
HAL Id: hal-01694026
https://hal.science/hal-01694026

Submitted on 25 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study about Kalman Filters Applied to Embedded
Sensors

Aurelien Valade, Pascal Acco, Pierre Grabolosa, Jean-Yves Fourniols

To cite this version:
Aurelien Valade, Pascal Acco, Pierre Grabolosa, Jean-Yves Fourniols. A Study about Kalman Filters
Applied to Embedded Sensors. Sensors, 2017, 17 (12), pp.2810. �10.3390/s17122810�. �hal-01694026�

https://hal.science/hal-01694026
https://hal.archives-ouvertes.fr

Article

A Study about Kalman Filters Applied to
Embedded Sensors

Aurélien Valade 1,2,*, Pascal Acco 1, Pierre Grabolosa 2 and Jean-Yves Fourniols 1

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31031 Toulouse, France; pacco@laas.fr (P.A.);
fourniols@laas.fr (J.-Y.F.)

2 Institut Méditerranéen d’Enseignement et de Recherche en Informatique et Robotique,
66004 Perpignan, France; pierre.grabolosa@imerir.com

* Correspondence: aurelien.valade@imerir.com

Received: 27 October 2017; Accepted: 28 November 2017; Published: 5 December 2017

Abstract: Over the last decade, smart sensors have grown in complexity and can now handle
multiple measurement sources. This work establishes a methodology to achieve better estimates of
physical values by processing raw measurements within a sensor using multi-physical models and
Kalman filters for data fusion. A driving constraint being production cost and power consumption,
this methodology focuses on algorithmic complexity while meeting real-time constraints and
improving both precision and reliability despite low power processors limitations. Consequently,
processing time available for other tasks is maximized. The known problem of estimating a 2D
orientation using an inertial measurement unit with automatic gyroscope bias compensation will
be used to illustrate the proposed methodology applied to a low power STM32L053 microcontroller.
This application shows promising results with a processing time of 1.18 ms at 32 MHz with a 3.8%
CPU usage due to the computation at a 26 Hz measurement and estimation rate.

Keywords: smart sensors; Kalman filters; algorithm complexity; IMU; compensation

1. Introduction

Since the “Smart Dust” project [1] from Berkeley in 1999, Smart Sensors technologies and the
Internet of Things (IoT) have been growing fields of research, focussing on data collection and
interpretation [2]. The currently most used paradigm is to measure raw data from the sensor and
send the data to the cloud, or a computer, in order to be processed by complex algorithms [3,4].
Another school behind those devices is to process sensor data within the sensor and provide the user
with a readily usable, filtered and normalized measurement. The resulting lower data throughput and
lower latency allow for lower consumption in wireless applications and easier measurement usage.
The ultimate goal would be compensating all sensor dispersion and deviation, independently of
environmental conditions, resulting in smart self correcting sensors.

The current and developing processing capabilities of sensors and the growing demand for Smart
Sensors, in a wide array of fields from hobbies to industrial automation, call for new embedded, in-line,
real-time data processing applications. One of these applications is automatic and continuous sensor
calibration [5] with correction over time. Such a sensor does accelerate the manufacturing processes
and provides more precise measurements over time, without costly human intervention or sensor
replacement due to age related deviation.

State of the art lab sensors, such as pH-meters or spectrometers, use systematic manual
recalibration procedures before each measurement to ensure good environmental conditions,
dispersion, and deviation compensation. This method is, by definition, not applicable to embedded
sensors providing continuous and autonomous measurement without any external intervention.

Sensors 2017, 17, 2810; doi:10.3390/s17122810 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17122810
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2810 2 of 18

As most sensing elements are sensitive to multiple physical parameters, it is theoretically possible
to automatically enhance measurement precision by merging complementary sensors data using
multi-physical parameters estimation. One such common method was initially presented by Kalman in
1960 [6] and is known as the Kalman filter. This filter is a specialization of Bayesian filters [7] restricted
to discrete time, linear systems with Gaussian noise, and a state space model of the system. Such a
filter allows estimating the internal state of a system based on its measurements and model.

For the last 50 years, Kalman filters and its extensions for non-linear systems, Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF) [8], have been wildly used in various applications
such as satellites, spacecrafts or planes to help automatic control of the systems. Due to its computing
complexity, it has however not been wildly used in embedded systems until recent improvements
to microcontrollers technologies and processing power. Such applications includes smartphones or
drones for pose estimation.

This paper discusses a multi-sensor and multi-physical model coupled with a Kalman filter to
achieve precise continuous estimation of a physical value without environmental bias while constrained
to low processing power of embedded systems. Additionally, an automatic system re-calibration
procedure in known conditions is derived.

The remainder of this paper is organized as follows: Section 2 summarizes the technical
background used for this work; Section 3 exposes the proposed methodology; Section 4 applies the
methodology to a 2D orientation estimation problem based on inertial measurement units; Section 5
exposes and discusses the results obtained with the application; Section 6 references the used materials
and methods; and Section 7 describes the conclusions and the future of this work.

2. Technical Background

A multi-physical system model is a multiple input/multiple outputs (MIMO) system with
physical values for some of its inputs, calibration values for some of its parameters and
multi-parametric equations relying on these values for its measurement outputs. Such a system
can be described using the state space representation using two equations: an evolution equation and
an output/measurement equation.

2.1. Modeling the System

The state space representation [9] is a common MIMO system modeling toolkit. It relies on
three vectors and two equations to describe the relation between the system commands, its state,
and its outputs:

• an input vector U, containing all the system known inputs;
• a state vector X, containing the system internal state, which will evolve depending on the inputs;
• an output vector Y, containing the system outputs/measurement;
• an evolution Equation (1), describing the evolution of the internal state of the system, depending on

the previous state and the command input vector; and
• a measurement Equation (2), describing the measurements at the output of the system depending

on its state and its command input.

Xk+1 = f (Xk, Uk) (1)

Yk = h(Xk, Uk) (2)

Linear Equations (1) and (2) can be written as matrix operations, as illustrated in Equations (3)
and (4).

Xk+1 = [A] · Xk + [B] ·Uk (3)

Yk = [C] · Xk + [D] ·Uk (4)

From this point, the system model can be classified into three categories:

Sensors 2017, 17, 2810 3 of 18

• linear systems, using linear evolution (Equation (3)) and linear measurement functions
(Equation (4));

• non-linear systems, using non-linear evolution (Equation (1)) and measurement functions
(Equation (2)); and

• mixed systems using, for instance, a linear evolution function (Equation (3)) and a non-linear
measurement function (Equation (2)) (or Equations (1) and (4)).

This representation can be applied to large systems composed of multiple subsystems,
whether those are coupled, uncoupled, or unidirectionally coupled-respectively dependent,
independent, or semi-dependent. Unless coupled, the larger system can be decomposed into the
sum of its uncoupled subsystems, enabling major optimizations for computational complexity [10].

2.2. Kalman Filters

As exposed earlier, Kalman filters rely on the state representation of a system. They are specialized
Bayesian estimators for linear systems with discrete time and Gaussian noises. To do the estimation,
the Kalman filter updates Equations (3) and (4) to Equations (5) and (6), where Vk and Wk are state
and measurement noise vectors.

Xk+1 = [A] · Xk + [B] ·Uk + Vk (5)

Yk = [C] · Xk + [D] ·Uk + Wk (6)

The Kalman filter is a recursive filter (i.e., it uses the output of its previous corrected estimation to
process the next one). This process can be represented by Figure 1, with each step detailed by Table 1.

Evolution

Prediction

Correction

X̃k

X̃k Ỹk
Yk

X̂k

X̂k−1

Figure 1. The Kalman filter recursive process.

This filter tends to reduce the quadratic error of X̂k. Once the model is fixed, the fitting of the filter
is done by adjusting the values of covariance matrices of Vk and Wk, [Q] and [R] respectively, and the
initial estimated covariance of X, [P0].

Sensors 2017, 17, 2810 4 of 18

Table 1. Kalman filter processing steps.

Step Kalman Filter Real System

Evolution X̃k+1 = [A]X̂k + [B]Uk Xk+1 = [A]Xk + [B]Uk + Vk
[P̃k+1] = [A][P̂k][A]T + [Q]

Prediction/measurement Ỹk = [C]X̃k + [D]Uk Yk = [C]Xk + [D]Uk + Wk

Correction

Ek = Yk − Ỹk
[Kk] = [P̃k][C]T([C][P̃k][C]T + [R])−1

X̂k = X̃k + [Kk]Ek
[P̂k] = (I− [Kk][C])[P̃k]

This filter has excellent estimation performances on well known linear system. For non-linear
system, extensions have been developed, the best known being the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF).

2.2.1. The Extended Kalman Filter

The first, and easiest to understand, method to handle a non-linear system is the well-known EKF.
To estimate a non-linear system, the EKF filter does a local linearization of the system equations around
the current estimated state. The probability densities of the estimated state and measurement vectors
are obtained through the usage of the non-linear function for the mean value and the multiplication of
the standard deviation of the estimated state by the corresponding linear function (Figure 2). As the
Kalman filter, the EKF considers the system as noisy, the non-linear equations for the system (Equations
(1) and (2)) are transformed into Equations (7) and (8).

Xk+1 = f (Xk, Uk, Vk) (7)

Yk = h(Xk, Uk, Wk) (8)

(a) (b)

Figure 2. Linear projection methods for: (a) linear system (Kalman projection); and (b) non-linear
system local linearization (EKF projection).

In the case of state spaces represented systems, this is done by the computation of the Jacobian
matrices of the evolution function (Equation (7)). [FX] is the state relative Jacobian and [FV] is the noise
relative Jacobian.

Using the same pattern for the measurements, the state relative Jacobian will be named [HX] and
the noise relative one [HW].

The whole estimation process is expose in Table 2.

Sensors 2017, 17, 2810 5 of 18

Table 2. EKF estimation steps.

Step EKF Real System

Evolution
X̃k+1 = f (X̂k, Uk, 0) Xk+1 = f (Xk, Uk, Vk)

[P̃k+1] = [FX,k+1][P̂k][FX,k+1]
T

+[FV,k+1][Q][FV,k+1]
T

Prediction/measurement Ỹk = h(X̃k, Uk, 0) Yk = h(Xk, Uk, Wk)

Correction

Ek = Yk − Ỹk
[Kk] = [P̃k][HX,k]

T([HX,k][P̃k][HX,k]
T + [R])−1

X̂k = X̃k + [Kk]Ek
[P̂k] = (I− [Kk][HX,k])[P̃k]

This method’s main asset is its simplicity, as the operations are identical to the standard Kalman
filter. The only addition is the computation of Jacobian matrices and the usage of non-linear functions
for evolution and measurement predictions.

A known limitation is the slower convergence and instability of EKF compared to UKF when
applied to systems with high non-linearities [11].

2.2.2. The Unscented Kalman Filter

To avoid large non-linearity estimation problems due to the local linearization used by the EKF,
the UKF [12] was developed based on a mix between the Particle filter [13] and the Kalman filter.
The method is based on the Unscented Transform to propagate the probability density directly through
the non-linear function.

The Unscented Transform

The Unscented Transform (Appendix A) replaces the approximated linear projection of the
Gaussian noise through the linear function by the projection of 2n + 1 weighted points, n being the size
of the state vector, through the non-linear function. The mean and standard deviation of the weighted
projected points is then computed to approximate the new, more precise, Gaussian density function at
the output [8,14,15].

(a) (b)

Figure 3. Non-Linear projection methods for: (a) local linearization system (EKF projection);
and (b) non-linear weighted projections (Unscented Transform projection).

As shown in Figure 3, the estimated probability density used by the UKF is far more precise than
the EKF in the case of highly non-linear systems: the output of the studied function is limited to [1; 2],
the corresponding probability density should be zero outside these boundaries. In the case of the

Sensors 2017, 17, 2810 6 of 18

local-linearization method with the selected input probability density, the probability of a value higher
than 2 is still important. On the other hand, with the Unscented Transform projection, the estimated
probability density is far more coherent with the theoretical one.

Using this method, the computation for the UKF is decomposed into three steps: system evolution,
measurements projection and correction.

System Evolution

• Generate a weighted point set for the following state estimation.

Xk =

[
X̂k, X̂k +

√
(n + λ)[P̂k], X̂k −

√
(n + λ)[P̂k]

]
(9)

With Xk a [n, 2n + 1] matrix representing the 2n + 1 states to propagate, weighted with ωc and ωµ

previously computed according to Appendix A. The spread of those states around the mean value is
adjusted using the λ parameter. The square root of a matrix is defines as [B] =

√
[A] ⇔ [B] · [B] =

[A], as explained in [16], and implies [A] is a square matrix.
• Propagate the state through the evolution function

X̃ (i)
k+1 = f (X (i)

k , Uk, 0), i ∈ [0, 2n] (10)

• Compute the projection statistics using the Unscented method

X̃k+1 =
2n

∑
i=0

ω
µ
i X̃

(i)
k+1 (11a)

[P̃k+1] =
2n

∑
i=0

ωc
i (X̃

(i)
k+1 − X̃k+1)(X̃

(i)
k+1 − X̃k+1)

T + [Q] (11b)

Measurements Projection

• Generate a weighted point set from the estimated state

X̃k+1 =

[
X̃k+1, X̃k+1 +

√
(n + λ)[P̃k+1], X̃k+1 −

√
(n + λ)[P̃k+1]

]
(12)

• Propagate the points through the measurement function

Ỹ (i)
k+1 = h(X̃ (i)

k+1, Uk+1, 0), i ∈ [0, 2n] (13)

• Estimate the mean and covariance of the measurement

Ỹk+1 =
2n

∑
i=0

ω
µ
i Ỹ

(i)
k+1 (14a)

[P̃yy,k+1] =
2n

∑
i=0

ωc
i (Ỹ

(i)
k+1 − Ỹk+1)(Ỹ

(i)
k+1 − Ỹk+1)

T + [R] (14b)

• Estimate the crossed covariance between the state and measurement

[P̃xy,k+1] =
2n

∑
i=0

ωc
i (X̃

(i)
k+1 − X̃k+1)(Ỹ

(i)
k+1 − Ỹk+1)

T (15)

Correction

• Compute the Kalman Gain
[Kk+1] = [P̃xy,k+1][P̃yy,k+1]

−1 (16)

Sensors 2017, 17, 2810 7 of 18

• Correct the state

X̂k+1 = X̃k+1 + [Kk+1](Yk+1 − Ỹk+1) (17a)

[P̂k+1] = [P̃k+1]− [Kk+1][P̃yy,k+1][Kk+1]
T (17b)

With its precise projection, the UKF is much faster to converge and gives more precise results
on highly non-linear systems. This precision is possible at the expense of a far more computational
estimation process.

2.3. Algorithm Complexity and Computing Power

As the goal of this work is to provide a real-time estimation of the physical values on embedded
low-power hardware, the processing time of the used algorithms has to be taken into account during
the design. In this section, the algorithmic complexity of the different kinds of Kalman filters will be
discussed, and compared, taking into account the processing capabilities of common microcontrollers.

To compare the algorithm complexities, it is mandatory to choose a complexity indicator.
The commonly used indicators are:

• the processed lines counts to do an operation;
• the number of Multiplication and Accumulation (MAC) operations; and
• the number of Floating point Operations (FLOP) (i.e., the number of operation on “Real numbers”

in the algorithm).

In the case of operations on microcontrollers and matrix related operations, the FLOP is the
most representative indicator for the algorithms complexity. Using this indicator, the mathematical
operations relative to Kalman filtering will be discussed in the next part.

2.3.1. Algorithms Complexity

Kalman filtering is all about matrices and vectors operations, from the simple addition of two
vectors to the inversion of a matrix. In those kinds of operations, algorithmic complexity can be
expressed in relation with the vectors and or matrices dimensions.

As an example, the steps required for the computation of the average of the components of a
vector of size n are:

• one affectation for the initialization of the sum variable;
• one addition and affectation per element (n addictions and affectations);
• one division; and
• one affectation for the result.

Let’s define the following complexity indicators:

• T(f (n)), the number of operations to be executed to solve the problem; and
• O(fO(n)) = limn→+∞ T(f (n)).

Then, the algorithmic complexity of the averaging operation is T(3 + 2n) with a complexity order
of O(2n). However, as the affectations can be considered as simple operations, the results can be
simplified as T(1 + n), with an order of O(n).

Following the same method, we can get the complexities of every matrix operation as exposed
in Table 3.

Sensors 2017, 17, 2810 8 of 18

Table 3. Matrix operations complexity sum-up.

Operation T(.) O(.)

Matrix multiplication 2× n×m× p 2× n×m× p
Adding two vectors of size n n n

Adding two matrices of size (n, m) n×m n×m
Transpose a matrix 0 0

Invert a matrix 4× n3 + 2× n2 4× n3

Mean vector of a matrix n× (m + 1) n×m
Mean value of a vector n + 1 n

Covariance de deux matrices 2× n×m× p 2× n×m× p

In the case of Kalman filters, the matrix inversions can be simplified by a factor of 2 as the matrix to
invert is Hermitian. The Cholesky inversion can be used in this case, giving a T(2n3 + n2) complexity,
with an order of O(2n3) [17].

From this point, the Kalman filters complexity are shown in Table 4, using n as the state vector
size, m as the measurement vector size and p as the command vector size.

Table 4. Kalman filtering complexity depending on n, m and p.

Algo Opération O(.)

(E)KF

X̃k+1 = [A]X̂k + [B]Uk 2n2

[P̃k+1] = [A][P̂k][A]T + [Q] 4n3

Ỹk = [C]X̃k + [D]Uk 2m(n + p)
Ek = Yk − Ỹk m

[Kk+1] = [P̃k][C]T([C][P̃k][C]T + [R])−1 4n2m/4m2n
X̂k = X̃k + [Kk]Ek 2mn

[P̂k] = (I− [Kk][C])[P̃k] ∼2n3/2m2n

UKF

Xk =

[
X̂k, X̂k ±

√
(n + λ)[P̂k]

]
n3

X̃ (i)
k+1 = f (X (i)

k) 2nO(f (.))

X̃k+1 = ∑2n
i=0 ω

µ
i X̃

(i)
k+1 4n2

[P̃k+1] = ∑2n
i=0 ωc

i (X̃
(i)
k+1 − X̃k+1)(X̃

(i)
k+1 − X̃k+1)

T + [Q] 6n3

Ỹ (i)
k+1 = g(X̃ (i)

k+1, Uk+1, 0) (2n + 1)O(g(.))

Ỹk+1 = ∑2n
i=0 ω

µ
i Ỹ

(i)
k+1 4m2n

[P̃yy,k+1] = ∑2n
i=0 ωc

i (Ỹ
(i)
k+1 − Ỹk+1)(Ỹ

(i)
k+1 − Ỹk+1)

T + [R] 6m2n

[P̃xy,k+1] = ∑2n
i=0 ωc

i (X̃
(i)
k+1 − X̃k+1)(Ỹ

(i)
k+1 − Ỹk+1)

T 4n2m
X̂k = X̃k + [Kk]Ek 2mn

[P̂k] = (I− [Kk][C])[P̃k] ∼2n3/2m2n

As a result, the Kalman filters computing complexities are summed-up in the Table 5.

Table 5. Kalman filters complexity.

Algorithm T(.) O(.)

(E)KF 4n3 + 4m3 + 6m2n + 4n2m + 3n2 + · · · 4n3

UKF 10n3 + 4n2m + 14m2n + 23n2 + 6m2 + · · · 10n3

Using this analysis, the UKF algorithm demands about twice the computing time of an equivalent
EKF algorithm, which can be decisive in small applications. Moreover, the computational complexity
of these filters grows extremely fast with the size of the system model, limiting their real-time usage to
bounded complexity system model, with reasonable state, command, and measurement vectors size.

Sensors 2017, 17, 2810 9 of 18

It also has to be noted that the previous study does not take into account the processing time of the
non-linear functions called by the EKF and UKF algorithms.

2.3.2. A Computing Power Overview

Embedded systems, and thus Smart Sensors, are mainly targeting low power consumption, since
most of them are battery powered, and aim for low manufacturing costs. Consequently, such systems
are often designed around single core microcontroller architectures with low operating frequencies.
Moreover, only high-end microcontrollers implement hardware Floating Point Unit (FPU) to accelerate
the computation of “real numbers”, due to their manufacturing cost and power consumption. Recent
technological advances tend to improve this part [18].

Using this knowledge, the processing power of the used controller has to be acknowledged to
ensure the complexity of the filter is not too important to ensure real-time operations. As an example,
the comparison can be done between three largely used microcontrollers:

• the ATMega328, a 8 bits microcontroller, the most commonly used in hobbyists designs as core
controller of the Arduino Uno board;

• the STM32L053, a ultra low-consumption 32 bits microcontroller, used in the 2D orientation
estimation demonstration; and

• the STM32F4xx, a high-end 32 bits microcontrollers family, embedding a FPU to accelerate
computation of floating points numbers.

The computing power of those units is described in Table 6.

Table 6. Computing performances.

Controller Single Precision Float Operations Fixed Point 32 Bits Operations

ATMega328 8 bits/16 MHz ≈100,000 ≈1.5 M
STM32L053 32 bits/32 MHz ≈180,000 ≈3.6 M

STM32F4x 32 bits/216 MHz/FPU ≈1 M without FPU, ≈12 M ≈100 M

With this technical background, it is now possible to establish a method allowing to use Kalman
filters into Smart Sensors or any other embedded system, keeping in mind the complexity problem.

3. The Proposed Methodology

The proposed methodology focuses on the system modelization and the algorithmic complexity
containment, the main steps being discussed in this section. The next section will provide an example
detailing and illustrating these steps.

3.1. Specify the Use-Cases

The first major step in a system design is the use-cases identification. For embedded sensors data
fusion, the focus will mainly be on two parameters:

• the operation context of the system—to what end it is being used (e.g., Calibration mode, Normal
estimation mode); and

• for each context, what are the parameters: known and controlled parameters, parameters to be
estimated...

For the example of Calibration and Normal estimation use cases, we can sum-up the process as
expressed in Table 7.

Sensors 2017, 17, 2810 10 of 18

Table 7. Example of use-case specification.

Mode Controlled/Known Parameters Parameters to Estimate

Calibration Main measurement parameters System calibration parameters
Normal estimation System calibration parameters Main measurement parameters

Once the use-cases have been clearly identified, the main task focusses on the system behavioral
equations identification.

3.2. Identify the System Equations

The system modelization is mostly about behavioral equations identification. In this part,
the study consists in:

• defining all the physical parameters affecting the system outputs;
• defining all the calibration parameters (i.e., the dispersion parameters due to the sensors

manufacturing process), and checking if it is possible to measure them independently of the
desired measurement; and

• defining all the equations linking these physical parameters (those are mainly differential equations).

3.3. Create the System Models for Each Use-Case

Once the use-cases and the system equations are established, the model creation part is
decomposed as follows, with one model per use-case:

• the known parameters are put into the command vector Uk of the system;
• the parameters to be estimated and all the intermediate parameters in the differential equations

are put into the state vector Xk;
• the measured output values of the system are put into the measurement vector Yk;
• the evolution and measurement equations are written according to the previously established

equations; and
• the system equations time discretization for continuous time equations (as the Kalman filters only

works with discrete time models).

At this point, the designer should look for uncoupled, or unidirectionally coupled subsystems into
the main system, especially if this subsystem has its own measurement outputs and can be expressed as
a linear subsystem. If subsystems can be identified, the designer should consider dividing the system
into multiple systems, easier to process: for example, a linear system composed of two commands,
seven states and five measurements will have a complexity order about O(1372), according to
Equation (18a). However, if this system can be decomposed in two subsystems, one with one command,
three states and two measurement, the other with two commands (one from the previous system
state, for the coupling), four states and three measurements, the overall complexity drops to O(364),
according to Equation (18b), which gives a 3.7 times complexity optimization.

O(4× 73) = O(4× 343) = O(1372) (18a)

O(4× 33) +O(4× 43) = O(108) +O(256) = O(364) (18b)

3.4. Apply an Adapted Filter

As the main goal of the design, the filter selection and implementation have to be carefully studied
in order to assess the best possible performances. The designer will have to implement one Kalman
filter per subsystem designed in the previous step.

To select the best possible solution for each equation, the following rules should be applied.

• If the subsystem is purely linear (i.e., its evolution and measurement equations are in the form of
Equations (3) and (4)), the implemented estimator should be a Kalman filter.

Sensors 2017, 17, 2810 11 of 18

• If the subsystem is purely non-linear (i.e., its evolution and measurement equation are in the form
of Equations (1) and (2)), the implemented estimator should be an EKF or UKF, depending on the
non-linearity, the state vector length and the available processing power.

• If the subsystem is mixed (i.e., its evolution equation is linear and its measurement equation
is non-linear), the evolution part should be handled by Kalman filter implementation and the
measurement part should be implemented using EKF or UKF method, in order to optimize the
processing load.

Finally, to optimize the processing time, some basic equations should be rewritten to their bare
minimum: for example, a linear evolution equation in the form of Equation (19a) can be simplified to a
couple of operations (Equations (19b) and (19c)) (Xk[n] being the nth element of the vector Xk).

Xk+1 =

[
1 0
0 1

]
· Xk +

[
0 1
0 0

]
·Uk (19a)

Xk+1[0] = Xk[0] + Uk[1] (19b)

Xk+1[1] = Xk[1] (19c)

In this example, the unoptimized version is composed of:

• two matrix multiplications by a vector, of complexity T(2× 2× 2× 1) = T(8) each; and
• an addition of two vectors of two elements, of a complexity of T(2)

The optimized version is composed of one addition of two elements and two affectations (with
virtually no computational cost), which gives a complexity optimization of T(10) to T(1).

4. Application to a 2D Orientation Estimation Problem

The 2D orientation estimation is a common problem in robotics [19]. For instance, in a self-balancing
robot, the orientation of the robot has to be accurately measured at high speed in order to control the
system using a feedback loop.

4.1. The Sensing Elements

To estimate the orientation of the robot in the XZ plane (Figure 4), the chosen approach relies on
a three-axis accelerometer and three-axis gyroscope integrated circuit, the LSM6DSL sensor from ST
Microelectronics. This circuit is used as a part of the development sensor board X-NUCLEO-IKS01A2 [20],
which can be directly plugged on the microcontroller development board.

This sensor has the following features:

• raw measurements for the Accelerations and Rotational speed on X, Y and Z axis;
• internal processing for free-fall detection, movement detection, 6D/4D orientation, click and

double-click detection, pedometer, step detector and counter;
• an independent automatic sampling with data storage in FIFO;
• I2C or SPI serial interface; and
• two configurable interrupt output lines.

A corresponding driver library is also provided with the development kit for STM32
development boards.

Sensors 2017, 17, 2810 12 of 18

Figure 4. Self-balancing robot orientation frame.

As for all sensors, the measurements on the accelerometer and gyroscope can be biased. In the
following study, only the gyroscope bias will be considered to have a significant impact on the
measurement and thus will be compensated.

4.2. The Processing Unit

As a processing unit, the ultra-low power STM32L053R8 has been selected, using the
corresponding Nucleo development kit. This microcontroller features:

• a low-power 32 MHz, 32 bits ARM Cortex-M0 processor, without FPU;
• 64 KB of Flash and 8 KB of RAM;
• a processing power of about 180 kFLOPs/s at 32 MHz; and
• ultra low power consumption, with 88 µA/MHz running power consumption, and down to

270 nA Stand-by mode.

This microcontroller targets battery powered application, which is the main scope of the
current study.

4.3. Applying the Methodology

The first step to design the sensor requires in the use-cases listing establishment. The proposed
solution has two use-cases.

• Calibration mode: The sensor is still, on a table. Using this measurement, the gyroscope
measurements should be zero, and the sensor bias is estimated by the filter.

• Orientation estimation mode: The sensor bias is known and used as a control input, and the sensor
orientation is estimated by the filter.

With the use-cases established, the system equations have to be written.

4.3.1. System Equations

To measure the 2D orientation of the system, the process relies on the measurement of the gravity
acceleration by the accelerometers. This information is, however, sensitive to noise and parasite
accelerations (e.g., chaos relative to the movement of the robot). The measurement stability is enhanced
by the inclusion of gyroscope measurement, which assess the rotational speed.

The equations express the projection of the gravity vector in the XZ 2D plane of the robot and the
measurement of its angle and norm (Figure 5).

Sensors 2017, 17, 2810 13 of 18

Figure 5. Gravity vector projection into the XZ plane.

Given this hypothesis, the three main parameters to the system are:

• the gravity vector projection norm |gravXZ|;
• the gravity vector projection angle θY, which is the desired measurement translating the system

orientation in the 2D plane; and
• the gyroscope measurement bias bgyro.

The system noises are:

• the acceleration noise on X and Z axes: Rax and Raz.

From these parameters, the sensor measurements are expressed as Equation (20a) for the
gyroscope and Equations (20b) and (20c) for the accelerometers.

gY =
δθY(t)

δt
+ bgyro (20a)

ax = |gravXZ| ∗ sin(θY) + Rax (20b)

az = |gravXZ| ∗ cos(θY) + Raz (20c)

The system evolution can also be expressed by Equations (21a) and (21b).

δθY(t)
δt

= gY − bgyro (21a)

δ|gravXZ|(t)
δt

= 0 (21b)

At this point, the system equations have to be established for each use-case.

Calibration Mode Equations

In calibration mode, the system known input is the rotational velocity: the system being still,
Equation (22) is valid.

δθY(t)
δt

= 0 = gY − bgyro (22)

As the global system orientation is not relevant at this point, θ and |gXZ| will not be estimated in
this mode, and thus ax and az will not be monitored.

The state space equations for the calibration mode can be written as Equations (23a) and (23b).

Xcal,k+1 =
(

bgyro,k+1

)
= Xcal,k + Ucal,k =

(
bgyro,k

)
+ 0 (23a)

Ycal,k = (gY) = Xcal,k =
(

bgyro,k

)
(23b)

Sensors 2017, 17, 2810 14 of 18

When the system is stil, the gyroscope bias observation is trivial using this description.

Estimation Mode Equations

In estimation mode, the known input vector of the system is composed of the gyroscope bias.
If the gyroscope noise is considered to be neglectable, the gyroscope Y axis measurement can also be
added to the command vector.

Therefore, the state vector is composed of the gravity projection norm and angle. The system
measurements are the accelerations along X and Z axes. The system equations can be written as
Equations (24a) and (24b).

Ẋest(t) =

(
δθY(t)

δt
δ|gravXZ |(t)

δt

)
=

(
gY − bgyro

0

)
(24a)

Yest(t) =

(
aX(t)
aZ(t)

)
=

(
|gravXZ(t)| · sin(θ(t))
|gravXZ(t)| · cos(θ(t))

)
(24b)

The discrete time equations can be approximated in this case to Equations (25a) and (25b) without
precision loss. The sampling rate is set to 26 Hz in the current study per arbitrary choice among
available hardware settings.

Xest,k+1 =

(
θk+1

|gravXZ,k+1|

)
=

[
1 0
0 1

]
·
(

θk
|gravXZ,k|

)
+

[
1

26 − 1
26

0 0

]
·
(

gY
bgyro

)
(25a)

Yest,k =

(
aX,k
aZ,k

)
=

(
|gravXZ,k| · sin(θk)

|gravXZ,k| · cos(θk)

)
(25b)

Now that the equations have been established for each use-case, the Kalman filters have to be
applied to those systems.

4.3.2. Applying an Adapted Filter

A different filter has to be applied to each use-case, as follows.

Calibration Mode Filter

As this equation system is relatively simple, having a single state which translates to the single
measurement, a simple low-pass filter should be used for the gyroscope bias compensation.

The selected method here was to compute the average value of the first 100 samples, and use this
value as a bgyro.

Estimation Mode Filter

The system equations for the Estimation mode are: linear for the evolution and non-linear for the
measurement. As explained in Section 3.4, the optimal implementation uses Kalman filter equations
for the evolution estimation and EKF equations for the Prediction and Correction parts (Table 8).

Sensors 2017, 17, 2810 15 of 18

Table 8. Filter applied to Estimation Mode.

Step Used Equation

Evolution
X̃k+1 =

[
1 0
0 1

]
· Xk +

[1
26 − 1

26
0 0

]
·Uk

[P̃k+1] =

[
1 0
0 1

]
· [P̂k] ·

[
1 0
0 1

]
+ [Q] = [P̂k] + [Q]

Prediction/measurement Ỹk =

(
ãX,k
ãZ,k

)
=

(
| ˜gravXZ,k| · sin(θ̃k)

| ˜gravXZ,k| · cos(θ̃k)

)

Correction

Ek = Yk − Ỹk
[Kk] = [P̃k][HX,k]

T([HX,k][P̃k][HX,k]
T + [R])−1

X̂k = X̃k + [Kk]Ek
[P̂k] = (I− [Kk][HX,k])[P̃k]

Where [HX,k] is the measurement Jacobian matrix listed in Equation (26).

[HX,k] =

[
sin(θ̃k) | ˜gravXZ,k| × cos θ̃k
cos(θ̃k) −| ˜gravXZ,k| × sin θ̃k

]
(26)

At this point, the covariance matrices [Q] and [R] have to be adjusted to get the best result.
As part of the optimization process, some unnecessary operations have been removed from

Table 8 equations and the state evolution can be processed by only updating the needed elements.
The computation of the Kalman gain can also be optimized by caching the intermediate result of
[P̃k][HX,k]

T , thus reducing the number of computed matrices multiplications.

5. Results and Discussion

The estimator has been implemented in C and deployed for the selected target. The results of
every fourth estimation were sent through a virtual UART connection to the computer to be displayed
in real-time.

There were no means available at the moment of the test to establish the precision of the
measurement and assess the dynamic precision of the algorithm. It was however possible to establish
the following results (Table 9):

Table 9. Measurement performances results.

Parameter Result

Start-up convergence time ∼30 s @ ±1◦

Still measurement noise <0.1◦

Measurement repeatability <1◦ in two consecutive tests

At the microcrontroller nominal speed of 32 MHz, the CPU takes 1.18 ms to compute each
estimation, executing the complete algorithm during that time slot (Figure 6). For a 26 Hz measurement
rate, the CPU usage due to the estimation process is only 3.8%, giving a large amount of processing
power to other tasks or to update with a more complex system model.

Sensors 2017, 17, 2810 16 of 18

Figure 6. 2D orientation estimation Kalman filter processing time.

The large untapped processing power available came as a surprise to the writers beating best
expectations, as the previous computational burden estimation for a similar project (3D pose estimation
on a 9 axis IMU at a 50 Hz sampling rate, discussed in the AREM project part of [21]) were far
more important with a 465 kFLOPs/s requirement using an EKF estimator without optimizations.
Future studies may consider including continuous estimation of the gyroscope bias. Furthermore,
the impact of the accelerometers bias and gain should be studied on the precision of the results.

Finally, the integration of the whole system model (i.e., the robot-relative behavior) should be
studied and integrated into the estimation process, providing the ability for a better control loop for
the global application.

6. Materials and Methods

All the measurement have been done on development kits available from STMicroelectronics:

• NUCLEO-L053R8 for the microcontroller development kit; and
• X-NUCLEO-IKS01A2 for sensing elements.

The code for all experiments is available on GitHub at https://github.com/wolvi-lataniere/
STM32L053_performances_measurement.

Further discussions about processing power measurements and the developed 2D Orientation
library are available at http://perso.imerir.com/avalade/site/index.php?view=STM32L053%202D%
20Orientation%20library.

7. Conclusions

The primary objective of this work was to develop a systematic approach for Smart Sensors data
fusion designs using Kalman filters. The main pitfall when working with such computationally
expensive algorithms embedded in microcontrollers is the limited processing power available.
Consequently, the proposed methodology focused on complexity aware techniques to optimize
the filter equations in order to fit the low-power requirements. The described optimizations make
possible bounding the complexity of the Kalman filters. It should however be noted that large system
models are known to be expensive to compute and cannot be addressed at high frequencies with
low-power targets.

With less than 4% of the CPU time dedicated to the filter computation, the proposed 2D orientation
estimation illustration gave unexpectedly good results in terms of processing time on an ultra-low

https://github.com/wolvi-lataniere/STM32L053_performances_measurement
https://github.com/wolvi-lataniere/STM32L053_performances_measurement
http://perso.imerir.com/avalade/site/index.php?view=STM32L053%202D%20Orientation%20library
http://perso.imerir.com/avalade/site/index.php?view=STM32L053%202D%20Orientation%20library

Sensors 2017, 17, 2810 17 of 18

power target. As a result, the writers attend to explore the capabilities of these optimized filters on
a more complex application-specific model for the self-balancing robot in the near future.

The goal for the writers is to continue applying the methodology to a wider range of Smart Sensors
projects, targeting new sensing elements, lower-end microcontrollers, and more complex models [21].

Acknowledgments: This research was done at Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS-CNRS)
and supported by TE Connectivity. This article redaction was supported by Institut Méditeranéen d’Enseignement et
de Recherche en Informatique et Robotique (IMERIR).

Author Contributions: Aurélien Valade conceived this manuscript and wrote it, Pierre Grabolosa, Jean-Yves Fourniols,
and Pascal Acco participated as technical and scientific advisors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Unscented Transform Computation

To compute the Unscented transform of a state through a non-linear function, the process steps
are as follows:

• Select the 2n + 1 states to propagate, those points are represented by the X (i) matrix, composed of
2n + 1 state vectors of lenth n:

X (i) =

X̃ , i = 0
X̃ +

√
(µ + λ)[CX] , i ∈ [1, n]

X̃−
√
(µ + λ)[CX] , i ∈ [n + 1, 2n]

(A1)

• Transforming the points:
Y (i) = f (X (i)), i ∈ [0, 2n] (A2)

• Define the weights:

ω
µ
i =

{
λ

λ+n , i = 0
1

2(λ+n) , i ∈ [1, 2n] (A3a)

ωc
i =

{
ω

µ
0 + 1− α2 + β , i = 0

1
2(λ+n) , i ∈ [1, 2n] (A3b)

• Compute the mean and covariance of the result:

Ỹ =
2n

∑
i=0

ω
µ
i Y

(i) (A4a)

[C̃Y] =
2n

∑
i=0

ωc
i (Yi − Ỹ)(Yi − Ỹ)T (A4b)

With parameters defined as:

• the scattering factor α around the mean value,
• the distribution relative factor β (for a Gaussian distribution β = 2),
• λ = α2(n + κ)− n,
• κ the scale factor, in general the value is fixed to κ = 3− n.

References

1. Kahn, J.M.; Katz, R.H.; Pister, K.S.J. Next Century Challenges: Mobile Networking for “Smart Dust”.
In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, Seattle, WA, USA, 15–19 August 1999; pp. 271–278.

2. Gil, D.; Ferrández, A.; Mora-Mora, H.; Peral, J. Internet of Things: A review of Surveys Based on Context
Aware Intelligent Services. Sensors 2016, 16, 1069, doi:10.3390/s16071069.

Sensors 2017, 17, 2810 18 of 18

3. Khattak, A.M.; Truc, P.T.H.; Hung, L.X.; Vinh, L.T.; Dang, V.-H.; Guan, D.; Pervez, Z.; Han, M.;
Lee, S.; Lee, Y.-K. Towards Smart Homes Using Low Level Sensory Data. Sensors 2011, 11, 11581–11604,
doi:10.3390/s111211581.

4. Zhu, H.; Gao, L.; Li, H. Secure and Privacy-Preserving Body Sensor Data Collection and Query Scheme.
Sensors 2015, 16, 179, doi:10.3390/s16020179.

5. Facchinetti, A. Continuous Glucose Monitoring Sensors: Past, Present and Future Algorithmic Challenges.
Sensors 2016, 16, 2093, doi:10.3390/s16122093

6. Kalman, R.E. A New Approach to linear Filtering and Prediction Problems. Trans. ASME J. Basic Eng.
1960, 82, 35–45, doi:10.1115/1.3662552

7. Sierra, M.; Maria, J. Kalman Filter, Particle Filter and Other Bayesian Filters. In Digital Signal Processing with
Matlab Examples; Springer: Singapore, 2016; pp. 3–148, ISBN 978-981-10-2533-4.

8. Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signal and Applied Kalman Filtering, 4th ed.; Wiley:
Hoboken, NJ, USA, 2012; ISBN 978-0-470-60969-9.

9. Stoica, P.; Jansson, M. MIMO system identification: State-space and subspace approximations versus transfer
function and instrumental variables. IEEE Trans. Signal Process. 2000, 48, 3087–3099, doi:10.1109/78.875466.

10. Al-Matouq, A.; Vincent, T.; Tenorio, L. Reduced complexity dynamic programming solution for Kalman
filtering of linear discrete time descriptor systems. Am. Control Conf. 2013, doi:10.1109/ACC.2013.6579860.

11. Konatowski, S.; Kaniewski, P.; Matuszewski, J. Comparison of Estimation Accuracy of EKF, UKF and PF
Filters. Annu. Navig. 2016, 23, doi:10.1515/aon-2016-0005.

12. Julier, S.J.; Uhlmann, J.K. A new extension of the kalman filter to nonlinear systems. Signal Process. Sens.
Fusion Target Recognit. 1997, 3068, doi:10.1117/12.280797.

13. Del Moral, P.; Doucet, A. Particle methods: An introduction with applications. ESAIM Proc. Surv.
2014, 44, 1–46.

14. Orderud, F. Comparison of Kalman Filter Estimation Approaches for State Space Models with Nonlinear
Measurements. 2005. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.9250
(accessed on 25 October 2017).

15. Wan, E.A.; van der Merwe, R. The Unscented Kalman Filter for nonlinear estimation. In Proceedings of
the Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB,
Canada, 2000; pp. 153–158.

16. Higham, N. Functions of Matrices: Theory and Computation. SIAM 2008, doi:10.1137/1.9780898717778.
17. Golub, G.H.; van Loan, C.F. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD,

USA, 1996; ISBN 978-0801854149.
18. Galal, S.; Horowitz, M. Energy-efficient floating-point unit design. IEEE Trans. Comput. 2010, 60, 913–922,

doi:10.1109/TC.2010.121
19. Dang, A.T.; Nguyen, V.H. DCM-based orientation estimation using cascade of two adaptive extended

Kalman filters. ICCAIS 2013, doi:10.1109/ICCAIS.2013.6720546.
20. ST Microelectronics. Available online: http://www.st.com (accessed on 20 October 2017).
21. Valade, A. Capteurs intelligents: Quelles méthodologies pour la fusion de données embarquée?

2017, doi:10.13140/RG.2.2.18710.24643.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.9250
http://www.st.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Technical Background
	Modeling the System
	Kalman Filters
	The Extended Kalman Filter
	The Unscented Kalman Filter

	Algorithm Complexity and Computing Power
	Algorithms Complexity
	A Computing Power Overview

	The Proposed Methodology
	Specify the Use-Cases
	Identify the System Equations
	Create the System Models for Each Use-Case
	Apply an Adapted Filter

	Application to a 2D Orientation Estimation Problem
	The Sensing Elements
	The Processing Unit
	Applying the Methodology
	System Equations
	Applying an Adapted Filter

	Results and Discussion
	Materials and Methods
	Conclusions
	Unscented Transform Computation
	References

