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An approach for modeling three-phase
piezoelectric composites

Raúl Guinovart-Díaza*†, Reinaldo Rodríguez-Ramosa,
Yoanh Espinosa-Almeydab, Juan Carlos López-Realpozoa, Serge Dumontc,
Frédéric Lebonc and Aura Concid

In this work, three-phase piezoelectric fibrous composites distributed in a parallelepiped cell is studied. The statement of 
the mathematical problems and the formulation of the local problems by means of the asymptotic homogenization 
method are presented. Closed-form formulae are obtained for the effective properties of the composites for different 
configurations of the cells. The present method for thick and thin mesophases can provide a point of reference for 
comparisons with other numerical and approximate methods. 

Keywords: homogenization; determination of effective properties; elastic materials

1. Introduction

The detailed investigation of physical and geometric structures of the composites and the main characteristics of their compo-
nents have been investigated by many theoretical and experimental works during the recent decade. An example is represented
by the composite piezoelectric because of its application of sensors and actuators, its mechanic active control of the structures
(elastic deformations, vibrations) or its effect induced by means of the interaction on the electric and mechanical fields.

Different micromechanical models of piezoelectric composite materials have been applied for understanding the coupling behav-
ior between the electric and mechanic field and to predict the electroelastic effective properties (for example, Benveniste [1],
Zhang et al., [2], Jiang et al., [3], Dinzart and Sabar [4], Rodríguez-Ramos et al., [5], Xu et al., [6] and Eynbeygi and Aghdam [7]). An appro-
priate description of the coupling phenomena produced for piezoelectric-reinforced materials is often of interest, including non-well
bonded reinforcement (Wang and Pan [8], Gu et al., [9]) or coated inclusions (Shen et al., [10]; Shiah et al., [11]; Xiao et al., [12]) added in
the matrix. Both cases represent interesting approximations of imperfections that occur in the contact region between the fibers and
the matrix.

In this work, a third phase between the matrix and the fiber is considered for a better understanding of the idealization of the complex
phenomenon that occurs at the interface. This third phase is taken as a thin layer that represents the transition zone (interphase or
mesophase) between the fiber and the matrix (Jiang and Cheung, [13], Guinovart-Díaz et al., [14,15]; Yan et al. [16], etc). The mesophase
can be produced because of the chemical interaction between the constituents or it can be introduced intentionally to protect the
fibers from the direct influence of the matrix.

Many works associated with coated inclusions modeling by three-phase or multiphase piezoelectric composites can be found in
the literature. For example: Jiang and Cheung [13] obtained through a self-consistent approach an analytical solution of a three-
phase piezoelectric cylinder composite under antiplane shear and in-plane electric field applied at infinity, and they showed the
non-monotonic dependence on the effective moduli of the fiber and the shear modulus. Sudak [17] analyzed elliptic piezoelectric
inclusion coated using an intermediate layer in an unlimited matrix containing the electroelastic stresses and concluded that the inter-
mediate layer produces considerable effects on the electronic performance of devices. Yang and Gao [18] used the complex variable
method, in which the complex potentials are given in the power series form. They investigated the electro-elastic fields in an infinite
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matrix with N coated-piezoelectric inclusions. Yan et al., [16] applied the eigenfunction expansion-variational method to the antiplane
electroelastic behavior of three-phase piezoelectric composites with doubly periodic microstructures. Moreover, Guinovart-Díaz et al.,
[15] show only the plane analytical expressions of the effective piezoelectric properties for three-phase composites. In this case, hexag-
onal and square arrays of the cells are studied. Recently, Rodríguez-Ramos et al., [19] derived the piezoelectric effective properties for
three-phase composites, but for the antiplane problems, and a comparison with the spring model and finite element method (FEM)
approaches is given.

The main aim of this contribution is the determination of the whole set of effective properties for three-phase piezoelectric fiber
unidirectional reinforced composite with parallelepiped cell symmetry. Two approaches are used for the investigation of the macro-
scopic behavior of the composites. The asymptotic homogenization method (AHM) and the Finite Element Method (FEM) are applied
to the aforementioned composites. The explicit derivation of the solution of the plane and antiplane local problems are given. The
FEM formulation for three-phase composite is an extension of the idea developed by Nitsche [20], Becker et al. [21], and Dumont et al.
[22], in which it is possible to discretize this problem using standard FEM with standard error estimate. The estimation of the effective
piezoelectric moduli taking into account the fiber distribution within the matrix, the choice and permutation of the constituent phases,
and the influence of the volume fractions are reported. In addition, it shows the anisotropy character of the composites induced by
the distribution of the fibers arrays. The new elements of this work (as compared with previous papers, Guinovart-Díaz et al., [15, 23],
Rodríguez-Ramos et al., [19]), with respect to both the AHM and FEM methods, consist in that it is the first intent to give a complete
characterization by numerical (FEM) and analytical expressions (AHM) of the effective properties of the composite with a parallelepiped
cell. These expressions contain the information about the constituents, fiber volume fraction, influence of the mesophase, and the peri-
odic cell. This analysis leads to monoclinic behavior of periodic piezoelectric composites with the parallelepiped cell. The present work
generalizes other relative investigations, like the aforementioned references by the previous authors of this contribution, and new ones,
such as Rodríguez-Ramos et al., [5], in which effective elastic properties using three different approaches for composite materials under
imperfect contact adherence are calculated. Kari et al., [24] used numerical homogenization techniques based on FEM to calculate the
effective properties for different three-phase types of composites. In addition, the effects of interphase volume fraction and the mate-
rial stiffness for transversely randomly distributed fiber or spherical particle composites are investigated. Sevostianov et al., [25] gave
a comparative analysis of different approaches: differential approach, three-phase and spring models using AHM, to model fiber rein-
forced composites with imperfect interfaces and periodic square arrangement of fibers. The generalization consists in the following
issues: the fiber distributions generate a parallelepiped cell in the composites and the entire sets of piezoelectric effective properties
associated with plane/antiplane problems are provided, where we obtain a more general class of symmetric in the global behavior of
the composite.

The outline of the paper is as follows: In Section 1, an introduction is presented. Section 2 proposes the two-scale asymptotic
homogenization method and the statements of the plane and antiplane local problems. In Section 3, the finite element model is
developed. Moreover, Section 4 is devoted to present some important validations of the present models. Finally, some conclusions
are written.

2. Statement of the mathematical problems and the formulation of the local problems for
three-phase piezoelectric composites

Consider a three-phase fiber piezoelectric composite as shown in Figure 1. The composite consists of a parallelepiped array of two
circular and concentric infinitely long fibers of radius R and R1 D R C t .R < R1/, where t is the thickness of mesophase. Different
materials are embedded in a homogeneous medium, where the matrix (1), mesophase (I), and fiber (2) are made of piezoelectric
materials or inactive materials. Also, each homogeneous phase is taken as a material with 6 mm symmetry. The interface conditions
between the two contiguous phases occupied by Ss .s D 1, I, 2/ are assumed to be in perfect contact along the interfaces �1 D˚

z : z D R1ei� , 0 � � � 2�
�

and �2 D
˚

z : z D Rei� , 0 � � � 2�
�

. The axis of transverse symmetry coincides with the fiber direction,
which is taken as the Ox3 axis. Moreover, the fibers are periodically distributed without overlapping in directions parallel to the Ow1-
and Ow2-axes, where w1 ¤ 0 and w1 ¤ 2 .w2 ¤ �w1,� 2 R/ are two complex numbers that define the parallelepiped periodic cell
with angle � D ].w1, w2/ of the three-phase composite (Figure 2).

The coupled system of partial differential equations with coefficients rapidly oscillating for linear piezoelectric heterogeneous
structures is �

C"ijkl.y/ u"k,l C e"kij.y/ �
"

,k

�
,j
D 0,

�
e"ikl.y/u

"
k,l � �

"
ik.y/�

"
,k

�
,i

=0 in �. (1)

The equations (1) represent a system of equations for finding ui and �, where u"k and �" are the mechanical displacement and
the electric potential, respectively. The material elastic properties Cijkl , piezoelectric ekij , and dielectric �ik are piecewise functions. For
simplicity, from now on, the superscript "will be omitted on the material functions that satisfy the symmetries Cijkl D Cjikl D Cklij , ekij D

ekji , �ik D �ki . In addition, the elasticity tensor and the dielectric permittivity tensor are assumed to be positive-definite. The comma
notation denotes a partial derivative relative to the xj component, that is, U,j� @U=@xj .

For a complete solution, it is necessary to assign suitable boundary conditions, for instance

u"i D Oui ; 	"ij nj D OSi ; �" D �0; D"i ni D 0, on @�, (2)

where Oui , OSi and �0 are the prescribed displacement, force and electric potential on the boundary of the composite.
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Figure 1. Three-phase periodic composite reinforced by fibers.

Figure 2. Composite consists of a parallelepiped array of two circular and concentric infinitely long fibers.

2.1. Local problems

The solution of equations (1)–(2) is represented in the form of asymptotic series in powers of the small parameter ". The well-known
asymptotic homogenization method reported by Rodríguez-Ramos et al., [26], as well as the local problems on the periodic cell and the
effective coefficients analogous to those reported in Guinovart-Díaz et al., [14], being this, is the main aim of this work. The solutions
can be solved asymptotically posing the ansatz:

u.x/ D w0.x, y/C "w1.x, y/C O
�
"2
�

, (3)

�.x/ D �0.x, y/C "�1.x, y/C O
�
"2
�

, (4)

and stating the two scales. The functions w0, w1, �0, and �1 are periodic with respect to the fast variable y D x=" and satisfy certain
differential equations related to the original system. The functions w0 and �0 are independent of the variable y, that is, w0.x, y/ D u.x/
and �0.x, y/ D �.x/; they are the solutions of the homogenized problem

�
C�ijkl uk,l C e�kij �,k

�
,j
D 0,

�
e�ikluk,l � �

�
ik�,k

�
,i

=0 in �. (5)

where C�ijkl , e�kij , and ��ik denote the effective properties of the composite. Observe that original problem (1)–(2) with rapidly fluctuating
coefficients are transformed in a new problem with constant coefficients and analogues boundary conditions (2) for the functions u.x/
and �.x/.

The composite material considered in Figure 1 supposes that the heterogeneities are very small with respect to the size of the body
and that they are uniformly distributed. This is a realistic assumption for a large class of applications. From a mathematical point of view,
this distribution is modeled by supposing that the composite is a periodic one, and the small parameter " denote this periodicity. The
multiple-scale method is well adapted to the periodic framework in which we are focused in this work. Even the first approximation of
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the solutions in problem (1)–(2) yields an error of order "=L, where L is a macroscopic substantial characteristic of the heterogeneous
body, in comparison with the solutions of the problem (5). This value is within thousandths of the one percent for many composites
with a fine scale ."� L/ and it is sufficient in order to predict the effective properties of piezoelectric composite materials [27].

The second term in the asymptotic expansions given by (3)–(4) yields important information about the local variations of solutions,
via the cell problem. The so-called local (or canonical) problems associated here with the correction terms w1 and �1 to the mean
variations w0 and �0, respectively, because they appear in the formulae of the effective properties. Because of the linearity of the main
equations, the corrections terms w1and �1 can be obtained as a linear combination of some such displacements and potentials. This,
however, will not be carried out here because the main objective of this paper is the characterization of the effective properties.

Nine local problems arise, and they are denoted as pqL, pL over the periodic unit cell, defined in the following (for instance, Bravo-
Castillero et al., [28] and Sabina et al., [29])

The general statement of the local problems are presented in a compact form as follows:

F	
.s/

iı,ı D 0, F D .s/
ı,ı D 0 in Ss (6)

���F X .s/i

���
�
D 0,

hh
F Y .s/

ii
�
D 0 on �� (7)

hh
F	

.s/
iı nı

ii
�
D ‰.1/

ı
nı ,

hh
F D .s/

ı
nı
ii
�
D ‰ .2/

ı
nı on �� (8)

hF Xii D 0, hF Yi D 0 (9)

Where F	
.s/

iı D C .s/iık�X .s/k,�Ce .s/
�iıY .s/,� , F Dı D e .s/

ık�X .s/k,l �"0�
.s/
ı�

Y .s/,� and the summation convention is also understood for Greek indices,
which run from 1 to 2; no summation is carried out over upper case indices, whether Latin or Greek. The outward unit normal vector to
the interface �� is n. The double-bar notation ŒŒf 

� is used to denote the jump of the relevant function f across the interface �� , i.e.,
ŒŒf 

1 D f .1/ � f .I/ and ŒŒf 

2 D f .I/ � f .2/, whereas the indices (1), (I), and (2) denote the matrix, the mesophase and the fiber properties,
respectively. Besides, ni is the component of the outward unit normal vector n to the interface �� . The angular brackets in (9) define
the volume average per unit length over the cell, that is, hFi D 1

V

R
S F.y/dy.

From (6) to (9), it is clear that F	
.s/

iı and F Dı are the iı-components of the stress tensor and the ı-component of the electric
displacement vector, associated with the displacement X .s/ and the electric potential Y .s/.

The pqL problem is formulated as seeking displacements pqU .s/i .y/, the electric potential pqN .s/ .y/, which are periodic of periods
w1 and w2 and solutions of (6)–(9), where F D pq and the values for ‰ .1/

ı
, ‰ .2/
ı

, X .s/k,� and Y .s/k,� are shown in Tables I and II. The pL

problem is similarly stated for functions pP.s/i .y/ and pQ .s/ .y/, considering that F D p. Only the solution of a few of these local
problems is required. It depends on the-no-zero values of the properties. A more detailed explanation about this situation can be found
in Rodríguez-Ramos et al. [5]).

Table I shows the specific form for the local problem boundary conditions ‰ .1/
ı

, ‰ .2/
ı

for each local problem, and Table II illustrates
solution functions X .s/k,� , Y .s/k,� , to be found for each local problem.

The homogenized (effective) moduli are given by the following expressions:

C�ijpq D
˝
Cijpq C Cijkl pqUk,l C ekij pqN,k

˛
, e�ipq D

˝
eipq C eikl pqUk,l � "0�ik pqN,k

˛
,

e�pij D
˝
epij C Cijkl pPk,l C ekij pQ,k

˛
, "0�

�
ip D

˝
"0�ip � eikl pPk,l C "0�ik pQ,k

˛
,

(10)

where the star denotes the overall property.

Table I. Local problem boundary con-
ditions (7)–(9).

F ‰
.1/
ı

‰
.2/
ı

pqL pq �
hh

C .s/iıpq

ii
�
�
hh

e .s/
ıpq

ii
�

pL p �
hh

e .s/piı

ii
�

"0

hh
K .s/
ıp

ii
�

Table II. Local problem
boundary conditions
(7)–(9).

F X .s/k,� Y .s/k,�

pq pqU .s/k,� pqN .s/,�

p pP .s/k,� pQ .s/,� .y/
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Table III. Electroelastic material properties.
Epoxy 1 Epoxy 2 PZT-5 PZT (7A ) BaTiO3

C11(GPa) 8 4.445 133.91 148 150.4

C12(GPa) 4.4 2.189 68.98 76.2 65.63

C13(GPa) 4.4 2.189 68.98 74.2 65.94

C33(GPa) 8 4.445 133.91 131 145.5

C44(GPa) 1.8 1.128 32.46 25.696 (25.4) 43.86

C66(GPa) 1.8 1.128 32.46 35.9 42.37

e31(C/m2/ 0 0 �2.1 �2.1 �4.32

e33(C/m2/ 0 0 9.5 12.3 (9.5) 17.4

e15(C/m2/ 0 0 9.2 9.35 (9.2) 11.4

k11(nC/Vm) 0.0372 0.079 4.071 4.065 (4.071) 12.8

k33(nC/Vm) 0.0372 0.079 2.079 2.35 (2.08) 15.1

Then, overall properties are the sum of the arithmetic mean plus the effect of the several properties mismatch at the interface
between the two homogeneous phases. At this point, it is worthy to remember that the nontrivial solutions for the pqL problems (U, N)
are determined by the no-null values of C .s/ijkl and e .s/kij ; similarly, the values P, Q, (pL problems) are governed by the properties e .s/kij and

"0�
.s/

ij . Then, note that properties e .s/kij can be calculated through either one of two local problems. Overall piezoelectric coefficients (10)
may be calculated from the solution of pqL and pL problems; hence, these effective properties are the sum of arithmetic mean plus the
effect of e .s/kij , "0�

.s/
ij , C .s/ijkl discontinuities at the interface matrix-fiber.

From the structure of the local problems, whether pqL, and pL, it is possible to verify that each ones uncouples in two sets of
equations. Uncoupled elastic plane-strain systems for pqU .s/˛ , pP .s/˛ and a coupled elastic antiplane-strain and electric system associat-
ing pqU .s/3 and pqN .s/, for pqL, whereas pP .s/3 and pQ .s/ are tied for pL. The non-vanishing components of the C .s/ijkl , e.s/kij , q .s/kij and tensors
lead to the non-homogeneous problems that have a non-zero solution. These correspond to five uncoupled elastic plane-strain prob-
lems 11L, 22L, 33L, 12L and 3L and four coupled elastic antiplane-strain and electric and magnetic potentials systems 13L, 23L, 1L
and 2L.

2.2. Antiplane local problems ˛3L, (˛ D 1, 2/

The mathematical statement of local problems ˛3L, is now formulated. For simplicity, only the main results of the local problem ˛3L are
shown and the pre-index will be omitted in the expressions. The fundamental problem, which consists in finding the corresponding
functions U .s/3 � U .s/ and N .s/ (s D 1, I, 2/ that satisfy the Laplace equations, the perfect conditions at the interfaces �� , and the null
average over the periodic cell, takes the following form:

�
C .s/3jk3U .s/,k C e .s/k3j N .s/,k

�
,j
D 0,

�
e .s/j3k U .s/,k � �

.s/
jk N .s/,k

�
,j
D 0, in Ss (11)

ŒŒU

 � D 0, ŒŒN

� D 0, on �� (12)

��
	ij nj

		
�
D �

��
Cij˛3

		
�

nj ,
��

Dj nj

		
�
D �

��
ej˛3

		
�

nj , on �� (13)

hUi D hNi D 0, (14)

where 	 .s/ij D C .s/ij3k U .s/,k C e .s/kij N .s/,k , D .s/j D e .s/j3k U .s/,k � �
.s/
kj N .s/,k and the angular bracket defines the volume average per unit length

over the area V of the cell, U and N being the local functions corresponding to the mechanical displacements and the electric potentials
associated with the present local problems with ˛ D 1, 2.

Thus, the functions U and N are sought in such a way that they also are doubly periodic harmonic functions of the complex variable
z D y1 C iy2 in the parallelepiped periodic cell S, with the periods w1 D 1 and w2 D ei� , 0 < � � �=2 (Figure 2).

2.3. Solution of the local problems ˛3L, .˛ D 1, 2/

The mathematical statement of the present problem is considered. Doubly periodic harmonic functions are to be found in terms
of the following Laurent and Taylor expansions of harmonic functions U and N over the region S1 matrix, SI mesophase, and
S2 fiber,
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U .1/.z/ D Re

8<
: z

R1
a0 C

1X
pD1

o



R1

z

�p

ap C

1X
kD1

o
1X

pD1

o



z

R1

�p

�kpak

9=
; ,

N .1/.z/ D Re

8<
: z

R1
b0 C

1X
pD1

o



R1

z

�p

bp C

1X
kD1

o
1X

pD1

o



z

R1

�p

�kpbk

9=
; , in S1

U .I/.z/ D Re

8<
:
1X

pD1

oa.I/�p



R1

z

�p

C

1X
pD1

oa .I/p

� z

R

�p

9=
; , N .I/.z/ D Re

8<
:
1X

pD1

ob .I/�p



R1

z

�p

C

1X
pD1

ob .I/p

� z

R

�p

9=
; , in SI

U .2/.z/ D Re

8<
:
1X

pD1

ocp

� z

R

�p

9=
; , N .2/.z/ D Re

8<
:
1X

pD1

odp

� z

R

�p

9=
; , in S2,

(15)

where �kp D �
.kCp�1/ !
.k�1/ ! p ! RkCp

1

1P
mD�1

1P
nD�1

.mw1 C nw2/
�.kCp/, m C n ¤ 0, k C p > 2 with the unknown constants

Nap, a .I/p , Na.I/�p, Nbp, b .I/p , Nb .I/�p, cp and dp are complex undetermined coefficients; w1, w2, are the periods of the parallelepiped array,
respectively (Figure 2). The superscript ‘o’ next to the summation symbol means that ‘p’ runs only over odd integers so that each term
in (15) has the same anti-symmetry property as M.�/ and N.�/, namely, U.�/.�z/ D �U.�/.z/, N.�/.�z/ D �N.�/.z/ (see more details
in the works of Bravo-Castillero et al. [28] and Sabina et al. [29]).

Substituting the previous expansion (15) into the contact conditions at the interface (12)–(13) after some algebraic manipulations,
we obtain an infinite systems (Appendix A) of eight equations with the unknown constants Nap, a .I/p , Na .I/�p, Nbp, b.I/p , Nb .I/�p, cp, and dp.
Once we have the unknown constants, we can determine the effective coefficients given in the following section.

2.4. Antiplane effective coefficients

The corresponding effective coefficients related to the local problems ˛3L, are shown.
Effective coefficients associate with the local problem 13L,

C�1313 D hC1313i C hC1331 U,1i C he113 N,1i , C�2313 D hC2332 U,2i C he223 N,2i ,

e�113 D he113i C he131 U,1i � h�11 N,1i , e�213 D he113 U,2i � h�11 N,2i .
(16)

Effective coefficients associated with the local problem 23L,

C�1323 D hC1331 U,1i C he113 N,1i , C�2323 D hC1313i C hC1313 U,2i C he113 N,2i ,

e�123 D he131 U,1i � h�11 N,1i , e�223 D he223i C he113 U,2i � h�11 N,2i .
(17)

The local functions U and N are the solutions of the local problems ˛3L, respectively. The expressions of the effective coefficients (16)–
(17) are transformed applying Green’s theorem to the area integrals. Subsequently, using the previous expansion (15) into the lineal
integrals and by the orthogonality of the system of functions fcos .nx/ , sen .nx/g1nD�1 in Œ0, 2�
, the analytical expressions of the
dimensionless effective properties are obtained as functions of the unknown constants Na1 and Nb1 associated with each local problem

13L, or 23L, as follows:

(a) in local problem 13L,

C�1313 � iC�2313 DhC1313i C
.VI C V2/

R1
.�1 � 1/

"
a0 C

1X
kD1

oak�k1 C Na1

#
C

V2

R
.�2 � �1/ c1C

C
.VI C V2/

R1

�
E .I/15

p
�1�1 � E .1/15

�"
b0 C

1X
kD1

obk�k1 C Nb1

#
C

V2

R

0
@E .2/15 �2 � E .I/15

s
�1�2�1

�2

1
A d1,

e�113 � ie�213 Dhe113i C
.VI C V2/

R1

�
E .I/15

p
�1�1 � E .1/15

�"
a0 C

1X
kD1

oak�k1 C Na1

#
C

V2

R

�
E .2/15

p
�2�2 � E .I/15

p
�1�1

�
c1�

�
.VI C V2/

R1
.�1 � 1/

"
b0 C

1X
kD1

obk�k1 C Nb1

#
�

V2

R

0
@p�2�2 �

s
�2�1�1

�2

1
A d1,

(18)
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(b) in local problem 23L,

C�1323 � iC�2323 D� i hC1313i C .�1 � 1/
.VI C V2/

R1

"
a0 C

1X
kD1

oak�k1 C Na1

#
C .�2 � �1/

V2

R
c1C

C
�

E .I/15

p
�1�1 � E .1/15

� .VI C V2/

R1

"
b0 C

1X
kD1

obk�k1 C Nb1

#
C

0
@E .2/15 �2 � E .I/15

s
�1�2�1

�2

1
A V2

R
d1,

e�123 � ie�223 D� i he113i C
�

E .I/15

p
�1�1 � E .1/15

� .VI C V2/

R1

"
a0 C

1X
kD1

oak�k1 C Na1

#
C
�

E .2/15

p
�2�2 � E .I/15

p
�1�1

� V2

R
c1�

� .�1 � 1/
.VI C V2/

R1

"
b0 C

1X
kD1

obk�k1 C Nb1

#
�

0
@p�2�2 �

s
�2�1�1

�2

1
A V2

R
d1,

(19)

(c) in local problem 1L,

e�113 � ie�123 Dhe113i C
.VI C V2/

R1
.�1 � 1/

q
C .1/1313�

.1/
11

"
a0 C

1X
kD1

oak�k1 C Na1

#
C

V2

R

q
C .1/1313�

.1/
11

0
@p�2�2 �

s
�1�1�2

�2

1
A c1C

C
.VI C V2/

R1

�
E .I/15

p
�1�1 � E .1/15

�q
C .1/1313�

.1/
11

"
b0 C

1X
kD1

obk�k1 C Nb1

#
C

V2

R

q
C .1/1313�

.1/
11

�
E .2/15

p
�2�2 � E .I/15

p
�1�1

�
d1,

��11 � i��21 Dh�11i �
.VI C V2/

R1
�
.1/

11

�
E .I/15

p
�1�1 � E .1/15

�"
a0 C

1X
kD1

oak�k1 C Na1

#
� � .1/11

V2

R

0
@E .2/15 �2 � E .I/15

s
�1�1�2

�2

1
A c1C

C
.VI C V2/

R1
�
.1/

11 .�1 � 1/

"
b0 C

1X
kD1

obk�k1 C Nb1

#
C

V2

R
�
.1/

11 .�2 � �1/ d1,

(20)
(d) in local problem 2L,

e�213 � ie�223 D� i he223i C
.VI C V2/

R1
.�1 � 1/

q
C .1/1313�

.1/
11

"
a0 C

1X
kD1

oak�k1 C Na1

#
C

V2

R

q
C .1/1313�

.1/
11

0
@p�2�2 �

s
�1�1�2

�2

1
A c1C

C
.VI C V2/

R1

�
E .2/15

p
�1�1 � E .1/15

�q
C .1/1313�

.1/
11

"
b0 C

1X
kD1

obk�k1 C Nb1

#
C

V2

R

q
C .1/1313�

.1/
11

�
E.2/15

p
�2�2 � E .I/15

p
�1�1

�
d1,

��12 � i��22 D� i h�22i �
.VI C V2/

R1
�
.1/

11

�
E .I/15

p
�1�1 � E .1/15

�"
a0 C

1X
kD1

oak�k1 C Na1

#
�

V2

R
�
.1/

11

0
@E .2/15 �2 � E .I/15

s
�1�1�2

�2

1
A c1C

C
.VI C V2/

R1
.�1 � 1/ � .1/11

"
b0 C

1X
kD1

obk�k1 C Nb1

#
C

V2

R
�
.1/

11 .�2 � �1/ d1.

(21)

Also, hfi D f .1/V1Cf .I/VICf .2/V2, where V1, VI and V2 are the volume fraction per unit length occupied by the matrix, mesophase,
and the fiber, respectively. Moreover, V1 C VI C V2 D 1 and V D jw1j jw2j sin � represent the volume of periodic cell. Besides,

�1 D C .I/1313=C .1/1313, �2 D C .2/1313=C .1/1313, �1 D �
.I/

11 =�
.1/

11 , �2 D �
.2/

11 =�
.1/

11 , E .s/15 D e .s/113

�q
C .s/1313 �

.s/
11 , s D 1, I, 2. The expressions (18)–

(21) of the effective coefficients depend on the material properties, volume fractions, and the unknown constants a0, b0, ak , bk , c1,
and d1. The unknown constants can be found analytically from the system obtained in Appendix A.

2.5. Analytical solution of the plane local problems qqL

The solutions of the uncoupled elastic plane-strain systems are presented in this work because this kind of problem, to be more specific
the plane problems qqL is the one that explains the piezoelectric effect that results from a two-phase composite with one intermediate
phase having elastic or piezoelectric properties.
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The mathematical statement of the plane problem in terms of the local function is the following:

	
.s/
˛ı,ı D 0 in Ys,hh

U .s/i

ii
1
D 0 on �1;

hh
U .s/i

ii
2
D 0 on �2,hh

	
.s/

iı nı
ii

1
D �

��
Ciıqq

		
1

nı on �1;
hh
	
.s/

iı nı
ii

2
D �

��
Ciıqq

		
2

nı on �2,

hUii D 0,

(22)

where 	 .s/11 D .ks Cms/U
.s/
1,1 C .ks �ms/U

.s/
2,2 , 	 .s/22 D .ks �ms/U

.s/
1,1 C .ks Cms/U

.s/
2,2 , 	 .s/12 D ms

�
U .s/1,2 C U .s/2,1

�
, being

ks D
�

C .s/1111 C C .s/1122

�
=2, ls D C .s/1133 D C .s/2233, ms D C .s/1212 D

�
C .s/1111 � C .s/1122

�
=2.

The method of complex variables in terms of two harmonic functions 's.z/ and  s.z/ and the Kolosov–Muskhelishvili complex
potentials are applicable. The potentials are related to the displacement and stress components by means of the classical formulae:

2ms

�
U .s/1 C iU .s/2

�
D �s's.z/ � z N'0s.z/ � N s.z/,

	
.s/

11 C 	
.s/

22 D 2
�
'
0

s .z/C N'
0

s .z/
�

,

	
.s/

22 � 	
.s/

11 C 2i	 .s/12 D 2.Nz' 00s .z/C
0

s .z//,

(23)

where the prime denotes a derivative with respect to z, the overbar is a complex conjugate, and �s D 3� 4
T
s ; here, 
T

s is the transverse
Poisson’s ratio and s D 1, I, 2.

From equations (22)2 and (23)1, we obtain

�1

h
�1 '1 .z/ � z N'=1 .z/ � N 1.z/

i
D
h
�I 'I .z/ � z N'=I .z/ � N I .z/

i
on�1, (24)

�2

h
�I 'I.z/ � z N'=I .z/ � N I.z/

i
D �1

h
�2 '2.z/ � z N'=2 .z/ � N 2.z/

i
on�2, (25)

and from ( 22)3 and (23)2�3, we can write

z N'=1 .z/C '1 .z/C N 1.z/C Nz�1.q/C z�2.q/ D z N'=I .z/C N I .z/ C 'I.z/ on�1, (26)

z N'=I .z/C 'I .z/C N I.z/C Nz�3.q/C z�4.q/ D z N'=2 .z/C N 2 .z/ C '2.z/ on�2, (27)

with �1 D mI=m1; �2 D m2=m1 .
The complex potentials functions 's.z/ and  s.z/ are searched for the periodic cell that contains the origin of coordinates in the

following form [29]

'1.z/ D ao.z=R1/C

1X
pD1

oap.R1=z/pC

1X
kD1

o
1X

pD1

oak�kp.z=R1/
p, (28)

1.z/ D bo.z=R1/C

1X
pD1

obp.R1=z/pC

1X
kD1

o
1X

pD1

obk�kp.z=R1/
p C

1X
kD1

o
1X

pD1

okakR pCk
1 C p

pCkTpCk.z=R1/
p, (29)

'I.z/ D
1X

kD1

ock.z=R/kC

1X
kD1

oc�k.R1=z/k ,  I.z/ D
1X

kD1

odk.z=R/kC

1X
kD1

od�k.R1=z/k , (30)

'2.z/ D
1X

kD1

oek.z=R/k ,  2.z/ D
1X

kD1

ofk.z=R/k . (31)

where TpCk D
1P
m,n

0 Nw1mCNw2n

.w1mCw2n/ pCk ; p C k � 3 and Cp
pCk D

.pCk/Š
pŠ kŠ . The double-periodicity and quasi-periodicity of these local

functions U1.z/ and U2.z/ lead to a0 D �A1a1R2
1 C

��
A3 C �1 NA3

�
b1R2

1= .�1 C 1/ .�1 � 1/
	

and Nb0 D
�

A3�1a1 C A5 Na1 � NA1
Nb1

	
R2

1. Also,
A1 D . Nw1ı2 � Nw2ı1/ = . Nw1w2 � w1 Nw2/ , A3 D .w1ı2 � w2ı1/= .w1 Nw2 � Nw1w2/ and A5 D .w1 N�2 � w2 N�1/ = . Nw1w2 � w1 Nw2/, where
ıi D 2�.wi=2/, �i D 2Q .wi=2/ � Nwi} .wi=2/, }.z/ is the double-periodic elliptic Weierstrass’s function, Q.z/ is the meromorphic
Natanzon’s function related to }.z/ and the quasi-periodic Weierstrass �.z/ function such that �0.z/ D �}.z/.
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Replacing the expansions (28)–(31) into the contact conditions (24)–(27), after some convenient algebraic manipulations, we obtain
the infinite systems of equations (Appendix B) with the unknown constants ap. The complex unknown constants ap and their conjugate
denoted by the overbar are the solutions of the corresponding local problems qqL. The sum by the repeated indices j, k and p are
applied with j, k, p D 1, 3, 5, ... and ı1p is the Kronecker’s delta and the magnitudes that appear in the system are written in Appendix
B. The solutions of the systems of each local problem depend on the material constants, geometry of the fibers, and the different
fields related to the problems qqL. Once we have the unknown constants, we can determine the effective coefficients given in the
following section.

2.6. Effective coefficients in plane

The corresponding effective coefficients related to the local problems F L (F D qq, 12 ) are shown

(a) elastic coefficients:

C�11F D hC11F i �
1

�1

.VI C V2/

m1R1
Re



ŒŒm

1



�Ic�1 � 3c3

R3
1

R3
� d1

R1

R

�
C ŒŒk

1



.�I � 1/ c1

R1

R
� d�1

��
�

�
�2

�1

V2

m2R
Re



ŒŒm

2



�Ic�1

R1

R
� 3c3 � d1

�
C ŒŒk

2



.�I � 1/ c1 � d�1

R1

R

��
,

C�22F D hC22F i C
1

�1

.VI C V2/

m1R1
Re



ŒŒm

1



�Ic�1 � 3c3

R3
1

R3
� d1

R1

R

�
� ŒŒk

1



.�I � 1/ c1

R1

R
� d�1

��
C

C
�2

�1

V2

m2R
Re



ŒŒm

2



�Ic�1

R1

R
� 3c3 � d1

�
� ŒŒk

2



.�I � 1/ c1 � d�1

R1

R

��
,

C�12F D hC12F i �
ŒŒm

1
�1

.VI C V2/

m1R1
Im



�Ic�1 C 3c3

R3
1

R3
C d1

R1

R

�
�
�2 ŒŒm

2
�1

V2

m2R
Im



�Ic�1

R1

R
C 3c3 C d1

�
,

C�33F D hC33F i �
ŒŒl

1
�1

.VI C V2/

m1R1
Re



.�I � 1/ c1

R1

R
� d�1

�
�
�2 ŒŒl

2
�1

V2

m2R
Re



.�I � 1/ c1 � d�1

R1

R

�
,

(32)

(b) piezoelectric coefficients:

e�3F D he3F i �
ŒŒe311

1
�1

.VI C V2/

m1R1
Re



.�I � 1/ c1

R1

R
� d�1

�
�
�2 ŒŒe311

2

�1

V2

m2R
Re



.�I � 1/ c1 � d�1

R1

R

�
, (33)

where jVj is the area of the periodic cell and uses the short notation. The expressions of the effective coefficients (22) and (33)
are acquired after applying the Green’s theorem to the area integrals in the corresponding (10) in the plane local problems F L.
Subsequently, using the previous expansion (15) into the lineal integrals and by the orthogonality of the system of functions
fcos .nx/ , sen .nx/g1nD�1 in Œ0, 2�
, the analytical expressions of the effective properties are obtained as functions of the unknown
constants c1, c�1, c3, d1 and d�1 associated with each local problem F L and are defined in Appendix C.

The problem 3L contributes only with piezoelectric effective coefficients that satisfy the symmetry condition e�3F D e�F3 and the
non-zero dielectric permittivity component given by

��33 D h�33i C
ŒŒe311

1
�1

.VI C V2/

m1R1
Re



.�I � 1/ c1

R1

R
� d�1

�
C
�2 ŒŒe311

2

�1

V2

m2R1
Re



.�I � 1/ c1 � d�1

R1

R

�
. (34)

3. Finite element method

In this section, a finite element approach is proposed in order to solve the three-phase problems. First, the uncoupled elastic plane-
strain problems pqL can be written

	
.s/
˛ı,ı D 0 in Yshh

u .s/
ii

1
D 0 on�1,

hh
u .s/

ii
2
D 0 on�2,hh

	 .s/.u/n
ii

1
D S1 on�1,

hh
	 .s/.u/n

ii
2
D S2 on�2,

hui D 0,

(35)

where 	.u/ D C ".u/, S1 (resp. S2/ is the jump across �1 (resp. �2/ given in equation (13).
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In order to take into account the jumps in the constraint, a discontinuous Galerkin method has been developed and a weak
formulation of (35) can be written as

X
s

Z
Ys

	 s : "sdy C
2X

iD1

Z
�i

.h	 s.u/nii ŒŒv

i C ŒŒu

i h	
s.v/nii/dlC

ˇ

h

Z
�i

ŒŒu

i ŒŒv

i dl D �
2X

iD1

Z
�i

Si hvii dl, (36)

where h is the size of the mesh and ˇ is a constant (independent of the mesh) large enough to ensure the stability of the problem
[20, 21]).

Using this formulation, it is possible to discretize this problem using standard FEM with standard error estimate [20–22]).
In case of coupled antiplane problem ˛3L, (˛ D 1, 2/, it is easier to work with vanishing jumps. For that purpose, one can make the

change of variables

˛3 QU
.Y/.�/ D ˛3U.Y/.�/C �˛ , (37)

and then, equation (13) becomes ��
Q	ij nj

		
�
D 0,

��
QDj nj

		
� D 0 on �� (38)

and equation (14) is transformed into D
˛3 QU

.Y/.�/
E
D h�˛i ;

D
˛3N.Y/.�/

E
D 0. (39)

Equations (11) and (12) remain unchanged.
Finally, the effective coefficients associated with the local problem 13L are defined by

C�1313 D
˝
C1313 QU,1

˛
C he113N,1i , e�113 D

˝
e113 QU,1

˛
� h�11N,1i . (40)

The coefficients C�2313 and e�213 are computed as in equation (16).
Effective coefficients associated with the local problem 23L are defined by

C�2323 D
˝
C1313 QU,2

˛
C he113N,2i , e�223 D

˝
e113 QU,2

˛
� h�11N,2i , (41)

and the coefficients C�1323 and e�123 are computed as in equation (17).
Let us notice that, for every small thickness of the mesophase, it is very expansive to mesh the mesophase finely because it is nec-

essary to have neighboring elements with similar size, and consequently, the mesh has to hold a huge total number of elements (over
than 109 for e D 10�3/. Then the results obtained with this method in the last section are realized with a rough discretization of the
mesophase, leading to a lesser accuracy of the results provided by this method.

4. Analysis of results

The effective properties of the polymeric matrix containing piezoelectric material in homogeneities are evaluated with the proposed
micromechanical models and with the finite element analysis. The electro-elastic properties of the constituent materials are shown in
Table III. The polarization is assumed to be x3 direction. The aim of this section is to point out the effects of the fiber-matrix mesophase
on the piezoelectric properties of composite materials based on the asymptotic homogenization. To date, to the authors’ knowledge,
the problems associated with the calculations of effective properties with piezoelectric materials and inhomogeneous interphase con-
ditions have not been proposed sufficiently in the literature. The obtained model is applied to the situation presented in Figure 3 for
a composite with imperfect contact between the matrix and fiber and modeled by a thin interphase (Figure 3(a)). A composite with
ring-shaped fiber considered in Xu et al. [6] (Figure 3(b)) and a three-phase composite with a thick mesophase (Figure 3(c)) are studied
in detail. Some numerical results derived from the present model are given in order to illustrate the effect of the mesophase and their
validation with other approaches.

Figure 3. Fig. 3(a) Thin mesophase; Fig. 3(b) Ring-shaped fiber; Fig. 3(c) Thick mesophase.
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Table IV. Effective properties calculated by three methods: three phase approach (3-phases), AHM spring model and FEM, for
PZT-fiber/BaTiO3-mesophase/Epoxy 1-matrix and different mesophase thickness � D t=R2.

� D t=R2 C�13 C�33 C�44 C�66

�
C�11 C C�12

�
=2 e�31 e�33 e�15 ��33 ��11

3-phases 8.7079 50.029 3.6054 4.7981 12.83 �0.15722 7.0553 0.018735 2.2548 0.108
10�1 spring 7.5038 40.843 3.1132 3.9228 10.911 �0.093894 5.4118 0.013488 0.97711 0.086557

FEM 8.707 50.029 4.729 3.605 12.830 �0.157 7.055 0.0138 2.200 0.107294

3-phases 7.6352 41.734 3.1631 4.011 11.116 �0.099654 5.5693 0.013921 1.0994 0.088299
10�2 spring 7.534 40.863 3.1221 3.9384 10.955 �0.094341 5.4115 0.013556 0.97711 0.086556

FEM 7.635 41.733 3.951 3.163 11.116 �0.0997 5.567 0.014727 1.06800 0.087670

3-phases 7.547 40.952 3.127 3.9471 10.975 �0.094909 5.4272 0.013598 0.98928 0.086727
10�3 spring 7.537 40.865 3.123 3.94 10.96 �0.094386 5.4114 0.013563 0.97711 0.086556

FEM 7.550 40.977 3.8890 3.128 10.980 �0.095 5.425 0.014414 0.96000 0.086132

3-phases 7.5383 40.874 3.1235 3.9408 10.962 �0.094443 5.413 0.013567 0.97832 0.086573
10�4 spring 7.5374 40.865 3.1231 3.9401 10.96 �0.094391 5.4114 0.013563 0.97711 0.086556

FEM 7.539 40.893 3.8414 3.124 10.962 �0.094 5.411 0.014382 0.94900 0.0859492

Figure 4. Comparisons between the in-plane effective properties of composite with mesophase computed using the exact three-phase solution and the
mechanical imperfect model (AHM spring) in function of the properties of mesophase. AHM, asymptotic homogenization method.

(1) In order to validate the present model, some electro-elastic effective properties of a three-phase composite PZT-fiber/BaTiO3-
mesophase/Epoxy 1-matrix with square periodic cells are presented in Table IV for different thickness t of the mesophase. The
effective properties are calculated applying two different approaches by AHM, in particular, the current model denoted by AHM
3-phase and spring model (AHM spring) reported in Rodriguez-Ramos et al., [5] and an FEM for three-phase composite (FEM)
given in the expressions (40)–(41). The fiber volume fraction used in the computation is V2 D 0.4. In the spring model, the
imperfect parameters are considered as a function of mesophase properties given in the following form:

Kn D
EI.1 � 
 I/

.1C 
 I/.1 � 2
 I/t
and Kt D Ks D

EI

2.1C 
 I/t
, (42)

where EI, 
 I are the Young and Poisson moduli of the mesophase, respectively. The numerical results of the present three-phase
model (AHM 3-phases) are close to FEM and much more proximate to the values for the imperfect model (AHM spring) when
the mesophase thickness � D t=R2 decreases.
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Figure 5. Comparisons between out-of-plane effective properties of composite with mesophase computed using the exact three-phase solution and the
mechanical imperfect model (AHM spring) in function of the mesophase properties. AHM, asymptotic homogenization method

(2) The following figures (Figures 4 and 5) show in-plane and out-of-plane effective properties C�44, C�66, k� D .C�11 C

C�12/=2, e�31, e�33, e�15, ��11and ��33 related to a unidirectional periodic isotropic transversal composite with hexagonal cell made of
Epoxy 2 matrix with piezoelectric PZT-5 reinforcements, which physical characteristics are given in Table III. In the computation,
the Poisson ratio of the mesophase is fixed and equal to 
 .I/ D 0.34, the imperfect parameters considered in the AHM-spring
model are given by (42), the reinforcement and mesophase volume fraction are V2 D 0.5 and VI D 0.001, respectively. The
existence of a thin mesophase (Figure 3a) between the matrix and fiber with thickness t is considered. Figure 5 shows a compar-
ison between the effective properties of composite with mesophase computed using the exact three-phase solution and the
spring model [5] under only mechanical imperfect contact as a function of the respective properties of the mesophase value

� D log
�

C .I/44 =C
.1/

44

�
. It is seen that for a ratio � D t=R D 0.001, the two solutions are numerically indistinguishable for the coef-

ficients except for extremely elevated values of C .I/44 =C
.1/

44 , where C .I/44 =C
.1/

44 denotes the ratio between the mesophase property
and the matrix. Furthermore, it should be noted that for a large enough value of C .I/44 =C

.1/
44 , the exact three-phase solution attains

asymptotically to the rigid fiber limit, while the imperfect interface solution attains asymptotically to the properties of a com-
posite with perfect contact calculated by finite element in [30]. The two figures also reveal the influence of the mesophase on
the effective moduli and the range where the model of the three-phase composite is equivalent to the model of a two-phase
composite under imperfect contact as reported in Rodríguez-Ramos et al. [5]. The discrepancy between three-phase and spring
models via AHM is because the spring model leads to the properties of two-phase composite without mesophase. The spring
model for piezoelectric composites with imperfect contact is an idealization; in fact, it requires the presence of certain addi-
tional parameters that describe the electrical imperfection between the phases. However, the three-phase model reflects the
presence of electrical and mechanical barriers in the composite.

(3) In Xu et al., [6] is an analytical method using the generalized eigenstrain concept integrated with the theory of doubly
quasi-periodic Riemann boundary value problem is presented. The piezoelectric composites containing the doubly periodic
piezoelectric fibers with a ring-shaped cross-section under antiplane shear coupled with in-plane electric load are investigated
(Figure 3(b)). In this work, motivated by the study of ring-shaped cross-section piezoelectric composites, a comparison between
the out-of-plane effective electro-elastic coefficients by a three-phase model and those reported in Xu et al., [6] is given in
Table V. The angle of periodic cell is � = 45ı. The PZT-7A fiber occupied the mesophase region SI with volume fraction VI D 0.1,
and the Epoxy 1 matrix is in the regions S1 and S2.The volume fraction in S2 region is V2 D 0.4. The material parameters used in
the computation are C .I/44 D 25.4GPa, e .I/15 D 9.2C=m2, and � .I/11 D 4.071 nC=Vm. The results have very good agreements.

In Table VI, we consider the same piezoelectric composite reported in Table V, that is, composite with ring-shaped cross-section
and circular cross-section piezoelectric fibers. Here, the angle of periodic cell is � D 45ı,and therefore, new effective coefficients are
not null. The overall properties of the composite exhibit monoclinic symmetry. The effective properties are calculated by the ana-
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Table V. Comparison between the out-of-plane effective
electro-elastic coefficients for a piezoelectric fiber composite
(Epoxy 1/PZT-7A/Epoxy 1), with ring-shaped cross-section
and the periodic rhombic cell � D 45ı reported by Xu et
al., [6] and the present three-phase model by AHM.

(GPa) C�44 C�45 D C�54 C�55

AHM 3.297088984 �0.090269997 3.11654899
[6] 3.297088971 �0.090269974 3.11654902

(C/m2/ e�15 e�14 D e�25 e�24

AHM 0.067679261 �0.020945162 0.109569585
[6] 0.067679261 �0.020945161 0.109569583

(nC/Vm) ��11 ��12 D �
�
21 ��22

AHM 0.090446282 �0.009938185 0.110322653
[6] 0.090446283 �0.009938185 0.110322652

AHM, asymptotic homogenization method.

Table VI. Comparison between the in-plane and out-of-plane effective electro-elastic coefficients calcu-
lated by three-phase AHM and FEM models for a Epoxy 1/PZT-7A/Epoxy 1 piezoelectric fiber composite
with ring-shaped cross-section and rhombic periodic cell.

(GPa) C�11 C�12 C�13 C�16 C�22 C�23 C�26

AHM 11.038 6.218 6.0004 �0.25965 11.119 6.027 0.21933
FEM 10.913 6.332 6.0153 �0.25804 11.025 6.034 0.21997

(GPa) C�33 C�36 C�44 C�45 C�55 C�66

AHM 16.763 �0.013286 3.2971 �0.09027 3.1165 2.4303
FEM 16.6515 �0.018603 3.2963 �0.09022 3.1158 2.3187

(C/m2/ e�31 e�32 e�33 e�36 e�14 e�15 e�24

AHM �0.048149 �0.04895 1.0564 0.00040 �0.020945 0.067679 0.10957
FEM �0.048047 �0.049167 1.0564 0.00056 �0.020934 0.067688 0.10951

(nC/Vm) ��11 ��12 ��22 ��33

AHM 0.090446 �0.0099382 0.11032 0.24463
FEM 0.088040 �0.0093880 0.10683 0.23825

AHM, asymptotic homogenization method.

lytical expressions (18)–(21) and (22)–(34) denoted by AHM and FEM, respectively, reported in Section 3. The results have shown
good concordance.

In Figure 6, we consider two types of piezoelectric composites, that is, composites with ring-shaped cross-section (Figure 3(b)) and
circular cross-section piezoelectric fibers as in Xu et al., [6]. The fiber is PZT-7A, and the matrix is Epoxy 1. The angle of periodic cell
� D 60ı (hexagonal fiber arrangement) is taken; the overall properties of the composites are transversely isotropic at this angle. Only
some effective piezoelectric coefficients, that is, e�31, c�66, e�15 and ��33 are shown in Figure 5 in order to illustrate the results. The model
given in Xu et al., [6] and the present model AHM have good agreements for the coefficient e�15. The obtained values from the ring-
shaped cross-section fiber composites are very much higher than those obtained from the circular cross-section fiber under the same
fiber volume fraction. The coefficients e�31, c�66 and ��33only are calculated by AHM. These coefficients monotonically increase in absolute
values when the fiber volume fraction increases for the circular cross-section fiber composites.

In Figures 7–8, some effective properties for three-phase electro-elastic composites are presented versus the mesophase thickness
t=R. Three different cases are considered in both figures. In Figure 7, the parallelepiped cell is fixed with the angle of periodic cell
� D 45ı and the properties of the matrix and fiber are changing, the mesophase is a PZT-7A in all cases, and the circular fiber and
matrix region are two Epoxies. The objective is to study the effect of the soft and hard reinforcements on the effective properties of
composite. The ratio� D c .2/66 =c .1/66 between the shear coefficients of both Epoxies indicates soft .� D 0.01/ reinforcement, ring-shaped
cross-section .� D 1/, and rigid fiber .� D 100/. The effect of soft or rigid circular fiber can be observed in the properties c�45, e�36, and
e�15 in comparison with the ring-shaped fiber composite. The curves of the composite with a rigid fiber exhibit an extreme value inside
of interval [0, 1] and notice that the extreme increases. On the other hand, in Figure 8, it is possible to study the practical significance
of having parallelepiped arrangements of the fiber distribution. Three different parallelepiped arrangements are considered, that is,
� D 90o, 75o, 45ı for the study of the influence of parallelepiped arrays on the effective properties behavior in the composite with
mesophase of PZT-7A and the circular fiber and matrix region made of Epoxy 1. The volume fraction of the circular fiber used for the
calculation is V2 D 0.5. Notice the remarkable effect of the cell arrays on different overall properties as the thickness of the interface is
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Figure 6. The effective piezoelectric coefficiente�31, C�66, e�15 and ��33 for a composite with ring-shaped cross-section and hexagonal periodic cell are calculated by
the present model. In particular, e�15coincides with the equivalent coefficient reported in Xu et al., [6].

Figure 7. Effective properties for three-phase electro-elastic composites versus the mesophase thickness t=R for different ratios of the shear coefficients.

changing. For instance, the arrays determine the strength or weakness character of the effective properties in the composite. For square
cell (� D 90o/, all coefficients in the left sides in Figure 8 are null in contrast with other arrays. In the right sides in Figure 8, the effective
coefficients presented are very similar for the arrays � D 90o, 75o, but for � D 45ı(red line), appears a noticeable difference. Recently,
research reports have demonstrated the importance of such composites having parallelepiped arrangements of the fiber distribution
in tissues [31] and crystallography [32], and so on.
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Figure 8. Three different cell arrangements are considered, that is, � D 90o , 75o , 45ı for the study of the influence of parallelepiped arrays on the effective
properties behavior.

5. Conclusions

In this work, closed analytic expressions for three-phase fibrous periodic composites with parallelepiped cells are derived using two dif-
ferent approaches. The analytical formulae derived for all piezoelectric effective properties have a simple form, and the computational
implementation is easy. In comparison with previous publications, a complete characterization of the piezoelectric fiber composite
with periodic array is allowable for different situations: (i) considering a thin mesophase, the influence of the perfect and imperfect
contact between the matrix and fiber is described; (ii) for the first time, all effective properties for ring-shaped fiber-reinforced piezo-
electric composite are calculated and compared with a cylindrical fiber case; (iii) a thick mesophase is studied, and the model illustrated
that some piezoelectric properties have an extreme value in comparison with the composite without interphase; and (iv) the numerical
proof showed by the applied models (AHM and FEM) are simple and accurate and demonstrated the influence of arrays in the prop-
erties of composite. In addition, we can concluded that the influence of the mesophase on the effective moduli can induce a strong
anisotropic when the distribution of fibers with different density is taken account and a new coefficient appears and not being when
the cell is considered square and hexagonal.

Appendix A

In order to realize the numerical calculations of the effective coefficient given in (18)–(21), the following linear equations system that
characterizes the contact conditions associated with the local problem p3L, should be solved. This system can be rewritten into a new
matricial system in terms of Nap, a .I/p , Na.I/�p, Nbp, b .I/p , Nb .I/�p, cp and dp which can be solved by Gauss’s method.

a0ı1p C

1X
kD1

oak�kp C Nap � a .I/p

Rp
1

Rp
2

� Na .I/�p D 0, (A.1)

r
�1

�1

"
b0 ı1p C

1X
kD1

obk�kp C Nbp

#
� b .I/p

Rp
1

Rp
2

� Nb .I/�p D 0, (A.2)

a .I/p C Na
.I/
�p

Rp
1

Rp
2

� cp D 0, (A.3)

p
�1�1



b .I/p C

Nb .I/�p

Rp
1

Rp
2

�
�
p
�1�2dp D 0, (A.4)
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a0ı1p C

1X
kD1

oak�kp � Nap C E .1/15

"
b0ı1p C

1X
kD1

obk�kp � Nbp

#
� �1

h
a .I/p C E .I/15 b .I/p

 i Rp
1

Rp
2

C

C �1

h
Na .I/�p C E .I/15

Nb .I/�p

i
D .�1 � 1/ R1 Œı˛1 � iı˛2
 ı1p,

(A.5)

E .1/15

"
a0 ı1p C

1X
kD1

oak�kp � Nap

#
�

"
b0ı1p C

1X
kD1

obk�kp � Nbp

#
�
p
�1�1

h
E .I/15 a .I/p � b .I/p

i Rp
1

Rp
2

C

C
p
�1�1

h
E .I/15 Na

.I/
�p �

Nb .I/�p

i
D
�p

�1�1E .I/15 � E .1/15

�
R1 Œı˛1 � iı˛2
 ı1p,

(A.6)
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a .I/p � Na

.I/
�p

Rp
1

Rp
2

�
C �1E .I/15



b .I/p �

Nb .I/�p

Rp
1

Rp
2

�
� �2

h
cp C E.2/15 dp

i
D .�2 � �1/ R2 Œı˛1 � iı˛2
 ı1p, (A.7)

p
�1�1E .I/15



a .I/p � Na

.I/
�p

Rp
1

Rp
2

�
�
p
�1�1



b.I/p �

Nb .I/�p

Rp
1

Rp
2

�
�
p
�2�2

h
E.2/15 cp � dp

i
D

D
�p

�2�2E.2/15 �
p
�1�1E .I/15

�
R2 Œı˛1 � iı˛2
 ı1p.

(A.8)

Appendix B

The infinite systems in term of the unknown constant ap corresponding to the each local problem qqL, 12L and 3L are the following:

ap C H1pa1 C H2p Na1 C

1X
kD1

oWkpak C

1X
kD1

oMkp Nak D TF

where

H1p D Bp

�
A3�1ı1p � F1

�
N�1p � NA1R2

1ı1p

�
A1

�
R2

1,

H2p D Bp

�
A5ı1p � F1

�
N�1p � NA1R2

1ı1p

�
NA1

�
R2

1,

Wkp D Bp

�
F1

�
N�1p � NA1R2

1ı1p

�
�k1 � A2krkp

�
,

Mkp D Bp

�
Gkp C F1

�
N�1p � NA1R2

1ı1p

�
N�k1

�
,

and the independent term is

TF D �1E1R1ı1p � �2BpF2R1

�
N�1p � NA1R2

1ı1p

�
� �3BpF3R

�
N�1p � NA1R2

1ı1p

�
,

with �1 D

8̂<
:̂

ˇ1q if F =qq

�i ŒŒm

1 if F =12 ,

0 if F =3

�2 D

8̂<
:̂

ˇ2 if F D qq

0 if F D 12 ,

ŒŒe311

1 if F D 3

�3 D

8̂<
:̂
ˇ3q if F D qq

0 if F D 12 .

ŒŒe311

2 F D 3

ˇ1q D
C .1/22qq � C .I/22qq C C .I/11qq � C .1/11qq

2
,ˇ2q D

C .1/11qq � C .I/11qq C C .1/22qq � C .I/22qq

2
,ˇ3q D

C .I/11qq � C .2/11qq C C .I/22qq � C .2/22qq

2
.

The magnitudes involved in the system are summarized

gkp D
�
.pC 2/ � .Ep.1C �I/C2p=Bp/

	
N�k pC2 C A1kk N�kC2 p C kC p

pCkR pCk
1
NTpCk , Cn

k D
kŠ

nŠ.k � n/Š
, rkp �

1X
jD1

o�kj N�jp,

TkCl D
X
m,n

m Nw1 C n Nw2

.mw1 C nw2/
kClC1

, .kC l � 3, .m, n/ ¤ .0, 0//
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A1p D 1C �3p�1.1C �I/ .1C �1/.�2 � �1/R
2
1=p.1 � �1/R

2�p,
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��1
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2
1= .�1 � 1/ ,

�1 D mI=m1; �2 D m2=m1,

�s D 3 � 4
T
s , 
T

s is the transverse Poisson’s ratio and s D 1, I, 2.

Appendix C

Parameters associated with the analytical expressions of the effective coefficients (22)–(34),
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