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Quantum treatment of phonon scattering for three-dimensional atomistic transport
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Based on the non-equilibrium Green’s function (NEGF) formalism, we show a numerically efficient
method to treat inelastic scattering in multi-dimensional atomistic codes. Using a simple rescaling
approach, we detail the calculations of the lowest order approximation (LOA)1 series to the usual,
computationally intensive, self-consistent Born approximation (SCBA). This, combined with the
analytic continuation technique of Padé approximants, is applied to an atomistic code based on a
tight-binding sp3d5s∗ model for electrons and holes, and a modified valence-force-field method for
phonons. Currents in Si and Ge gate-all-around nanowire transistors are then computed considering
the main crystallographic transport directions (〈100〉, 〈110〉, 〈111〉) for both n-type and p-type
devices. Our results show that in most configurations, 3rd order LOA currents are enough to achieve
a high agreement with SCBA results, while reducing the calculation time by about one order. In
addition, we propose a criterion to determine the validity of such expansion techniques.

The recent introduction of three-dimensional (3D) Fin
structured tri-gate transistors in the semiconductor in-
dustry has opened the door for a steady continuation of
Moore’s scaling law in the sub-20 nm technology node2.
However, despite the success of the device architecture
for the mass production, there is a remaining question:
Will this device structure be still valid for transistors
with sub-10 nm gate lengths? In this perspective, the
ongoing researches mainly focus on i) improving the elec-
trostatic control of the device architecture like gate-all-
around (GAA) Si nanowire3, or ii) searching novel mate-
rials exhibiting high mobilities and/or high band-gap4–9,
or iii) the combination of both aspects, like Wrap-Gated
(WG) InGaAs III-V nanowire transistors10–12.

In all the aforementioned devices both theoretical13–16

and experimental17 works underline the impact of the
position of each individual atom on the obtained per-
formance. Indeed, physics of nano-scaled devices is
mainly governed by quantum effects (confinement18

and tunneling19,20), surface roughness scattering21 and
electron-phonon interactions22. Among those phenom-
ena, it has been theoretically predicted9,23 that inelas-
tic interactions between electrons and phonons play a
major role even in ultra scaled devices with dimensions
of the order of the electron mean free path. Thus,
in order to analyze the physical properties of the de-
vices, the development of atomistic quantum simulation
tools including inelastic electron-phonon scattering is ur-
gently needed. During recent decades, several quantum
methods have been proposed to treat this issue pre-
cisely. Among them the non-equilibrium Green’s func-
tion (NEGF) formalism24–26 is one of the most advanced
quantum methods that has attracted intensive interests
due to its suitability for addressing inelastic carrier trans-
port in nanostructures.

Unfortunately, atomistic NEGF quantum transport
simulations of realistic devices require important numer-
ical resources. The situation becomes even more com-
plicated when inelastic interactions are included. In-

deed phonon scattering is usually treated with the self-
consistent Born approximation (SCBA) that induces
an additional self-consistent scheme to the conventional
”Poisson-Schrödinger” loop. The SCBA was first applied
to simple effective mass or k ·p Hamiltonians27,28. It
was then implemented in 3D full-band atomistic NEGF
codes based on tight-binding Hamiltonian22,29. Among
those advanced codes, the simulator OMEN developed by
Luisier and co-workers is one of the most sophisticated
that couples inelastic transport of phonons and electrons
with an atomistic precision30,31. However, this simulator
is only manageable with more than 1000 CPUs due to
unavoidable numerical burden.

Recently we proposed a technique that allows to highly
reduce the computational complexity for taking into ac-
count the interaction between electrons and phonons
within the NEGF framework. The approach1,32,33 is
based on a lowest order approximation (LOA) of the in-
teractions combined with an analytic continuation tech-
nique of Padé approximants34,35. Its main advantage
is to avoid the numerous iterations required by SCBA.
However, it implies the inversions and multiplications of
potentially large matrices which may be impractical for
3D systems. We here present a simple rescaling tech-
nique able to calculate a series of LOA using the first it-
erations of the conventional SCBA algorithm. We apply
this efficient technique to the atomistic code OMEN30 to
model 3D nanowire (NW) transistors for which electron-
phonon scattering is important. In particular, we show
that the physical quantities (i.e. the currents) based on
the 3rd order LOA combined with Padé analytic contin-
uation technique are enough to obtain the results of the
full SCBA iterations. Our investigations focus on both n-
type and p-type Si GAA NW considering the three main
crystallographic orientations (〈100〉, 〈110〉, 〈111〉). Ap-
plication to Ge NW in 〈110〉 transport direction is also
discussed.

The device structure investigated in this paper is
schematized in Fig. 1. The chosen gate length is 5 nm
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FIG. 1. (Color online) Schematic representation of the sil-
icon GAA NW transistors considered in this work (with a
〈100〉 crystallographic orientation in the present case). The
length of the gate is LG = 5 nm, the source and drain exten-
sions LS/D = 15 nm, and the diameter of NW dNW = 3 nm.
Source and drain regions are doped with a doping concentra-
tion of donors or acceptors ND/A = 1 × 1020 cm−3. Si〈110〉,
Si〈111〉, and Ge〈110〉 are also considered (not shown).

since it is considered as an ultimate limit for conventional
logic transistors. The channel is surrounded by a 3 nm
thick HfO2 dielectric layer (with εR = 20), while source
and drain regions are covered by low κ dielectric layer
(with εR = 5). A supply voltage | VDS |= | VDD |=
0.6 V is applied between the source and drain contacts,
and a gate-to-source bias VGS then controls the currents
flowing inside the channel. Since electron-phonon scat-
tering is found to be stronger in the saturation regime22,
we focus here on this operation mode.

We consider steady-state electron transport described
within the NEGF framework employing a full band tight-
binding sp3d5s∗ model without spin-orbit coupling36,37.
The lateral surface of the semiconductor NW in which we
solve the Schrödinger’s equation is passivated by increas-
ing the energy of dangling bonds38, and no surface rough-
ness scattering is considered. Phonon relation dispersion
in the confined NW is obtained via a modified valence-
force-field method including four interaction terms39,40.
Here, as described in Ref. 30, electrons are coupled to
phonons through the following diagonal lesser or greater
self-energy
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where ~ is the reduced Planck’s constant, E the elec-
tron energy, ω the phonon frequency, Hnl the Hamilto-
nian (tight-binding matrix element), G(E) the electron
Green’s function, and D(ω) the phonon Green’s function
expressed in the real-space (the indices i and j run over
x, y, and z directions). The other indices n and l de-
note all atomic positions, and σ represent the orbitals.
∇iHnl represents the first derivative of the tight-binding
Hamiltonian matrix Hnl along the i direction (x, y, or

z). It defines the electron-phonon coupling due to atom
oscillations around their equilibrium position (please see
Ref.[30] for more details). We assume a bath of phonons
at thermal equilibrium by considering no temperature
gradients inside the device and by neglecting the phonon
self-energies which can contribute to the phonon Green’s
function D(ω) (see Ref. 30). We should note that the
diagonal approximation of the self-energy, which results
from computational limitations in atomistic codes, may
lead to an underestimation of the strength of electron-
phonon coupling41,42. However, Ref. 43 showed that the
diagonal approximation was still valid in ultra-scaled Si
nanowires for electrons, except for transport along the
〈110〉 crystal orientation. More generally, the LOA com-
bined with Padé approximant can be applied to non-
diagonal self-energies. The self-energy of Eq.(1) com-
bined with Dyson’s equation44 allows to calculate the
electron interacting Green’s function G(E) starting from
the non-interacting one g(E).

G = g + gΣ[G]G, (2)

where the simplified matrix notation [1 = (r1, t1),
gΣ[G]G =

∫
d2
∫
d2′ g(1; 2)Σ(2; 2′)G(2′; 1′)] is used.

Dyson’s equation (2) is typically solved using the so-
called iterative SCBA scheme with a specified conver-
gence tolerance such as

GN = [g−1 − Σ[GN−1]]−1 (3)

where GN is the Green’s function at the N th SCBA it-
eration and G0 = g.

Green’s functions resulting from first few iterations
(i.e. N small in Eq.(3)) of the SCBA scheme are
generally not conserving for strong electron-phonon
interactions1,33. The SCBA might then require more
than several dozens of iterations to provide accurate con-
serving physical properties. On the other hand, LOA
Green’s functions are conserving at any order. It has
been shown that the first few orders of LOA Green’s func-
tions coupled with Padé approximants can highly accel-
erate the calculations of physical quantities (both current
and charge density)1. However, the LOA Green’s func-
tion algorithm presented in Ref. 1 implies numerous in-
versions and multiplications of Green’s function matrices.
Its implementation is then numerically very demanding
when applied to 3D nanostructures. Here, we show that
the derivation of LOA Green’s functions from the usual
SCBA algorithm can be easily reached by introducing a
scaling parameter to Eq.(1).

As an example, let us rewrite Eq.(3) in the Taylor series
expansion as

GN = g + gΣ[GN−1]g

+ gΣ[GN−1]gΣ[GN−1]g + · · · .
(4)

The first SCBA Green’s function G1 is then defined from
Eq.(4) as

G1 = g + gΣ[g]g + gΣ[g]gΣ[g]g + · · · . (5)
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FIG. 2. (Color online) Rescaled Green’s functions, (a) Gλ1
1 of first SCBA iteration and (b) Gλ2

2 of second SCBA iteration,
described by Feynman diagrams. Conserving and non-conserving terms are arranged in ascending order in interaction. Thin
lines with an arrow indicate electron non-interacting Green’s function. Dashed lines are for free phonon propagators.

G1 is not conserving due to second and higher order terms
in interaction33. Its first order LOA counterpart GLOA1

is conserving and expressed as

GLOA1 = g + gΣ[g]g. (6)

GLOA1 can then be deduced from G1 by introducing a
scaling parameter 1/λ1 in the self-energy of Eq.(1). G1

rescaled by λ1 is now defined by:

Gλ1
1 = g +

1

λ1
gΣ[g]g +

(
1

λ1

)2

gΣ[g]gΣ[g]g + · · · . (7)

Taking a relevant value of λ1, the factors (1/λ1)
n

(n > 1)
can eliminate the infinite sum of non-conserving terms
while preserving the first order conserving one. In NEGF,
since any relevant expectation value (O) is linear in the
one-electron Green’s function, the expectation value of
the first order term to GLOA1 can be constructed as
∆O1 = O(gΣ[g]g) = λ1[O(Gλ1

1 )−O(g)].
The same technique can be applied to the second

SCBA iteration of Eq.(4) considering a different scaling
factor λ2 to obtain the rescaled G2 as

Gλ2
2 = g +

1

λ2
gΣ[Gλ2

1 ]g

+

(
1

λ2

)2

gΣ[Gλ2
1 ]gΣ[Gλ2

1 ]g + · · · ,
(8)

where Gλ2
1 is G1 rescaled by λ2. Since the SCBA self-

energy is linear with respect to the Green’s function33,
the rescaled G2 can be expressed as

Gλ2
2 = g +

1

λ2
gΣ[g]g

+

(
1

λ2

)2

(gΣ[g]gΣ[g]g + gΣ [gΣ [g] g] g)

+

(
1

λ2

)3

(gΣ[g]gΣ[g]gΣ[g]g + · · · ) + · · · .

(9)

where λ2 should be chosen to remove higher order terms
associated to (1/λ2)

n
(n > 2), but to maintain the first

and second order conserving terms. With this scaling pa-
rameter, the expectation value of the second order terms
to second order LOA Green’s function GLOA2 can be
obtained as ∆O2 = O(gΣ[g]gΣ[g]g + gΣ [gΣ [g] g] g) =

λ22[O(Gλ2
2 ) − O(g)] − λ2∆O1. Figures 2 (a) and 2 (b)

illustrate this scaling technique in terms of Feynman di-
agrams for the first and second SCBA iterations, respec-
tively.

Once the rescaled conserving Green’s functions at each
order are obtained, the expectation values of the desired
observable can be reconstructed using the linearity prop-
erty of the corresponding operator. In particular, N th

order LOA current can be expressed as

INthLOA = I0 +

N∑

n=1

4In, (10)

with

4IN = (λN )
N INthSCBA(GλN

N )

−
N−1∑

n=0

(λN )
N−n 4 In, 4I0 = I0.

(11)

This procedure demonstrates that conserving Green’s
function at any order N can be in principle obtained from
conventional SCBA scheme. At each order N , λN has
to be large enough to remove all non-conserving terms
(whose order in interaction is larger than N) but small
enough to maintain conserving terms (whose order in in-
teraction is ≤ N). This approach relies on the relevant
choice of λN which can be rapidly verified through the
current conservation. Explicitly we determine the λN ’s
based on a semi-empirical method noting that they are
associated to a Taylor development of the Green’s func-
tion. We first find the scaling parameter λ1, which en-
sures that the current is conserved after the first SCBA
iteration. We then deduce an approximated value of λ2
as 2× (λ1)1/2. Based on the same argument, we take λ3
equal to 5 × (λ1)1/3. The multiplication factors 2 and
5 for λ2 and λ3, respectively represent the weighting ac-
cording to the number of diagrams at each order. We
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TABLE I. Comparisons of 3 first LOA currents and corresponding Padé approximants (0/1, 1/1, and 1/2) with the ballistic
and SCBA currents in n-Si〈100〉, n-Si〈110〉, n-Si〈111〉, and n-Ge〈110〉 devices. Relative differences (ε) of the LOA and Padé
currents with respect to the SCBA values are also reported (ε = 100× |ISCBA−I|/ISCBA) where I is ballistic, LOA, or Padé
current.

Ballistic LOA1 LOA2 LOA3 Padé 0/1 Padé 1/1 Padé 1/2 SCBA Device
Current [A] 8.12e-6 6.40e-6 -2.37e-5 2.47e-4 6.70e-6 8.22e-6 5.05e-6 5.26e-6 n-Si〈100〉

ε [%] 54.4 21.7 550.6 4595.8 27.4 56.3 4.0 0.0
Current [A] 6.55e-6 4.58e-6 -3.92e-5 1.61e-3 5.04e-6 6.64e-6 4.42e-6 4.45e-6 n-Si〈110〉

ε [%] 47.2 2.9 980.9 36079.8 13.3 49.2 0.7 0.0
Current [A] 4.34e-6 1.72e-5 -4.38e-5 2.03e-4 -2.20e-6 6.59e-6 5.48e-6 6.01e-6 n-Si〈111〉

ε [%] 27.8 186.2 828.8 3277.7 136.6 9.6 8.8 0.0
Current [A] 5.27e-6 4.76e-6 2.09e-6 7.11e-5 4.80e-6 5.39e-6 4.72e-6 4.62e-6 n-Ge〈110〉

ε [%] 14.1 3.0 54.8 1439.0 3.9 16.7 2.2 0.0

are aware of the empirical character of this approach,
but the assessment of scaling parameters at any order in
interactions and to any systems is a very complex issue
beyond the scope of the present work. Here, we calculate
up to 3rd order currents and apply Padé approximants
0/1, 1/1, and 1/2. Calculation of higher order LOA cur-
rents is also possible, but it usually requires additional
SCBA iterations that could reduce the relevance of the
presented technique. Moreover, the approach could have
been also applied to the calculation of the charge carrier
density by using the same scaling parameters as those for
the current. For the sake of clarity, we decided to only
focus on the current considerations. The comparisons be-
tween SCBA and LOA/Padé approximant are performed
with the same electrostatic potential profile as the one re-
sulting from the self-consistent loop between the Poisson
equation and the NEGF formalism including the interac-
tions within the SCBA scheme.

Table I shows comparisons of the first three LOA or-
ders and corresponding Padé currents with SCBA values
for n-Si (n-type silicon) and n-Ge (n-type germanium)
devices along several principal crystallographic orienta-
tions. We first see that all LOA current series (LOA1,
LOA2, and LOA3) are diverging from SCBA currents,
meaning that the considered devices operate in a rela-
tively strong electron-phonon interaction regime1. Padé
0/1 applied to the first order LOA currents shows an un-
derestimation of the current degradation compared with
the SCBA currents, except for n-Si 〈111〉-oriented de-
vice. In addition, Padé 1/1 approximants based on up
to 2nd order LOA currents are in most cases not reliable
as pointed out in previous work1. However, the applica-
tion of Padé 1/2 on LOA current series shows significant
improvements, with high accuracies compared with the
SCBA values. For n-Si and n-Ge 〈110〉-oriented devices,
Padé 1/2 provides almost the same values as the SCBA
currents with a relative difference (ε) of less than 2%
on average. It is also worth noting that Padé 1/2 can
provide a reasonably good result (< 9% relative differ-
ence) for 〈111〉 transport direction where SCBA needs
more than 40 iterations to converge. Therefore, currents
resulting from Padé 1/2 can be seen as a good estima-

tion to the SCBA values with a relative difference less
than 10% for all the considered n-type devices. These re-
sults confirm the previous work1 where it has been shown
that Padé N/N + 1 can give better results even in strong
electron-phonon interacting system.

Table II shows similar results as Table I for p-type
devices. We see that all LOA currents (LOA1, LOA2,
and LOA3) are divergent series like in the case of n-type
devices. Table II also reports very favorable results for
the 〈110〉 direction for which even the simplest Padé 0/1
guarantees a high agreement of the current (ε < 6%) with
respect to the SCBA approach. Padé 1/1 also produces
reliable results for the 〈110〉 direction while remaining un-
stable for the other configurations. Padé 1/2 still gives
current value very close to those of SCBA with ε less than
6%. The result is also remarkable for the 〈100〉 direction
where Padé 1/2 provides similar accuracy while SCBA
requires more than 80 iterations. However, the compar-
ison is less successful for the p-Si〈111〉 configuration for
which all LOA and Padé currents fail to reproduce the
SCBA result.

The transport along the 〈111〉 direction is quite singu-
lar for both n-type and p-type devices. For that orienta-
tion first order LOA currents are larger than the ballistic
values (see Tables I and II). Concerning the n-type de-
vice the converged SCBA current is also larger than the
ballistic one and the Padé 1/2 finally succeeds to pro-
vide an accurate value. In n-type 〈111〉-oriented NW
the counterintuitive increase of the current in the pres-
ence of phonon scattering with respect to the ballistic
value results from the interplay between two competing
effects: first, backscattering caused by phonon emission
or absorption tends to decrease the current magnitude.
Secondly, inter-subband scattering induced by electron-
phonon interactions connects bands with a small energy
bandwidth that would otherwise not carry any current in
the ballistic limit of transport45,46. In ultra-short devices
with bandstructure exhibiting several sub-bands with a
low energy bandwidth, as 〈111〉-oriented Si nanowires,
the second effect dominates, thus leading to an increase
of the current. However, in longer devices, backscattering
plays the major role and the situation goes back to nor-
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TABLE II. Comparisons of 3 first LOA currents and corresponding Padé approximants (0/1, 1/1, and 1/2) with the ballistic
and SCBA currents in p-Si〈100〉, p-Si〈110〉, p-Si〈111〉, and p-Ge〈110〉 devices. Relative differences (ε) of the LOA and Padé
currents with respect to the SCBA values are also reported (ε = 100× |ISCBA−I|/ISCBA) where I is ballistic, LOA, or Padé
current.

Ballistic LOA1 LOA2 LOA3 Padé 0/1 Padé 1/1 Padé 1/2 SCBA Device
Current [A] 6.10e-6 1.96e-6 3.53e-8 -3.36e-5 3.63e-6 -1.65e-6 3.89e-6 4.31e-6 p-Si〈100〉

ε [%] 41.5 54.5 99.2 879.6 15.8 138.3 9.7 0.0
Current [A] 6.26e-6 3.77e-6 5.07e-6 1.81e-5 4.48e-6 4.66e-6 4.48e-6 4.74e-6 p-Si〈110〉

ε [%] 32.1 20.5 7.0 281.9 5.5 1.7 5.5 0.0
Current [A] 5.29e-6 8.18e-6 -4.12e-5 3.70e-3 1.16e-5 5.45e-6 9.08e-6 4.85e-6 p-Si〈111〉

ε [%] 9.1 68.7 949.5 76188.7 139.2 12.4 87.2 0.0
Current [A] 5.80e-6 4.11e-6 4.70e-6 5.03e-7 4.49e-6 4.55e-6 4.49e-6 4.74e-6 p-Ge〈110〉

ε [%] 22.4 13.3 0.8 89.4 5.3 4.0 5.3 0.0

mal, i.e. the current magnitude decreases when electron-
phonon scattering is turned on. The case of p-type de-
vice is more pathological since the converged SCBA be-
comes smaller than the ballistic value. Such a configura-
tion seems to involve more complex physical phenomena
that require to consider higher order LOA currents. It
clearly illustrates the limit of our technique to reproduce
SCBA currents. We also mention that it has been re-
cently shown47,48 that the SCBA with Luttinger-Ward
Functional self-energy may produce unphysical conver-
gence for strong-coupling system. 〈111〉 p-type direction
could be one of these configurations. We can also note
that a similar approach using Hypergeometric resumma-
tion has been recently proposed and could be tested in
such case49. However, we suggest to take as a warning
signal of the accuracy of the present approach the situ-
ation where first order LOA current is larger than the
ballistic one.

In summary we have proposed a numerically efficient
technique to reproduce the SCBA currents. It relies

on the LOA coupled to Padé approximants and only
requires the first few iterations of the SCBA procedure.
The method has been applied to NW transistors using
an atomistic 3D quantum transport code. We focused
on the saturation regime current of the devices at high
gate bias and compared the LOA and Padé currents
with the SCBA values. In particular, we showed that
the Padé 1/2 with only first three order LOA currents
can successfully reproduce the SCBA currents with a
small relative difference (< 10%) in most of considered
devices except for p-Si〈111〉 device where the electron-
phonon interaction exhibits singular effects. We also
suggested as a warning signal to SCBA solution the case
where first order LOA current is larger than ballistic one.
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