347.

9. Deville, Y.; Deville, A. A quantum-feedforward and classical-feedback separating structure adapted with
monodirectional measurements; blind qubit uncoupling capability and links with ICA. In Proceedings
of the 23rd IEEE International Workshop on Machine Learning for Signal Processing, Southampton, UK,
22–25 September 2013.

10. Deville, Y.; Deville, A. Blind qubit state disentanglement with quantum processing: Principle, criterion
and algorithm using measurements along two directions. In Proceedings of the 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp. 6262–6266.

11. Deville, Y.; Deville, A. Quantum-Source Independent Component Analysis and Related Statistical Blind Qubit
Uncoupling Methods. In Blind Source Separation: Advances in Theory, Algorithms and Applications; Naik, G.R.,
Wang, W., Eds; Springer: Berlin, Germany, 2014; pp. 3–37.

12. Deville, Y.; Deville, A. From blind quantum source separation to blind quantum process tomography.
In Proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation,
Liberec, Czech Republic, 25–28 August 2015; Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P., Eds.;
Springer: Berlin, Germany, 2015; pp. 184–192.

13. Deville, Y.; Deville, A. Blind quantum computation: Blind quantum source separation and blind quantum
process tomography. In Proceedings of the 19th Conference on Quantum Information Processing, Banff, AB,
Canada, 10–15 January 2016.

14. Deville, Y.; Deville, A. Blind quantum source separation: Quantum-processing qubit uncoupling systems
based on disentanglement. Digit. Signal Process. 2017, 67, 30–51.

15. Deville, Y. Traitement du Signal: Signaux Temporels et Spatiotemporels—Analyse des Signaux, Théorie de
L’information, Traitement D’antenne, Séparation Aveugle de Sources; Ellipses Editions Marketing: Paris, France,
2011. (In French)

16. Feynman, R.P. Quantum Mechanical Computers. Opt. News 1985, 11, 11–20.
17. Feynman, R.P. Feynman Lectures on Computation; Perseus Publishing: Cambridge, MA, USA, 1996.
18. Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett. 1996, 77, 1413–1415.
19. Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions.

Phys. Lett. A 1996, 223, 1–8.
20. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:

Cambridge, UK, 2000.



Entropy 2017, 19, 311 19 of 19

21. Buchleitner, A.; Viviescas, C.; Tiersch, M. (Eds.) Entanglement and Decoherence (Lectures Notes in Physics);
Springer: Berlin, Germany, 2009.

22. Köhler, J.; Disselhorst, J.A.J.M.; Donckers, M.C.J.M.; Groenen, E.J.J.; Schmidt, J.; Moerner, W.E. Magnetic
resonance of a single molecular spin. Nature 1993, 363, 242–244.

23. Gruber, A.; Dräbenstedt, A.; Tietz, C.; Fleury, L.; Wrachtrup, J.; von Borczyskowski, C. Scanning Confocal
Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science 1997, 276, 2012–2014.

24. Rugar, D.; Budakian, R.; Mamin, H.J.; Chui, B.W. Single spin detection by magnetic resonance force microscopy.
Nature 2004, 430, 329–332.

25. Otte, A.F. Can data be stored in a single magnetic atom? Europhys. News 2008, 38, 31–34.
26. Bienfait, A.; Pla, J.J.; Kubo, Y.; Stern, M.; Zhou, X.; Lo, C.C.; Weis, C.D.; Schenkel, T.; Thewalt, M.L.W.;

Vion, D.; et al. Reaching the quantum limit of sensitivity in electron spin resonance. arXiv 2015, arXiv:1507.06831.
27. Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; Wiley: New York, NY, USA, 2001.
28. Abragam, A. The Principles of Nuclear Magnetism; Oxford University Press: Oxford, UK, 1961.
29. Tolman, R.C. The Principles of Statistical Mechanics; Oxford University Press: Oxford, UK, 1938; p. 327.
30. Von Neumann, J. Les Fondements Mathématiques de la Mécanique Quantique; Alcan: Paris, France, 1946; Editions

Jacques Gabay: Paris, France, 1988. (In French)
31. Barnett, S.M. Quantum Information; Oxford University Press: Oxford, UK, 2009.
32. Fuchs, C.A.; Peres, A. Quantum theory needs no “interpretation”. Phys. Today 2000, 53, 70–71.
33. Margenau, H. Quantum-Mechanical description. Phys. Rev. 1936, 49, 240–242.
34. Margenau, H. Critical Points in Modern Physical Theory. Philos. Sci. 1937, 4, 337–370.
35. Feynman, R.P. Statistical Mechanics; Basic Books: New York, NY, USA, 1972.
36. Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Oxford University Press: Oxford,

UK, 1970.
37. DiVincenzo, D.P. Quantum Computation. Science 1995, 270, 255–261.
38. Fazekas, P. Electron Correlation and Magnetism; World Scientific: Hackensack, NJ, USA, 1999.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Unentanglement Criterion for a Qubit Pair
	Random Quantum Sources and Their Independence
	BQSS and Probabilities in Spin Component Measurements
	Some General Considerations
	Probabilities in Measurements, Classical versus Quantum World
	An Unentanglement Criterion Using Probabilities
	Knowing 2-Qubit Pure States from sij Measurements

	Disentanglement and Cylindrical-Symmetry Heisenberg Coupling
	Conclusions
	About Applications of Blind Conventional and Quantum Source Separation
	Conventional BSS
	Blind Quantum Source Separation


