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lculation of the effective elastic properties of a laminated composite shell with
the layers. To achieve this goal, first the two-scale asymptotic homogenization
derive the solutions for the local problems and to obtain the effective elastic
herical shell with imperfect contact between the layers. The results are com-
lution obtained by finite elements method (FEM). The limit case of a laminate
ct contact at the interface is recovered. Second, the elastic properties of a
ucture with isotropic periodic microstructure and imperfect contact is ana-
emblage model (SAM). The homogenized equilibrium equation for a spherical
HM and the results are compared with the exact analytical solution obtained
1. Introduction

Composite materials have emerged as the materials of choice in
various branches of industry – aerospace, automotive, sport, etc. –
for increasing the performance and reducing the weight and cost.
However, defects induced during the manufacturing process or
accumulated due to environmental and operational loads lead to
the reduction in the mechanical performance and material
strength and are recognized as a general problem in this type of
composites, [1]. Most typically, such defects can be found at the
interfaces between the layers creating an imperfect contact condi-
tion, [2,3].

The effect of the contact imperfectness on elastic properties of
composites attracted the attention of researchers from 1970’s,
[4,5]. In [6–9], the authors obtained analytical expressions for the
effective elastic properties of rectangular fibrous composites with
imperfect contact between the matrix and the reinforcement. On
the other hand, the multilayered curvilinear shell structures have
received special attention in the last years. In [10–13] several
mathematical methods have been used to derive analytical expres-
sion for the elastic properties of laminated shell composites. As a
particular case, in [14], the expression of the effective coefficients
for a curvilinear shell composite with perfect contact at the inter-
face is obtained.

Several mathematical models and techniques have been devel-
oped to evaluate the elastic properties of curvilinear laminated
shell composites with imperfect contact at the interfaces. In papers
as [10,12,15–20], the assemblage model, finite elements method
and the two-scale asymptotic homogenization method are used
to derive in one way or another the effective behavior of the elastic
properties of particular composites with imperfect contact at the
interface.

In this paper a spherical shell structure is studied. In [21] the
authors considered the effect in the elastic properties of a spherical
laminated shell composite under the influence of stress and strain



distributions for two composites with perfect and imperfect con-
tact at the interface using AHM and SAM. In [21] the imperfect con-
tact condition is modeled considering a thin interphase between
the layers of the composite, i.e., a three phase composite is used
in the analysis. Here the same effect in the spherical shell structure
is studied except that the imperfect contact condition is modeled
as a linear spring type and the FEM is used to validate the results
obtained via AHM and SAM. The purpose of studying this kind of
spherical structures obeys to the development and application of
mathematical methods for the study of the cornea and other sim-
ilar soft tissues.

In the present paper, first the AHM technique is used to evalu-
ate the elastic properties of a two-layer laminated shell with
imperfect contact of the spring type at the interface. The general
analytical expressions of the effective coefficients are derived from
the solution of the local problem. We focus on a two-layer spheri-
cal shell subjected to internal pressure assuming that the layers are
isotropic. To validate the model, the effective coefficients of the
spherical structure are compared with FEM calculations. The elas-
tic fields (stresses, strains and displacements) are also compared
with ones calculated by the method of Bufler [22] for the analysis
of a spherical assemblage model (SAM). The approach is based on
the transfer matrix method and yields closed form calculation of
the equivalent elastic properties of a periodically laminated hollow
sphere made of alternating layers of isotropic elastic materials
with imperfect contact. The effective displacement, radial and
hoop stresses computed via AHM are compared with the elastic
fields calculated by FEM and SAM.

2. The linear elastic problem

A curvilinear elastic periodic composite is studied. The geome-
try of the structure is described by the curvilinear coordinates sys-
tem x ¼ ðx1; x2; x3Þ 2 X � R3, where X ¼ X1 [X2 is the region
occupied by the solid, it is bounded by the surface @X ¼ R1 [ R2,
where R1 \ R2 ¼ £; Xa a ¼ 1;2 are the elements of the composite,
separated by the interface Ce. In X, the stress r and strain � are

related through the Hooke’s law, rij ¼ Cijkl�kl, where Cijkl are the
components of the elastic tensor C. For a linear periodic solid struc-
ture, the elastic tensor C � Cðx; yÞ is regular with respect to the
slow variable x and Y-periodic with respect to the fast variable
y ¼ x=e 2 Y, where 0 < e � 1 characterizes the periodicity of the
composite and Y denotes the periodic cell.

The linear elastic equilibrium equation for a curvilinear lami-
nated shell composite with imperfect contact (spring type) at the
interface is

rij
;j þ Ci

jkr
kj þ C j

jkr
ik þ f i ¼ 0; in X; ð1Þ

subject to boundary conditions,

ui ¼ u0
i on R1; rijnj ¼ Si on R2; ð2Þ

and interface contact conditions,

rijnj ¼ Kij uj
� �� �

; rijnj
� �� � ¼ 0; on Ce; ð3Þ

where f�g;j ¼ @
@xj

f�g is the derivative with respect to the slow curvi-

linear coordinate, Ci
jk are the Christoffel’s symbols of second type,

�½ �½ � ¼ ð�Þð2Þ � ð�Þð1Þ denotes the jump at the interface Ce, nj is the nor-

mal vector to the corresponding surface (R2; C
e), Kij are the compo-

nents of a matrix K, that characterizes the imperfect contact in Ce

and the order of K is Oðe�1Þ. Replacing the Hooke’s law and consid-
ering the Cauchy’s formula, �ij ¼ ðui;j þ uj;iÞ=2, the equations (1)–(3)
can be rewritten for the displacement vector function [14].
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3. Homogenization of two-layer laminated shell composites
with imperfect contact

In order to obtain an equivalent problem to (1)–(3) with not fast
oscillating coefficients, the two–scales Asymptotic Homogeniza-
tion Method (AHM) is used. The general expression of the trun-
cated expansion is given by

uðeÞ
m ¼ vm þ e N̂p

mvp þ Nlk
mv l;k

h i
þ oðeÞ; ð4Þ

where vm � vmðxÞ; Nlk
m � Nlk

mðx; yÞ is the local function for the first

order approach, Nlk
ð1Þmðx; yÞ is Y-periodic, where Y ¼ ½0;1� and

N̂p
m ¼ �Cp

lkN
lk
m [14]. Substituting the expansion (4) into the Eqs.

(1)–(3) a recurrent family of problem is obtained for different pow-
ers of the small parameter e.

Considering a two-layer laminated shell composite with isotro-
pic components, i.e.

Cijkl ¼ kðyÞgijgkl þ lðyÞ gljgki þ gilgkj
� �

; ð5Þ
where ½gij� is the metric tensor of the coordinates ðx1; x2; x3Þ and

kðyÞ ¼ k1 y 2 ½0; cÞ
k2 y 2 ðc;1�

�
; lðyÞ ¼ l1 y 2 ½0; cÞ

l2 y 2 ðc;1�
�

;

where the layers are transversal to the axis x3, the local problem is
obtained for e�1

@=@y Ci3lk þ Ci3m3@Nlk
m=@y

� �
¼ 0 on Y ¼ ½0; cÞ [ fcg [ ðc;1�; ð6Þ

with interface conditions given by the expressions

Ci3lk þ Ci3m3@Nlk
ð1Þm=@y

h i
¼ ð�1Þaþ1Kij Nlk

ð1Þj
h ih i

on Ce ¼ fy ¼ cg;
ð7Þ

Ci3lk þ Ci3m3@Nlk
ð1Þm=@y

h ih i
¼ 0 on Ce ¼ fy ¼ cg;

ð8Þ
where the parameter a ¼ 1;2 denotes the layer.

Substituting (5) into the local problem (6) the following expres-

sion is obtained @2Nlk
ð1Þm=@y

2 ¼ 0. Therefore, the local function has
the expression

Nlk
m ¼ Alkð1Þ

m yþ Blkð1Þ
m ; y 2 ½0; cÞ;

Alkð2Þ
m yþ Blkð2Þ

m ; y 2 ðc;1�:

(
ð9Þ

Considering the periodicity of the functions Nlk
m and @Nlk

m=@y the
following linear equations system is obtained from Eq. (8)

Ci3lkð1Þ þ Ci3m3ð1ÞAlkð1Þ
m

h i
¼ �Kim Alkð1Þ

m ðcÞ þ Alkð2Þ
m ð1� cÞ

� �
; ð10Þ

Ci3lkð2Þ þ Ci3m3ð2ÞAlkð2Þ
m

h i
¼ �Kim Alkð1Þ

m ðcÞ þ Alkð2Þ
m ð1� cÞ

� �
; ð11Þ

where the supraindex ðaÞ a ¼ 1;2 refers to each layer a. The linear

problem (10) and (11) related to the variables AlkðaÞ
m can be solved

using classical methods and therefore the local functions are
obtained.

Applying the average operator to the coefficient of the parame-
ter e0, the homogenized coefficients are obtained and the general
expression is given in the Eqs. (12)–(18) of [14]. The effective coef-
ficients for a two-layer laminated shell composite with isotropic
layers and imperfect contact condition at the interface have the
general analytic expression

bhijkl ¼ Cijkl
D E

þ V1C
ijm3ð1Þ @N

klð1Þ
m

@y
þ V2C

ijm3ð2Þ @N
klð2Þ
m

@y
: ð12Þ

where Va is the volume of the layers of the composite and the local

functions @NklðaÞ
m =@y have the expression



@NklðaÞ
m

@y
¼

�Cq3klðaÞ KqnVb þ Cq3n3ðbÞ
� �

þ Cq3klðbÞKqnVb

Cr3m3ð1ÞCr3n3ð2Þ þ Cr3m3ð1ÞKrnV2 þ Cr3n3ð2ÞKrmV1

; ð13Þ

for b ¼ 1;2 and b– a.
The homogenized problem is obtained from the Eqs. (19) and

(20) of [14].

3.1. Comparison of the effective coefficients for composites with perfect
and imperfect contact

In order to illustrate the influence of the imperfect contact on
the effective coefficients, a two layer rectangular laminate shell is
considered (see Fig. (1)). The layers of the composite are isotropic
and the materials are stainless steel (Young’s modulus E1 ¼ 206:74
GPa, Poisson ratio, m1 ¼ 0:3) with volume V1, represented by Y1 on
Fig. (1) and aluminum (Young’s modulus E2 ¼ 72:04 GPa, Poisson
ratio, m2 ¼ 0:35) with volume V2 ¼ 1� V1, represented by Y2 on
Fig. (1). The matrix K characterizes the imperfect contact at the
interface C (see Fig. (1)) and it has nonzero components K11 ¼
K22 ¼ l=e and K33 ¼ ðlþ 2kÞ=e where l ¼ k ¼ 1 and
e ¼ ½0:001;0:01;0:05�. The effective coefficients for the imperfect
contact case are calculated using the Eq. (12) and they are com-
pared with the coefficients obtained using Eq. (26) of [14] for per-
fect contact case (see Fig. (2)). The convergence of effective
YY2Y1

Fig. 1. Rectangular structure X, unit cell Y, the two elements Y1 and Y2 with the
corresponding interface C.

Fig. 2. Comparison of the effective coefficients h1111
; h3333

; h1133 and h1313 of a compo
coefficients for a composite with imperfect contact using Eq. (12).
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coefficients for the imperfect contact case can be appreciated as
e ! 0, i.e. Kij ! þ1.

For the case of V1 ¼ 0 or V1 ¼ 1, we are in presence of a mono-
element multi-layered structure, i.e. it is a structure with several
layers but each layer is the same element. It can be studied the per-
fect and the imperfect contact between the layers of these struc-
tures. For the perfect contact case, the mono-element multi-
layered structure are considered as an homogeneous structure.
But a different situation is obtained for the imperfect contact case.
Due to the imperfection, the structures are studied as a heteroge-
neous composite.

It can be seen in Fig. (2), for the perfect contact case, that the
aluminum and stainless steel elastic moduli are reached for
V1 ¼ 0 or V1 ¼ 1, respectively, as a whole homogeneous material.

In particular, for V1 ¼ 1 the value C3333 ¼ h3333 ¼ 278:3038 GPa is
attained for stainless steel. In the case of imperfect contact the
imperfection is modeled as a linear spring distributed across the
common interface C between the layers. When K11 takes the values

1000, 100 and 20, the elastic constant h3333 is equal to 254.6779,
144.3725 and 49.3587 GPa, respectively. Thus, the main effect of
the imperfect contact is to degrade the composite’s integrity: the
value of the elastic constants diminishes accordingly, so a weak-
ened composite is obtained. In other words, the particular case of
V1 ¼ 0 (V1 ¼ 1) reports, for the imperfect contact case, the effective
coefficients of the a structure X where the unit cell has two layers
Y1 and Y2 made by aluminum (stainless steel), but with degrading
due to the imperfection. It is very important to remark the fact that
the AHM reports different values of the effective coefficients for
mono-element multi-layers structures with perfect and imperfect
contact at the interface; i.e. due to the imperfection, the effective
coefficients of the structures with imperfect contact are weaker.

4. The spherical assemblage model with imperfect contact
(SAM)

In this section, a spherical assemblage model consisting of N dif-
ferent thin elastic layers is studied using the transfer-matrix
method.
site with perfect contact at the interface using Eq. (26) of [14] and the effective



The transfer-matrix method is a classic approach [23]. Here, we
first review its application to a periodic laminated hollow sphere
proposed in [22] and next extend the obtained results to the case
of imperfect contact between the layers.

The spherical assemblage has internal radius Ri, external radius
Re and thickness h ¼ 2t. The inner surface r ¼ Ri is loaded by a con-
stant pressure

rrrðRiÞ ¼ þp; ð14Þ
whereas the external surface r ¼ Re is traction free

rrrðReÞ ¼ 0: ð15Þ
The k-th layer comprised between the radii Rk�1 and Rk, is char-

acterized by the thickness hk and it is made of linear elastic homo-
geneous and isotropic material with Young modulus and Poisson
ratio Ek and mk, respectively. According to the transfer-matrix
method [22], the radial stress rrr and displacement ur at radius
Rk�1 of the laminated sphere can be related to the radial stress
and displacement at radius Rk through the field-transfer matrix
Tk of the layer k:

rrrðRkÞ
E�urðRkÞ=h�

	 

¼ Tk

rrrðRk�1Þ
E�urðRk�1Þ=h�

	 

; ð16Þ

Tk :¼
1� akh bkh

ckh 1� dkh

	 

; ð17Þ

with

ak :¼2 1� mk
ð1� mkÞ

� �
kk
Ri

; ð18Þ

bk :¼ 2
ð1� mkÞ

Ekh
�

E�
kk
R2
i

; ð19Þ

ck :¼ 1� 2m2k
ð1� mkÞ

� �
Ekh

�

E� kk; ð20Þ

dk :¼ 2mk
ð1� mkÞ

kk
Ri

: ð21Þ

Here, kk ¼ hk=h is the thickness ratio of the k-th layer, and E�

and h� denote a reference modulus of elasticity and thickness,
respectively. Applying (16) N-times for the layered hollow sphere
made of layers in perfect contact, we have

rrrðReÞ
E�urðReÞ=h�

	 

¼ S

rrrðRiÞ
E�urðRiÞ=h�

	 

; S :¼ TNTN�1 . . .T1: ð22Þ

Here S is the transfer matrix system from radius Ri to Re, linking
the two elastic states at the boundaries of laminated sphere.

Sustituting (16) into (22) and considering only the terms of
order zero and one in h, Bufler’s result is obtained:

S ¼ I� hMþ oðhÞ; M :¼ a b

c d

	 

; ð23Þ

with

a :¼
XN
k¼1

2 1� mk
ð1� mkÞ

� �
kk
Ri

; ð24Þ

b :¼
XN
k¼1

2
ð1� mkÞ

Ekh
�

E�
kk
R2
i

; ð25Þ

c :¼
XN
k¼1

1� 2m2k
ð1� mkÞ

� �
EkE

�

h� kk; ð26Þ

d :¼
XN
k¼1

2mk
ð1� mkÞ

kk
Ri

: ð27Þ

To extend these results to a laminated sphere with imperfect
contact between the layers, an arrangement of springs is artificially
considered at the spherical surface between adjacent layers. In this
4

case, a jump of the radial displacement has to be taken into consid-
eration, [24–27]. In particular, the continuity of radial stress is
assumed and the following linear relation between the radial stress
and the jump of radial displacement is imposed at the radius Rk:

rrrðRþ
k Þ

E�urðRþ
k Þ=h�

" #
¼ K̂k

rrrðR�
k Þ

E�urðR�
k Þ=h�

	 

; K̂k :¼

1 0
E�ek=ðh�ð2lk þ kkÞÞ 1

	 

;

ð28Þ
where the matrix K̂k characterizes the imperfect contact provided
by the k-th layer of springs, with k ¼ 1;2; . . .N � 1; ek � 1 is a small
length parameter accounting for its thickness and 2lk þ kk its elas-
ticity coefficient.

Now, the presence of springs are considered, therefore the
transfer matrix system S (cf. (23)) modifies in order to incorporate

the matrices K̂k,

~S ¼ TNK̂N�1TN�1 . . . K̂1T1: ð29Þ
Substituting (16) and (28) into (29), one obtains the new matrix

system for a spherical assemblage made of N layers with imperfect
contact. It can be shown that

~S ¼ I� hMþ oðhÞ; ~M :¼ a b
~c d

	 

; ð30Þ

with a; b and d given again by Eqs. (24), (25) and (27), respectively,
and

~c :¼c þ
XN�1

k¼1

E�

h�
ek

ð2lk þ kkÞ

¼
XN
k¼1

1� 2m2k
ð1� mkÞ

� �
EkE

�

h� kk þ
XN�1

k¼1

E�

h�
ek

ð2lk þ kkÞ : ð31Þ

The case of a periodic laminate made by repeating n times a
group of N layers is now considered. As n increases, the thicknesses
hk and ek must decrease with n in order to keep the total thickness h
of the fixed laminate. In particular, it is assumed that hk ¼ Kkh=n
and ek ¼ nkh=n, with Kk; k ¼ 1;2; . . .N, the thickness ratio of the k-
th layer inside the group, and analogously nk � 1;
k ¼ 1;2; . . .N � 1, for the k-th layer of springs. The matrix system
for the hollow sphere with homogenized properties following
Bufler is calculated as

lim
h!0

1
h

~Sn � I
� �

¼ lim
h!0

1
h

ðTNK̂N�1TN�1 . . . K̂1T1Þ
n � I

� �
¼ hMi; ð32Þ

with

hMi :¼ hai hbi
hci hdi

	 

; ð33Þ

hai :¼
XN
k¼1

2 1� mk
ð1� mkÞ

� �
Kk

Ri
; ð34Þ

hbi :¼
XN
k¼1

2
ð1� mkÞ

Ekh
�

E�
Kk

R2
i

; ð35Þ

hci :¼
XN
k¼1

1� 2m2k
ð1� mkÞ

� �
Ekh

�

E� Kk þ
XN�1

k¼1

E�

h�
nk

ð2lk þ kkÞ ; ð36Þ

hdi :¼
XN
k¼1

2mk
ð1� mkÞ

Kk

Ri
: ð37Þ

As an example, consider the homogenization of a periodic lam-
inate made by repeating a group of two layers under imperfect
contact. In this case, the ‘‘unit cell” of the laminate is TþKT�, with
T� the transfer matrices of two layers whose elasticity constants

are denoted E�; m�, and K̂ the matrix characterizes imperfect con-
tact. The thickness ratios K� are assumed to coincide
Kþ ¼ K� ¼ 1=2. Thus,



hai :¼ 1
Ri

ð1� 2m�Þ
ð1� m�Þ þ ð1� 2mþÞ

ð1� mþÞ
� �

; ð38Þ

hbi :¼ h�

E�R2
i

E�
ð1� m�Þ þ

Eþ
ð1� mþÞ

� �
; ð39Þ

hci :¼ E�

h�
ð1� 2m�Þð1þ m�Þ

2E�ð1� m�Þ þ ð1� 2mþÞð1þ mþÞ
2Eþð1� mþÞ þ n

ð2lþ kÞ
� �

;

ð40Þ

hdi :¼ 1
Ri

m�
ð1� m�Þ þ

mþ
ð1� mþÞ

� �
: ð41Þ

As a final result, note that comparing the latter relations with
the matrix system of a transversely isotropic homogeneous elastic
sphere (cf. [22, Eqs. (17)–(19)]) one obtains the equivalent material
parameters E=ð1� mÞ; E0; m0 of the homogenized sphere consisting
of a two–layers laminate with imperfect contact,

E
ð1� mÞ ¼

E�
2ð1� m�Þ þ

Eþ
2ð1� mþÞ

� �
; ð42Þ

1
E0 ¼

m�
ð1�m�Þ þ

mþ
ð1�mþÞ

� �2
E�

ð1�m�Þ þ
Eþ

ð1�mþÞ

� �
þ ð1� 2m�Þð1þ m�Þ

2E�ð1� m�Þ þ ð1� 2mþÞð1þ mþÞ
2Eþð1� mþÞ þ n

ð2lþ kÞ ; ð43Þ

m0

E0 ¼
m�

ð1�m�Þ þ
mþ

ð1�mþÞ

� �
E�

ð1�m�Þ þ
Eþ

ð1�mþÞ

� � : ð44Þ

The state of stresses and displacements of the equivalent trans-
versely isotropic hollow sphere subjected to the boundary condi-
tions (14) and (15) can be obtained by substituting the relations
(42)–(44) into Eq. (52) of [22], which are

urðrÞ ¼ pRe

Ri
Re

� �k1�1
� Ri

Re

� �k2�1

h�

E� hci
r
Re

� �k2
Rihdiþ k2

�
r
Re

� �k1
Rihdiþ k1

264
375; ð45Þ

rrrðrÞ ¼� p
Ri
Re

� �k1�1
� Ri

Re

� �k2�1

r
Re

� �k1�1

� r
Re

� �k2�1
" #

; ð46Þ

rhhðrÞ ¼� p=2
Ri
Re

� �k1�1
� Ri

Re

� �k2�1 ð1þ k1Þ r
Re

� �k1�1

�ð1þ k2Þ r
Re

� �k2�1
" #

;

ð47Þ
with

k1;2 ¼ 1=2 �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8C � 1

p� �
; ð48Þ

C ¼ 1=2 R2
i hbihci � ð1� RihdiÞRihdi

� �
: ð49Þ
5. The finite element method

In this section, a numerical method based on the finite element
is proposed to solve problem (6)–(8). Since this technique is quite
standard, it is rapidly outlined here.

For the sake of simplicity, we denote Y� ¼ ½0; cÞ and Yþ ¼ ðc;1�.
Then, choosing a test function v, which can be discontinuous across
the interface Ce, multiplying the equilibrium Eq. (6) by this test
function and integrating among Y, one obtains after integration
by parts

�
Z
Y�

Ci3lk þ Ci3m3 @N
lk
m

@y
@v
@y

 !
dyþ Ci3lk þ Ci3m3 @N

lk
m

@y

!
ðc�Þvðc�Þ ¼ 0

ð50Þ
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�
Z
Yþ

Ci3lk þ Ci3m3 @N
lk
m

@y
@v
@y

!
dy� Ci3lk þ Ci3m3 @N

lk
m

@y

!
ðcþÞvðcþÞ ¼ 0:

ð51Þ
Now, adding these two equations, using the continuity of

Ci3lk þ Ci3m3 @Nlk
m

@y across the interface, (see Eqs. (7) and (8)), a weak

formulation of the problem can be written as followsZ
Y�

Ci3lk þ Ci3m3 @N
lk
m

@y
@v
@y

!
dyþ Kim½½Nlk

ð1Þm��½½v �� ¼ 0

Finally, using standard finite element on each sub domain, and a
‘‘flat” finite element on Ce, that have all its nodes on C�, the first
ones related to Y� and the other ones to Yþ, it is possible to write
a rigidity matrix of this problem, that is invertible, with standard
error estimation (see [28] or [29] for more details).

Due to finite element discretization, the integrals (see formula
(12), for example) for the computation of effective coefficients
are substituted by sums over element contributions.

6. Numerical results

6.1. Rectangular shell composite

Here a flat shell structure is considered in order to validate for-
mula (12). The unit cell is composed of two layers of isotropic
materials like aluminum and reinforced carbon fiber. The proper-
ties are Young’s modulus equal to 150 Gpa and Poisson’s ratio
0.3. The volume fraction of both materials are set to 0.5. The matrix
K that characterizes the imperfect contact takes the same values as
given in Section 3.1. In Table 1 the effective coefficients are
obtained using formula (12). The same results are also attained
using the formulas for perfect contact homogenized constants
(1.19) [4, Chap. 5] and (9.9) [30]. As a particular case, from the
model used here of imperfect contact, Eq. (12) gives the same val-
ues that formula (1.30) of [4, Chap. 5] with perfect contact (i.e. with
very large K11) for a flat laminated structure.

6.2. Spherical shell composite

In contrast to [21] here the imperfect condition is taken as a dis-
tribution of linear springs acting at the interface between the two
isotropic materials except that now a hollow two layer spherical
shell composite is considered with isotropic components.

The inner and outer radius are denoted by Ri ¼ R0 � t and
Re ¼ R0 þ t respectively, where t ¼ R0=10. The spherical coordinate
system ðh;u; rÞ is used to describe the geometry of the structure,
[12]. The layers of the composite are transversal to the coordinate
r. The inner surface r ¼ Ri of the heterogeneous body is loaded by a
constant radial stress, (14), and the external spherical surface
r ¼ Re is traction free. The materials used in the composite have
the following elastic properties

l� ¼ 10lþ; l ¼ exlþ; ð52Þ
m� ¼ 0:2; mþ ¼ 0:35; m ¼ 0:3; ð53Þ
where x 2 ½�3;3�, the index ‘‘�” denotes the inner layer, the index ‘‘
+” the outer layer, non-indexed constants are the K parameters. For
this particular case, the matrix K is diagonal and has components
K11 ¼ K22 ¼ l=e and K33 ¼ ðkþ 2lÞ=e.

To obtain the effective elastic properties of the presented spher-
ical shell composite, the two above described approaches, AHM
and SAM are used.

As a first step, the local functions @Nlk
m=@y are computed via

AHM (13) and FEM. The variational formulation (50) and (51) of



Table 1
Comparison between the effective coefficients obtained via AHM (12) for imperfect contact (I.C.) case and perfect contact (P.C.) condition using the results presented in [4].

Effective Ceoff. P.C. I.C. K11 ¼ 1000 I.C. K11 ¼ 100 I.C. K11 ¼ 20

h1111 157.843037 156.2367942 146.5355996 133.4282785

h1122 73.46924781 71.86300505 62.16181048 49.05448934

h1133 71.09793087 67.77592879 47.71209456 20.60377131

h3333 147.0434479 140.1729436 98.67728648 42.61234521

h1313 36.48801967 35.20351318 26.73349628 12.91885249

h1212 42.18689459 42.18689459 42.18689459 42.18689459
the linear system of Eqs. (10) and (11) used to obtain the value of

the local function @Nlk
m=@y by FEM, reports the exact solution of the

system due to the linearity of the system. Thus, a perfect concor-

dance between the local function @Nlk
m=@y, computed via AHM

and FEM, is obtained.
In Table 2, a comparison of the effective coefficients obtained

via AHM and FEM using the parameters (52) and (53) and consid-
ering e ¼ R0=100 is shown. Notice the perfect coincidence between
the effective coefficients reported by both methods; this is an
expected result since the local functions obtained through AHM
and FEM also coincide.

The effective coefficients given in Table 2 are used to obtain the
homogenized problem following the methodology described in
[4,14]. Solving the homogenized problem with the boundary con-
Table 2
Values of the effective coefficients hijkl obtained via AHM and FEM for some values of the

hijkl=l

h1111 h1133

x AHM FEM AHM FEM

�3 14.84995 14.84995 2.05841 2.05841
�2 15.03957 15.03957 2.53939 2.53939
�1 15.13372 15.13372 2.77821 2.77821
0 15.17297 15.17297 2.87777 2.87777
1 15.18812 15.18812 2.91622 2.91622
2 15.19380 15.19380 2.93062 2.93062
3 15.19591 15.19591 2.93595 2.93595

Table 3
Values of the normalized effective displacement lþur=pð	Þ obtained via AHM, FEM and SA

lþur=pðRiÞ lþur=pðR0Þ
x AHM FEM SAM AHM FE

�3 �0.15039 �0.15191 �0.16851 �0.12612 �
�2 �0.14827 �0.14581 �0.16224 �0.12647 �
�1 �0.14749 �0.14315 �0.16218 �0.12660 �
0 �0.14721 �0.14210 �0.16310 �0.12664 �
1 �0.14710 �0.14170 �0.16367 �0.12666 �
2 �0.14706 �0.14155 �0.16393 �0.12667 �
3 �0.14705 �0.14150 �0.16403 �0.12667 �

Table 4
Values of the normalized effective radial stress rrr=pð	Þ obtained via AHM, FEM and SAM

rrr=pðRiÞ rrr=pðR0Þ
x AHM FEM SAM AHM

�3 1 1 1 0.39194
�2 1 1 1 0.39442
�1 1 1 1 0.39535
0 1 1 1 0.39569
1 1 1 1 0.39581
2 1 1 1 0.39586
3 1 1 1 0.39588

6

ditions (14) and (15), the effective displacement and stress are
computed. In order to compare the results obtained by AHM,
FEM and the methodology presented in Section 4, the normalized
displacement reported in Table 3 is computed using three methods
AHM, FEM and SAM for the values of the parameter
x ¼ f�3;�2;�1;0;1;2;3g at Ri; R0 and Re. Good concordance
between the three methods is appreciated.

Considering the effective coefficients of Table 2, the radial dis-
placement of Table 3 and the methodology described in Section 4,
the effective radial rrr and circumferential rhh stresses are com-
puted using the three methods.

In Table 4, the effective radial stress is computed by AHM, FEM
and SAM for different values of the parameter x. The good corre-
spondence between the three methods for r ¼ fRi;Reg is due to
parameter x.

þ

h1122 h3333

AHM FEM AHM FEM

3.84995 3.84995 5.22134 5.22134
4.03957 4.03957 6.44138 6.44138
4.13372 4.13372 7.04716 7.04716
4.17297 4.17297 7.29971 7.29971
4.18812 4.18812 7.39723 7.39723
4.19380 4.19380 7.43377 7.43377
4.19591 4.19591 7.44730 7.44730

M for some values of the parameter x.

lþur=pðReÞ
M SAM AHM FEM SAM

0.12649 �0.12857 �0.11365 �0.11433 �0.11224
0.12335 �0.13398 �0.11459 �0.11198 �0.12014
0.12182 �0.13813 �0.11494 �0.11077 �0.12510
0.12119 �0.14054 �0.11507 �0.11026 �0.12775
0.12094 �0.14164 �0.11511 �0.11007 �0.12893
0.12085 �0.14208 �0.11513 �0.10999 �0.12939
0.12082 �0.14225 �0.11514 �0.10997 �0.12957

for some values of the parameter x.

rrr=pðReÞ
FEM SAM AHM FEM SAM

0.40777 0.37774 0 0 0
0.41001 0.38967 0 0 0
0.41086 0.39422 0 0 0
0.41117 0.39591 0 0 0
0.41129 0.39654 0 0 0
0.41133 0.39677 0 0 0
0.41135 0.39685 0 0 0



Table 5
Values of the normalized effective radial stress rhh=pð	Þ obtained via AHM, FEM and SAM for some values of the parameter x.

rhh=pðRiÞ rhh=pðR0Þ rhh=pðReÞ
x AHM FEM SAM AHM FEM SAM AHM FEM SAM

�3 2.45936 2.48818 2.69206 1.99925 1.99922 1.97031 1.76450 1.77485 1.68188
�2 2.41921 2.37235 2.49624 2.00421 1.94473 1.99469 1.77900 1.73844 1.75124
�1 2.40438 2.32194 2.42263 2.00604 1.91827 2.00379 1.78437 1.71966 1.77776
0 2.39891 2.30199 2.39533 2.00672 1.90737 2.00716 1.78636 1.71178 1.78766
1 2.39690 2.29444 2.38526 2.00696 1.90319 2.00840 1.78709 1.70873 1.79132
2 2.39616 2.29163 2.38155 2.00706 1.90163 2.00886 1.78736 1.70759 1.79267
3 2.39589 2.29059 2.38019 2.00709 1.90105 2.00902 1.78746 1.70716 1.79316
the boundary conditions (14) and (15). In Table 5, the effective cir-
cumferential stress is reported for the spherical structure men-
tioned above. The results have similar behavior for the three
methods and the same values of the parameter x.

It can be seem that the results presented in Tables 3–5 for the
linear spring model, coincide with the values obtained with model
where the imperfect contact condition is idealized by a thin inter-
phase between the layers of the composite, i.e. a three phase com-
posite as it is given in [21].

7. Conclusions

In this paper three different approaches areused to study the
elastic properties of a spherical shell composite. The two-scale
Asymptotic Homogenization Method is used to obtain the general
expression of the local problems and the effective coefficients of
elastic composites with imperfect contact at the interface. The
expression of such effective coefficients is given in (12). The results
are compared for different cases of imperfections and the limit case
reported in [14] for perfect contact is derived, considering a partic-
ular composite. The methodology for spherical shell composites
with imperfect contact at the interface is implemented. The local
problems for this structure are solved analytically and via FEM.
The solution of local functions are used to compute the effective
coefficients, and a good coincidence between AHM and FEM is
appreciated. Moreover, a third method considering the spherical
assemblage model (SAM) is proposed and the general expression
for the elastic properties of a spherical structure with imperfect
contact at the interface is derived. The general expression, via
SAM, of the displacement, radial and circumferential stresses for
the spherical structure are given in the Eqs. (45)–(47). Comparison
of the effective displacement, radial and circumferential stresses
obtained via AHM, FEM and SAM show good results.
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