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Introduction

Positron emission tomography (PET) is a nuclear imaging method that produce functional images which depict metabolic processes in the human body [START_REF] Wernick | Emission tomography : the fundamentals of PET and SPECT[END_REF]. After injecting the patient with a radioactive substance, for instance a glucose analog such as [18F]-FDG (fluorodeoxyglucose), it is distributed across the body and retained by organs which contain the target molecule or functionality. Due to the radioactive decay a positron is emitted and annihilated with an electron. At the annihilation point two gamma rays are emitted in opposite directions and are captured through a PET detector ring placed around the patient. These measurements are in form of photon counts or coincidence events and can be presented as projection matrices called sinograms. Due to the randomness in the photon counting process, the sinogram images are corrupted by the so called photon noise. It is often referred as Poisson noise, since the number of events recorded obeys the Poisson probability distribution. PET image reconstruction is a tomographic inverse problem that consists in using the projection data to find the image of the spatial distribution of the radiotracer. Due to the noise, the reconstruction of PET images is an ill-posed problem and its solution is unstable in the sense that a small perturbation of the data can lead to an unpredictable change in the image estimate. It is therefore necessary to use some form of regularization to constrain the solution to physically acceptable values.

In this paper, we focus on dynamic PET imaging. Compared to static PET imaging, the dynamic setting provides a spatiotemporal information of the distribution of a radiotracer. Kinetic variations of the radiopharmaceuticals are described within organ of interest over time. In this case, PET data are a series of frames, a stack of sinogram images that capture the radiotracer distribution over the spatial and temporal domains. In order to describe the abrupt change of the tracer activity, after its administration, it is common to use shorter time intervals in the earlier stage of the scan. Therefore, one encounters dynamic PET images with low number of photons per frame which tends to significantly noisier images compared to static PET imaging. On the other hand, in the later frames, larger time intervals are generally used since there is less radioactivity and lesser radioactivity variations. This reduces the photon noise as more photon counts are recorded. Given the noisy dynamic PET measurements g, our goal is to better reconstruct the spatiotemporal radioactive distribution u via a variational problem defined as argmin u H(g, Ru) + N (u).

The first term represents a distance term, determined by the statistics of the noise, i.e., Poisson noise and the second term enforces a prior information on the regularized solution u. In the forthcoming analysis we fix the distance term, referred also as fidelity term, as the Kullback-Leibler divergence and compare different regularizers N (u) on dynamic PET data for different radiotracers. In terms of the regularizers, we choose edge-preserving priors that are extended to a dynamic setting. In the literature, the classical Total Variation (TV) regularization, [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], as well as its recent extension, i.e., the Total Generalized Variation, [START_REF] Bredies | Total Generalized Variation[END_REF] have been applied to a plethora of imaging applications with respect to emission tomography, PET reconstruction and in general to Poisson related problems. Here, we mention a few of them that are related to both static and dynamic PET reconstruc-tion. For example, in [START_REF] Brune | Forward backward em-tv methods for inverse problems with poisson noise[END_REF][START_REF] Jonsson | Total-variation regularization in positron emission tomography[END_REF], the TV penalization is combined with the standard Expectation-Maximization (EM) algorithm, leading to alternating EM and TV reconstruction steps. Moreover, in [START_REF] Guo | Fdg-pet parametric imaging by total variation minimization[END_REF], a total variation minimization is applied to parametric PET imaging, see also [START_REF] Yu | Joint reconstruction of dynamic pet activity and kinetic parametric images using total variation constrained dictionary sparse coding[END_REF] for the dynamic case. Besides, the regularization only on the image space, in [START_REF] Burger | Total variation regularization in measurement and image space for PET reconstruction[END_REF], the authors propose a combine approach of TV regularization for both the image and the sinogram space. We point out also, the works of [START_REF] Pustelnik | Parallel algorithm and hybrid regularization for dynamic pet reconstruction[END_REF][START_REF] Tauber | Spatiotemporal diffusion of dynamic pet images[END_REF]. In [START_REF] Pustelnik | Parallel algorithm and hybrid regularization for dynamic pet reconstruction[END_REF], TV is applied to each time-frame and in [START_REF] Tauber | Spatiotemporal diffusion of dynamic pet images[END_REF] a post-reconstruction to dynamic PET is proposed using anisotropic diffusion. Although, TV regularizer can eliminate the noise while preserving the edges in the image, it promotes solutions with piecewise constant structures and the well known staircasing artifacts appear in smooth regions. One remedy to this artifact is to extend to high order methods such as the TGV which also allows linear and polynomial smoothness in addition to the preservation of edges. We refer the reader to [START_REF] Guérit | Post-reconstruction deconvolution of pet images by total generalized variation regularization[END_REF], [START_REF] Knoll | Joint mr-pet reconstruction using a multi-channel image regularizer[END_REF], where TGV regularization is applied to Poisson related problems such as PET deconvolution and a combined MRI-PET reconstruction respectively.

In our framework, we use the aforementioned TV and TGV regularizers that are extended to a spatiotemporal form for dynamic PET reconstruction. In addition, motivated by the recent works of [START_REF] Holler | On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction[END_REF][START_REF] Schloegl | Infimal convolution of total generalized variation functionals for dynamic mri[END_REF], we extend the latter priors to the Infimal Convolution (IC) framework, equivalently we have the ICTV and ICTGV regularizers defined as

N (u) =    ICTV β,κ (u) = min v β 1 TVκ(u -v) + β 0 TV 1-κ (v) ICTGV β,κ (u) = min v β 1 TGVκ(u -v) + β 0 TGV 1-κ (v)
The TV and TGV regularizers are weighted by a positive vector κ = (κ, 1-κ), with κ ∈ (0, 1) that balances the strength of the penalization between the spatial and temporal domains, for instance the x,y and the t directions in a 2D+t dynamic framework. The ICTV and ICTGV constitute a combination of TV and TGV regularizers respectively, that are weighted symmetrically via κ. In addition, we have a positive vector β = (β 1 , β 0 ) that balances the two terms in the TV/TGV regularizers in terms of the fidelity term H(g, Ru). As we present in the following, the additional variable v provides a better reconstruction in the spatiotemporal domain and it is able to reduce the artifacts that TV and TGV priors create.

Outline of the paper : In Section 2, we introduce the spatiotemporal framework for dynamic PET reconstruction. We focus on the choice of priors used in our variational problem as well as the corresponding fidelity term. We continue with a brief summary of the proposed algorithm which computes numerically the solutions via a primal-dual approach. In Section 4, we describe the numerical realization of the saddle point form for the proposed regularizers. Finally, in Section 5, we discuss our results for different PET radiotracers applied to simulated brain phantoms and compare them with standard methods such as the MLEM reconstruction.

Spatiotemporal Variational Framework for PET reconstruction

In this section, we describe the spatiotemporal variational context suitable for dynamic PET reconstruction. This is achieved by a minimization problem of an energy functional E : R N ×K → R i.e., argmin u E(u) with E(u) = H(g, Ru) + N (u).

(1)

Note that we focus on the finite dimensional case and we refer the reader to Section 4 for the details on the numerical approximation. The corresponding solution of ( 1) is an image sequence, a collection of frames that represents the radioactivity of the injected radiotracer denoted as u = (u j,k ) ∈ R N ×K , where N represents the spatial dimension (spatial bins) and K is the number of (temporal) frames. In the following, we describe the form of the fidelity term in the dynamic PET setting as well as the proposed edge preserving priors.

Fidelity term

During the PET scan, the measurements are associated to a linear operator R that incorporate the geometry of the acquisition and is described through the Radon transform

Ru(θ, s) = y∈θ ⊥ u(sθ + y) dy, (2) 
where the integral is considered along the orthogonal subspace [START_REF] Natterer | Mathematical Methods in Image Reconstruction[END_REF] for more details. The equation ( 2) is applied for every temporal bin and its discrete form is written as

θ ⊥ = x ∈ R N : x • θ = 0 , see
(Ru) i,k := N j=1 R i,j u j,k , 1 ≤ i, k ≤ M, K (3) 
where R = (R i,j ) is the system matrix corresponding to the discretized operator R. The coefficients of this matrix express in fact probability values. For instance, R i,j is the probability of an emitted photon from voxel j to be recorded in the ith tube of response (TOR) and when there is no intersection of the ith TOR to a voxel j then R i,j = 0. In order to capture the physical process of the photon counting process during PET acquisition, we assume that the measurements follow an independent Poisson distribution. In addition to the true coincidence events, one has to take into account the random and scattered events denoted by [RD] and [SC] respectively. The true coincidences occur when both photons from the annihilation point are detected without any interaction or deflection within the coincidence time-window. A scattered event occurs when at least one of the emitted photons is detected at the wrong line of response due to a deflection. A random event happens when two photons from different annihilation points are detected on the same detector within the coincidence time window. Both random and scattered events increase the statistical noise of the data and behave as a background noise. We denote the input PET data e.g., the prompt events with g = (g i,k ) ∈ R M ×K , where M is the dimension of the projection space and for every time frame k = 1, . . . , K we have that

g i,k ∼ P γ k N j=1 D k R i,j u i,k + [SC] i,k + [RD] i,k , (4) 
where P(λ) describes the Poisson distribution with parameter

λ = D k (Ru) i,k + [SC] i,k + [RD] i,k .
Here, (D k ) K k=1 is the decay correction factor that depends on the specific radiotracer and the frame duration (see Section 5). Moreover, γ = (γ k ) K k=1 is a positive parameter that incorporates the temporal duration over two consecutive frames, i.e.,

γ k = ∆t k = t k+1 -t k , 1 ≤ k ≤ K -1 (5) 
In practice, as we observe in Table 1 in Section 5, the time duration over two consecutive frames variates during a PET acquisition where shorter time intervals are considered in the beginning and longer at the end. Hence, we have a non uniform time discretization. In the following we denote η = (η i,k

) := [SC] i,k + [RD] i,k .
The fidelity term related to the Poisson noise is known as the Kullback-Leibler divergence, see for instance [START_REF] Bertero | Iterative image reconstruction: a point of view[END_REF]. Recall that the generalized Kullback-Leibler divergence for g = (g i,k ) > 0 is

D KL (g, DRu+η) =      M,K i,k=1 γ k g i,k log g i,k D k (Ru) i,k +η i,k + D k (Ru) i,k +η i,k -g i,k , u i,k ≥ 0 +∞, otherwise.
(6) Note that η = (η i,k ) > 0. The fidelity term with respect to the minimization over u is written as [START_REF] Burger | First order algorithms in variational image processing[END_REF] where I C (z) is the indicator function of C, with I C (z) = 0 if z ∈ C and +∞ otherwise. The positivity constraint is necessary in order to guarantee that the fidelity is well defined, since (Ru) i,k ≥ 0, if u i,k ≥ 0. The above distance term is a direct consequence of the Bayesian approach and the maximum a-posteriori probability (MAP) estimation of the negative log-likelihood function. Due to (4) the conditional probability of g which obeys a Poisson distribution given an image sequence u is

H(g, DRu+η) = M,K i,k=1 γ k D k (Ru) i,k -g i,k log D k (Ru) i,k +η i,k +I {u≥0} (u).
P(g|u) = M,K i,k=1 γ k (D k (Ru) i,k + η i,k ) g i,k e -γ k (D k (Ru) i,k +η i,k ) g i,k ! . ( 8 
)
Now, we impose the probability density of u, which describes a geometric prior on u and is expressed as a Gibbs type density, [START_REF] Bertero | Iterative image reconstruction: a point of view[END_REF], i.e.,

P(u) = e -N (u) .
Using the Bayes' Theorem, P(u|g) = P(g|u)P(u) P(g) ,

the MAP estimation oflog P(u|g) and neglecting the denominator term, we conclude with (1), where the distance term is given in [START_REF] Burger | First order algorithms in variational image processing[END_REF].

Regularizers

The next step is the choice of the regularizer N (u). We present the edge preserving priors that are used in this paper and are adapted for the spatiotemporal PET reconstruction.

TV/TGV regularizers

For the spatiotemporal TV regularization, an additional temporal direction is considered and through two positive regularizing parameters it defines a trade-off between spatial and temporal penalization. We let α = (α 1 , α 2 ), where α 1 > 0, α 2 ≥ 0 for the 2D+time framework and define

TVα(u) = ∇αu 1 = γ|∇αu|, with |∇αu| = (α 1 ∂xu) 2 + (α 1 ∂yu) 2 + (α 2 ∂ t u) 2 . ( 9 
)
Similarly to the fidelity term, we allow a non uniform time discretization for the regularizer using the parameter γ, see [START_REF] Brune | Forward backward em-tv methods for inverse problems with poisson noise[END_REF]. The parameters α 1 , α 2 are not predefined and require a specific tuning in order to find the optimal spatial and temporal TV smoothing. If α 2 = 0, then the TV regularizer acts only spatially and no temporal information is considered. This first-order regularizer allows jump discontinuities but introduces the staircasing effect. In the static case, this is a result of piecewise constant approximations of smooth regions. Consequently, in the dynamic setting except of the spatial staircasing, one witness staircasing along the temporal direction where two consecutive frames for example are overlapping with each other and certain structures appear falsy to some regions. A suitable path towards an edge preserving and at the same time smooth reconstruction is to combine first and second order derivatives, as in [START_REF] Bergounioux | A second-order model for image denoising[END_REF][START_REF] Hinterberger | Variational methods on the space of functions of bounded Hessian for convexification and denoising[END_REF][START_REF] Papafitsoros | A combined first and second order variational approach for image reconstruction[END_REF]. We examine the second order total generalized variation (TGV), presented in [START_REF] Bredies | Total Generalized Variation[END_REF], where an additional variable v finds an optimal balance between the first and second derivative of a function. For the spatiotemporal TGV, we write the following minimization problem

TGVα(u) = min v ∇αu -v 1 + √ 2 Eαv 1 . ( 10 
)
where Eαv = 1 2 (∇αv + ∇αv T ) denote the weighted α-symmetrized gradient. In [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF], the minimization is considered over vector fields v and the weights have been fixed in front of the two norms of [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF]. In previous imaging applications related to TGV, these parameters have been proven to give desirable results, see for instance [START_REF] De Los Reyes | Bilevel parameter learning for higherorder total variation regularisation models[END_REF][START_REF] Holler | On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction[END_REF][START_REF] Lefkimmiatis | Structure tensor total variation[END_REF]. The intuition behind TGV is that in smooth regions, both on the spatial as well as in the temporal domains, ∇ 2 α u is relatively small which forces that ∇αu = v. Moreover, in piecewise constant regions, ∇ 2 α u = v is significantly large and therefore is reasonable to have v = 0. In this way, the additional variable v enables the regularized solution u to find an optimal structure in the piecewise constant and smooth regions.

An infimal convolution approach

In the dynamic PET measurements one has to choose between longer scans with good counting statistics and shorter scans that are noisy but preserve temporal resolution. Therefore, an usual and fair choice is to select shorter scans in the beginning of the acquisition where there is an abrupt change of activity of the radioactive tracer and longer scans at the end. In this setting, different parts of the PET data may require either strong spatial regularization or strong temporal regularization. One way to model this behaviour is using an infimal convolution operation, see [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF]. In the static case, the concept of the infimal convolution operation is to combine two different regularizers J 1 , J 2 with different geometric priors via a minimization problem, i.e.,

N (u) = inf v J 1 (u -v) + J 2 (v).
Using this approach, we can decompose our image into two components that promotes different geometrical structures. For instance using first and second derivatives, which capture piecewise constant and smooth structures respectively, see [START_REF] Setzer | Infimal convolution regularizations with discrete l1type functionals[END_REF].

In a recent work, the authors in [START_REF] Holler | On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction[END_REF] introduce the infimal convolution total variation regularization extended to the video image processing framework. Compared to the static case, they use the same TV geometrical prior but weighted differently and either promote strong or weak spatiotemporal regularization. Let κ = (κ, 1 -κ), where κ ∈ (0, 1), then the infimal convolution total variation regularization, denoted as ICTV, is

ICTV β,κ (u) = min v β 1 ∇κ(u -v) 1 + β 0 ∇ 1-κ v 1 = min v β 1 TVκ(u -v) + β 0 TV 1-κ (v) (11) 
where the positive parameter β = (β 1 , β 0 ) is responsible for a proper balance between the terms of the ICTV functional and the corresponding fidelity term in [START_REF] Burger | First order algorithms in variational image processing[END_REF].

Under the infimal convolution method, we can decompose the regularized solution u into two components uv and v which are penalized by a total variation prior and capture different spatiotemporal regularity depending on the triple (β 1 , β 0 , κ).

As we observe in Section 5, finding an optimal balancing of these parameters, one can achieve a higher quality reconstruction compared to the TV one, since a more tailored treatment is forced via the additional variable v. In fact, we show that different degrees of temporal activity are captured through this robust decomposition of v and u -v.

The reason behind the choice of κ is that we would like to enforce locally either a strong or weak spatial-temporal regularization. Under the extreme cases, where κ → 0, 1, one applies only spatial regularization on the u -v component and only strong temporal regularization on the v component and vice versa. Hence, we do not treat the temporal noise on the u -v component and the spatial noise in the v component. The restriction on the (0, 1) interval will allow an interchange between these two components in terms of spatiotemporal smoothing.

In a recent paper, see [START_REF] Schloegl | Infimal convolution of total generalized variation functionals for dynamic mri[END_REF], a natural extension of the ICTV regularizer is proposed using a TGV regularizer instead and applied to dynamic MRI recon-struction. It is defined below as

ICTGV β,κ (u) = min v β 1 TGVκ(u -v) + β 0 TGV 1-κ (v). ( 12 
)
For the ICTGV regularizer, not only we can eliminate the spatiotemporal staircasing but also benefit using the infimal convolution approach. In this situation the decomposition on the v, u -v components relies on the TGV regularity instead of TV. Hence, spatiotemporal smooth structures are promoted which is a more reasonable assumption in the dynamic PET reconstruction.

Our goal is to examine the effect on these regularizers defined above, i.e.,

N (u) ∈ TVα(u), ICTV β,κ (u), TGVα(u), ICTGV β,κ (u) . ( 13 
)
for different types of radiotracers in the dynamic PET reconstruction. In the following section, we present a brief summary of the Primal-Dual numerical realization of (1), see [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] under a diagonal preconditioning proposed in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF]. Finally, let us mention that existence and uniqueness of the minimizer u for the problem (1) using the fidelity term ( 7) and the regularizers in ( 13) is proved using the direct method of calculus of variations. Since we deal with the discrete setting the proof for existence is straightforward and we omit it. In terms of uniqueness, note that the fidelity term is strictly convex since we assume that g = (g i,k ) > 0.

3 An overview of the PDHG algorithm

In order to obtain a numerical solution of (1), we use the modified primal-dual hybrid gradient (PDHGM) algorithm as proposed in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] ; it can be identified as a generalization of the PDHG algorithm found in [START_REF] Esse | A general framework for a class of first order primaldual algorithms for convex optimization in imaging science[END_REF]. In this section, we review the basic concepts on the primal-dual framework and focus on the diagonal preconditioning version presented in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF]. Let X and Y with dim X = n, dim Y = m, two finite dimensional vector spaces endowed with standard inner products •, • . Let K ∈ L(X, Y ) a continuous linear operator with operator norm

K = max Kx Y : x X ≤ 1 .
We define G : X → R ∪ {∞}, F : Y → R ∪ {∞} two linear convex functionals with a simple structure in the sense that

x = (I + τ ∂G) -1 (x) = argmin x G(x) + 1 2τ x -x 2 X (14) 
i.e., the resolvent operator is easy to solve and has a closed-form solution. Our goal is to write the general minimization problem

min x∈X G(x) + F(Kx) (15) 
that describes (1) into a general saddle-point problem,

min x∈X max y∈Y Kx, y Y + G(x) -F * (y), (16) 
using the Fenchel duality (see [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF] for example). Here F * denotes the convex conjugate of F:

∀y 0 ∈ Y F * (y 0 ) = sup y∈Y y, y 0 -F(y) .
We recall that the dual maximization problem of ( 15) is

max y∈Y -G * (-K T y) -F * (y). ( 17 
)
The generic PDHG method is Algorithm 1, described below.

Algorithm 1 Generic PDHG Require: Choose τ, σ two positive real numbers, θ ∈ (0, 1) and

(x 0 , y 0 ) ∈ X × Y Update: xω, yω as        x ω+1 = (I + τ ∂G) -1 (xω -τ K T yω) x ω+1 = x ω+1 + θ(x ω+1 -xω) y ω+1 = (I + σ∂F * ) -1 yω + σK(x ω+1 )
In general the efficiency of the PDHG methods relies on the splitting of the initial problem ( 16) into subproblems that are easier to solve and have the form described in Algorithm 1. Note that the solution of these subproblems can be computed efficiently with high numerical precision using ( 14) for example. Here, ∂F * , ∂G denote the subdifferential of F * , G and the expressions (I + τ ∂G) -1 and (I + σ∂F * ) -1 are the resolvent operators of G and F * respectively. Under the conditions that θ = 1 and τ σ K < 1, one can show that Algorithm 1 converges, see in [9, Theorem 1].

However, one of the main difficulties of these methods is the appropriate choice of the primal-dual step sizes τ and σ. Indeed, this choice has an important impact on the speed of the algorithm and in some cases, the computation of K is quite difficult to obtain, due to its complicated structure. In order to handle these issues, different methods have been proposed for a suitable tuning of these parameters, especially via an adaptive scheme which improves the convergence speed. For instance, assuming additional conditions on F or G, the above algorithm can be accelerated with an iterative update of θ, σ and τ , see [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Valkonen | Acceleration of the pdhgm on partially strongly convex functions[END_REF]. In addition, the authors in [START_REF] Goldstein | Adaptive primal-dual hybrid gradient methods for saddle-point problems[END_REF], introduce a linesearch approach where the primal-dual step sizes are tuned adaptively so the primal and dual residuals of ( 15), [START_REF] Fessler | Michigan image reconstruction toolbox[END_REF] have roughly the same value. In the same direction, we refer also to [START_REF] Holler | On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction[END_REF] and [START_REF] Malitsky | A first-order primal-dual algorithm with linesearch[END_REF].

Algorithm 2 Preconditioned PDHG Require: Choose T, Σ two symmetric positive definite matrices, θ ∈ [0, 1] and (x 0 , y 0 ) ∈ X × Y Update: xω, yω as        x ω+1 = (I + T ∂G) -1 (xω -T K T yω) x ω+1 = x ω+1 + θ(x ω+1 -xω) y ω+1 = (I + Σ∂F * ) -1 yω + ΣK(x ω+1 )
Here, we choose to follow the preconditioning technique for the PDHG algorithm, see Algorithm 2. The convergence is guaranteed provided that θ = 1 and Σ 1/2 KT 1/2 < 1, see [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF]Theorem 1]. For the preconditioning of the symmetric, positive definite matrices T and Σ, we use Lemma 2 in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF] where the corresponding matrices have a diagonal structure defined as T = diag(τ ), τ = (τ 1 , . . . , τn) and Σ = diag(σ), σ = (σ 1 , . . . , σm) with

τ j = 1 m i=1 |K i,j | 2-α and σ i = 1 n j=1 |K i,j | α , (18) 
for any α ∈ [0, 2]. The resolvent operators are now defined as

x = (I + T ∂G) -1 (x) = argmin x∈X G(x) + 1 2 x -x 2 X with x 2 X = T -1 x, x (19) 
y = I +Σ∂F * -1 (ŷ) = argmin y∈Y F * (y)+ 1 2 y -ŷ 2 Y with y 2 Y = Σ -1 y, y . ( 20 
)
Compared to other adaptive methods, it provides a significant improvement on acceleration of these problems, see for instance [START_REF] Sidky | Convex optimization problem prototyping for image reconstruction in computed tomography with the chambolle-pock algorithm[END_REF]. Additionally, we avoid to estimate the operator norm of K which in the case of PET reconstruction is quite complicated, see Section 4.2. Moreover, it is quite simple to implement since only one auxiliary parameter needs to be tuned, see [START_REF] Jonsson | Total-variation regularization in positron emission tomography[END_REF]. Finally, let us mention that in the case of static PET reconstruction, this approach has been studied in [START_REF] Burger | First order algorithms in variational image processing[END_REF] and [START_REF] Sidky | Convex optimization problem prototyping for image reconstruction in computed tomography with the chambolle-pock algorithm[END_REF] with a total variation penalization. In the next section, we detail the numerical implementation of our problem and discuss the saddle point forms for each regularizer.

Numerical Implementation

Here, we focus on the numerical solution of the minimization problem (1) using the regularizers and the fidelity terms defined in Section 2. We use the diagonal preconditioning, described in the previous section. We first give an insight of the spatiotemporal 2D+time discrete framework and continue with the saddle point forms for each choice of the regularizer. A similar analysis can be extended to 3D+time setting.

Discrete Setting

We begin with the discretization of the 2D+time spatiotemporal domains of Ω × T and Σ × T which denotes the image and sinogram domains respectively. The discrete domains Ω and Σ have the following grid forms

Ω = {(i, j) : i, j ∈ N, 1 ≤ i ≤ N 1 , 1 ≤ j ≤ M 1 } , Σ = (î,) : î, ∈ N, 1 ≤ î ≤ N1 , 1 ≤  ≤ M1 , T = {k : k ∈ N, 1 ≤ k ≤ K} . ( 21 
)
Here K is the number of frames, N1 the numbers of rays and M1 represents the number of angles in the projection space. The solution u and the input dynamic PET data g of ( 1) belongs to U = R N1×M1×K and Û = R N1× M1×K respectively. We also define the corresponding sets needed for the definition of the discrete gradient and symmetrized gradient operators associated to the TV and TGV regularizers as

V = U × U × U, W = U × • • • × U 6 .
Let α = (α 1 , α 2 ) be a vector of parameters with α 1 > 0 and α 2 ≥ 0, penalizing the spatial and temporal domains. The gradient operator is

∇α : U → V with ∇αu = (α 1 ∂ + x u, α 1 ∂ + y u, α 2 ∂ + t u) T ,
where ∂ +

x , ∂ + y , ∂ + t are the forward finite difference operators with Neumann boundary conditions. For the spatial and temporal domains, i.e., with respect to x, y and t directions, we write

∂ + x u = u i+1,j,k -u i,j,k ∆xi , if 1 ≤ i < N 1 0, if i = N 1 , ∂ + y u = u i,j+1,k -u i,j,k ∆yj , if 1 ≤ j < M 1 0, if j = M 1 . ∂ + t u = u i,j,k+1 -u i,j,k ∆t k , if 1 ≤ k < K 0, if k = K.
Note that in the spatial domain the discrete step size along the x and y directions is constant, i.e., ∆x i = ∆y j = x i+1 -x i = y j+1 -y j . In terms of temporal direction, we have ∆t k = t k+1 -t k which is not necessarily constant. In fact, in our simulations the time step size variates during the acquisition see Table 1 in Section 5. We also define the divergence operator div 1,α :

V → U such that div 1,α = -∇ * α : for v = (v 1 , v 2 , v 3 ) ∈ V , we write div 1,α (v) = α 1 (∂ - x v 1 + ∂ - y v 2 ) + α 2 ∂ - t v 3 .
Here, the ∂ -

x , ∂ - y , ∂ - t are the corresponding backward finite differences operators, i.e.,

∂ - x u =      u i,j,k -u i-1,j,k ∆xi , if 1 < i < N 1 -1, u 1,j,k ∆x1 , if i = 1, -u N 1 -1,j,k ∆x N 1 -1 if i = N 1 . , ∂ - y u =      u i,j,k -u i,j-1,k ∆yj , if 1 < j < M 1 -1, u i,1,k ∆y1 , if j = 1, -u i,M 1 -1,k ∆y M 1 -1 if j = M 1 . ∂ - t u =      u i,j,k ∆t k - u i,j,k-1 ∆t k-1 , if 1 < k < K -1, ui,j,1 ∆t1 , if k = 1, -u i,j,K-1 ∆t K-1 if k = K.
The symmetrized gradient, Eα : V → W is defined as Eα(v) = 1 2 (∇αv + ∇αv T ) where

Eα(v) =        α 1 ∂ - x v 1 α 1 ∂ - y v 1 + α 1 ∂ - x v 2 2 α 2 ∂ - t v 1 + α 1 ∂ - x v 3 2 α 1 ∂ - y v 1 + α 1 ∂ - x v 2 2 α 1 ∂ - y v 2 α 2 ∂ - t v 2 + α 1 ∂ - y v 3 2 α 2 ∂ - t v 1 + α 1 ∂ - x v 3 2 α 2 ∂ - t v 2 + α 1 ∂ - y v 3 2 α 2 ∂ - t v 3       
and the divergence operator is defined as div

2,α = -E * α . For w = (w i,j ) 1≤i,j≤3 ∈ W it writes div 2,α : W → V, div 2,α (w) =     α 1 ∂ + x w 11 + α 1 ∂ + y w 12 + α 2 ∂ + t w 13 α 1 ∂ + x w 21 + α 1 ∂ + y w 22 + α 2 ∂ + t w 23 α 1 ∂ + x w 31 + α 1 ∂ + y w 32 + α 2 ∂ + t w 33     ,
with w 21 = w 12 , w 31 = w 13 and w 32 = w 23 . For any

v = (v 1 , v 2 , v 3 ) ∈ V , we set v 1 = i,j,k |v| i,j,k , v ∞ = max i,j,k |v| i,j,k with |v| = (v 1 ) 2 +(v 2 ) 2 +(v 3 ) 2 (22)
and for any w ∈ W , we write 

w 1 = i,j,k |w| i,j,k , w ∞ = max i,j,k |w| i,
as a saddle point problem of the form

min x∈X max y∈Y Kx, y -F * (y) + G(x) (25) 
in order to apply the PDHG algorithm. We start with the fidelity term defined in [START_REF] Burger | First order algorithms in variational image processing[END_REF]:

H(g, DRu + η) = γ(DRu -g log(DRu + η)), 1 Û + I {u≥0} (u), (26) 
using the scalar product on the Σ × T domain, i.e.,

g 1 , g 2 := N1, M1,K î,,k=1 γ k (g 1 g 2 ) î,,k .
Here, 1 Û is a 3D array of ones. We recall that the temporal non uniform discretization ∆t k is incorporated in the positive parameter γ. Next, we need the dual form of [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF], which is obtained by computing of the convex conjugate of the following function

h(x) := γ(λ 1 x -g log(λ 1 x + λ 2 )), 1 Û + I {x≥0} (x).
where λ 1 , λ 2 are positive weights, using that f (x) = sup

x *

x, x * -f * (x * ). In practice, λ 1 , λ 2 represent the decay factor D = (D k ) K k=1 and the noisy component η respectively. We conclude that the convex conjugate of h is

h * (x * ) = γg log γλ 1 g γλ 1 -x * -1 -λ 2 ( x * λ 1 -γ) + I {x * ≥γλ1-g γλ 1 λ 2 } (x * ), ( 27 
)
where the multiplications are performed componentwise. For the total variation regularization, N (u) = TVα(u) using the duality of the 1 norm and the above computation, we derive the following saddle point form min

u max φ1,φ2 ∇αu, φ 1 -I { • ∞ ≤1} ( φ 1 γ ) + Ru, φ 2 -H * (g, φ 2 ) + I {u≥0} (u), ( 28 
)
where H * (g, φ 2 ) := h * (φ 2 ). Note that the division φ1 γ is understood componentwise with respect to the time direction i.e., φ i,j,k γ k . Overall, we obtain the following setting related to [START_REF] Papafitsoros | A combined first and second order variational approach for image reconstruction[END_REF], i.e.,

               x = (u, 0) T ∈ U × U = X, y = (φ 1 , φ 2 ) ∈ V × Û = Y, F * (y) = F * (φ 1 , φ 2 ) = I { • ∞ ≤1} ( φ1 γ ) + H * (g, φ 2 ) G(x) = G(u, 0) = I {u≥0} (u), K = ∇α 0 R 0 K T = -div 1,α R * 0 0 . ( 29 
)
The approach is similar for the other two regularizers. We summarize below the saddle point forms for ICTV β,κ (u), TGVα(u) and ICTGV β,κ (u) regularizers.

Starting with N (u) = ICTV β,κ (u) the minimization problem ( 24) can be written in the (25) form as

min u,v max φ1,φ2,φ3 ∇κ(u -v), φ 1 -I { • ∞ ≤β1} ( φ 1 γ ) + ∇ 1-κ , φ 2 -I { • ∞ ≤β0} ( φ 2 γ ) + Ru, φ 3 -H * (g, φ 3 ) + I {u≥0} (u), (30) 
                   x = (u, v) T ∈ U × U = X, y = (φ 1 , φ 2 , φ 3 ) T ∈ V × V × Û = Y, F * (y) = F * (φ 1 , φ 2 , φ 3 ) = I { • ∞ ≤β1} ( φ1 γ )+I { • ∞ ≤β0} ( φ2 γ )+H * (g, φ 3 ) G(x) = G(u, v) = I {u≥0} (u), K =    ∇κ -∇κ 0 ∇ 1-κ R 0    , K T = -div 1,κ 0 R * div 1,κ div 1,1-κ 0 . ( 31 
)
For N (u) = TGV β,α (u) we write that min

u,w max φ1,φ2,φ3 ∇αu -w, φ 1 -I { • ∞ ≤β1} ( φ 1 γ ) + Eαw, φ 2 -I { • ∞ ≤β0} ( φ 2 γ ) + Ru, φ 3 -H * (g, φ 3 ) + I {u≥0} (u), (32) 
                   x = (u, w) T ∈ U × V = X, y = (φ 1 , φ 2 , φ 3 ) T ∈ V × W × Û = Y, F * (y) = F * (φ 1 , φ 2 , φ 3 ) = I { • ∞ ≤β1} ( φ1 γ )+I { • ∞ ≤β0} ( φ2 γ )+H * (g, φ 3 ) G(x) = G(u, w) = I {u≥0} (u), K =    ∇α -I 0 Eα R 0    , K T = -div 2,α 0 R * -I -div 2,α 0 . ( 33 
)
and for ICTGV β,κ (u) we conclude with

min u,v w1,w2 max φ1,φ2,φ3 φ4,φ5 ∇κ(u -v) -w 1 , φ 1 -I { • ∞ ≤β1} ( φ 1 γ ) + Eκw 1 , φ 2 -I { • ∞ ≤β1 √ 2} ( φ 2 γ ) + ∇ 1-κ (v) -w 2 , φ 3 -I { • ∞ ≤β0} ( φ 3 γ ) + E 1-κ w 2 , φ 4 -I { • ∞ ≤β0 √ 2} ( φ 4 γ ) + Ru, φ 5 -H * (g, φ 5 ) + I {u≥0} (u), (34) 
                                   x = (u, v, w 1 , w 2 ) T ∈ U × U × V × W = X, y = (φ 1 , φ 2 , φ 3 , φ 4 , φ 5 ) T ∈ (V × W ) 2 × Û = Y, F * (y) = F * (φ 1 , φ 2 , φ 3 , φ 4 , φ 5 ) = I { • ∞ ≤β1} ( φ1 γ ) + I { • ∞ ≤β1 √ 2} ( φ2 γ ) +I { • ∞ ≤β0} ( φ3 γ ) + I { • ∞ ≤β0 √ 2} ( φ4 γ ) + H * (g, φ 5 ) G(x) = G(u, w) = I {u≥0} (u) and K =         ∇κ -I -∇κ 0 0 Eκ 0 0 0 0 ∇ 1-κ -I 0 0 0 E 1-κ R 0 0 0         . ( 35 
)

Numerical Solution

Based on the algorithm presented in Section 3, we can precompute the diagonal preconditioners T and Σ for each case of ( 29), ( 31), [START_REF] Stute | Analytical simulations of dynamic pet scans with realistic count rates properties[END_REF] and [START_REF] Valkonen | Acceleration of the pdhgm on partially strongly convex functions[END_REF] and solve the corresponding proximal maps [START_REF] Knoll | Joint mr-pet reconstruction using a multi-channel image regularizer[END_REF] and [START_REF] Lefkimmiatis | Structure tensor total variation[END_REF]. In particular, the proximal map x = (I + T ∂G) -1 (x) is a projection on the positive cone {x ≥ 0} and common for all the regularizers. Indeed, for the (29) case, we write using Algorithm 2

u = (I + T ∂G) -1 ( û) ⇔ u = max{ û, 0}, where û = u -T (-div 1,α φ 1 + R * φ 2 ).
In terms of y = (I + Σ∂F * ) -1 (ŷ) we need to compute it separately based on the definition of F * . For instance in the (29) case, the functional F * (y) can be decoupled and obtain two closed formed solutions namely

φ 1 φ 2 = (I + Σ∂F * ) -1 φ1 φ2 ⇔        φ 1 = argmin φ1 ∞ ≤1 1 2 φ 1 -φ1 2 V φ 2 = argmin φ2 1 2 φ 2 -φ2 2 Û + H * (g, φ 2 )
, where using Algorithm 2 we write

φ1 φ2 = φ 1 φ 2 + Σ 1 0 0 Σ 2 ∇α 0 R 0 u 0 .
The first minimization problem corresponds to a projection on the ∞ ball, i.e.,

φ 1 = argmin φ1 ∞ ≤1 1 2 φ 1 -φ1 2 V ⇔ φ 1 = φ1 max 1, | φ1| γ . (36) 
For the second minimization problem, we use [23, Lemma 3] and conclude to

φ 2 = argmin φ2 1 2 φ 2 -φ2 2 Û + H * (g, φ 2 ) ⇔ φ 2 = 0.5 φ2 + λ 2 λ 1 Σ 2 + λ 1 γ -( φ2 + λ 2 λ 1 Σ 2 -λ 1 γ) 2 + 4Σ 2 gγ , (37) 
where

λ 2 = η, λ 1 = (D k ) K k=1 , γ = (γ k ) K k=1
and the multiplication/division is understood componentwise. For ICTV β,κ , TGVα and ICTGV β,κ regularizers the solution with respect to φ 3 and φ 5 variables respectively is the same as [START_REF] Wernick | Emission tomography : the fundamentals of PET and SPECT[END_REF].

For the TGVα case the solution with respect to φ 1 , φ 2 the solution is similar to [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] taking into account the additional weights β 1 , β 0 i.e.,

φ 1 = φ1 max 1, | φ1| γβ1 and φ2 max 1, | φ2| γβ0
Here, we have that φ 2 ∈ W . Similarly, we compute the solutions for the ICTGV β,κ regularizer.

Stopping Criteria

In order to compute an accurate saddle point solution and validate the convergence of our algorithm, we use a primal-dual gap of (25) defined as

P Dgap = F(Kx) + G(x) + F * (-y) + G * (-K T y). (38) 
As the primal-dual gap approaches to zero, the solution gets asymptotically close to the desired saddle point. To be more precise, we do not use the exact form of (38) since we do not take into account some of the indicator functions that are present, for instance I { • ∞ ≤1} (φ 1 ) or the positivity constraints related to ( 26), [START_REF] Pustelnik | Parallel algorithm and hybrid regularization for dynamic pet reconstruction[END_REF]. In fact these constraints are satisfied at each iteration and can be neglected, see for instance [START_REF] Sidky | Convex optimization problem prototyping for image reconstruction in computed tomography with the chambolle-pock algorithm[END_REF]. However, we need to consider the convex conjugate of G, i.e. the convex conjugate of the positive cone {x ≥ 0}. Hence, we have that

G(x) = I {x≥0} (x) ⇒ G * (x * ) = max x≥0 x, x * = 0, if x * , x ≤ 0 ∞, otherwise,
see [START_REF] Rockafellar | Convex Analysis[END_REF]. For all the regularizers the modified primal-dual gaps are explicitly written below

P D T V -gap = TVα + H(g, Ru) + H * (g, φ 2 ) + max(div 1,α φ 1 -R T φ 2 , 0) P D T GV -gap = TGVα(u) +H(g, Ru)+H * (g, φ 3 )+ max(div 1,α φ 1 -R T φ 3 , 0) + max(φ 1 + div 2,α φ 2 , 0) P D ICT V -gap = ICTV β,κ (u)+H(g, Ru)+H * (g, φ 3 )+ max(div 1,κ φ 1 -R T φ 3 ), 0) + max(-div 1,κ φ 1 + div 1,1-κ φ 2 , 0) P D ICT GV -gap = ICTGV β,κ (u)+H(g, Ru)+H * (g, φ 5 )+ max div 1,κ φ 1 -R T φ 5 ), 0) + max(φ 1 +div 2,κ φ 2 , 0)+ max(-div 1,κ φ 1 +div 1,1-κ φ 3 , 0) + max(φ 3 + div 2,1-κ φ 4 , 0)
In order to be independent of the size of the input data, we rescale the primaldual gap by the dimension of the problem. We use the primal-dual gap in order to verify the convergence of the algorithm. However, evaluating the primal-dual gap increases the computational cost since it requires two additional computations of the system matrix per iteration. Hence, we rather use a fixed number of iterations, i.e., 2000 iterations as a stopping criterion, or alternatively a certain threshold ε such that the relative error between two consecutive iterates satisfies

u k+1 -u k 2 u k+1 2 < ε.
In practice we noticed that after 1000 iterations the primal-dual gap is in the range of [10 -5 , 10 -2 ] and there is no significant difference among the iterations.

Quantitative criteria

The proposed regularizers involve parameters that need to be optimized to produce the best reconstructions compared to the ground truth. In particular for the TV and TGV regularizers one has to optimize α 1 and α 2 only, see ( 9), [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF]. In terms of their infimal convolution extensions, three parameters need to be tuned, i.e., β 1 , β 0 and κ, see [START_REF] Esse | A general framework for a class of first order primaldual algorithms for convex optimization in imaging science[END_REF], [START_REF] Goldstein | Adaptive primal-dual hybrid gradient methods for saddle-point problems[END_REF]. For this purpose, we follow a trial-error approach on large grid sizes where the parameters are optimized based on the highest average of structural similarity index (SSIM) over all frames, see [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. In addition, we report the mean squared error (MSE) over all the brain regions, as well as on some regions of interest (ROI) such as the striatum, cortex, thalamus and white matter regions, see Figure 1. Let us mention that both MSE and SSIM criteria have been tested in order to acquire the best reconstructions. However, we find that the best reconstructions with respect to the lowest MSE allow more noisy structures compared to SSIM. Here, we would like to mention that although 3 parameters on the infimal convolutions case are difficult to optimize, we can benefit from the symmetry of ICTV and ICTGV and reduce the total number of combination of (β 1 , β 0 , κ) For instance when β 1 = β 0 and we replace κ by 1 -κ. Similarly the solution are the same for (β 1 , β 0 , κ) and (β 0 , β 1 , 1 -κ).

Finally, we evaluate the relative bias defined as bias = 1 #pixels

#pixels i,j,k |û -u| |û| i,j,k (39) 
where the number of pixels depends on the specific ROI, û denote the ground truth and u the reconstructed image sequence. Apart from the aforementioned priors, we present the standard Maximum Likehood Expectation Maximization (MLEM) reconstruction and a post processed MLEM reconstruction with a Gaussian filtering. A full width at half maximum (FWHM) of 12mm is used for all the radiotracers. As a stopping criterion of the MLEM and the post filtered MLEM reconstructions, we use a fixed number of iterations ( 200) and recover the one with minimum MSE. Although this is out of the scope of this paper, we would like to mention that besides the trial-error method for optimizing these parameters, one can employ a bilevel optimization strategy such as in [1].

Numerical Experiments

In this section, the proposed regularizers are examined on simulated two dimensional dynamic brain phantoms.

To simulate the acquisitions, we measured Time Activity Curves (TACs) in three different acquisitions with the Siemens HRRT camera of healthy volunteers injected with 11C-PE2I, 18F-FDG and 18F-DPA714. The TACs were measured on ROIs delineated on a T1-weighted MRI, from PET images that were reconstructed with PSF modeling. The HRRT camera was used for its relatively high resolution in order to extract input TACs with minimal partial volume effect, see [START_REF] Stute | Analytical simulations of dynamic pet scans with realistic count rates properties[END_REF]. In Figure 1, we present the mean activity on different regions of interest (ROI) with respect of the acquisition time, used as an input to the simulation. Outside of the brain was set to 0 and Artery and Vein were set from blood samples measurements. Scatter and random fractions were also extracted from these three scans in order to produce realistic simulations.

All numerical examples are implemented using MATLAB under GPU on a Macbook pro with 16GB RAM and 2.2 GHz Intel Core i7 CPU.

Noisy Data Generation

In order to create two dimensional dynamic data, we fix a specific slice from the 3D+time volume as in Figure 2 and create a 2D+time array where the third coordinate corresponds to the temporal dimension. The original 3D+time brain phantom has been rescaled to a [0,1] pixel intensity interval. We first create the noiseless dynamic sinograms via the forward model. This is performed using the ground truth brain phantom and the system matrix R which describes the geometric properties of the PET scanner. Then, the noise-free sinograms are corrupted with noise based on the prompt counts that follow Poisson distribution. In addition, we consider a uniform background noise that simulates the scattered and random events. Finally, based on the radiotracer, we use a decay correction on the activity of each radiotracer, namely

D t = 1 -e λ ∆t λ ∆t e λt1 (40) 
where λ = ln2 τ 1/2 , ∆t = t 2 -t 1 with t 1 , t 2 are the starting and ending frame times. For this numerical simulation no attenuation correction is considered. In Table 1, we present all technical details for each radiotracer. For the simulation of the system matrix R, we use the open-source Matlab toolbox Image Reconstruction, see [START_REF] Fessler | Michigan image reconstruction toolbox[END_REF], designed in a C-compiled mex framework. The Poisson noise is simulated using poisson m-file from this toolbox. The resolution of the brain phantom is 128 × 128 of 2.2mm pixels. The sinogram is discretized into 150 radial bins and 150 angles uniformly spaced over 180 o with 2mm ray spacing.

PE2i/FDG/DPA radiotracers

Here, we briefly describe the functionality of each radiotracers used in our numerical experiments. [11C]PE2i is a radiopharmaceutical for in vivo exploration of the dopamine transporter (DAT). The DAT is involved in many dopamine-related disorders including attention deficit hyperactivity disorder, Parkinson's disease, clinical depression or alcoholism. In vivo investigations in healthy humans have demonstrated that PE2i has high striatal uptake. In our experiments, we considered this radiotracer as it has a very well identified ROI with specific uptake in the striatum, and almost only non-specific fixation everywhere else in the brain.

[18F]FDG was also considered as it is the most widely used radiopharmaceutical for clinical PET imaging. It is based on a glucose analog and can be used to assess glucose metabolism. Many neurodegenerative diseases produce significant brain functions alterations that are detectable in PET with [18F]FDG. The uptake of [18F]FDG in the brain is higher in the grey matter compared to the white matter. Finally, we considered a third radiotracer, the [18F]DPA-714, which is specific to the translocator protein (TSPO), a biochemical marker of neuroinflammation. Full understanding of the in vivo TSPO function in central and peripheral inflammatory processes and other pathologies is yet a challenge. In this case, the thalamus is the region that generally presents the highest specific binding in healthy controls.

In the following section, we present our results with respect to the PE2i, FDG and DPA radiotracers.

Results: PE2i

For the sake of readability, results obtained on the PE2i radiotracer are separated into two figures. The first one (Fig. 3) contains the results obtained with methods that do not penalize the temporal domain, i.e. spatial TV, spatial TGV and classic MLEM reconstructions. While the second one (Fig. 4) contains the results obtained with the proposed spatiotemporal regularizers, i.e. spatiotemporal TV and TGV, ICTV and ICTGV. In Figure 3, it can be observed a varying image quality across the frames for all the spatial-only reconstruction methods. This is predictable as a global regularization parameter is used, the noise is signal dependent and the number of counts variates over the time in dynamic acquisitions. For instance, in the case of TV reconstruction, the solution clearly suffers from staircasing and loss of contrast artifacts. Most of the thin structures in the cortex and thalamus regions have disappeared due to loss of contrast. In the case of TGV reconstructions, the method recovers sharper structures especially around the cortex and the striatum regions. However, we observe that many of the contours are blurred. This is due to the fact that the optimized regularizing parameter with respect to SSIM forces the TGV prior to act mostly as a TV 2 prior, see [START_REF] De Los Reyes | Bilevel parameter learning for higherorder total variation regularisation models[END_REF]. Finally, we would like to highlight that although there are still some strong noise artifacts on the filtered version of the MLEM reconstruction, it behaves better on the striatum and thalamus regions in the late frames (25min). These visual results are confirmed by the quantitative criteria that can be found in the last 4 lines of Tables 2 and3. An analysis of the striatum TAC confirms that the four methods based on spatial regularizers have a close behaviour early in the acquisition, and that all of them have a tendency to underestimate the true activity in these regions, see Figure 5. Regarding the reconstructions for the proposed spatiotemporal regularizers (Fig. 4), we deal with a simultaneous spatial-temporal regularization in order to take into account the temporal variation. A visual comparison indicates that globally, all spatiotemporal methods produced better results than their spatial counterparts. It also indicates that compared with the spatiotemporal TV and TGV reconstructions, their corresponding infimal convolution versions behave better and produce sharper reconstructions. In particular, we can observe that compared to the ground truth, the results obtained with ICTV and ICTGV are more robust and accurate to the activity across the acquisition time, see the TAC with respect to the striatum in Figure 5. This is also verified using the time-lines presented in Figure 6. This plots concerns the spatiotemporal reconstructions for two reference lines presented in the upper left corner in Figure 4. We notice that a spatiotemporal staircasing and blurring appears for the TV and TGV reconstructions respectively. Furthermore, using the infimal convolution regularizers we manage to reduce these artifacts. For the case of PE2i, ICTV is the one that produces reconstructions with less noise and better contrast. This is justified from the comparison of the quality measures in the Tables 2,3. In terms of MSE, SSIM and bias, we obtain the best scores and especially compared to ICTGV. We refer also to the MSE and SSIM values per frame in Figures 7(a), 7(b). In addition, we have the lowest scores in the striatum region for MSE and bias. Comparing the timelines of ICTV and ICTGV in Figure 6 for both the striatum and white matter regions, we observe that for the ICTV reconstruction the white matter region is closer to the ground truth whereas we obtain a better contrast in the striatum region with ICTGV. Similar behaviour can be observed for the TAC plot in Figure 5.

We continue with the interpretation of the infimal convolution components. In the first time-frames of the TV and TGV reconstructions, we witness a significant amount of noise that is not eliminated compared to the other two cases. This is due to the fact that at the beginning of the acquisition the recorded photon counts increase abruptly over a short period of time, specially in the first 5 minutes, as it can be observed in the Figure 7(c). Therefore, the temporal variation for these time-frames is significantly larger. In this situation, one can benefit using the infimal convolution approaches. In Figure 8, we present the corresponding decomposition for the ICTV (0.5,0.8),0.09 case for the first five consecutive frames. In addition, we present the mean activity curves for the corresponding ICTV reconstruction for two regions of interest, e.g., striatum and cortex in Figure 9. This indicates a decomposition into the u -v and v components.

For visualization purposes, we consider a rescaled version of the v component. One can observe that the u -v component depicts nearly the activity of the specified region and stores morphological structures. On the other hand for the v component, we have a weak temporal weight which enforces noisy variations along the temporal direction to be captured. Equivalently, the v component depicts more rapid intensity changes that are strong in the beginning (Fig. 8) of the acquisition and decreases at the end, Figure 9.

Regarding the quantification of the radiotracer, which measures the impact of the reconstruction method on the bias of image values compared to ground truth, we notice that the mean time activity curves especially in the striatum region are better for the infimal convolution cases (Fig. 5). This is particularly important for this radiotracer as striatum is the region that presents the highest specific uptake and it is the region used in clinical practice to evaluate pathologies associated to the dopamine transporter. 

Results: FDG

Results obtained with the FDG were comparable with the ones obtained in the PE2i case. While the same time-frame protocol as in the PE2i case was used, see Table 1, the number of counts increases with a different rate since the FDG is an almost irreversible radiotracer. In addition, it does not decrease as its halflife is much higher. The change of the prompt counts across time between the FDG radiotracer can be compared in Figure 12(c) and in Figure 7(c) for the PE2i radiotracer.

In the reconstructions with no temporal regularization, one observes noise artifacts in the early frames and low contrast between the white and gray matter, see Figure 10. In the late frames, the contrast was better recovered but with relatively poor spatial resolution. Again, for both the TV and TGV reconstructions, we encounter either a significant amount of staircasing and loss of contrast or blurring effect in the whole brain area. We refer to the time activity curves in Figure 13, for the regions of interest with the highest uptake, which in this case are the striatum and the cortex. These kind of artifacts reflect to the values of the corresponding quality measures reported in the Tables 4 and5.

A visual comparison indicates that overall, the quality of images reconstructed with spatiotemporal regularization (Fig. 11) is much higher than their spatial counterparts. Noise is better controlled and the small contrast in the early frames is nicely recovered. In the early frames, we can see noise artifacts in the TV and TGV reconstructions, which are reduced in both cases of the infimal convolution, see for instance the SSIM and MSE values per time-frame in Figure 12. Note that in the FDG case, for the whole acquisition time we have overall a smooth variation of the ground truth activity. Therefore, high order regularizers such as TGV and ICTGV are in favour in this case. In the late frames, we observe similar behaviour among the TV/ICTV and TGV/ICTGV reconstructions since after 40th minute the noise level does not variates significantly with respect to time, see Figure 12(c).

The quantitative results for all the reconstructions are presented in Tables 4,5.

SSIM MSE (10 In the FDG dynamic PET simulations, all the best scores were obtained with the ICTGV regularization, see Tables 4 and5. Similar to the PE2i case, we present the time-line plots in Figure 14. The corresponding reference lines are reported in Figure 11 and are similar to the PE2i radiotracer since we focus again to the striatum region. Note that there are staircasing issues in the ICTV reconstruction and especially in the white matter regions. In terms of the TGV reconstruction, we observe blurring effects that are reduced with ICTGV. Finally, in Figure 15, we present the ICTGV (0.7,0.5),0.1 decomposition into the v and u -v components for the first 5 frames as well as the decomposition for the whole sequence for the mean activity of the striatum and cortex regions in Figure 16. Notice that noisy structures are captured at the very first frames, but are not as apparent as in the PE2i case, since in this case the change of prompt counts between time-frames is less compared to the PE2i radiotracer. 

Results: DPA

The last set of experiments was conducted on simulations of dynamic PET images with [18F]DPA-714. Compared to the two other types of simulations, the timeframe configuration was set differently than in the two previous cases, see Table 1. The evolution of the number of counts across time was relatively similar to the PE2i case, and one can observe a sudden change in the number of counts for the first 5 minutes, see Figures 18(c) and 7(c). A visual and quantitative analysis of the results lead to the conclusion that the infimal convolution reconstructions and in particular the ICTGV are noticeably better again. The reconstruction with only spatial regularizers were again worse than the other approaches and therefore we only display the spatiotemporal reconstructions along with filtered MLEM, see Figure 17. One can notice that the noise cannot be eliminated using the spatiotemporal TV and TGV regularizers, see also the SSIM and MSE values for the first time-frames in Figure 18. For the ICTV reconstruction, there is still a staircasing artifact especially in the cortex region, see also the time-lines plots in Figure 19.

The reference lines are focus on the thalamus region and appear in Figure 17.

In healthy subjects, thalamus and cortex are the regions that should present the highest uptake. The ICTGV reconstructions leads to a result where this contrast is preserved and the thalamus and cortex are well identified. This is justified with the TAC for the thalamus and cortex regions in Figure 20. Finally, we report all the quantitative results in Tables 6 and7, where for the ICTGV the best values were obtained. 

Conclusion

In this paper, we deal with spatiotemporal variational regularization methods for dynamic PET reconstruction. We extend the standard total variation and total generalized variation regularizers in the dynamic framework and in addition, we consider their infimal convolution variants. In the fidelity term, we take into account the random and scattered events as well as the decay factor for specific radiotracers and the non-uniform time discretization along the temporal direction. The corresponding minimization problem is solved numerically, with a preconditioned primal-dual gradient technique proposed in [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF]. For our numerical experiments, we use simulated brain phantoms and test our proposed regularizers for three different radiotracers. We observe that spatiotemporal reconstructions are superior to MLEM and also to the non-temporal reconstructions, where most of the brain regions are either noisy or with staircasing and smoothing issues. Based on the quantitative and qualitative comparative results, we emphasize on the significant potential benefit of the infimal convolution for dynamic PET image reconstruction, especially when the radioactivity changes abruptly over a short period of time. As a future work, we aim to test the proposed regularizers on realistic data obtained from a microPET for dynamic PET reconstruction on mice. 
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 1 Fig. 1 Mean Time Activity Curves for the radiotracers PE2i, FDG and DPA for the ROI: Striatum, Cortex, White matter, Thalamus

Fig. 2

 2 Fig. 2 Axial, Coronal, Sagittal views of PE2i radiotracer, t = 11min.

Fig. 3

 3 Fig. 3 Dynamic PET simulations with PE2i radiotracer: only the spatial regularization and the corresponding MLEM reconstructions.

Fig. 4

 4 Fig. 4 Dynamic PET simulations with PE2i radiotracer: reconstruction methods with spatiotemporal regularization.

Fig. 5

 5 Fig.5Results obtained on dynamic PET simulations with PE2i radiotracer: Time Activity Curves for the region of striatum.

Fig. 6

 6 Fig. 6 PE2i: Time-lines of the spatiotemporal reconstructions. The reference lines are shown in Figure 4.

Fig. 7

 7 Fig. 7 PE2i: SSIM, MSE values and number of counts with respect to time.

Fig. 8

 8 Fig. 8 Dynamic PET simulations with PE2i radiotracer: Decomposition of ICTV (0.5,0.8),0.09 for the first 5 minutes. For visualization purposes we consider the rescaled version for v.

Fig. 9

 9 Fig.9PE2i: The ICTV (0.5,0.8),0.09 decomposition into the u -v and v components for the striatum and cortex regions. The mean intensity for the v component is rescaled for visualization purposes.

Fig. 10

 10 Fig. 10 Dynamic PET simulations with FDG radiotracer: only the spatial regularization and the corresponding MLEM reconstructions.

Fig. 11 Fig. 12 FDG

 1112 Fig. 11 Dynamic PET simulations with FDG radiotracer: reconstruction methods with spatiotemporal regularization.

Fig. 13

 13 Fig. 13 Results obtained on dynamic PET simulations with FDG radiotracer: Time Activity Curves for regions of interest.

  (a) Reference line: --(b) Reference line: -.

Fig. 14 FDG

 14 Fig. 14 FDG: Time-lines of the spatiotemporal reconstructions. The reference lines are shown in Figure 11.

Fig. 15

 15 Fig. 15 Dynamic PET simulations with FDG radiotracer: Decomposition of ICTGV (0.7,0.5),0.1 for the first 5 minutes. For visualization purposes we consider the absolute values for u -v and v.

Fig. 16 FDG

 16 Fig.16FDG: The ICTGV (0.7,0.5),0.1 decomposition into the u -v and v components for the striatum and cortex regions. The mean intensity for the v component is rescaled for visualization purposes.

Fig. 17

 17 Fig. 17 Dynamic PET simulations with DPA radiotracer: The spatiotemporal and the MLEM-filtered reconstructions.

  Fig. 18 DPA: SSIM, MSE values and number of counts with respect to time.
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Fig. 19 Fig. 20

 1920 Fig. 19 DPA: Time-lines of the spatiotemporal reconstructions. The reference lines are shown in Figure 17.

Table 1

 1 Isotope, Counts, Half-life and time-frame configurations for the PE2i, FDG and DPA tracers.

		Isotope Prompt Counts τ 1/2	Duration (Frames)
	PE2i	11 C	31 000 000	1223 sec	5 × 60, 5 × 120, 2 × 150, 8 × 300 sec (20)
	FDG	18 F	47 767 000	6586.2 sec 5 × 60, 5 × 120, 2 × 150, 8 × 300 sec (20)
	DPA	18 F	22 349 700	6586.2 sec 6 × 60, 7 × 120, 14 × 300 sec (27)

Table 2

 2 PE2i: Comparison of SSIM, MSE and bias quality criteria for the whole brain.

		SSIM	MSE (10 -3 ) BIAS
	TV (0.06,0.3)	0.9396	1.3181	0.3422
	TGV (0.15,0.25)	0.9417	1.3281	0.3580
	ICTV (0.5,0.8),0.09	0.9484	1.1251	0.3105
	ICTGV (0.8,0.3),0.8	0.9466	1.1266	0.3201
	TV (0.2,0)	0.9155	2.4955	0.3926
	TGV (0.3,0)	0.9099	2.5429	0.4485
	MLEM	0.7899	3.4633	0.5402
	MLEM-Filt	0.8586	2.6265	0.4767

Table 3

 3 PE2i: Comparison of MSE and bias quality criteria for regions of interest.

			MSE (10 -3 )/BIAS ROI	
	TV (0.06,0.3)	8.3354/0.1621	1.7234/0.1543	1.3244/0.1684	1.2615/0.1646
	TGV (0.15,0.25)	10.505/0.1747	1.2094/0.1438 1.0885/0.1575	1.1067/0.1584
	ICTV (0.5,0.8),0.09	7.0436/0.1537 1.7702/0.1388	1.2056/0.1498	0.9940/0.1261
	ICTGV (0.8,0.3),0.8	8.0809/0.1573	1.2176/0.1195 1.0645/0.1420 0.9314/0.1277
	TV (0.2,0)	25.642/0.1987	3.9084/0.1682	1.2714/0.1285	2.4995/0.1493
	TGV (0.3,0)	24.128/0.1907	2.8140/0.1542	1.5272/0.1389	2.4122/0.1586
	MLEM	25.029/0.1861	4.3788/0.1803	3.7225/0.2128	2.8891/0.1908
	MLEM-Filt	20.730/0.1698	2.8498/0.1536	2.2530/0.1716	2.4044/0.1709
		Striatum	Thalamus	Cortex	WM

Table 4

 4 FDG: Comparison of MSE and bias quality criteria for the whole brain.

	-3 ) BIAS

Table 5

 5 FDG: Comparison of MSE and bias quality criteria for regions of interest.

Table 6

 6 DPA: Comparison of MSE and bias quality criteria for the whole brain.

Table 7

 7 DPA: Comparison of MSE and bias quality criteria for regions of interest.

			MSE (10 -3 )/BIAS ROI	
	TV (0.1,1)	1.3170/0.1225	1.7956/0.1249	1.9099/0.1294	0.9007/0.1091
	TGV (0.15,1.5)	1.5339/0.1300	1.4561/0.1159	2.2425/0.1390	0.9052/0.1169
	ICTV (14,1.5),0.003	1.0533/0.0993	1.6182/0.1045	1.6093/0.1087	0.7151/0.0831
	ICTGV (2,1.5),0.1	1.0058/0.0966 1.0720/0.0849	1.5308/0.1024 0.7410/0.0856
	TV (0.4,0)	1.6892/0.1186	6.1348/0.1995	2.4684/0.1216	1.0207/0.0866
	TGV (0.4,0)	1.7457/0.1253	3.1974/0.1333	3.0400/0.1374	1.3987/0.1138
	MLEM	2.9163/0.1634	6.1558/0.1853	6.3402/0.2093	2.2793/0.1532
	MLEM-Filt	2.2980/0.1463	3.8636/0.1433	4.1258/0.1650	1.7533/0.1329
		Striatum	Thalamus	Cortex	WM
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