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Target and Conditional Sensitivity Analysis

with Emphasis on Dependence Measures

Hugo Raguet1 and Amandine Marrel1

Abstract

In the context of sensitivity analysis of complex phenomena in presence of uncertainty,
we motivate and precise the idea of orienting the analysis towards a critical domain of
the studied phenomenon. We make a brief history of related approaches in the litera-
ture, and propose a more general and systematic approach. Nonparametric measures
of dependence being well-suited to this approach, we also make a review of available
methods and of their use for sensitivity analysis, and clarify some of their properties. As
a byproduct, we notably describe a new way of computing correlation ratios for Sobol’
indices, which does not require specific experience plans nor rely on independence of
the input factors. Finally, we show on synthetic numerical experiments both the inter-
est of target and conditional sensitivity analysis, and the relevance of the dependence
measures.

1 Introduction

The variety of approaches and applications of sensitivity analysis brings forth a diversity of
objects and terms. Through brief literature review, we try to clarify here the goals and extent
of our work.

In the classical framework, we assume the modeling of a phenomenon Y depending on

a set of factors (Xi )1≤i≤d following a deterministic relation Y
def= f (X1, . . . , Xd ). Uncertainties

are taken into account by modeling the factors as random variables, defined over the same
implicit probability space (Ω,F,P). It will also be convenient to consider a generic random
variable X , usually standing for a group of one or several factors. For such a variable, we

note its range X
def= ran(X ) and its law PX

def= P◦X −1 is the (Borel) probability measure that it

induces over X . We also particularize Y
def= ran(Y ).

1.1 Object and Goals

Global sensitivity analysis aims at measuring how the variations of one or several factors
contribute to the variation of the studied phenomenon, over the whole domain of possible
values of the factors and of the phenomenon. In contrast, target sensitivity analysis, as we
define it, still considers the entire domain of the factors, but aims at measuring their influence
over a restricted domain of the studied phenomenon, and in particular over the occurrence of
the phenomenon in this restricted domain. Such domain of interest would usually be extreme
and relatively rare, constituting a risk or an opportunity; we call it critical domain, noted
C ⊂Y and associated to a critical probability P(Y ∈C ) = PY (C ). Alternatively, conditional
sensitivity analysis evaluates the influence of the factors within the critical domain only,
ignoring what happens outside. Let us underline that those two notions can widely differ.

It seems to us that there are numerous, direct applications, especially for, but not restricted
to, industrial safety. Still, while global sensitivity analysis has been an active research field
for several decades, it seems that target sensitivity analysis is less understood, and until
recently has not been studied systematically as such. This is why we introduce our own
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terminology, which we discuss along with the description of similar concepts that we identify
in the literature.

Many authors agree with Saltelli et al. (2008) to distinguish several use of sensitivity
analysis. First, the ranking of factors by importance is the starting point of any application.
Identifying the factors which are most influential in a phenomenon might help understanding
it or guide resource investment for controlling it. Then, screening the factors for insignificant
ones is considered, for instance for model simplification. This sometimes calls on statistical
tests, which might be practical but cannot be satisfying for all applications. In our experience,
screening is often in practice interpretation of ranking, either through the expertise of the
practitioner or with some cross-validation process. Finally, factor mapping is often described
as a finer identification of functional relationship between the specific domains of values of
the factors and of the phenomenon. This is reminiscent of target sensitivity analysis, since
certain domains of values of the phenomenon are particularized. However, determining
which factors contribute most in the occurrence of the phenomenon in a given domain
is a different task than determining which values of these factors are responsible of such
occurrence. In general, target sensitivity analysis only deals with the former.

Finally, let us point out that we are mostly interested in phenomena influenced by many
factors and of which only limited understanding is available. Typical situations include
complex systems observed through heavy computer simulations or costly physical measures.

1.2 Review on Existing Approaches

We propose here a coarse classification of methods relating to target sensitivity analysis,
according to both chronological and methodological criteria.

1.2.1 Regional Sensitivity Analysis

The very notion of target sensitivity analysis dates back at least to Spear and Hornberger
(1980), motivated by environmental science applications. The proposed methodology com-
pares the distribution of the factors within the critical domain against their distribution
outside. The authors choose to use the Kolmogorov distance, almost systematically reused
ever since:

sup
x∈X

∣∣FX |Y ∈C (x)−FX |Y ∈Y \C (x)
∣∣ ,

where FX |A is the cumulative distribution function of a real random variable X (i.e. X ⊆R)
conditioned by an event A ∈F of nonzero probability (see § 4.1.2 for details).

They call it regional sensitivity analysis, or sometimes generalized sensitivity analysis.
The former name could fit our purpose, if it was not for two inconveniences. First, it evokes
more of a sensitivity analysis within the critical domain (what we call conditional sensitivity
analysis) rather than its occurrence; second, for the past three decades in the literature it
referred exclusively to the above methodology. It appears to be the generalization of no
other method, explaining why the alternative name is not used anymore. Finally, one may
encounter the term Monte Carlo Filtering, which might be vague and restrictive.

Comparing distributions conditionally to the critical domain seems a good choice for
target sensitivity analysis. It involves only two conditionings, which facilitates its estimation,
for instance with Monte Carlo method. One difficulty, mentioned by the authors and common
to all target sensitivity methods, arises when the critical probability is low. Another deficiency
pointed out by the authors is the difficulty to study factors in interaction. From this view-
point, observe that a metric comparing cumulative distribution functions can be extended
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to multidimensional settings, which would allow to regroup several factors. However, the
particular metric used here, namely the supremum norm over the differences, is sensitive to
outliers. Both aspects make it particularly unsuitable for categorical factors.

Strangely enough, regional sensitivity is mostly used in the literature as a mean of global
sensitivity analysis, the partition of the domain of values of the phenomenon into several
regions losing its original sense and becoming more or less arbitrary.

1.2.2 Reliability Sensitivity Analysis

Another field dealing with target sensitivity analysis is motivated by applications in structural
reliability, where the term reliability sensitivity analysis is commonly used. In this context,
critical domains are failure domains, and the developed methods are influenced by two
typical features: failure probabilities are small in comparison to the number of available
observations, and the probability distributions of the factors are assumed to be known.

The first methods developed seek, in a suitable transformation of the factors space, to
determine a “most probable failure point”, and to estimate the critical probability from linear
or quadratic approximations of the boundary of the critical domain around that point. This
yields the first- and second-order reliability methods, reviewed by Rackwitz (2001). It is possible
to give to each factor an importance measure based on the position of the most probable
failure point. The geometrical assumption about the failure domain seems however restrictive,
implying in particular that the factors have a monotonous effect on the phenomenon.

The sensitivity measures which later prevail in the field are based on derivatives of the
critical probability, with respect to the parameters defining the probability laws of the factors
or of their transformation. This framework seems once again restrictive for our purpose.
Nonetheless, the approaches developed in parallel for dealing with low critical probabilities
deserves to be incidentally noted, because they could be adapted to other sensitivity measures.
Let us mention the methods based on importance sampling (see for instance the adaptation
of Wu, 1994), as well as the approach of sequential Monte Carlo as proposed by Au and Beck
(2001), who call it subset simulation. As further developed by Song et al. (2009) and Cérou
et al. (2012), the latter is based on Markov chain Monte Carlo with the Metropolis–Hasting
algorithm.

Still in the reliability context, the Ph.D. dissertation of Lemaître (2014) is the first sys-
tematic study of target sensitivity analysis. With this purpose in mind, the author compare
more general methods of global sensitivity analysis, of which we give a brief overview below.
We can already mention that he identifies the need to transform the variable modeling the
phenomenon into a binary variable encoding the occurrence in the critical domain; that is
1C (Y ), where 1C : y 7→ 1 if y ∈C , 0 otherwise. This is one of the approach on which we focus
in this work (see § 4.1).

A first sensitivity analysis method considered is the estimation of (square) correlation
ratio between the factors and the phenomenon (real, with finite variance),

η2(X ,Y )
def= V(E[Y |X ])

V(Y )
. (1.1)

Resulting quantities are often called Sobol’ (1990, 1993) indices. These are nowadays standard
for global sensitivity analysis, notably because they can be interpreted in terms of decompo-
sition of the variance of the studied phenomenon. Lemaître shows how these indices applied
to the binary transformation of the observed phenomenon, η2(X ,1C (Y )), are relevant at least
for cases that are simple and where the number of available observations is high enough.
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A second method is based on the total variation which we develop later (see § 3.4), once
again applied to the binary transformation. Unfortunately, the proposed estimation methods
might be inadequate and the analysis is too brief; the author mentions a “positive bias”
without further explanations.

Another set of methods is based on binary classification trees. The author lists many
ways of defining classification trees, and even more ways of deducing sensitivity indices.
This indicates a lack of generality and robustness, actually revealed by some numerical
experiments. For the sake of brevity, we do not elaborate here and invite the interested reader
to refer to the dissertation for more details.

Then, Lemaître takes over regional sensitivity described above with some modifications.
He compares the probability laws conditionally to the critical domain against the (known)
marginal probability laws. In addition to Kolmogorov distance, he tries other discrepancy
measures between cumulative distribution functions classically used in statistical tests,
namely Cramér–Von Mises and Anderson–Darling, and shows that this choice can influence
the importance ranking of factors. More importantly, he suggests that sequential Monte
Carlo approaches are well adapted to methods based on comparisons of factors distributions
conditionally to the critical domain.

Finally, closer to the classical sensitivity measures for reliability mentioned above, the
author proposes its own measures, quantifying how modifications of the factors probability
laws impact on the critical probability; published elsewhere by Lemaître et al. (2015). Actually,
this approach could be used to study any other statistics than the critical probability. It is
relevent in a framework where one wants to quantify uncertainties due to estimation errors
on the model’s parameters. In our framework, where we do not even assume the knowledge
of the factors probability laws, such perturbations of the laws seem somewhat artificial.

Altogether, this Ph.D. dissertation is an interesting entry point to target sensitivity analy-
sis. However, more numerical experiments seem necessary in order to conclude about the
advantages and drawbacks of the different considered approaches, and those which should
be retained for further improvements and comparisons are not clearly identified.

1.2.3 Sensitivity Analysis of a Specific Statistic

Another recent approach for target sensitivity analysis is due to Fort et al. (2016). Their
formulation is more precise than ours: they are interested in the sensitivity of an estimator
of a statistical quantity of the studied phenomenon. For this, they introduce the term of
goal-oriented sensibility analysis.1

From the relations V
(
E[Y |X ]

) = E
((

E[Y |X ]−E[Y ]
)2

)
= V(Y )−E

(
V[Y |X ]

)
, the authors

show how the correlation ratio, equation 1.1, is, in their sense, a measure adapted to the
sensitivity of the expectation of the phenomenon: indeed, it measures a distance between
expectations, quantified by a difference of variances. Now for a generic real random vari-
able Y , expectation and variance can be defined through an optimization problem, E[Y ] =
argminθ∈RE

(
(Y −θ)2) and V[Y ] = minθ∈RE

(
(Y −θ)2), where the functional (y,θ) 7→ (

y −θ)2

plays the role of a contrast function.
The generalization of the correlation ratio to a statistic defined by another contrast

function ψ becomes2 minθ∈RE
(
ψ(Y ,θ)

)−E
(
minθ∈RE[ψ(Y ,θ) |X ]

)
. In practice, in order to

study extreme values, they focus on the quantiles of the phenomenon, considering for a level
α ∈ ]0,1[, the contrast function (y,θ) 7→ (y −θ)(1{y≤θ} −α). However, resulting indices turn out

1Beware that this term already exists in the literature referring to tools of different nature.
2Provided that the random variable minθ∈RE[ψ(Y ,θ) |X ] is well defined.
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to be difficult to estimate, as shown by the recent developments of Browne et al. (2017) and
Maume-Deschamps and Niang (2018).

Les us mention that Kucherenko and Song (2016) propose another adaptation of the
correlation ratio to analysis of sensitivity of quantiles, more direct: expectations are simply

replaced by quantiles3 of levelα ∈ ]0,1[, E

((
F−1

Y |X (α)−F−1
Y (α)

)2
)

, where F−1 is the generalized

inverse of a cumulative distribution function. As its estimation is also difficult, the authors
propose to approximate the quantiles conditionally to factors values by a rough form of
kernel method.

At last, let us add that the quantile is a peculiar notion and in our opinion, its use for
sensitivity analysis raises some troubles. Beyond difficulty of definition and estimation, these
tools are adapted only to phenomena which are unidimensional and continuous. Moreover,
the “sensitivity of a quantile” has a less straightforward interpretation than the sensitivity of
the occurrence of a phenomenon, or of the variation of a phenomenon, in a critical domain.

1.3 Contributions and Outline of the Paper

The majority of the methods previously described are originally developed for particular
applications; we would like to make abstraction of the problem to get more general methods.
To this end, rather than defining or enhancing specific methods, we seek modifications
or generalizations of global sensitivity analysis tools, which would be adapted to target or
conditional sensitivity analysis.

Such modifications boil down, for a given analysis tool considered, to weighting the
observations according to the critical domain. The weights can operate following two princi-
ples: either as a transformation of the phenomenon prior to the application of the tool, or
as a modification of the parameters and objects which define the tool itself. This includes,
but is not restricted to, the natural notion of conditioning. Several variations around these
principles are presented along § 4; before that, the actual analysis tools must be introduced.

We describe in § 2 the sensitivity indices based on correlation ratio, the popular Sobol’ in-
dices. Now, it appears that sensitivity analysis based on nonparametric dependence measures,
recently advocated by Da Veiga (2015), is particularly adapted to our framework. This will
retain most our attention in the following, starting from § 3, where we review the available
methods for measuring statistical dependence and detail some of their use in the context of
sensitivity analysis.

Practical estimation is also one of our concern, and is addressed in parallel to the develop-
ment of our sensitivity measures. However, estimation of dependence measures is an active
area of research, into which we do not delve in this work; in particular, we do not discuss con-
vergence properties. As for computational cost, we recall here that in our context, the cost of
data acquisition is considered the most limiting factor: the number of available observations
is typically in the order of hundreds to thousands. In consequence, computational load of
the analysis tools themselves is not regarded as crucial.

Finally, we give along § 5 numerical evaluations of our methods on various synthetic data.

Naturally, we do not pretend to exhaustiveness; even within the adopted methodology
described above, since we cannot evaluate in this work all existing dependence measures
(see our review § 3.1). In addition, other popular approaches of global sensitivity analysis
could be adapted to target or conditional sensitivity analysis. We voluntarily set those aside

3The random variable F−1
Y |X is now defined through conditional distribution.
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for brevity, but we would like to make here a few comments about two approaches described
above, which seems promising to us and ought to be more deeply studied in future works.

The first is the core idea of regional sensitivity analysis presented in § 1.2.1. To us, the
most practical aspect is that the involved distributions are conditioned by only two events,
{Y ∈C } and its complementary, the probability of the former being potentially low, but never
negligible since C is a region of interest. Besides possible generalizations of the Kolmogorov
distance, one should consider other measures of discrepancy between probability distribu-
tions, such as the ones used in our study and described along § 3. Moreover, as suggested
by Lemaître (2014), its potential estimation through sequential Monte Carlo algorithm is a
valuable advantage for very low critical probabilities.

Second, note that PY (C ) is a statistic on Y which can be derived from the contrast
function (y,θ) 7→ (

1C (y)−θ)2. Adapting the method of Fort et al. (2016) and skipping some
derivations, we get the sensitivity measure PY (C )(1−PY (C ))−E

(
PY |X (C )(1−PY |X (C ))

)
; this

is (proportional to) the correlation ratio η2(X ,1C (Y )), which is not surprising since the critical
probability is nothing but the expectation of the binary transformation. Just as Kucherenko
and Song (2016) do for the quantiles, one can also directly compare the critical and condi-
tional probabilities, for instance with E

(∣∣PY (C )−PY |X (C )
∣∣); actually, this can be shown to

be (proportional to) the dependence measure based on the total variation presented below,
applied to the binary transformation 1C (Y ). We think that yet new methods could be derived
from the above approaches; but it should be kept in mind that conditioning by the values of
the factors raises estimation problems, especially for low critical probabilities.

2 Sensitivity Analysis with Correlation Ratio

Given a group of factors I ⊂ {1, . . . ,d}, we write X I
def= (Xi )i∈I for the corresponding random

tuple, and cI
def= {1, . . . ,d} \ I for the complementary group of factors. Moreover, we abusively

note the concatenation
(
X I , XcI

) def= (
Xi

)
1≤i≤d .

The use of correlation ratio for sensitivity analysis has been proposed by Iman and Hora
(1990) and Ishigami and Homma (1990), and independently by Sobol’ (1990, 1993). The latter
was the most popularized, introducing modifications of correlation ratios of groups of factors
to achieve a convenient decomposition of the total variance of the phenomenon, provided
that the factors are independent; these are the Sobol’ indices. While they are theoretically
interesting for studying specific interactions of factors, in practice the most useful sensitivity
indices are the first-order indices and the total-order indices. The former tend to evaluate the
influence of a group of factor I on its own and is simply η2(X I ,Y ), and the latter incorporate
all possible interactions with other factors, defined as 1−η2

(
XcI ,Y

)
.

Estimation of correlation ratio can be expensive because it involves the term E
(
E[Y |X I ]2

)
.

Most common efficient estimators develop the square conditional expectation as the product
E
[

f (X I , XcI )
∣∣ X I

]
E
[

f (X I , X ′cI )
∣∣ X I

]
where (X I , X ′cI ) is distributed identically to (X I , XcI ), which

in turn is E
[

f (X I , XcI ) f (X I , X ′cI )
∣∣ X I

]
, provided that XcI and X ′cI are independent condition-

ally to X I . In practice, this is ensured when the input factors are independent. The expectation
of the last expression is nothing but E

(
f (X I , XcI ) f (X I , X ′cI )

)
, which is now easier to handle.

Typical estimator consists in drawing 2n independent observations
(
X ( j )

I , X ( j )
cI

)
1≤ j≤2n dis-

tributed as
(
X I , XcI

)
, and evaluating the model at specifically chosen factors combinations,

typically

E
(
E[Y |X I ]2)

n
def= 1

n

n∑
j=1

f
(
X ( j )

I , X ( j )
cI

)
f
(
X ( j )

I , X (n+ j )
cI

)
. (2.1)
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This approach, usually referred to as pick-and-freeze, has two drawbacks: first, this constrains
the experience design (the set of points at which the model must be observed or computed),
and second, the required number of model evaluations grows with the number of factors to
be investigated.

It is also possible to estimate directly the conditional expectations, and sum its square
over observed values of X I . Conditioning by well chosen ranges of the input factors might
improve the estimation, but more involved techniques should be considered such as local
polynomial regression as described by Da Veiga et al. (2009). Getting reasonable estimations
with this approach requires more observations than the previous one, but it is rid of the
aforementioned drawbacks, and do not assume independence of the factors.

Another estimation approach worth mentioning relies on sampling the input factors at
different, carefully chosen frequencies, and isolating their influence by Fourier decomposition
of the resulting phenomenon sample. This is called Fourier amplitude sensitivity test. Mara
(2009) sums up different improvements proposed over time, allowing to reduce the number
of observations required for computing several correlation ratios. However, the experience
design is strongly constrained, and correlation ratios of different group of factors require in
general different samples. Typically, it is possible to compute all first-order indices from only
one sample, but a different sample must be observed for each total-order index.

Let us mention here that we propose yet another estimation approach inspired by ran-
domized maximum correlation developed along § 3.5.2. It is similar in spirit to the approach
of Da Veiga et al. (2009), in the sense that it approximates the conditional expectation with
help of prescribed nonlinear functionals, but it uses different tools. We emphasize the fact
that it does not constrain the experience design, that the correlation ratio of all possible
groups of factors can be computed from the same random sample, and that it does not rely
on statistical independence of the input factors.

Note finally that the correlation ratio is properly defined only for scalar variables. However,
a straightforward multidimensional extension is obtained for Y ⊆Rp by summing the corre-
lation ratios of each coordinate weighted by its contribution in the total variance, that is to
say

η2(X ,Y )
def=

∑p
j=1 V(Y j )η2

(
X ,Y j

)
∑p

j=1 V
(
Y j

) =
∑p

j=1 V
(
E[Y j |X ]

)
∑p

j=1 V
(
Y j

) ,

as studied by Gamboa et al. (2014).

3 Sensitivity Analysis with Dependence Measures

Sensitivity analysis based on correlation ratio as described above is fairly general and can be
readily adapted for target and conditional analysis, as we propose later in §§ 4.2.1 and 4.2.2.
However, several weaknesses can be pointed out.

First, accurate estimation is known for requiring many observations. In addition, although
statistical independence implies zero correlation ratio, some variables can be significantly
related and yet their correlation ratio be zero as well (as shown by the functional of Ishigami
and Homma, 1990, see our numerical illustration § 5.1.2); in such case, one must resort
to total-order indices to identify a relation. More generally, the statistical variance of the
phenomenon might not be the most representative mode of variation. Finally, the above
extension for multidimensional phenomenon might not be satisfying. In the classical proba-
bilistic framework, we believe with Da Veiga (2015) that a more general and more versatile
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notion of sensitivity of a phenomenon to a group of factors can be captured by the notion of
statistical dependence.

First, we review available nonparametric dependence measures. This provides a clearer
view of these tools, allowing to comment on various approaches which have been followed
in the specific context of sensitivity analysis. Finally, we detail those that we intent to study,
making explicit both theoretical definitions and the estimators that we use.

3.1 Review on Nonparametric Dependence Measures

We review here the key concepts and tools developed for nonparametric dependence mea-
sures.

3.1.1 Brief History and Classification

The majority of nonparametric dependence measures between two random variables X
and Y rely on the measure of the dissimilarity between their joint probability distribution
PX ,Y and the product of their marginals PX ⊗PY ; they are equal if, and only if, X and Y
are independent. This strategy dates back at least to Hoeffding (1948), who compares the
cumulative distribution functions FX ,Y and the separable product FX FY in the spirit of
the tests of Kolmogorov–Smirnov (with the supremum norm) and Cramér–Von Mises (with
square L2-norm). This approach is further analyzed by Blum et al. (1961); multidimensional
extensions are more recently considered by Fernández and González-Barrios (2004).

Instead of using cumulative distribution functions for comparing probability distribu-
tions, Rosenblatt (1975) compares probability density functions through weighted square
L2-norm. Multidimensional extension and further analysis is done, for instance by Anderson
et al. (1994) and Ahmad and Li (1997). In turn, weighted square L2 distance of characteristic
functions is considered by Feuerverger (1993) who mentions similarity with the work of
Rosenblatt (1975); later Székely et al. (2007) writes a multidimensional extension under the
name distance covariance. Other notable approaches based on characteristic functions are
proposed by Kankainen and Ushakov (1998) and later by Achard et al. (2003). Interestingly, all
these quadratic dependence measures share the same estimators, involving kernel functions
over the ranges of X and Y , being either means of density estimation, weight functions or
test functions, depending on the approach considered. Gretton et al. (2005) and Diks and
Panchenko (2007) independently generalize and give more explicit role to such kernels. In
particular, the former rederive the measure in the context of reproducing kernel Hilbert spaces
(see § 3.3 below), as the Hilbert–Schmidt norm of a generalized cross-covariance operator of
X and Y , and call it Hilbert–Schmidt independence criterion.

Another class of dissimilarity measures between probability distributions is offered by
Csiszár (1972) divergences. Stemming from mutual information as defined by Shannon (1948),
extended as information divergence between distributions by Kullback and Leibler (1951),
the general form (see § 3.4) is also considered independently by Morimoto (1963) and Ali and
Silvey (1966). Encompassing several older dependence measures such as Pearson or Neyman
χ2, its use as a dependence measure is in particular advocated by Joe (1989), who underlines
the fact that it is suitable for random variables which are multidimensional, but also both
continuous and categorical.

Another line of dependence measures does not rely on dissimilarity between joint and
product distributions but rather on the concept of correlation. Certainly among the oldest
statistics are the correlation coefficients of Pearson (linear), Spearman (on the ranks) and
Kendall (on the sign of differences); these can only capture restricted forms of dependence,
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namely linear for the first one and monotonous for the two others. The maximum corre-
lation coefficient, defined as the supremum of the linear correlation coefficient between
(measurable, of positive finite variance) transformations of X and Y , alleviates this drawback.
Introduced originally by Gebelein (1941), its desirable theoretical properties are discussed
by Rényi (1959). Practical estimation might be cumbersome even in the simple bivariate
case (see the procedure of Breiman and Friedman, 1985). However, by restricting the space
of transformations to a finite dimensional setting, it reduces to a simple canonical correla-
tion, developed earlier and in a different context by Hotelling (1936). This is exploited by
Lopez-Paz et al. (2013) who consider random projections (see § 3.5 below), yielding a form of
randomized maximum correlation. Let us also mention another generalization of correlation
by translation-invariant kernels proposed by Rao et al. (2011), which can also be interpreted
as a restricted form of maximum correlation coefficient.

Below, §§ 3.3–3.5, we detail specifically kernel quadratic dependence measures, Csiszár
divergence dependence measures and randomized maximum correlation. In addition, we
give in § 3.6 a few words on more general classes of measures of dissimilarity between
distributions, namely integral probability metric and optimal transport cost, which could
suggest new dependence measures also well adapted to our purpose. Before that, we would
like to give a few words about an increasingly popular and useful concept in the study of
statistical dependence, the copula, which can complement and enhance each considered
dependence measure.

3.1.2 On the Use of Copulas

Statistical dependence between random variables is a characteristic of their joint distribution;
transforming each marginal bijectively would essentially yields the same joint distribution,
only on a different space of values. For real random vectors, copulas capture well this idea. The
joint distribution of (Xi )1≤i≤d is fully characterized by its cumulative distribution function
F(Xi )1≤i≤d

: Rd → [0,1] : x 7→ P
(∩d

i=1{Xi ≤ xi }
)
. If each Xi is continuous, then each random

variables FXi (Xi ) is uniformly distributed over [0,1] and the copula of (Xi )1≤i≤d is nothing
but the cumulative distribution function of

(
FXi (Xi )

)
1≤i≤d . More generally, it is a cumulative

distribution function C : [0,1]d → [0,1] with uniform marginals, such that for all x ∈ Rd,
F(Xi )1≤i≤d

(x) =C
(
FX1 (x1), · · · ,FXd (xd )

)
.

For precise definition and many applications, we refer the reader to the introduction and
collected results by Jaworski et al. (2010). We only clarify below some simple aspects, which
present the most interest in our context. First, it fully captures the statistical dependences,
and most dependence measures between random variables can be easily expressed as a
functional of their copula. As pointed by Schmid et al. (2010), this turns out to be a convenient
way of defining multivariate versions of classical bivariate dependence measures, such as
Spearman and Kendall correlation coefficient mentioned above.

Second, observe that for a real random variable X , FX (X ) is invariant under strictly in-
creasing transformations of X ; in particular, translations or positive scalings. Even for depen-
dence measures which are readily invariant under such transformations on the marginals,
their estimators are usually not. Thus, it might be preferable to apply this copula transform of
the marginals prior to estimation. A desirable consequence is that this provides a normaliza-
tion of the variable values. This helps addressing our concern on comparisons of dependence
measures applied to factors of different natures, see § 3.2.1. Moreover, knowing that the data
are falling into the unit cube allows to tailor some estimators accordingly. Both advantages
are discussed in more details for the different dependence measures we consider below.

In any case it is worth mentioning here that even though FX (X ) is not directly observable,
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observations thereof can be well approximated by composing observations of X with the
empirical distribution functions deduced from them. Given

(
X (i )

)
1≤i≤n independent obser-

vations distributed identically to X , it is FX ,n
def= 1

n

∑n
i=1 1]−∞,X (i )]. Most, if not all, applications

of copula transforms, use this approximation. Thus in the following, copula transformed
versions of the estimators simply mean replacing the original observations by the empirical

copula transformation
(
U (i )

)
1≤i≤n

def= (
FX ,n

(
X (i )

))
1≤i≤n over all the marginals of the involved

random variables.

3.2 Dependence Measures for Sensitivity Analysis

Let us give some general considerations before referencing notable uses of dependence
measures for sensitivity analysis in the literature.

3.2.1 General Considerations

Rényi (1959) states that, among others, a desirable property of a dependence measure DM
between two variables X and Y is that it reaches its minimum possible value if and only if X
and Y are statistically independent. If used in the right statistical framework, this can be used
for screening, discarding the factors X which are truly noninfluential on the phenomenon Y ,
detected by low values of DM(X ,Y ).

Then, in the hope of using dependence measures for ranking, it is necessary that the
most important factors exhibit the highest statistical dependence with the phenomenon.
This is akin to a monotonicity property, although the very concept of being “more impor-
tant” remains here to be defined. For instance, a factor X ′ containing more information
than a factor X should present more dependence with the phenomenon Y . In measure-
theoretic formulation, this is expressed by F(X ) ⊂F

(
X ′) =⇒ DM(X ,Y ) ≤ DM(X ′,Y ), where

F(X ) denotes the σ-field induced by the random variable X . At the very least, one wants
DM(X1,Y ) ≤ DM((X1, X2),Y ) when pooling factors together.

Such monotonicity property can be easily established for the correlation ratio and the
maximum correlation coefficient, and with some care for Csiszar divergence dependence
measures; kernel quadratic dependence measures are more delicate in that respect. But this
is only for the theoretical quantities; actually, the difficulty arises as soon as the mathematical
objects, involved either in the definition or in the estimation of the dependence measure,
depend on the spaces in which the studied factors lie. It can be noted that, of all the sensitivity
measures we deal with in this work, only the pick-and-freeze estimator, equation 2.1, does
not suffer from this effect.

Special care must thus be taken when comparing the importance of factors of differ-
ent natures or of different dimensions with dependence measures. Fortunately, applying
some normalization, for instance according to the highest possible value of the dependence
measure considered if available, or resorting to copula transforms (see § 3.1.2), can enhance
comparisons between factors of different nature and scalings. Nevertheless, this is not system-
atic and usually cannot remedy poor estimations in high dimension. For more considerations
on the sensitivity of dependence measures to the dimension, we refer again the reader to
Da Veiga (2015), who notably mentions the possibility of designing multidimensional fac-
tors selection procedures, involving only dependence measures applied to unidimensional
marginals, inspired by feature selection methods for machine learning.
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3.2.2 Literature Review

Many different tools have been proposed for the purpose of sensitivity analysis, and some
can be recast in our rough classification of dependence measures, § 3.1.1; although usually
with some substantial modifications.

First, let us set aside all the tools relying on correlation coefficient, linear regressions,
correlation ratios as described in § 2, or even simple transformations thereof as discussed for
instance in Saltelli and Sobol’ (1995). As already pointed out, those can detect only restricted
forms of dependence, in contrast to tools involving entire distributions. In the sensitivity anal-
ysis community, the latter have been often referred to as moment-independent uncertainty
measures.

One of the earliest work explicitly in that direction is the one of Park and Ahn (1994), who
use something close to the mutual information (which is a dependence measure based on
Csiszár divergence, see § 3.4.2). More precisely, they use the Kullback–Leibler divergence
to compare the distribution of the phenomenon, PY , to its distribution if the studied fac-
tor X undergoes a “distributional change”; think typically to a conditioning, PY |X∈A . Later,
Borgonovo (2007) suggests integrating the divergence between original and conditional dis-
tribution against the distribution of the factor X , yielding exactly the Csiszár divergence
dependence measure (this time with the total variation flavor). In both cases, estimating
the Csiszár divergence over conditional densities is problematic, and they must call on ad
hoc parametric density fits. Several authors explore other estimation strategies with various
degrees of mathematical rigor (Liu and Homma, 2009; Wei et al., 2013; Luo et al., 2014; Jia,
2014; Da Veiga, 2015; Rahman, 2016). These methods are often designated as density-based
uncertainty importance measure.

Dependence measures based on cumulative distribution functions have also been con-
sidered. Chun et al. (2000) follow this path. The metric they use is peculiar, not comparing
directly the cumulative distribution functions but rather the quantile functions (which are
their generalized, left-continuous inverse). Moreover, like Park and Ahn before them, they
only compare PY with a “distributional change” as described above. It is interesting to note
that the regional sensitivity analysis of Spear and Hornberger (1980), presented in § 1.2.1
in the context of target sensitivity analysis, actually follows the same logic. In essence, one
could use conditioning by each possible value of Y , and integrate the resulting Kolmogorov
distances against its distribution, to make it a proper dependence measure. Although the
role of X and Y are interchanged, this is exactly what is proposed by Baucells and Borgonovo
(2013). The estimation procedure that they propose resembles a costly double loop, the inner
for estimating the conditioned distributions by a rough kernel method, the outer for inte-
grating. Recently, Gamboa et al. (2017) study the analogous dependence measure obtained
by replacing the Kolmogorov distance by a Cramér–Von Mises distance weighted by the
distribution of Y . Observing that

E

[∫
Y

(
FY (y)−FY |X (y)

)2 dPY (y)

]
=

∫
Y

E
[(

E[1{Y ≤y}]−E[1{Y ≤y} |X ]
)2

]
dPY (y) ,

and that the expectation within the right-hand side integral is nothing but V
(
E[1Y ≤y |X ]

)
, the

authors suggests to estimate it with help of the pick-and-freeze method, described in § 2.
Then, the outer integration can be estimated at the cost of only an additional independent
sample distributed as PY . Indeed, all the pick-and-freeze estimates in the integration can
be computed from the same set of factors combinations and corresponding phenomenon,
only transforming it according to 1{Y ≤y} for each level y . This presents several advantages.
First, the authors are able to derive consistency and asymptotic normality of the resulting
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estimator. Second, in terms of interpretation, this shows how this dependence measure can
be seen as a generalization of the correlation ratio. It can be similarly normalized, and when
the factors are independent, just like the latter decomposes the variance, the former can
be seen as decomposing the dependence among groups of factors. Moreover, as pointed
out above, § 3.2.1, the use of pick-and-freeze estimators eases the comparison of factors of
different natures and dimensions. Unfortunately, this comes also with important drawbacks:
the estimator rely on factors independence, and the total computational cost grows with the
number of factors to study.

In spite of strong similarities, none of the above dependence measures seem equivalent
to the direct application of a distance between the joint FX ,Y and product FX FY cumulative
distribution functions. As these are well approximated by their empirical counterparts FX ,Y ,n

and FX ,nFY ,n , this suggests yet another dependence measure with a convenient estimator.
We do not explore it further in the present study for the sake of brevity, but it certainly have
its own interest and should be considered in future works.

As for the whole class of kernel quadratic dependence measures, their only mention in the
context of sensitivity analysis that we are aware of is given by Da Veiga (2015), complemented
by numerical illustrations of De Lozzo and Marrel (2016). As far as we know, maximum corre-
lation and the likes never appeared in this context, except for one mention in the latter article.
In the following, we develop these two, together with the Csiszár divergence dependence
measure which we extend theoretically. Note that our choice is mainly guided by ease of
implementation (notably the possibility of writing estimators as empirical expectations),
aim for generality (factors and phenomenon of any nature and dimension), good invariance
properties (as discussed in various references given in § 3.1.1), and ease of adaptation for
target and conditional sensitivity analysis.

3.3 Kernel Quadratic Dependence Measure

We give here the interpretation of the kernel quadratic dependence measure through kernel
embeddings of probability distributions in reproducing kernel Hilbert spaces (see for instance
Berlinet and Thomas-Agnan, 2003, Chapter 4). We then derive the dependence measure in
our setting, specify a typical estimator, and give some considerations for sensitivity analysis.

3.3.1 Kernel Distance

Let Z be a generic topological space, and Hk ⊂RZ a (separable) reproducing kernel Hilbert
space induced by a positive definite kernel k : Z 2 → R. If P is a probability distribution
over Z , and k is measurable such that

∫
k(z, z ′)dP(z)dP(z ′) <+∞, the linear form Hk →R

defined through P as φ 7→ ∫
φdP is bounded, and has thus a representer µk (P) ∈ Hk . Such

representer is the kernel embedding of the distribution P in Hk , and can be expressed as
z 7→ ∫

k(z, z ′)dP(z ′).
Now, inner products of kernel embeddings can be expressed as expectations of the kernel

k; more precisely, if Q is another probability distribution over Z with the above properties,
then

〈
µk (P) , µk (Q)

〉
Hk

= ∫
k(z, z ′)dP(z)dQ(z ′). The associated norm ‖µk (P)−µk (Q)‖Hk is

the kernel distance, also referred to as maximum mean discrepancy. It is especially relevant
when the map P 7→ µk (P) is injective, in which case the kernel distance is zero if, and only
if, the distributions are the same; a kernel enjoying this property is called characteristic.
Typical characteristic kernels are the Gaussian kernel, when Z is a normed vector space,
(z, z ′) 7→ exp

(−‖z − z ′‖2
/

2σ2
)

for some parameter σ2 ∈R dependent in practice on the data;
and the categorical kernel, when Z is a finite set, (z, z ′) 7→ 1 if z = z ′, 0 otherwise.

12



3.3.2 Quadratic Dependence Measure

Back to our setting, a measure of the dependence between X and Y is thus defined by the
kernel distance between PX ,Y and PX ⊗PY . These are probability distributions over the space
X ×Y ; a useful particular case arises when the kernel k is separable as

(
(x, y), (x ′, y ′)

) 7→
kX (x, x ′)kY (y, y ′), where kX and kY are positive definite kernels over X and Y , respectively.
In that case, the square kernel distance

∥∥µkX kY

(
PX ,Y

)−µkX kY
(PX ⊗PY )

∥∥2
HkX kY

reads as

E
(
kX (X , X ′)kY (Y ,Y ′)

)+E
(
kX (X , X ′)

)
E
(
kY (Y ,Y ′)

)−2E
(
kX (X , X ′)kY (Y ,Y ′′)

)
, (3.1)

provided that (X ′,Y ′) is independent of, and distributed identically to, (X ,Y ), and Y ′′ is
independent of X ,Y , X ′,Y ′ and distributed identically to Y . This yields the kernel quadratic
dependence measure, which we note QDMkX ,kY

(X ,Y ); it is also called Hilbert–Schmidt
independence criterion by Gretton et al. (2005).

A straightforward estimator, given
(
X (i ),Y (i )

)
1≤i≤n independent observations distributed

identically to (X ,Y ), is4

QDMkX ,kY
(X ,Y )n

def= 1

n2

n∑
i , j=1

kX

(
X (i ), X ( j ))kY

(
Y (i ),Y ( j ))

+ 1

n2

(
n∑

i , j=1
kX

(
X (i ), X ( j ))) 1

n2

(
n∑

i , j=1
kY

(
Y (i ),Y ( j )))

− 2

n

n∑
i=1

(
1

n

n∑
j=1

kX

(
X (i ), X ( j )))( 1

n

n∑
j=1

kY

(
Y (i ),Y ( j ))) ,

which should be put under the following handier form for practical implementation,

1

n2

n∑
i , j=1

(
kX

(
X (i ), X ( j ))− 1

n

n∑
`=1

kX

(
X (i ), X (`)))(kY

(
Y (i ),Y ( j ))− 1

n

n∑
`=1

kY

(
Y (`),Y ( j ))) .

Note that some authors prefer normalizing with factors n −1 and n −2, or add some other
debiasing modifications, which are of little interest here. The required number of compu-
tations grows as O(n2), which is acceptable in situations where the cost for obtaining each
observation is large.

When X and Y are normed vector spaces, in addition to typical Gaussian and categorical
kernels given above, we would like to mention the particular case of the distance covariance
of Székely et al. (2007). It was shown later by Sejdinovic et al. (2013) that it is indeed a
form of kernel quadratic dependence measure, with the appropriate kernels kX : (x, x ′) 7→
1
2

(‖x‖+‖x ′‖)−‖x −x ′‖, and similarly for Y .
Székely et al. (2007) propose to normalize their dependence measure in the spirit of

the linear correlation coefficient, yielding the distance correlation, which is scale-invariant.
When Da Veiga (2015) highlights the potential use of the quadratic dependence measure for
sensitivity analysis, he also advocates for such normalization, leading to the sensitivity index

QDMkX ,kY
(X ,Y )

def= QDMkX ,kY
(X ,Y )√

QDMkX ,kX
(X , X )

√
QDMkY ,kY

(Y ,Y )
,

and similarly for its plug-in estimator QDMkX ,kY
(X ,Y )n . This should allow for direct com-

parisons of dependence measures between a phenomenon and group of factors of different
nature.

4We omit the fact that the parameters of the kernel might depend on the data.
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Alternatively, Póczos et al. (2012) recommend applying kernel quadratic dependence
measures on the copula transforms. For multidimensional factors, it might be useful to
combine both normalizations.

3.4 Csiszár Divergence Dependence Measure

We now turn to Csiszár divergences. As previously, we explain the general discrepancy mea-
sures between distributions before detailing its use for dependence measures and sensitivity
analysis.

3.4.1 Csiszár Divergence

Considering again P,Q two probability distributions over a generic space Z , a Csiszár diver-
gence between P and Q can be defined as

divφ(P,Q)
def=

∫
φ

(
dP

dQ

)
dQ ,

where dP
dQ is the Radon–Nikodym derivative of P with respect to Q, and φ : R+ →R∪ {+∞} is

a convex function vanishing at unity. Using Jensen inequality, divφ(P,Q) ≥φ(∫
dP

)=φ(1) = 0,
hence takes values inR+∪ {+∞}. This can be conveniently extended to cases where P is not
dominated by Q. Lebesgue decomposition theorem ensures P = P¿+P⊥ where P¿ and P⊥
are respectively absolutely continuous and singular with respect to Q, and we can define

divφ(P,Q)
def=

∫
φ

(
dP¿
dQ

)
dQ+φ∗(0)P⊥(Z ) , (3.2)

where φ∗ : R+ → R∪ {+∞} : t 7→ tφ(1/t) if t > 0 and φ∗(0) = limt→0φ
∗(t), with the usual

integration convention 0×∞= 0. Note that the role of this second term is to handle properly
the domain where, in essence, Q is zero but P is not, that is where the derivative tends to
infinity but is integrated over a set of measure zero. It can be noted also that divφ(P,Q) =
divφ∗(Q,P); we refer to Liese and Vajda (2006) for a complete treatment.

Notable examples include:
• the Kullback–Leibler divergence with φ : t 7→ t log(t ), φ∗ : t 7→ − log(t ) and φ∗(0) =+∞;
• the total variation distance with φ : t 7→ |t −1|, φ∗ =φ and φ∗(0) = 1;
• the square Hellinger distance with φ : t 7→ (

p
t −1)2, satisfying also φ∗ =φ and φ∗(0) = 1;

• the Pearson χ2 with φ : t 7→ (t −1)2, φ∗ : t 7→ (t−1)2

t and φ∗(0) =+∞;
and all their dual, by switching the role ofφ andφ∗: respectively reverse Kullback–Leibler (note
that limt→0 t log(t ) = 0), total variation and square Hellinger distances again, and Neyman χ2

(limt→0(t −1)2 = 1).

3.4.2 Application to Dependence Measure and Estimation for Sensitivity Analysis

Again, one can measure dependence between X and Y by measuring discrepancy between
PX ,Y and PX ⊗PY with help of Csiszár divergences. The famous special case of the mutual in-
formation is obtained with the Kullback–Leibler divergence, that is divt 7→t log(t )

(
PX ,Y ,PX ⊗PY

)
or equivalently div− log

(
PX ⊗PY ,PX ,Y

)
. We refer to our literature review, § 3.2.2, for other spe-

cific uses and estimations for sensitivity analysis.
Estimations of Csiszár divergences have been studied in many contexts, often focused on

specific versions defined by a given function φ or on specific knowledge about the involved
distributions. In order to devise a general tool, we choose in the current work to rely on
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PX ⊗PY >0

PX ,Y =0

Y

−1

1

X−1 1

(a) Y = XΞ

PX ⊗PY =0

PX ,Y >0

X−1 1

(b)

Y =
{

X if X < 0

XΞ if X ≥ 0

PX ⊗PY >0

PX ,Y =0

X−1 1

(c)

Y =
{

1 if X < 0

XΞ if X ≥ 0

Figure 1: Illustration of cases of mutual singularities of PX ⊗PY and PX ,Y in some functional
relationships Y = f (X ,Ξ). In each case, X andΞ are independently and uniformly distributed
over [−1,1]. The joint distribution is represented in scales of gray, the darker the higher
probability. With respect to the two-dimensional Lebesgues measure, smooth areas represent
absolutely continuous parts, while black lines schematize singular parts.

nonparametric estimations of the Radon–Nikodym derivatives. In practice, we consider factors
which are either continuous (with respect to Lebesgues measure) or discrete (categorical).
Densities at specific points can be estimated through kernel or nearest-neighbors methods,
see for instance the monograph of Silverman (1986). Probabilities are estimated by empirical
frequencies. Both can be combined if necessary.

Let us give special considerations concerning the singular parts appearing in equation 3.2.
Under our assumptions, we identify three cases of mutual singularities between PX ⊗PY and
PX ,Y , illustrated in figure 1. The first one appears in most functional relationships, where
some values of Y never occurs with some values of X ; this is illustrated on figure 1(a), and
concerns also each white area in figures 1(b)–(c). The second and third arise when Y takes
on continuous values, but get a discrete distribution conditionally to some values of X . In
figures 1(b)–(c), some values of X completely determine Y , leading to different singularities
depending on if Y varies continuously with X or not.

In any case, we do not try to estimate the domains of continuity and singularities, but rely
instead on the regularizing effect of kernel density estimates. In the same time, integration
against probability measures is performed through Monte Carlo approach. Altogether, we
can hope that the resulting estimates get close to the actual Csiszár divergence, equation 3.2.
Noting that the inclusion ran(X ,Y ) ⊂X ×Y is usually strict as is illustrated on figure 1, we
distinguish two cases depending on the integration domain.

First, we consider the full Csiszár divergence dependence measure simply as CDMφ(X ,Y )
def=

divφ
(
PX ,Y ,PX ⊗PY

)
. It is expected to be difficult to estimate, because the integration domain

X ×Y is the largest, and is not an expectation of a function of the joint variable (X ,Y ). A
natural estimator based on kernel density estimate is

CDMφ(X ,Y )kX ,kY ,n
def= 1

n2

n∑
i , j=1

φ

( 1
n

∑n
`=1 kX ,Y

((
X (i ),Y ( j )

)
,
(
X (`),Y (`)

))( 1
n

∑n
`=1 kX

(
X (i ), X (`)

))( 1
n

∑n
`=1 kY

(
Y ( j ),Y (`)

)))
, (3.3)

where kX , kY and kX ,Y are the kernels used for estimating densities or probabilities; typically
(normalized) Gaussian and categorical, respectively. Defining kX ,Y as the separable product
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(
(x, y), (x ′, y ′)

) 7→ kX (x, x ′)kY (y, y ′) might ease the computation of the numerator, but it still
has a total cost growing as O(n3), which is very expensive. Nearest-neighbors density are in
general even more expensive.

In order to alleviate the computational burden, we could consider summing over only
bn/2c truly independent pairs

(
X (2i−1),Y (2i )

)
1≤i≤bn/2c, in place of all the n2 possible pairs(

X (i ),Y ( j )
)

1≤i , j≤n . We believe however that the space X ×Y would then be too scarcely
sampled for accurate estimation. Instead, we prefer to restrict the integration over the more
meaningful domain ran(X ,Y ). We thus propose to modify the Csiszár divergence as the
support Csiszár divergence defined as

sdivφ(P,Q)
def=

∫
φ

(
dP¿
dQ

)
dQ+φ∗(0)P⊥

(
supp(Q)

)
, (3.4)

where supp(Q) is the support of the measure Q. In other words, we plainly and simply drop
singularity of P with respect to Q outside its support. Good general properties of the Csiszár
divergence, in particular nonnegativity and identity of indiscernibles, is ensured forφ positive
over [0,1] (see proposition A.3); this is a mild limitation in regard to the functionals φ usually
considered, as described above.

This allows us to define the support Csiszár divergence dependence measure sCDMφ(X ,Y )
as sdivφ

(
PX ⊗PY ,PX ,Y

)
. It can be noted that the kind of singularity which is ignored is illus-

trated on figure 1(a), while the two others, (b) and (c), can be approximated as expectations of
functions of the joint variables (X ,Y ). The corresponding estimator based on kernel density
estimate is

sCDMφ(X ,Y )kX ,kY ,n
def= 1

n

n∑
i=1

φ


(

1
n

∑n
j=1 kX

(
X (i ), X ( j )

))( 1
n

∑n
j=1 kY

(
Y (i ),Y ( j )

))
1
n

∑n
j=1 kX ,Y

((
X (i ),Y (i )

)
,
(
X ( j ),Y ( j )

))
 , (3.5)

which has now a computational cost of O(n2), just as for the kernel quadratic dependence
measure. Such an estimator has been mentioned by several authors (see § 3.2.2), without
further justification.

Although variation range of the Csiszár divergence dependence measures can be con-
trolled, sensitivity measures based on them are in general not directly comparable from one
factor to another. A Csiszár divergence with a given function φ might behave differently on
continuous and discrete probability measures. Moreover, quality of kernel density estimates
are known to be sensitive to the ambient dimension. With only a few points in high dimen-
sion, redundancy of information is difficult to identify, usually leading to overestimation of
the dependence. Unfortunately, normalization is not as natural as for the kernel quadratic de-
pendence measure which derives from a square norm. Consider moreover that, for instance,
CDMφ(X , X ) and sCDMφ(X , X ) might be infinite.

In fact, normalization of the mutual information is discussed in details by Joe (1989),
where different, noncompatible normalization schemes are proposed, depending on whether
the variables are continuous or categorical. To our knowledge, such discussion has not even
been raised for general Csiszár divergences. We propose to normalize the estimators as

CDMφ(X ,Y )kX ,kY ,n
def= CDMφ(X ,Y )kX ,kY ,n

CDMφ(X , X )kX ,kX ,n
,

and similarly for sCDM(X ,Y )kX ,kY ,n , having been careful of using φ positive over [0,1] to
ensure positivity of the estimated quantities. It can be seen as a rough generalization of
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the normalization proposed by Joe (1989) for mutual information of categorical variables,
because sCDM− log(X , X ) is in that case the Shannon entropy of X .

In addition, the use of copula transforms can be helpful. In theory, Csiszár divergences
are already invariant under bijective transformations, but nevertheless their estimators might
be sensitive to scaling. Blumentritt and Schmid (2012) show the advantage of using copula
transformed for estimation of mutual information, by taking care of adapting the estimation
tools (kernel, nearest-neighbors radius, etc.) to the unit cube. Let us mention at this occasion
that the same authors propose a normalization of the mutual information according to the
dimension. Based on analytical observations on Gaussian copulas, it ensures that, if each
pair of marginals have the same correlation, increasing the dimension does not change the
multivariate dependence measure. This normalization is not relevant in our context, where
adding factors correlated with the phenomenon should in fact increase the dependence
measure. Also, Nagler and Czado (2016) propose a much more involved application of copula
theory to density estimation. This should be considered when the factors dimension becomes
prohibitively large, but high computational overhead is expected.

3.5 Maximum Correlation

As mentioned in our review of dependence measures § 3.1, the maximum correlation coeffi-
cient between X and Y is defined as

sup
{
ρ
(
φX (X ),φY (Y )

)∣∣∣φX ∈RX measurable, 0<V(φX (X ))<+∞
φY ∈RY measurable, 0<V(φY (Y ))<+∞

}
,

where ρ is the linear correlation coefficient (X ,Y ) 7→ C(X ,Y )p
V(X )

p
V(Y )

.

3.5.1 Practical Estimation

Estimating such a supremum over all measurable functionals is intractable; one possibility
is to restrict the search space to a finite-dimensional space spanned by certain finite fam-
ilies of functionals,

(
φX , j

)
1≤ j≤k ,

(
φY , j

)
1≤ j≤`. The supremum becomes then the canonical

correlation of Hotelling (1936), sup
α∈Rk,β∈R`

ρ
(∑k

j=1α jφX , j (X ),
∑`

j=1β jφY , j (Y )
)
.

This is used by Bach and Jordan (2003) with bases functionals constituted by features
of a reproducing kernel Hilbert space mapped from observed data. This is called kernel
canonical correlation. In that case, the finite-dimensional optimization actually amounts to
optimization over the whole, possibly infinite-dimensional Hilbert space. While this can be
desirable, the estimation over finite sample data requires some kind of regularization.

In a different approach, Lopez-Paz et al. (2013) propose to choose the bases functionals in
a prespecified space of nonlinear functionals, depending continuously on some parameters;
the key point being to draw randomly the parameter values. Over an Euclidean space X ⊆
Rp, the authors typically recommends using nonlinear functionals of the form φθ,b : x 7→
sin(〈x ,θ〉+b), and drawing a certain number of parameters θ ∈Rp, b ∈R according to normal
distributions scaled by the dimension p.

Interesting connection with kernel canonical correlation can actually be established for
translation-invariant kernels. By Bochner theorem, these are Fourier transforms of certain
distributions (x, x ′) 7→ ∫

ei〈x−x ′,θ〉 dµ(θ); in a sense, drawing some parameters θ according to
µ and summing resulting sinusoidal functionals approximate such kernel. In that respect,
note that a normal distribution µ corresponds to a Gaussian kernel.

Randomly drawing a restricted number of nonlinear functionals has two advantages:
first, it prevents overfitting over finite sample data, and second, it eases the computations.
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However, the selection of this number, as well as the distribution over the parameters, are only
heuristically chosen so far. Finally, in order to ensure shift-invariance and scale-invariance,
Lopez-Paz et al. (2013) first apply empirical copula transforms on the data. They call the
resulting dependence measure the randomized dependence coefficient.

3.5.2 Randomized Maximum Correlation

In our work, we consider different sets of data transformations and nonlinear functionals
composed in φθX

and φθY
. Given samples of random observations

(
X (i ),Y (i )

)
1≤i≤n and

random parameters
(
Θ

( j )
X

)
1≤ j≤k ,

(
Θ

( j )
Y

)
1≤ j≤`,5

RMC(X ,Y )φΘX
,φΘY

,n
def= sup
α∈Rk ,β∈R`

ρn

(
k∑

j=1
α j

(
φ
Θ

( j )
X

(
X (i )))

1≤i≤n
,
∑̀
j=1

β j

(
φ
Θ

( j )
Y

(
Y (i )))

1≤i≤n

)
, (3.6)

where ρn is the empirical correlation coefficient. This can be computed as a solution of an
eigenvalue problem involving the variance-covariance matrices of the k +` nonlinear projec-
tions (that is to say the transformed observations). If k and ` are small in comparison to n,
the cost is dominated by the computations of the last matrices. If no complex transformation
is applied, then this is in the order O((k +`)2n). When applying empirical copula transforms,
the observations must be sorted at a cost O(n log(n)), which remains low in comparison to
other dependence measures.

Choosing appropriate numbers k and ` might be delicate. On the one hand, when the set
of possible nonlinear functionals is not rich enough, important correlation modes can be
missed. On the other hand, when too many functionals are introduced, artificial correlation
can be captured due to the finite nature of the observation sample; consider that when k
or ` approach n, the nonlinear projections end up spanning almost the whole space Rn ,
thus the canonical correlation gets close to unity. Altogether, the number of nonlinear projec-
tions must increase with the number of observations, while remaining largely dominated
by it. Without further investigation, we propose to set it as the square root of the number of
observations (leading to an overall computational complexity of O(n2)).

To our knowledge, this effect has not been previously emphasized; for instance Lopez-
Paz et al. (2013) set the number of nonlinear projections arbitrarily from trial-and-errors.
Nevertheless, this effect can play a significant role when comparing randomized maximum
correlations between factors. It even becomes crucial if one is interested in an accurate
estimation of the actual maximum correlation coefficient, as is the case when comparing
randomized maximum correlation with other sensitivity indices, or using it to estimate
correlation ratio (see § 3.5.3 below).

In the latter case, it is also necessary to correct for the well-known bias on the correlation
coefficient due to the number of regressors. Most typical in the context of multiple linear
regression, the formula of Wherry (1931) can be straightforwardly adapted to canonical
correlation by replacing the number of regressors by k + `− 1. This yields the following
debiased estimator of the square maximum correlation: 1−(

1−RMC(X ,Y )2
n

) n−1
n−(k+`−1) . Many

other formulae have been investigated ever since (see for instance the work of Leach, 2006, in
the context of canonical correlation), but they do no differ much in the regime 1 ¿ k,`¿ n.

For the use in sensitivity analysis, a randomized maximum correlation conveniently lies
in [0,1] without need for further normalization. Of course, different functionals are required

5The notation omits the dependence in the numbers k and `, and the expression omits the fact that the
transformations within φΘX

and φΘY
might depend on the data; for instance when applying empirical copula

transforms.
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when comparing factors of different nature; it is even conceivable to design functionals for
application to categorical variables. In spite of this, it seems usually possible to get random-
ized maximum correlations that are comparable to one another, by controlling the overall
richness of their respective sets of functionals, through their numbers k, their expressions,
and the distributions over their parameters ΘX . In that respect, we underline that the canon-
ical correlation is performed with k vectors, whatever the actual dimension of the considered
factor is; this can be used to mitigate the influence of dimensionality.

The influence of the distribution of ΘX is less intuitive, but might be worth investigating
in the future.

3.5.3 Link with Correlation Ratio

Suppose for a while that Y ⊆ R, with V(Y ) < +∞. In such case, we know that the condi-
tional expectation of Y is its orthogonal projection over the space of measurable functions of

X , that is to say E[Y |X ] =φopt(X ) with φopt ∈ argminφ : V(φ(X ))<+∞ E
((

Y −φ(X )
)2

)
. This de-

velops as E
(
Y 2

)+E
(
φ(X )2

)−2E
(
Y φ(X )

)= V(Y )+V
(
φ(X )

)−2C(Y ,φ(X ))+ (
E(Y )−E

(
φ(X )

))2.
Only the last term depends on E

(
φ(X )

)
, determining E

(
φ(X )

)= E(Y ). We can thus decompose
φopt as E(Y )+σoptφ1, where E

(
φ1(X )

)= 0, V
(
φ1(X )

)= 1 andσopt ∈R+. Ignoring the constant
V(Y ) in the minimization, we get (σopt,φ1) ∈ argmin(σ,φ) : σ∈R+,V(φ(X ))=1σ

2 −2σC(Y ,φ(X )).
Since σ is nonnegative, we deduce first that φ1 ∈ argmaxφ : V(φ(X ))=1 C(Y ,φ(X )), and finally

σopt = C(Y ,φ1(X )). Altogether, we obtain that η2(X ,Y ) = σ2
opt

V(Y ) =
C(Y ,φ1(X ))2

V(Y ) = ρ2
(
Y ,φ1(X )

)
. By

the definition of φ1 and since the linear correlation coefficient is scale-invariant, we finally
arrive at

η(X ,Y ) = sup
{
ρ
(
Y ,φ(X )

)∣∣∣φ ∈RX measurable, 0 < V
(
φ(Y )

)<+∞
}

,

showing that the correlation ratio is nothing but a restricted maximum correlation coefficient.
In particular, it is possible to use RMC(X ,Y )φΘX

,IdY ,n as an efficient estimator of η(X ,Y ),
where IdY denotes the identity function over Y , as we claimed in § 2.

If α ∈Rk achieves the supremum in equation 3.6, then
∑k

j=1α jφΘ( j )
X

(
X

)
is actually (up to

a constant) an estimation of E[Y |X ]. In essence, replacing the random nonlinear projections
φΘX

by local polynomials yields the method of Da Veiga et al. (2009) for estimating correlation
ratio, which is thus similar to ours but uses different approximation functionals.

3.6 Integral Probability Metric and Optimal Transport Cost

In the remaining of this work, we will focus on the three classes of dependence measures
presented above. However, we conclude this section by mentioning more general forms of
dependence measures, encompassing most of the above and going beyond.

3.6.1 Integral Probability Metrics

Considering P,Q two probability distributions over a generic space Z , an integral probability
metric between P and Q is defined by Zolotarev (1984) and Müller (1997) as

IPMF (P,Q)
def= sup
φ∈F

∣∣∣∣∫ φdP−
∫
φdQ

∣∣∣∣ , (3.7)

where F ⊂RZ is a set of integrable functions. This definition is fairly general, and by appro-
priately choosing F , one retrieves many popular metrics. Considering the unit ball of the

19



reproducing kernel Hilbert space Hk of § 3.3.1, F
set= {

φ ∈Hk
∣∣‖φ‖Hk ≤ 1

}
, then the difference

of integrals in equation 3.7 is the inner product
〈
φ , µk (P)−µk (Q)

〉
Hk

and thus IPMF (P,Q) =∥∥µk (P)−µk (Q)
∥∥

Hk
is the kernel distance. Considering the unit ball for the uniform norm,

F
set= {

φ ∈RZ
∣∣ supz∈Z |φ(z)| ≤ 1

}
it becomes the total variation Csiszár divergence introduced

in § 3.4.1; it is however the only nontrivial Csiszár divergence which can be expressed as an
integral probability metric, as observed by Sriperumbudur et al. (2012) thanks to a result of
Khosravifard et al. (2007). Consider finally the special case of dependence measure, when P
and Q are respectively the joint distribution PX ,Y and the product of marginals PX ⊗PY . In that
case Z =X ×Y , and if φ ∈RX×Y is separable as (x, y) 7→φX (x)φY (y) with φX ∈RX,φY ∈
RY measurable with V

(
φX (X )

) = V
(
φY (Y )

) = 1, then the difference of integrals in equa-
tion 3.7 becomes

∣∣E(
φX (X )φY (Y )

)−E
(
φX (X )

)
E
(
φY (Y )

)∣∣= ∣∣ρ(
φX (X ),φY (Y )

)∣∣. Setting F

as the set of all functionals satisfying the above, the integral probability metric becomes the
maximum correlation coefficient.

Integral probability metrics are thus a convenient unifying tool for studying some of the
properties of a wide class of dissimilarity measures; for once, as the name suggests, they all
enjoy symmetry and triangle inequality, although they actually are metrics only for F rich
enough. In addition, it is versatile in the sense that it is possible to tailor the set F according
to one’s needs; notably for use of dependence measures in conditional and target sensitivity
analysis. However, such general form tells very few on the usefulness and estimation of
the resulting tool, and one has to study the specificities of each case just as we did above,
§§ 3.3–3.5. Alternatively, many interesting integral probability metrics can be studied under a
different formulation, which we describe next.

3.6.2 Optimal Transport Cost

The theory and application of optimal transport between measures goes well beyond the
quantification of dissimilarity between probability distributions. In our setting, that is when
P and Q are probability distributions over the same space Z , an optimal transport cost is
defined as

OTCc (P,Q)
def= inf
Π∈P (P,Q)

∫
Z×Z

c(z, z ′)dΠ(z, z ′) ,

where c : Z ×Z → R is a cost function, and P (P,Q) is the set of all joint probability dis-
tributions on Z ×Z whose marginals with respect to the first and second variable are P
and Q, respectively. This can be thought as the problem of reorganizing “material” initially
distributed according to P into a configuration distributed as Q, under the constraint that
transporting from z to z ′ costs c(z, z ′). Elements of P (P,Q) are called transport (or transfer-
ence) plans, and those achieving the infimum are the optimal transport plans.

The link with integral probability metrics is established through the powerful Kantorovich
duality theorem as soon as the cost function is symmetric and satisfies the triangle inequality.
In that case, Villani (2008, Theorem 5.10 together with Particular Case 5.4) shows that OTCc =
IPMF with F = {

φ ∈RZ
∣∣∀z, z ′ ∈Z , φ(z)−φ(z ′) ≤ c(z, z ′)

}
. When c is a metric, the optimal

transport cost is called the Kantorovich distance (or Wasserstein distance of order 1) and the
corresponding set F is the set of 1-Lipschitz continuous functions. An even more particular
case, with the cost (z, z ′) 7→ 0 if z = z ′, 1 otherwise, yields the total variation already discussed.

In our opinion, this is in theory the most flexible tool due to the possibility of specifying
virtually any cost function, while retaining ease of interpretation. In addition, given any cost
function c and samples of the distributions P and Q, an estimator of OTCc (P,Q) can be written
as the optimal value of a linear program. Let us specify the case of the transport dependence
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measure TDMc (X ,Y )
def= OTCc

(
PX ⊗PY ,PX ,Y

)
, where the cost is specified between each pair

(x, y), (x ′, y ′) ∈ X ×Y . Then, given
(
X (i ),Y (i )

)
1≤i≤n independent observations distributed

identically to (X ,Y ), an estimator is

TDMc (X ,Y )n
def= min
Π∈Rn2×n

n∑
i , j ,k=1

c
((

X (i ),Y ( j )),
(
X (k),Y (k)))Π(i , j ),k

subject to ∀ i , j ,k ∈ {1, . . . ,n},Π(i , j ),k ≥ 0,
n∑

k ′=1
Π(i , j ),k ′ = 1

n2 , and
n∑

i ′, j ′=1
Π(i ′, j ′),k = 1

n .

Although it is a linear program, it has dimension n3 and n2 +n simplex constraints. This
is far too large to be useful in any context. As already considered for the estimator of the
Csiszár divergence dependence measure in equation 3.3, it is possible to sample the space
X ×Y with only bn/2c truly independent pairs

(
X (2i−1),Y (2i )

)
1≤i≤bn/2c in place of all the n2

possible pairs
(
X (i ),Y ( j )

)
1≤i , j≤n , reducing the above linear program to dimension O(n2) with

O(n) simplex constraints. Nevertheless, this remains intractable for most applications, so
that transport dependence measure cannot be used under this general form without further
drastic improvements, such as acceleration through entropic regularizations as explained by
Benamou et al. (2015).

4 Some Tools for Conditional and Target Sensitivity Analysis

All of the sensitivity measures detailed above can be easily adapted to target and conditional
sensitivity analysis. We describe first general approaches which can be applied to any sen-
sitivity measure. Precisions are then given for each tool that we consider. In addition, we
describe some variants, specific to each tool and which do not fall directly into the above
general approaches. These variants have their own advantages, and can be seen as hybrid
between target and conditional sensitivity analysis, measuring an overall importance of a
factor with respect to a critical phenomenon.

4.1 Transformations and Weights

Our general approaches are based on transformations of the variable quantifying the phe-
nomenon and on conditioning; specific notions and notations are introduced here.

4.1.1 Targeting with Transformations

In order to study the occurrences of the phenomenon Y within the critical domain C ⊂Y , the
natural transformation which comes to mind is a binary random variable encoding directly
the actual phenomenon of interest and suppressing uninformative fluctuations. This leads to
consider the weight function 1C : Y → {0,1} : y 7→ 1 if y ∈C , 0 otherwise.

Now, recall that a limited number of observations is usually assumed, so that estimation
considerations cannot be ignored. The binary transformation above might result in a signifi-
cant loss of the information conveyed by the relative values of Y . Indeed, when the critical
probability PY (C ) is low, most data is summed up to a bunch of zeroes.

Fortunately, a sensible relaxation of the binary assumption can be given as soon as
one can evaluate some sort of distance dC : Y → R+ between each point in Y and the
critical domain C . One can compose it by a decreasing real function R→ [0,1], with the
rationals that the closer is an observation to the critical domain, the more likely it is to convey
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similar information; this of course assumes some kind of regularity of the phenomenon’s
statistical properties. When Y lies in an Euclidean space, we typically consider the weight

function y 7→ exp
(−dC (y)

/
s
)
, where dC (y)

def= infy ′∈C ‖y − y ′‖. Here, the exponential function
encodes multiplicative contributions, and s is a smoothing parameter depending typically
on a measure of dispersion of the values of Y .

In all the following, w : Y → [0,1] is any kind of the above weight functions, either used
deterministically, or as a transformation yielding a random variable through the composi-
tion w(Y ). Any sensitivity measure between a group of factors X and w(Y ) yields a target
sensitivity measure.

4.1.2 Conditioning with Weighted Probabilities

Alternatively, if one wishes to study the behaviour of the phenomenon within the critical
domain, a natural idea is conditioning by the event {Y ∈C }. Given an initial probability space
(Ω,F,P), if A ∈ F is an event of nonzero probability, then conditioning by A simply means
endowing the measurable space (Ω,F) with the probability measure P|A , defined as for all B ∈F,

P|A(B)
def= P(B ∩ A)

/
P(A). If X is a random variable over (Ω,F,P), then its law conditionally

to A is the law of the mapping X over the conditioned probability space
(
Ω,F,P|A

)
, that is

PX |A
def= P|A ◦X −1.

Just as we introduced smooth relaxation of the binary transformation above, it might
be useful to consider extensions of conditioning allowing to take into account some of the
information outside the critical domain. This can be easily done by observing that P|A(B)
can be expressed as

∫
B 1A dP

/∫
Ω1A dP. If W is a positive nonzero random variable over

(Ω,F,P) with finite expectation, we define the probability P weighted by W , noted PW , with

for all B ∈ F, PW (B)
def= ∫

B W dP
/∫

ΩW dP. In other words, PW is the probability distribution
absolutely continuous with respect to P whose density is proportional to W . In addition,
if X is a generic random variable, we clarify that the notation PW

X stands for the image
measure

(
PW

)
X ; although strictly speaking, it cannot be confused with a weighted image

measure (PX )W since W is defined over Ω and not over the range of X . Let us also exemplify
the particular cases of weighted probabilities which are actual conditional probabilities,
P|A = P1A , and PX |A = P1A

X .

In a probabilistic framework, any sensitivity measure is defined depending on a (usually
implicit) probability space. When conditioning by weight W , we change the underlying prob-
ability measure, but the mappings defining the random variables are left unchanged; in such
case, the notations are prefixed by

[
PW

]
. Let us underline here that, provided that the expec-

tations exist,
[
PW

]
E(X ) = E(W X )

/
E(W ). Another illustration of importance of conditioning

with weighted probabilities concerns the estimation of copula transforms. In comparison
to § 3.1.2, given

(
X (i ),W (i )

)
1≤i≤n independent observations distributed identically to (X ,W ),

the empirical distribution function becomes 1∑n
i=1 W (i )

∑n
i=1 W (i )1]−∞,X (i )].

For conditional sensitivity analysis, we typically use conditioning by weights W
set= w(Y )

as defined above.

4.2 Correlation Ratio

As presented in § 2, sensitivity indices based on correlation ratio (widely known as Sobol’
indices) all consists in (possibly weighted sums of) correlation ratios of the phenomenon Y
with well chosen groups of factors, noted generically X .
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4.2.1 Target Correlation Ratio

Correlation ratios can be directly applied to the transformation w(Y ), yielding target sen-
sitivity analysis indices based on η2(X , w(Y )). Observe that even for multidimensional Y ,
the transformation w(Y ) takes values in [0,1], thus sparing us the trouble of interpreting
multidimensional extensions of correlation ratio.

4.2.2 Conditional Correlation Ratio

Following § 4.1.2, the correlation ratio conditioned by the critical domain is
[
Pw(Y )

]
η
(
X ,Y

)
.

It is important to note that even if the factors are independent under P, they usually are not
under Pw(Y ). The covariance estimator in equation 1.1 cannot be used anymore, hindering
the estimation of the correlation ratio as explained in § 2. It is thus recommended to estimate
it with randomized maximum correlation following § 3.5.3, with

[
Pw(Y )

]
RMC(X ,Y )φΘX

,IdY ,n .
In this estimator, the observations are drawn from the actual probability distribution P.
The effect of the weighted probability is taken into account by introducing weights when
computing the variance-covariance matrices of the transformations of X and Y , before
applying canonical correlation.

4.2.3 Hybrid Correlation Ratio

Alternatively, it is possible to define a conditional correlation ratio by another transformation
of Y . We have seen that w(Y ), keeping no memory of the actual values of Y , is more adapted
to target sensitivity; for conditional sensitivity, it is preferable to weight multiplicatively the
values, as w(Y )Y . However, the fact that w vanishes on regions away from the critical domain
seems arbitrary: the value zero might not be meaningful for the phenomenon at hand. Since
the correlation ratio is a measure of variance, it still seems relevant to set a constant value
over these regions, but equal to the expectation of the resulting transformation; they would
then not contribute to the variance of the phenomenon. We thus define the transformation

Yw
def= w(Y )Y + (1−w(Y ))y0 such that y0

def= E(Yw ) ; yielding y0 = E(w(Y )Y )

E(w(Y ))
.

Observe that with w
set= 1C , E(w(Y )) = P(Y ∈ C ) and y0 = E[Y |Y ∈ C ]; more generally, we

have y0 =
[
Pw(Y )

]
E(Y ). In any case, it is easy to estimate with

∑n
i=1 w(Y (i ))Y (i )

/∑n
i=1 w(Y (i )),

and η2(X ,Yw ) can be estimated in turn with any usual method, with the advantage over the
conditional correlation ratio in § 4.2.2 that even observations associated to null weight are
somehow taken into account.

4.3 Kernel Quadratic Dependence Measure

We recall that this dependence measure is also known as Hilbert–Schmidt independence
criterion, and is detailed in § 3.3.

4.3.1 Target Kernel Quadratic Dependence Measure

Just as with the correlation ratio, target sensitivity measure of a group of factors can be
obtained through the weight transformations w(Y ), that is to say QDMkX ,kw(Y )

(X , w(Y )). Our
notation reminds that the kernels depend on the underlying spaces; in the particular case of
the binary transformation w

set= 1C , it seems natural to use a categorical kernel for k{0,1}. Let us
mention that this last case was already suggested and briefly illustrated by Da Veiga (2015).
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4.3.2 Conditional Kernel Quadratic Dependence Measure

The conditional version
[
Pw(Y )

]
QDMkX ,kY

(X ,Y ) is defined through kernel distance as∥∥∥µkX kY

(
Pw(Y )

X ,Y

)
−µkX kY

(
Pw(Y )

X ⊗Pw(Y )
Y

)∥∥∥2

HkX kY

and can be again expressed as expectations

of kernels analogously to equation 3.1

E
(
kX (X , X ′)kY (Y ,Y ′)w̄(Y )w̄(Y ′)

)
+E

(
kX (X , X ′)w̄(Y )w̄(Y ′)

)
E
(
kY (Y ,Y ′)w̄(Y )w̄(Y ′)

)
−2E

(
kX (X , X ′)kY (Y ,Y ′′)w̄(Y )w̄(Y ′)w̄(Y ′′)

)
,

having taken care of normalizing the weights w̄
def= E(w(Y ))−1w . This can also be estimated in

an analogous manner, by replacing empirical averages by weighted averages

n∑
i , j=1

(
kX

(
X (i ), X ( j ))− n∑

`=1
kX

(
X (i ), X (`))ŵ

(
Y (`)))(kY

(
Y (i ),Y ( j ))− n∑

`=1
kY

(
Y (`),Y ( j ))ŵ

(
Y (`)))

× ŵ
(
Y (i ))ŵ

(
Y ( j )) ,

with empirical normalized weights ŵ
def= (∑n

i=1 w
(
Y (i )

))−1
w .

4.3.3 Hybrid Kernel Quadratic Dependence Measure

It is tempting to view the above as a kernel distance over the same probability space but
with a different separable kernel over X ×Y :

(
(x, y), (x ′, y ′)

) 7→ kX (x, x ′)kY (y, y ′)w(y)w(y ′).
A closer look shows that it is not the case. However, this remains an interesting adaptation,
since if kY : Y 2 →R is positive definite and measurable with E

(
kY (Y ,Y ′)

)<+∞, then so is

kw
Y :

(
y, y ′) 7→ kY

(
y, y ′)w

(
y
)
w

(
y ′) ,

provided that w : Y →R is measurable and bounded. Thus, QDMkX ,kw
Y

(X ,Y ) makes perfect
sense and can be seen as a hybrid between target and conditional versions, since the values
of X on their own are not affected by the weights. More precisely, the expression in terms of
expectations as in equation 3.1 directly gives

E
(
kX (X , X ′)kY (Y ,Y ′)w(Y )w(Y ′)

)
+E

(
kX (X , X ′)

)
E
(
kY (Y ,Y ′)w(Y )w(Y ′)

)
−2E

(
kX (X , X ′)kY (Y ,Y ′′)w(Y ′)w(Y ′′)

)
.

showing that QDMkX ,kw
Y

(X ,Y ) = E(w(Y ))2
∥∥∥µkX kY

(
Pw(Y )

X ,Y

)
−µkX kY

(
PX ⊗Pw(Y )

Y

)∥∥∥2

HkX kY

.

4.4 Csiszár Divergence Dependence Measure

We refer to § 3.4 for the definitions of the full and support versions of Csiszár divergence
dependence measure.

4.4.1 Target Csiszár Divergence Dependence Measure

As previously, target sensitivity measure of a group of factors can be obtained through Csiszár
divergence dependence measures with the transformation w(Y ), that is CDMφ(X , w(Y )) and

sCDMφ(X , w(Y )). Let us emphasize that in the case of the binary transformation w
set= 1C ,

Radon–Nikodym derivatives should be estimated with normalized categorical kernel.
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4.4.2 Conditional Csiszár Divergence Dependence Measure

The conditional versions are respectively
[
Pw(Y )

]
CDMφ(X ,Y ) = divφ

(
Pw(Y )

X ,Y ,Pw(Y )
X ⊗Pw(Y )

Y

)
and

[
Pw(Y )

]
sCDMφ(X ,Y ) = sdivφ

(
Pw(Y )

X ⊗Pw(Y )
Y ,Pw(Y )

X ,Y

)
. In the estimators in equations 3.3

and 3.5, the weights are influencing the expectations in each density estimation and each

integral, yielding with empirical normalized weights ŵ
def= (∑n

i=1 w
(
Y (i )

))−1
w ,

n∑
i , j=1

φ

( ∑n
`=1 kX ,Y

((
X (i ),Y ( j )

)
,
(
X (`),Y (`)

))
ŵ

(
Y (`)

)(∑n
`=1 kX

(
X (i ), X (`)

)
ŵ

(
Y (`)

))(∑n
`=1 kY

(
Y ( j ),Y (`)

)
ŵ

(
Y (`)

)))
ŵ

(
Y (i ))ŵ

(
Y ( j )) ,

and

n∑
i=1

φ


(∑n

j=1 kX

(
X (i ), X ( j )

)
ŵ

(
Y ( j )

))(∑n
j=1 kY

(
Y (i ),Y ( j )

)
ŵ

(
Y ( j )

))
∑n

j=1 kX ,Y
((

X (i ),Y (i )
)
,
(
X ( j ),Y ( j )

)
ŵ

(
Y ( j )

))
ŵ

(
Y (i )) ,

respectively. Versions with nearest-neighbors density estimation can also be easily adapted.
For instance, the k-th nearest-neighbor distance of the point (x, y) ∈X ×Y is the smallest
distance dk such that the cumulative sum of the weights of the points within dk distance to
(x, y) reaches k. If copula transforms are used, recall that they are also modified by weighted
probabilities.

4.4.3 Hybrid Csiszár Divergence Dependence Measure

The above conditional version involves the image measure of weighted distributions PW
X , PW

Y
and PW

X ,Y , but it is not a Csiszár divergence applied to weighted distributions. The latter is
however yet another convenient modification.

In the general framework of the Csiszár divergence, recall that P, Q are probability distri-
butions over a space Z ; a weight function is thus a measurable function wZ : Z 7→R+ with
finite nonzero expectations with respect to P and Q. Interestingly, proposition A.4 and corol-
lary A.1 show that a Csiszár divergence between weighted distributions is nothing but a
weighted Csiszár divergence; we define accordingly

divwZ

φ
(P,Q)

def= divφ(PwZ ,QwZ ) , and sdivwZ

φ (P,Q)
def= sdivφ

(
PwZ ,QwZ

)
.

As for the dependence measure of interest to us, with wZ : X ×Y → R+ : (x, y) 7→ w(y),
notice that

∫
wZ d(PX ⊗PY ) = ∫

wZ dPX ,Y = E(w(Y )). Finally, propositions A.5 and A.6 show
further that

CDMwZ

φ (X ,Y )
def= divwZ

φ

(
PX ,Y ,PX ⊗PY

)= divφ
(
Pw(Y )

X ,Y ,PX ⊗Pw(Y )
Y

)
,

and

sCDMwZ

φ (X ,Y )
def= sdivwZ

φ

(
PX ⊗PY ,PX ,Y

)= sdivφ
(
PX ⊗Pw(Y )

Y ,Pw(Y )
X ,Y

)
,

establishing the link with the conditional Csiszár divergence dependence measure.

4.5 Randomized Maximum Correlation

Recall from § 3.5.2 that randomized maximum correlation is defined through a set of nonlin-
ear functionals applied to the random variables.
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4.5.1 Target Randomized Maximum Correlation is a Correlation Ratio

So far, our approach for target sensitivity analysis is precisely to work on a specific real trans-
formation of the studied phenomenon w(Y ). In this context, there seems to be no interest in
specifying additional transformations on it. The target randomized maximum correlation
ends up being of the form RMC(X ,Y )φΘX

,w,n or equivalently RMC(X , w(Y ))φΘX
,Id[0,1],n . But,

as discussed in § 3.5.3, this is nothing but an efficient estimator of the target correlation ratio
η(X , w(Y )).

Let us add that it is possible to adapt the set of nonlinear functionals φθX
to the modeling

of weights functions such as the ones we specified in § 4.1.1. We propose in particular logistic
functions over Euclidean spaces X ⊆Rp, φθ,b : θ 7→ (

1+exp(−〈θ , x〉+b)
)−1, with parameters

θ ∈Rp and b ∈R drawn according to normal distributions scaled by the dimension p.

4.5.2 Conditional Randomized Maximum Correlation

In contrast to the above, when conditioning by a weight W , it still makes perfect sense to
consider any nonlinear functionals of the phenomenon. Thus, the conditional randomized
maximum correlation

[
Pw(Y )

]
RMC(X ,Y )φΘX

,φΘY
,n is different, and able to capture more

complex dependence, than its correlation ratio counterpart discussed in § 4.2.2. We underline
once again that the effect of the weighted probability is taken into account by introducing
weights when computing the variance-covariance matrices of the transformations of X and
Y , before applying canonical correlation; and that if copula transforms are used, they are
also modified by weighted probabilities.

5 Numerical Illustrations

We conduct here numerical illustrations of the different tools we presented so far. First, we
show that dependence measures are interesting for global sensitivity analysis. Then, we focus
on the particular case of estimating correlation ratio with randomized maximum correlation
approach. Finally, we demonstrate on concise examples that target and conditional sensitivity
analysis explore aspects of a model which are both different from global sensitivity analysis
and valuable for practitioners.

Note that all the above tools are implemented in the language R, interfaced with C++ for
some routines; we intend to integrate them to the Sensitivity package of R.

5.1 Global Sensitivity Analysis with Dependence Measures

In order to illustrate the behavior of dependence measures, we use two synthetic models,
well-known from the sensitivity analysis community: the so-called Sobol’ g function, and the
Ishigami–Homma function. Their main properties are recalled below.

5.1.1 Experiments with the Sobol’ g model

This model is specifically designed to study sensitivity analysis through correlation ratios
(the Sobol’ indices). It is defined in dimension d ∈N\ {0} by

f : x 7→
d∏

i=1
gi (xi ) , with for all i ∈ {1, . . . ,d}, gi : xi 7→ |4xi −2|+ai

1+ai
,
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where ai ∈R+; all factors (X1, . . . , Xd ) are independent and uniformly distributed over [0,1].
Each function gi is conveniently nonlinear, nonmonotonous, nondifferentiable, satisfying∫ 1

0 gi (xi )dxi = 1 and
∫ 1

0 gi (xi )2 dxi = 1+ 1
3(1+ai )2 . Thus, E(Y ) = 1, V(Y ) =∏d

i=1

(
1+ 1

3(1+ai )2

)
−1,

and for all i ∈ {1, . . . ,d}, the first-order and total-order Sobol’ indices yield respectively

η2(Xi ,Y ) = 1

3(1+ai )2 V(Y )
and 1−η2(Xc{i },Y

)= 1−
∏

j 6=i

(
1+ 1

3(1+a j )2

)
−1

V(Y )
.

In consequence, the higher the ai , the less influential the Xi ; although the correlation
ratios seem the most suitable to put this in evidence, we propose to test some dependence
measures with rankings of the factors in mind. We set d

set= 4 and the 4-tuple parameter
a

set= (0,1,9,99).
We consider the sensitivity measures described in table 1; note in particular that we

test “total-order” versions of the dependence measures, in analogy to the total-order Sobol’
indices. This illustrates notably the possibility of considering multidimensional factors. The
principle is to apply a decreasing function to dependence measures of the group of factors
complementary to the one investigated. Here, we use the complement to unity, which makes
sense because we normalize the dependence measures; but there is no further justification,
in contrast to the Sobol’ indices which are based on ratios of explained variance.

Table 1: Sensitivity measures used on the Sobol’ g model. In analogy to the total-order
correlation ratio sensitivity measure, we define “total-order” versions of the dependence
measures.

Notation Definition Expression for factor i

S(1)
PF

S(tot)
PF

Correlation ratio sensitivity measure (Sobol’
indices), estimated with pick-and-freeze fac-
tors combinations as in equation 2.1

η2(Xi ,Y )n

1−η2
(
Xc{i },Y

)
QDM(1)

G

QDM(tot)
G

Normalized kernel quadratic dependence
measure with Gaussian kernels with scalar
bandwidth,a determined by the median of the
observed distances

QDMkX ,kY
(Xi ,Y )n

1−QDMkX ,kY

(
Xc{i },Y

)
n

MI(1)
G

MI(tot)
G

Normalized mutual information, Gaussian ker-
nel density estimation with diagonal band-
width following Silverman (1986) rule-of-
thumb

sCDM− log(Xi ,Y )kG,n

1− sCDM− log
(
Xc{i },Y

)
kG,n

RMC(1)
c,G,s

RMC(tot)
c,G,s

Square randomized maximum correlation as
defined by Lopez-Paz et al. (2013) (copula
transforms, Gaussian weights and intercept,
sine nonlinearity), and

p
n nonlinear projec-

tions for both X and Y

RMC(Xi ,Y )2
φΘX

,φΘY
,n

1−RMC
(
Xc{i },Y

)2
φΘX

,φΘY
,n

aA scalar bandwidth cannot account for factors with different orders of magnitude, but here the factors are
identically distributed

All sensitivity measures are computed on samples of size n
set= 50, 200, and 1000. For the

pick-and-freeze estimator of the correlation ratio, the sample is divided in two equal parts so
that the model is computed on n factors combinations following equation 2.1. Note that this
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Figure 2: First-order global sensitivity measures on the Sobol’ g model. Filled red dots are
analytical values, hollow red circles are asymptotic values estimated with sample sizes n

set=
10000. The number given in the top left corner of each plot is the proportion of repetitions
with correct ordering.

requires n
2 × (d +1) specific model computations for all first-order indices, plus an additional

n
2 for all total-order indices. In contrast, all the dependence measures are computed from the
same pseudo-random sample of size n. This fact should be kept in mind by the practitioner
when evaluating the relative relevance of the sensitivity measures.

Since all considered sensitivity measures rely at some point on Monte Carlo estimations
of expectations, we draw the samples with low-discrepancy space-filling methods (see for
instance the algorithms of Damblin et al., 2013). For each sample size, we draw hundred
repetitions, and schematize the resulting distributions of the sensitivity measures with Tuckey
box plots. In addition, the analytical values of the Sobol’ indices are reported as filled red
dots. For all other measures, we report with hollow red circles asymptotic values, estimated
as the median over ten repetitions with sample size n

set= 10000. Since we know that the factors
should be ranked in descending order, we also report the proportions of repetitions for which
the factors were correctly ordered.

28



n = 50 n = 200 n = 1000

S(1)
PF

(a) 1.00

●

●

●

● ●

(b) 1.00

●

●

●

● ●

(c) 1.00

●

●

● ● 0

1

QDM(tot)
G

(d) 0.44

●●

●●

●

●

●
●

(e) 0.83
●

● ●

●

●

●
●

(f) 0.99

●

●

●

●
●

0.92

0.98

MI(tot)
G

(g) 0.55

● ●

●

●

● ●

(h) 0.70

●

●

●

●●

●

●

●

● ●

(i) 0.98●

●

● ● 0.7

0.9

RMC(tot)
c,G,s

(j) 0.18
●

●

● ●

(k) 0.53

●●

●
●

●

●
●

●

●
●

●
●

●

●

●
●
●

●

●

● ●

(l) 0.62

●

●● ●●

●

●

● ● 0

0.8

X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4

Figure 3: Total-order global sensitivity measures on the Sobol’ g model. See figure 2.

The general ranking can already be seen from all first-order sensitivity measures on
figure 2. They all have at most a small bias, except perhaps the randomized maximum correla-
tion and the mutual information at very low sample size. However, the quadratic dependence
measure and the mutual information have much less variability across repetitions than the
two others, as can be seen by the relative heights of the box plots. Surprisingly, this better
precision does not necessarily translate into better ranking ability. Consider that the corre-
lation ratio computed with pick-and-freeze factors combinations performs as well as the
other two in that respect. It seems to enjoy the property that, on a given sample, it either
overestimates all indices together, or underestimates them all together, hence preserving the
relative ordering. Randomized maximum correlation does not enjoy such property, recording
less correct ordering in spite of more precision for sample sizes larger than n

set= 200.

Total-order versions exhibits similar behavior on figure 3. Multidimensional versions of
the quadratic dependence measure and mutual information have an increased bias rela-
tively to the differences between factors, but precision and ordering is preserved, and even
enhanced for sample sizes larger than n

set= 200. They can thus be used with multidimensional
factors, at least when the dimension is not too large. Randomized maximum correlation
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seems less robust to the increase of the dimension. The favorable behavior of pick-and-freeze
estimator of correlation ratio for factors ranking is even more opportune with the total-order
indices. On figure 3(a), it is able to rank correctly all repetitions with sample size as little as
n

set= 50, in spite of large variability, especially on the factor X1. This deserves to be noted, since
in this example with only four factors, the total number of required model computations is
only 25×5 = 125. This must however be qualified by the fact that the Sobol’ g model is sim-
plistic and specifically adapted to analysis with correlation ratios. Moreover, consider that the
ranges of observed dependence measures of the first three factors are almost nonintersecting,
on each of the figures 2(e), 2(h), 3(e) and 3(h). Thus, the majority of rankings errors made by
the quadratic dependence measure and mutual information concern the ordering of the last
two factors, which in most applications would both be deemed as “noninfluential” anyway.

5.1.2 Experiments with the Ishigami–Homma model

This model is also designed to study sensitivity analysis through correlation ratios, but in a
somewhat more challenging way. It is defined in dimension d

set= 3 by

f : x 7→ sin(x1)+a sin2(x2)+bx3
4 sin(x1),

where a,b ∈ R+; all factors (X1, X2, X3) are independent and uniformly distributed over
[−π,π]. The influence of the factor X2 is purely additive, its importance being modulated by
the parameter a. The influence of the factor X1 has an additive part and an interaction with
the factor X3, the balance being tuned by parameter b.

Using the following integrals,∫ π

−π
sin(x)dx = 0 ,

1

2π

∫ π

−π
sin(x)2 dx = 1

2
,

1

2π

∫ π

−π
(
1+bx4)dx = 1+b

π4

5
,

and then
1

2π

∫ π

−π
sin(x)4 dx = 3

8
,

1

2π

∫ π

−π
(
1+bx4)2

dx =
(
1+b

π4

5

)2 + 16π8

225
,

one gets E(Y ) = a
2 , V(Y ) = A+B +C where A

def= a2

8 , B
def= 1

2

(
1+b π4

5

)2
and C

def= b2 8π8

225 , and

η2(X1,Y ) = B

V(Y )
, η2(X2,Y ) = A

V(Y )
, η2(X3,Y ) = 0 ,

1−η2((X2, X3),Y ) = B +C

V(Y )
, 1−η2((X1, X3),Y ) = A

V(Y )
, 1−η2((X1, X2),Y ) = C

V(Y )
.

We set the parameters a
set= 5 and b

set= 0.1, so that η2(X1,Y ) = 0.40, η2(X2,Y ) = 0.29 and
η2(X3,Y ) = 0, while 1−η2(Xc{1},Y ) = 0.71, 1−η2(Xc{2},Y ) = 0.29, and 1−η2(Xc{3},Y ) = 0.31.
In particular, the correlation ratio between X3 and Y is zero, but the total contribution of X3

in the variance of Y is actually higher than the one of X2.
In addition to the sensitivity measures described in table 1, we also consider some modi-

fications given in table 2. We compute hundred repetitions of space-filling samples of size
n

set= 1000, and schematize the resulting distributions of the sensitivity measures with Tuckey
box plots on figure 4; again, we report analytical values with filled red dots and estimated
asymptotic values with hollow red circles.

The global sensitivity analysis of the Ishigami–Homma model is harder to interpret than
for the Sobol’ g model. As expected, the first-order and the total-order correlation ratio
give different factors rankings; moreover the pick-and-freeze estimation has low precision,
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Table 2: Additional dependence measures used on the Ishigami–Homma model.

Notation Definition Expression for factor i

QDM(1)
c,G

QDM(tot)
c,G

Normalized kernel quadratic dependence
measure on the copulas with Gaussian ker-
nel

QDMkG
(FX (X )i ,FY (Y ))n

1−QDMkG

(
FX (X )c{i },FY (Y )

)
n

MI(1)
c,nn

MI(tot)
c,nn

Normalized mutual information with trun-
cated nearest-neighbors copula density esti-
mation, number of neighbors set as n4/5 (see
Silverman, 1986, p. 99)

sCDM− log(Xi ,Y )knn,n

1− sCDM− log
(
Xc{i },Y

)
knn,n

especially for identifying the zero correlation ratio between X3 and Y in figure 4(a). In contrast
to the correlation ratio, first-order dependence measures are able to identify the importance
of factor X3: the measures are clearly nonzero on figures 4(b)–(f).

However, some weaknesses of the dependence measures are highlighted by this experi-
ment. First, the randomized maximum correlation is severely imprecise in figure 4(d). Then,
the quadratic dependence measure, both with and without prior copula transforms, seems
to consider X2 as noninfluential in figures 4(b) and (c); although this should be further
investigated through statistical tests of independence (typically, by permutation). Also, all
occurrences of mutual information suffers from significant bias in figures 4(e), (f), (k), and (l).
Fortunately, this bias does not affect the order of magnitude nor the ordering of the measures
along factors.

A last concern is that almost all dependence measures considered here attribute more
relative importance to the factor X2 with their total-order versions than with their first-order
versions (compare figures 4(b)–(e) with their corresponding figures 4(h)–(k)); sometimes
to the point of inverting the importance rank with X3. This seems wrong to us, since the
contribution of X2 is only additive, in contrast to X1 and X3. A closer look highlights what
could be the problem. For instance, all quadratic dependence measures for the first factor,
QDMk[−π,π],kY

(X1,Y )n , are over 0.2 in figure 4(b). In the same time, the total-order versions

for the second factor 1−QDMk[−π,π]2,kY
((X1, X3),Y )n are also all over 0.8 in figure 4(h). This

means that, on all repetitions, the measure of the dependence between X1 and Y is greater
than the measure of the dependence between (X1, X3) and Y . Although this is not the desired
behavior, observe that X1 and (X1, X3) obviously lie in different spaces, over which quadratic
dependence measures are defined with different kernels and are thus not necessarily compa-
rable. The mutual information seems somewhat less affected in that respect, but requires
larger samples for accuracy. Recalling § 3.2.1, this confirms that comparing factors of different
natures is not straightforward, and that better normalization schemes are yet to be found.

5.2 Estimating Correlation Ratio with Randomized Maximum Correlation

We explore here numerically the use of the randomized maximum correlation approach for
computing correlation ratios, following § 3.5.3. More precisely, we note respectively S(1)

RMC

and S(tot)
RMC the randomized maximum correlation estimators as described in table 1, except

that the nonlinear projections of Y are reduced to the identity function; resulting expressions
for factor i are respectively RMC(Xi ,Y )2

φΘX
,IdY ,n and 1−RMC

(
Xc{i },Y

)2
φΘX

,IdY ,n
. Debiasing as

explained in § 3.5.2 is also of importance here.
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Figure 4: Global sensitivity measures on the Ishigami–Homma model, sample size n
set= 1000.

Filled red dots are analytical values, hollow red circles are asymptotic values estimated with
sample sizes n

set= 10000. Two first rows (a)–(f) show first-order versions, two last rows (g)–(l)
show total-order versions.

We compare it to the classical pick-and-freeze estimators on the Sobol’ g and the Ishigami–
Homma models, whose description, together with analytical values of first-order and total-
order correlation ratios, have been given above § 5.1. We compute hundred repetitions of
space-filling samples of size n

set= 200 and 1000, and schematize the resulting distributions of
the estimated correlation ratios with Tuckey box plots on figures 5 and 6, together with the
analytical values indicated by red dots.

Recall that the pick-and-freeze estimator requires n
2 × (d +1) well chosen model com-

putations for obtaining all indices of a given order. Thus, if there were nine factors to study,
pick-and-freeze estimates with samples of size n

set= 200, on the leftmost plots labeled (a) and
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Figure 5: Estimation of correlation ratio sensitivity measures on the Sobol’ g model. Analytical
values are indicated by red dots. The number given in the top left corner of each plot is the
proportion of repetitions with correct ordering of the factors. First row (a)–(d) shows first-
order versions, second row (e)–(h) shows total-order versions.

(e), should be rather compared to randomized maximum correlation estimates with samples
of size n

set= 1000, on the rightmost plots labeled (d) and (h).

In spite of this, it appears clearly that the randomized maximum correlation approach
is more precise for all first-order indices for both models and both sample sizes. As already
discussed in § 5.1.1, this better precision does not always translate into better factors rank-
ing on the Sobol’ g model, although one can underline the surprisingly good accuracy on
figure 5(h).

The performance for the total-order indices are not as good as for the first-order indices.
For high indices (factor X1 in both models), the variability of the randomized maximum
correlation estimator is still clearly lower than for the pick-and-freeze estimator. This is
not true anymore for low indices (factors X3 and X4 for Sobol’ g , X2 and X3 for Ishigami–
Homma). More importantly, the randomized maximum correlation estimator suffers from an
overestimation bias (that is, the multidimensional correlation ratios are underestimated), and
the occurrence of severe outliers. These flaws decrease rapidly with the sample size, and we
believe that randomized maximum correlation remains a good approach for the estimation
of multidimensional correlation ratio, at least when the dimension is not too large.

Moreover, we believe that there remains room for better debiasing and other improve-
ments of the randomized maximum correlation. So far, its use for sensitivity analysis seems
more successful with its correlation ratio version S(1)

RMC than with its full maximum correla-

tion version RMC(1)
c,G,s, as can be seen by comparing figures 5 and 6 with figures 2–4. In its

current version, it already constitutes a good candidate for replacement of the ubiquitous
pick-and-freeze estimator, requiring no specific experimental design, smaller sample sizes,
and no independence assumption. It should also be interesting to compare it with other
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Figure 6: Estimation of correlation ratio sensitivity measures on the Ishigami–Homma model.
Analytical values are indicated by red dots. First row (a)–(d) shows first-order versions, second
row (e)–(h) shows total-order versions.

alternative estimators of correlation ratios as mentioned in § 2, in particular the method of
Da Veiga et al. (2009).

5.3 Target and Conditional Sensitivity Analysis

We now turn to the illustration of target and conditional sensitivity analysis. To this end,
we first propose a model with a simple but strong nonlinearity, which we call minimum
normal uniform. It is defined in dimension d

set= 2, with f : x 7→ min(x1, x2), with independent
factors conveniently noted X1

set= N and X2
set= U , following respectively a standard normal

distribution, and an uniform distribution over [0,1]. We then explore the more complicated
Ishigami–Homma model presented above.

In both models, we suppose that the critical domain is defined by Y exceeding a given
critical value C

set= {y ∈ Y | y ≥ c}, chosen as the ninth decile of Y computed empirically,
c

set= F−1
Y ,n(0.9). Recall that target and conditional sensitivity measures are defined via weight

functions w : Y → [0,1] which depends on C . In both models, we use the indicator 1C , and a
smooth relaxation in accordance with the notion of distance over the reals,

wC : y 7→ exp

(
−max

(
c − y,0

)
sσY

)
; (5.1)

where σY is an estimation of the standard deviation of Y , and s
set= 1/5 is a factor tuning the

smoothness, chosen so that wC almost vanishes one standard deviation away from C .
Among the large choice of interesting sensitivity measures, we consider those in table 3.

Correlation ratios estimated with pick-and-freeze factors combinations are included be-
cause they are currently the most popular for global sensitivity analysis. Recall however from
§§ 4.2.2 and 4.2.3 that they do not allow for proper conditional versions, because conditioning
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introduces dependence between factors; we use then what we call the “hybrid” version. We
report here results only for the first-order indices, but we can mention that the total-order
indices behave similarly for target and conditional sensitivity analysis of our models.

Then, we include the quadratic dependence measure with Gaussian kernel, and the
mutual information dependence measure with truncated nearest-neighbors copula density
estimation, because they appeared to be the most robust for global sensitivity analysis in
§ 5.1.2. We consider only target and conditional versions, and leave the exploration of their
“hybrid” versions to a future work. For the binary target versions, recall that 1C (Y ) is a discrete
random variable over {0,1}. For the mutual information, its law is estimated by empirical
frequencies and the law of the joint (Xi ,1C (Y )) is estimated by conditioning. For the quadratic
dependence measure, we use a categorical kernel for k{0,1}.

Table 3: Sensitivity measures used for target and conditional analysis experiments. The
generic weight function w is either 1C , or the smooth relaxation wC defined in equation 5.1.

Notation Definition Expression for factor i

S(1,tgt,w)
PF

First-order correlation ratio target sensitivity
measure

η2(Xi , w(Y ))n

S(1,hbd,w)
PF

First-order correlation ratio hybrid sensitiv-
ity measure

η2(Xi ,Yw )n

QDM(tgt,w)
G

Normalized target kernel quadratic depen-
dence measure

QDMkX ,kw(Y )
(Xi , w(Y ))n

QDM(cnd,w)
G

Normalized conditional kernel quadratic de-
pendence measure

[
Pw(Y )

]
QDMkX ,kY

(Xi ,Y )n

MI(tgt,w)
c,nn Normalized target mutual information sCDM− log(Xi , w(Y ))knn,n

MI(cnd,w)
c,nn Normalized conditional mutual information

[
Pw(Y )

]
sCDM− log(Xi ,Y )knn,n

For each model, we draw hundred different samples of size n
set= 1000 and schematize the

resulting distribution of each conditional or target sensitivity measure, together with their
global sensitivity counterpart, with Tuckey box plots on figures 7 and 8.

On the minimum normal uniform model, the critical value is c = 0.62. The global analysis,
on figures 7(a)–(c), is unanimous: the factor N is much more important than the factor U . This
is not surprising, since N presents more variability and takes values far below the minimum
of U .

The target analysis indicates that the ordering of the factors is the same, although the
relative importance difference is less drastic. This is again not surprising because N has a
higher probability to be below the critical value than U , hence still determining again the
outcome of interest here, but in the same time, the variability of N below the threshold has
no influence anymore. The correlation ratio on figure 7(d), is much less precise than the
the dependence measures (e) and (g). The target mutual information shows an important
bias, but once again this does not impact the ordering of the factors. It can be noted that the
smoothed versions present less variability while still ordering correctly the factors. However,
it is unclear if this is thanks to better behavior of the smooth estimator, or simply because
the estimated smoothed quantity is some kind of interpolation between target and global
measures. In the latter case, this effect would turn out unfavorable if the ordering of the
factors were different in both analysis. The smoothed target mutual information on figure 7(i)
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Figure 7: Global (black), target (blue) and conditional (green) sensitivity analysis of mini-
mum normal uniform model on samples of size n

set= 1000. Red circles are asymptotic values
estimated on samples of size n

set= 10000.
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is clearly problematic, as it yields the same importance measures as the global version (c).
This can be explained by the fact that the density estimation is based on copula transforms,
and that Y and wC (Y ) have very similar copula transforms with the level of smoothing that
we used; in this case and for this particular estimator, smoothing is not judicious.

The conditional analysis tells a whole different story: now U is more important than
N . Indeed, conditionally to both U and N being no less than c, U varies in [c,1] while N
varies in [c,+∞[, in such a way that the former has more chance to determine the value
of their minimum. This is clearly captured by both dependence measures considered, on
figures 7(k) and (l), and moreover their smoothed conditional versions improve perceptibly
their precision, as indicated by the relative height of the box plots in figures 7(n) and (o),
Hybrid correlation ratio adapted to pick-and-freeze estimator follows the same trend on
figures 7(j) and (m), but precision is not satisfying at all.

For the Ishigami–Homma model, the critical value is c = 6.31. Here, the relative impor-
tances of the factors are different in each analysis case. In the global analysis, we have already
seen in § 5.1.2 that the factor X1 is the most important, and that the factors X2 and X3 have
similar importance, being ranked differently according to different sensibility measures.

In the target analysis, X3 has now similar importance to X1, while X2 has much less.
Indeed, the combined effect of X1 and X3 easily exceeds the critical value, while the isolated
action of X2 can merely approach the critical value (recall that the parameter a

set= 5 is sig-
nificantly less than c). As previously, the dependence measures offer more precision than
the correlation ratio with pick-and-freeze estimator. It can be noted that they do not agree
exactly on the relative importance of X1 and X3 on figures 8(e) and (f), and that the target
quadratic dependence measure does not differ much from its global version in (b). Once
again, the smoothed versions are not particularly relevant, and fail completely for the mutual
information estimated through copula density.

In the conditional analysis, X3 becomes the dominant factor: being raised to the fourth
power, the corresponding term presents steep derivatives in the regime of high values. The
mutual information on figure 8(l) seems the most suitable method for putting this into evi-
dence, and once again, the smoothing techniques do improve the quality of both dependence
measures considered.

Altogether, these experiments on synthetic data clearly illustrate both the interest of
target and conditional sensitivity analysis, and the fact that dependence measures are well
suited for this task. Our preliminary results slightly favors the use of mutual information with
truncated nearest-neighbors copula density estimation, but more numerical explorations
are necessary before drawing further conclusions.

6 Conclusion

In the context of sensitivity analysis of complex phenomena in presence of uncertainty, this
work motivates and precises the idea of orienting the analysis towards a critical domain of
the studied phenomenon. This gives rise to the notions of target and conditional sensitivity
analysis. We show that many concepts in the literature relate to them, although usually in
more specific frameworks depending on considered applications. Building up on modern
statistical tools, we define mathematically a broad range of sensitivity measures which make
as few assumptions as possible on the model at hand, while remaining flexible enough to be
adapted to many particular situations.

These tools make extensive use of the general concept of nonparametric measure of

37



(a) S(1)
PF

●

●

●

● 0

0.4

(b) QDM(1)
G

●●

●

●

●

0

0.2

(c) MI(1)
c,nn

●
●

●

●

●

0.03

0.13

(d) S(1,tgt,1C )
PF

●

●

●

●

0

0.3

(e) QDM(tgt,1C )
G

●

●●●●

●

●

●

●

0

0.1

(f) MI(tgt,1C )
c,nn

●

●●

●

●

●

0.01

0.04

(g) S(1,tgt,wC )
PF

●
●

●

●

●

●
●

●
●

0

0.4

(h) QDM(tgt,wC )
G

●●●●●

●

●

●

●

0

0.2

(i) MI(tgt,wC )
c,nn

●

●
●

●

●

●

0.02

0.13

(j) S(1,hbd,1C )
PF

●

●

●

●

●
●

●

0

0.4

(k) QDM(cnd,1C )
G

●

●

●
●
●

●

●
●

●

●

●

●

0

0.1
(l) MI(cnd,1C )

c,nn

●

●●●

●

●

●

0

0.1

(m) S(1,hbd,wC )
PF

●

●

●

●

●

●

0

0.4

(n) QDM(cnd,wC )
G

●

●

●
●

●●
●

●

●

●

0

0.1

(o) MI(cnd,wC )
c,nn

●
●●●

●

●

0

0.20

X1 X2 X3 X1 X2 X3 X1 X2 X3

Figure 8: Global (black), target (blue) and conditional (green) sensitivity analysis of Ishigami–
Homma model on samples of size n

set= 1000. Filled red dots are analytical values, hollow red
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statistical dependence. We classify a wide variety of available approaches, providing a better
understanding of their relationship, while keeping our focus on sensitivity analysis. We extend
the theoretical properties of some of them, justifying the expression of estimators which have
been proposed previously. We also identify a new way of estimating all Sobol’ indices, with a
budget of model evaluations which does not depend directly on the number of factors, and
without factors independence assumption.

Each and every aspects of this work are illustrated by preliminary numerical experiments,
which are encouraging.

Altogether, this work is a good starting point towards sensitivity measures which are more
powerful and more adapted to questions raised by experimenters. There is still much to
do before actually establishing good practice. First of all, limits and improvements of de-
pendence measures for global sensitivity measures should be further explored, in particular
concerning their behavior with multidimensional factors. Then, it seems necessary to analyze
theoretically some of the proposed estimators, in particular of the Csiszár divergence depen-
dence measure, and the randomized maximum correlation for the Sobol’ indices. Moreover,
our tools come in so many different versions (choice of kernels, of functionals, of density
estimation, of nonlinear projections) that it would be desirable to compare them in various
situations and determine their relative strengths and weaknesses. Then, it is important to test
the target and conditional sensitivity measures in more challenging situations, it particular
where the critical probability is low, or to put it otherwise, where less critical observations are
available. In that respect, we believe that the smoothing technique is promising, if correctly
tuned. Last but not least, all these sensitivity measures can only be completely assessed
through confrontation to real data.
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A Properties of Csiszár Divergence

We derive here all technical results concerning Csiszár divergences and corresponding de-
pendence measures.

A.1 Good Properties of Full and Support Csiszár Divergence

Rényi (1959) proposes seven criteria that a dependence measure between random variables
should ideally satisfy, and mentions that a certain transformation of the mutual informa-
tion proposed by Linfoot (1957) satisfies all of them. We do not discuss here Rényi criteria
(which are often considered too restrictive), but investigate some properties of the Csiszár
divergences that ensure some of them.

The most important to us is the possibility of detecting any kind of dependence: the lowest
bound is achieved, if, and only if, the variables are independent. In terms of discrepancy
between distributions, this corresponds to the identity of indiscernibles. We thus consider
a measurable space (Z ,S) and P the set of all probability distributions over (Z ,S), and
φ : R+ →R∪{+∞} a convex function such thatφ(1) = 0. We restate first well-known variation
range and identity properties of the Csiszár divergences.

Proposition A.1. For all P,Q ∈P , 0 ≤ divφ(P,Q) ≤φ(0)+φ∗(0). Ifφ is strictly convex at 1, then
for all P,Q ∈P , divφ(P,Q) = 0 is equivalent to P = Q; if moreover φ(0)+φ∗(0) <+∞, then for
all P,Q ∈P , divφ(P,Q) =φ(0)+φ∗(0) is equivalent to P ⊥ Q.

A convex function is said strictly convex at a point if it is locally linear over no neighbor-
hood of this point. We refer the reader to Liese and Vajda (2006) for details and a concise proof
of the above. In the following proposition, we shed light on the strict convexity requirement by
showing a reciprocal, in particular that it is a necessary condition to identity of indiscernibles.

Proposition A.2. Suppose that S is not trivial, that is to say it contains a nonempty strict
subset of Z . Then

(i) divφ(P,Q) = 0 is equivalent to P = Q for all P,Q ∈P , if, and only if, φ is strictly convex at 1;

(ii) divφ(P,Q) =φ(0)+φ∗(0) is equivalent to P ⊥ Q for all P,Q ∈P , if, and only if, φ(0)+φ∗(0)
is finite and φ is strictly convex at a point.

Proof. (i). If φ is not strictly convex at 1, then there exists λ ∈ ]0,1[ and t1, t2 ∈R+ such that
t1 < 1 < t2, λt1 + (1−λ)t2 = 1 and λφ(t1)+ (1−λ)φ(t2) =φ(λt1 + (1−λ)t2) =φ(1) = 0. If now
A ∈S is a nonempty strict subset of Z , let a ∈ A and b ∈Z \ A, and define for all E ∈S,

P(E)
set= 0 if a,b ∉ E , λt1 if a ∈ E ,b ∉ E , (1−λ)t2 if a ∉ E ,b ∈ E , 1 if a,b ∈ E , (A.1)

Q(E)
set= 0 if a,b ∉ E , λ if a ∈ E ,b ∉ E , (1−λ) if a ∉ E ,b ∈ E , 1 if a,b ∈ E . (A.2)

It is easy to verify that P and Q are different probability measures over Z , and that Q dominates
P with dP

dQ = t11A + t21Z \A , Q-almost everywhere. Thus, divφ(P,Q) =λφ(t1)+ (1−λ)φ(t2) = 0.
(ii). Supposing that φ(0)+φ∗(0) <+∞, we follow Liese and Vajda (2006, proof of Theorem 5)
who show that there is no loss of generality in assuming that φ is nonincreasing over [0,1]
and everywhere nonnegative. Thus, both φ(0) and φ∗(0) are nonnegative, and divφ(P,Q) =
φ(0)+φ∗(0) implies

∫
φ

(
dP¿
dQ

)
dQ = φ(0) and φ∗(0) = φ∗(0)P⊥(Z ). If φ is strictly convex at

t ∈ [0,1], then by convexity it is strictly decreasing over [0,t ], and the former equality implies
dP¿
dQ = 0, Q-almost everywhere. Now ifφ is strictly convex at t ∈ [1,+∞[, thenφ∗(0) > 0 and the
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last equality implies P⊥(Z ) = 1. In both cases, one gets that P ⊥ Q. Reciprocally, if φ(0) =+∞,
then set for all E ∈S

P(E)
set= 0 if a,b ∉ E , 0 if a ∈ E ,b ∉ E , 1 if a ∉ E ,b ∈ E , 1 if a,b ∈ E ,

Q(E)
set= 0 if a,b ∉ E , 1

2 ∈ E ,b ∉ E , 1
2 if a ∉ E ,b ∈ E , 1 if a,b ∈ E ,

so that divφ(P,Q) =+∞ but P and Q are not mutually singular. Alternatively, if φ∗(0) =+∞,
exchange the definition of P and Q above to reach the same conclusion. Finally, if φ is strictly
convex at no point then φ is actually affine, and it is easy to show that for all P,Q ∈ P ,
divφ(P,Q) =φ(0)+φ∗(0) =φ(1) = 0. ■

Finally, since we use in our work the support Csiszár divergence, defined by equation 3.4,
we would like to know under which conditions similar guarantees are available. As a technical
side note, Z must be a topological space and S its Borel σ-field for the support supp(Q) ∈S
to be well-defined for any Q ∈P . Compare now the previous propositions with the following.

Proposition A.3. Suppose that S contains three mutually disjoint nonempty subsets of Z .

(i) sdivφ(P,Q) is nonnegative for all P,Q ∈P , if, and only if, φ is nonnegative over [0,1].

(ii) sdivφ(P,Q) = 0 is equivalent to P = Q for all pair P,Q ∈P , if, and only if, either φ is strictly
positive over [0,1[ and strictly convex at 1, or if all finite values of φ lies in [0,1] and are
strictly negative except at 1.

(iii) For all P,Q ∈P , sdivφ(P,Q) ≤φ(0)+max
(
φ∗(0),0

)
.

(iv) Let P,Q ∈ P . If P ⊥ Q, then sdivφ(P,Q) ≥ φ(0)+min(φ∗(0),0). Conversely, suppose that
φ(0)+φ∗(0) is finite. If φ∗(0) ≥ 0 and φ is strictly convex at a point and sdivφ(P,Q) =
φ(0)+φ∗(0), then P ⊥ Q; if moreover φ∗(0) > 0, then P⊥(supp(Q)) = 1. If φ∗(0) < 0 and
sdivφ(P,Q) =φ(0), then P ⊥ Q and P⊥(supp(Q)) = 0.

Proof. For any P,Q ∈P , by Jensen inequality,

sdivφ(P,Q) ≥φ(P¿(Z ))+φ∗(0)P⊥
(
supp(Q)

)
; (A.3)

moreover, consider that if φ∗(0) <+∞, then

sdivφ(P,Q) = divφ(P,Q)−φ∗(0)P⊥
(
Z \ supp(Q)

)
. (A.4)

(i). Observe that P¿(Z ) ∈ [0,1], and thus if φ is nonnegative over [0,1] and φ∗(0) ≥ 0, then
sdivφ(P,Q) ≥ 0 by equation A.3. Now if φ∗(0) < 0, since divφ(P,Q) ≥ 0 by proposition A.1, one
gets sdivφ(P,Q) ≥ 0 with equation A.4. Conversely, suppose that φ(t ) < 0 for some t ∈ [0,1[. If
A ∈S is a nonempty strict subset of Z , let a ∈ A, b ∈Z \ A, and define for all E ∈S,

Q(E)
set=

{
0 if a ∉ E ,

1 if a ∈ E ,
P¿(E) =

{
0 if a ∉ E ,

t if a ∈ E ,
P⊥(E) =

{
0 if b ∉ E ,

1− t if b ∈ E ,
(A.5)

and P
set= P¿ +P⊥. It is easy to verify that P,Q ∈ P , P⊥ ⊥ Q and P¿ ¿ Q, with dP¿

dQ = t1A ,
Q-almost everywhere. Finally, sdivφ(P,Q) =φ(t )Q(A) =φ(t ) < 0.
(ii). If P = Q, then obviously sdivφ(P,Q) = 0. Suppose now that sdivφ(P,Q) = 0, and that φ
is strictly positive over [0,1[ and strictly convex at 1. If φ∗(0) ≤ 0, then by Jensen inequality
equation A.3 shows that φ(P¿(Z )) = 0 and thus P¿(Z ) = 1, so that P = P¿, hence P ¿ Q. But
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in such case, divφ(P,Q) = sdivφ(P,Q) = 0. If φ∗(0) < 0, it is now (i) together with equation A.4
which shows that divφ(P,Q) = 0. In both cases, this implies P = Q by proposition A.1. Now if
φ takes negative values in [0,1[ but no finite strictly positive values, then φ∗(0) =+∞, and

sdivφ(P,Q) = 0 implies P⊥(supp(Q)) = 0 and
∫
φ

(
dP¿
dQ

)
dQ = 0 and thus dP¿

dQ = 1, Q-almost

everywhere; that is, P = Q.
Conversely, suppose first thatφ is not strictly convex at 1; then P,Q as defined by equations A.1
and A.2 in proposition A.2 are different and satisfy sdivφ(P,Q) = 0. Suppose otherwise that
φ vanishes at some t ∈ [0,1[; then P,Q as defined by equation A.5 are different and satisfy
sdivφ(P,Q) = φ(t) = 0. Suppose finally that φ(t1) < 0 for some t1 ∈ [0,1[ and 0 < φ(t2) <+∞
for some t2 ∈R+. The former implies by convexity that φ is strictly positive over ]1,+∞[, and

with the latter we can define λ
def= φ(t2)−φ(t1)

φ(t2) ∈ ]0,1[ so that λφ(t1)+ (1−λ)φ(t2) = 0. Again by
convexity, φ(λt1 + (1−λ)t2) ≤ 0, and necessarily λt1 + (1−λ)t2 ≤ 1. Let then A,B ,C ∈S be
nonempty disjoint subsets of Z , let a ∈ A, b ∈ B and c ∈C , and define for all E ∈S,

P(E)
set= ∑

z∈{a,b,c}
pz 1E (z) where pa =λt1 , pb = (1−λ)t2 , and pc = 1−pa −pb ,

and Q(E) just as in equation A.2. Once again, it is easy to verify that P and Q are different
probability measures over Z , and that divφ(P,Q) =λφ(t1)+ (1−λ)φ(t2) = 0.
(iii). If φ∗(0) = +∞ the inequality is trivial; otherwise, it follows from the upper bound of
proposition A.1 and from equation A.4 that sdivφ(P,Q) ≤φ(0)+φ∗(0)P⊥

(
supp(Q)

)
, and the

result is deduced considering that P⊥
(
supp(Q)

) ∈ [0,1].
(iv). If P ⊥ Q, then P¿ = 0 and thus sdivφ(P,Q) = φ(0)+φ∗(0)P⊥

(
supp(Q)

)
and the result

follows as above. Conversely, suppose that the upper bound in (iii) is reached. If φ∗(0) >
0, then necessarily P⊥(supp(Q)) = 1, hence sdivφ(P,Q) = divφ(P,Q). If φ∗(0) = 0, the same
equality is straightforward. In both cases, one obtains P ⊥ Q from proposition A.1 under
strict convexity condition. Finally, if φ∗(0) < 0, then by convexity φ is strictly decreasing, and
necessarily P⊥(supp(Q)) = 0 and dP¿

dQ = 0, Q-almost everywhere, that is P ⊥ Q. ■
Remark A.1. Proposition A.3 (i) and (ii) essentially say that good properties of Csiszár diver-
gences are kept for the support Csiszár divergences, provided that φ is positive over [0,1]. In
(ii), the case with no finite positive values is somewhat pathological and not useful in practice.

Remark A.2. Unfortunately, proposition A.3 (iv) cannot be written as an equivalence (except
when φ∗(0) = 0, in which case sdivφ = divφ). Indeed, the lower bound sdivφ(P,Q) ≥ φ(0)+
min(φ∗(0),0) for mutually singular P,Q cannot be improved, since one can always construct
instances of equality. This means that our support Csiszár divergence does not always identify
cases of mutual singularity. This is however a mild limitation for the purpose of sensitivity
analysis through dependence measure, where the most crucial need is to rule out cases of
independence; this ability is ensured by proposition A.3 (ii).

A.2 Weighted Csiszár Divergence

Weighted Csiszár divergence is introduced in § 4.4.3. In the same setting as above, let moreover
w : Z →R+ be a measurable function such that 0 < ∫

w dP <+∞ and 0 < ∫
w dQ <+∞. First,

let us study Lebesgues decompositions of probabilities weighted by the same weights.

Proposition A.4. The Lebesgues decomposition of Pw with respect to Qw is Pw = Pw¿+Pw
⊥ ,

where

Pw
¿ : A 7→

(∫
w dP

)−1 ∫
A

w dP¿ and Pw
⊥ : A 7→

(∫
w dP

)−1 ∫
A

w dP⊥
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are the absolutely continuous and singular parts, respectively. Moreover, it holds that

dPw¿
dQw =

∫
w dQ∫
w dP

× dP¿
dQ

, Qw -almost surely.

Proof. Let A ∈ S. Then by definition, Pw (A) = (∫
w dP

)−1 ∫
A w dP = (∫

w dP
)−1 ∫

A w dP¿ +(∫
w dP

)−1 ∫
A w dP⊥. First, note that if N ∈S is such that Q(N ) = P⊥(Z \ N ) = 0, then obvi-

ously
∫

N w dQ = ∫
Z \N w dP⊥ = 0, so that Pw

⊥ is singular with respect to Qw . Now by absolute

continuity,
∫

A w dP¿ = ∫
A w dP¿

dQ dQ = (∫
w dQ

)∫
A

dP¿
dQ dQw , hence Qw = 0 implies Pw¿(A) = 0;

the conclusion follows from uniqueness of the Radon–Nikodym derivative. ■
The general expression of Csiszár divergence between Pw and Qw can be deduced easily;

the following explicits the particular case where w has equal total mass under P and Q, fully
justifying the name weighted Csiszár divergence.

Corollary A.1. If
∫

w dP = ∫
w dQ, then

divw
φ (P,Q) =

(∫
w dP

)−1(∫
φ

(
dP¿
dQ

)
w dQ+φ∗(0)

∫
w dP⊥

)
,

and

sdivw
φ (P,Q) =

(∫
w dP

)−1(∫
φ

(
dP¿
dQ

)
w dQ+φ∗(0)

∫
1supp(Qw )w dP⊥

)
.

Proof. By definition of weighted probabilities together with proposition A.4, divw
φ (P,Q) =∫

φ
(

dPw
¿

dQw

)
dQw +φ∗(0)Pw

⊥ (Z ) = 1∫
w dQ

∫
φ

( ∫
w dQ∫
w dP

dP¿
dQ

)
w dQ+ φ∗(0)∫

w dP

∫
wP⊥, leading to the result

with the additional hypothesis of equal total masses. ■
Remark A.3. Strictly speaking, one cannot simply replace supp(Qw ) by supp(Q) in the sup-
port version, because there might be points in the latter and not in the former, associated
with non zero weights. However, such points precisely have a neighborhood with Q-almost

zero weights so that they have no influence in an estimator of the form
∫

supp(Q)φ
(

dPn
dQn

)
w dQ,

where dPn
dQn

is any finite estimation of the Radon–Nikodym derivatives. There is thus no need
for estimating supp(Qw ).

Finally the last propositions give properties concerning only weighted probabilities, for
image measures and product measures; they are useful for characterizing weighted Csiszár
divergence dependence measures.

Proposition A.5. Let (Ω,F,P) be a probability space, X be a random variable, and w : ran(X ) 7→
R+ be measurable such that E(w(X )) is nonzero and finite. Then,

(
Pw(X )

)
X = (

PX
)w .

Proof. Let A ⊂ ran(A) be measurable. In the one hand,
(
Pw(X )

)
X (A) = Pw(X )(X −1(A)) =

E(1A(X )w(X ))
/

E(w(X )). In the other hand,
(
PX

)w (A) = ∫
1A w dPX

/∫
w dPX . Integrating

against the image measure yields the equality. ■
Proposition A.6. Let P, Q be probability distributions over sets X and Y , respectively, and
wX : X 7→R+, wY : Y 7→R+ be measurable functions such that

∫
wX dP and

∫
wY dQ are

nonzero and finite. Then, defining wX×Y : X ×Y →R+ : (x, y) 7→ wX (x)wY (y), the weighed
probability (P⊗Q)wX×Y is well-defined and equal to PwX ⊗QwY .

Proof. Let A ⊂X and B ⊂Y be measurable sets. Then by separability
∫

A×B wX×Y d(P⊗Q) =∫
A wX dP

∫
B wY dQ. The particular case A

set= X and B
set= Y shows that (P⊗Q)wX×Y is well-

defined; and the general case that (P⊗Q)wX×Y (A×B) =
∫

A wX dP∫
wX dP

∫
B wY dQ∫

wY dQ
= PwX (A)QwX (B).

The conclusion follows, since the product measure is characterized over the rectangles. ■
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