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A model of imperfect interface with damage

Elena Bonetti . Giovanna Bonfanti . Frédéric Lebon . Raffaella Rizzoni

Abstract In this paper two models of damaged

materials are presented. The first one describes a

structure composed by two adherents and an adhesive

which is micro-cracked and subject to two different

regimes, one in traction and one in compression. The

second model is a model of interface derived from the

first one through an asymptotic analysis, and it can be

interpreted as a model for contact with adhesion and

unilateral constraint. Simple numerical examples are

presented.

Keywords Thin film � Bonding � Asymptotic

analysis � Damage � Imperfect interface

1 Introduction

These last years, the study of imperfect interface

between solids became a subject of a very large

interest for scientists and the industries, in particular

because of the development of layered composite

materials

[1, 9, 12, 14, 17, 20, 21, 31–33, 36, 37, 39–41]. It is

extremely important in particular to control the

damage between the fiber and the matrix. Precise

models of damaged interface are thus necessary to

properly design structures.

In this paper, a model of imperfect interface

including damage is proposed. This model is derived

by the asymptotic analysis [13, 19, 22, 23, 41, 43,

44, 46] of a composite structure made of two elastic

solids bonded together by a third thin one, which has a

non linear behavior. The adhesive substance is micro-

cracked and undergoes a degradation process ruled by

two different regimes, one in traction and one in

compression. This choice leads to a limit behavior

accounting for unilateral condition on the interface.

The micro-cracks are modeled using a Kachanov-type

model, which has former been applied to cracked

composites materials [47], to foamed aluminum [48]

and to masonry structures [39].

The paper is divided into three parts. In the first one,

the problem of composite body made by three

deformable solids bonded together, two adherents

and an adhesive is presented. In the second part of the

paper, an asymptotic expansion method is applied to
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the problem previously introduced and a model of

imperfect interface is derived. In such a model, surface

damage effects are included and also impenetrability

conditions between the adherents are rendered.

Finally, in the last section, the model is applied to a

particular cracked material and a simple example in

one dimension is studied.

Before proceeding, let us recall some related results

in the literature, especially concerning the approach

which introduces the interfaces as the limit of a thin

medium linking two components. In this frame, we

quote the paper [35] where the authors, starting from a

structure composed by two adherents and a thin

adhesive, obtain a limit model which describes a

delamination problem between the adherents and

which reflects transmission and impenetrability con-

ditions along the interface. The delamination variable

introduced in [35] can be compared to the surface

damage parameter used in adhesion models proposed

by M. Frémond in [14–16]. Indeed, making use of the

phase-field theory, in this approach, the adhesion

phenomenon is described in terms of a surface damage

parameter related to the state of the micro-bonds

between the bodies in contact. The analytical inves-

tigation of adhesive contact problems of this type has

been addressed in a series of papers: in [2, 3] existence,

uniqueness and longtime behavior of the solutions

have been obtained in the isothermal case, while [4–8]

tackled the well-posedness and the longtime analysis

of more general models including frictional and

thermal effects.

The limit problem obtained in the present paper is

very close to the unilateral contact problem with

adhesion investigated in [2]. In fact, the variable

lwhich will be introduced to describe the micro-cracks

in the thin layer plays the role of the surface damage

parameter in adhesive contact problems. More pre-

cisely, in [2] the evolution of the adhesion is ruled by a

differential inclusion which is strictly related to the

equation governing the evolution of the micro-cracks

on the interface (the seventh of (31) below). Actually,

in [2] also the gradient of the adhesion was included as

state variable of the model and a further constraint on

the admissible values of the adhesion parameter was

imposed.

In this perspective, the asymptotic analysis per-

formed in the present paper can surely represent a

further full justification of the adhesive contact models

introduced and analyzed in [2, 3].

2 The three-dimensional equations

of the composite body

In the following a composite body made by three

deformable solids (see fig. 1), two adherents and an

Fig. 1 Composite body:

initial structure and rescaled

structure
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adhesive (also called a glue), and occupying a smooth

bounded domain Xe � IR3 is considered. The depen-

dence of the domain Xe on the parameter e will be

made precise in the following. An orthonormal

Cartesian frame ðO; e1; e2; e3Þ is introduced and let

ðx1; x2; x3Þ be taken to denote the three coordinates of a
particle. The origin lies at the center of the adhesive

midplane and the x3�axis runs perpendicular to the

bounded set S, S ¼ ðx1; x2; x3Þ 2 Xe : x3 ¼ 0f gwhich
will be identified in the limit problem as the interface.

The adhesive, also called interphase, is occupying the

domain Be, defined by Be ¼ ðx1; x2; x3Þ 2 Xe :f
jx3j\

e
2
g. Note that e is the thickness of the thin layer

Be. The adherents are occupying respectively the

domains Xe
� defined by Xe

� ¼ ðx1; x2; x3Þ 2 Xe :f
�x3 [

e
2
g. The two-dimensional domains Se� are

taken to denote the interfaces between the adhesive

and the adherents, Se� ¼ ðx1; x2; x3Þ 2 Xe : x3 ¼f
� e
2
g. On a part Sg of the boundary oXe, an external

load g is applied, and on a part Su of oXe, having

strictly positive measure and such that Sg \ Su ¼ ;, the
displacement is imposed to be equal to 0. Moreover, it

is assumed that the boundary parts Sg and Su are

located far from the interphase. Finally, a body force

f is applied in Xe
�, while body forces are neglected in

Be. In the following, ue is taken to denote the

displacement field, re the Cauchy stress tensor and

eðueÞ the strain tensor. Under the small strain hypoth-

esis we have eijðueÞ ¼
1

2
uei;j þ uej;i

� �
, where as usual

notation the comma stands for the partial derivative.

The two adherents are supposed to be elastic, thus

reij ¼ a�ijhkehkðueÞ ð1Þ

coming from the classical constitutive equation

re ¼ ow�
;eðeðueÞÞ; ð2Þ

where w� ¼ 1

2
a�eðueÞ : eðueÞ is the free energy and

a� is the fourth order elasticity tensor verifying the

usual conditions of positivity and symmetry.

The adhesive is a generalized Kachanov-type

material. In the Kachanov theory [34, 49], the

constitutive equations are obtained after the homog-

enization of a micro-cracks material, with k families of

cracks. The elastic coefficients depend on the lengths

lk of these cracks. In the present paper, only a family of

cracks is considered and l is taken the denote the

common length of these cracks. Consequently, this

parameter can be considered as a damage parameter.

Also it is observed that in this theory the stiffness of

the material beðlÞ takes the form be � ebðlÞ [39].
As an example, for a crack orthogonal to e3, the

Young modulus in the third direction E3 is equal to

E3 ¼
E0

1þ 2qCE0

; ð3Þ

with

C ¼ P
2

1ffiffiffiffiffi
E0

p 1

l0
� 2

m0
E0

þ 2

E0

� �1=2

ð4Þ

and E0 (resp. l0, resp. m0) is the Young modulus (resp.

the shear modulus, resp. the Poisson ratio) of the

undamaged material and q is the density of cracks

which is q ¼ l3

V
in 3 dimensions and q ¼ l2

S
in 2

dimensions, being V (resp. S) the volume (resp. the

surface) of the representative elementary domain.

Note that V and S are proportional to the thickness of

the interphase e.
In order to prevent a possible interpenetration

between the adherents, it is supposed that the elasticity

coefficients depend totally on the adhesive thickness

and crack length in tension, while in compression they

depend only partially. In conclusion, in the interphase,

two regimes are considered,

reij ¼
ebijhkðlÞehkðueÞ if esðueÞ� 0

esðueÞBe
ijhkðlÞdhk þ Be

ijhkðlÞedhkðueÞ if esðueÞ� 0

8><
>:

ð5Þ

where b and Be are two fourth order elasticity tensors

verifying the usual conditions of positivity and

symmetry, esðueÞ ¼ 1

3
trðeðueÞÞ (resp. edðueÞ ¼ eðueÞ �

1

3
trðeðueÞÞIdÞ is the spheric (resp. deviatoric) part of

eðueÞ and d is the Kroenecker symbol.

In addition, the elasticity tensor BeðlÞ verifies the

following assumptions which generalize the idea

introduced in [35] to anisotropic materials

Be
ijhkðlÞ ¼ B0

ijhk þ eB1
ijhkðlÞ if i; j; h; kð Þ 2 Il

Be
ijhkðlÞ ¼ ebijhkðlÞ if i; j; h; kð Þ 62 Il

(

ð6Þ
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with

Il ¼ 1; 1; 3; 3ð Þ; 2; 2; 3; 3ð Þ; 3; 3; 3; 3ð Þ; 1; 2; 3; 3ð Þf g.
Now, the possible evolution of the crack length l is

introduced. Following the general theory proposed in

[15], a pseudo-potential of dissipation / is considered.

We assume that it is given by the sum of a quadratic

term and a positively 1-homogeneous functional, so

that the dissipative character will be given by the sum

of a rate-dependent and a rate-independent

contribution

/ð _lÞ ¼ 1

2
ge _l2 þ I½0;þ1½ð _lÞ; ð7Þ

where ge is a positive viscosity parameter and IA
denotes the indicator function of the set A, i.e. IAðxÞ ¼
0 if x 2 A and IAðxÞ ¼ þ1 otherwise. The term

I½0;þ1½ð _lÞ forces _l to assume non-negative values (i.e.

the crack length can not decrease) and renders the

irreversible character of the degradation process of the

glue.

Here, we are considering a rate-dependent evolu-

tion of the damaging process. Note that this choice is

compatible with some physical evidence (cf. e.g.

[15, 16]) once we account for viscosity effects and

inertia. Actually, some recent papers considered the

case of rate-independent evolutions (cf. e.g. [10, 35]).

In that cases it can be considered as an activated

process and the solution is provided in terms of

variational inequality. In the case of rate-dependent

evolutions we are able to deal with the equations but at

the same time we have to deal with the internal

constraint as a suitably defined function.

Moreover, the free energy associated to the consti-

tutive equation of the interphase (eqs. 5) is chosen as

follows

wiðeðueÞ; lÞÞ ¼ wi�sðeðueÞ; lÞ � xelþ I½l0;þ1½ðlÞ ð8Þ

where xe is a (negative) parameter similar to the

Dupré’s energy [15, 17] (it plays the role of a cohesion

parameter), l0 is a given initial crack length and

It is prescribed that ge and xe are volumetric densities

and thus these two coefficients are inversely propor-

tional to e. In next sections, we will denote ge ¼ g=e
and xe ¼ x=e, with g[ 0 and x\0.

We note that the presence of an indicator function

in the free energy (8) renders a physical constraint on

the variable l. Actually, in the present case, the

irreversible character of the damage process guaran-

tees that l cannot decrease and hence, in particular,

l� l0. Thus, we can omit the term I½l0;þ1½ðlÞ in (8).

Finally, the fact that the pseudo-potential of dissi-

pation / is given by the sum of a quadratic contribu-

tion and a 1-homogeneous term and that ge [ 0 lead to

following equation for the damage parameter l. We

note that the choice of the asymmetric behavior for the

strain in tension and compression is similar to the

choice introduced in [35] and that it will ensure, in the

limit problem, a unilateral constraint on the interface.

ge _l ¼
xe � 1

2
eb;lðlÞeðueÞ : eðueÞ

� �

þ
if esðueÞ� 0

xe � 1

2
Be
;lðlÞeðueÞ : eðueÞ

� �

þ
if esðueÞ� 0

8>>><
>>>:

ð10Þ

where �ð Þþ denotes the positive part of a function. Note

that Be
;lðlÞ is non linearly dependent on e. In the

following l is supposed to be independent of x3 i.e. the

interphase and the representative volume thicknesses

are equal. A more general hypothesis is presented in

appendix.

The equilibrium problem of the composite structure

is described by the following system

wi�sðeðueÞ; lÞ ¼

1

2
ebðlÞeðueÞ : eðueÞ if esðueÞ� 0

1

2
ðesðueÞÞ2Be

ijhkðlÞdijdhk þ
1

2
Be
ijhkðlÞedðueÞ : edðueÞ if esðueÞ� 0

8>>><
>>>:

ð9Þ

4



supplemented by a given initial condition l0 on the

crack length variable l.

In (11), f½ 	½ 	 denotes the jump of f across Se� i.e.

f ðð�e=2Þ�Þ � f ðð�e=2Þ
Þ, where f ðaþÞ ¼
limx�!a;x[ a f ðxÞ and f ða�Þ ¼ limx�!a;x\a f ðxÞ.

3 The asymptotic expansion method

Since the thickness of the interphase is very small, it is

natural to seek the solution of problem (11) using

asymptotic expansions with respect to the parameter e
[24–28, 30, 45]. In particular, the following asymp-

totic series with integer powers are assumed:

ue ¼ u0 þ e u1 þ oðeÞ
re ¼ r0 þ e r1 þ oðeÞ:

�
ð12Þ

The domain is then rescaled (see figure 1) using a

classical procedure [11] :

– In the adhesive, the following change of variable is

introduced

x1; x2; x3ð Þ 2 Be ! z1; z2; z3ð Þ 2 B;

with ðz1; z2; z3Þ ¼ x1; x2;
x3

e

� �

and it is set ûeðz1; z2; z3Þ ¼ ueðx1; x2; x3Þ and

r̂eðz1; z2; z3Þ ¼ reðx1; x2; x3Þ, where B ¼

ðx1; x2; x3Þf 2 X : jx3j\
1

2
g.

– In the adherents, the following change of variable

is introduced

ðx1; x2; x3Þ 2 Xe
� ! ðz1; z2; z3Þ 2 X�;

with ðz1; z2; z3Þ ¼ ðx1; x2; x3 � 1=2
 e=2Þ

and it is set �ueðz1; z2; z3Þ ¼ ueðx1; x2; x3Þ and

�reðz1; z2; z3Þ ¼ reðx1; x2; x3Þ, where X� ¼

ðx1; x2; x3Þ 2 X : �x3 [
1

2

� �
. The external

forces are assumed to be independent of e. As a

consequence, it is set �f ðz1; z2; z3Þ ¼ f ðx1; x2; x3Þ
and �gðz1; z2; z3Þ ¼ gðx1; x2; x3Þ.

The governing equations of the rescaled problem are

as follows:

reij;j þ fi ¼ 0 in Xe
�

reijnj ¼ gi on Sg

reij;j ¼ 0 in Be

½½rei3		 ¼ 0 on Se�
½½uei 		 ¼ 0 on Se�
uei ¼ 0 on Su

reij ¼ a�ijhkehkðueÞ in Xe
�

reij ¼ ebijhkðlÞehkðueÞ if esðueÞ� 0 in Be

reij ¼ esðueÞBe
ijhkðlÞdhk þ Be

ijhkðlÞedhkðueÞ if esðueÞ� 0 in Be

ge _l ¼ xe � 1

2
eb;lðlÞeðueÞ : eðueÞ

� �

þ
if esðueÞ� 0 in Be

ge _l ¼ xe � 1

2
Be
;lðlÞeðueÞ : eðueÞ

� �

þ
if esðueÞ� 0 in Be

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ
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where S� ¼ ðx1; x2; x3Þ 2 X : x3 ¼ � 1

2

� �
and �:; :̂

denote the rescaled operators in the adherents and in

the adhesive, respectively.

In view of (12) the displacement and stress fields

are written as asymptotic expansions

r̂e ¼ r̂0 þ e r̂1 þ oðeÞ
ûe ¼ û0 þ e û1 þ oðeÞ
�re ¼ �r0 þ e �r1 þ oðeÞ
�ue ¼ �u0 þ e �u1 þ oðeÞ;

8>>><
>>>:

ð14Þ

in the rescaled adhesive and adherents, respectively.

3.1 Expansions of the equilibrium equations

in the adherents

Substituting (14) into the first, second, sixth and

seventh equations of (13), it is obtained at the first

order of expansion (power 0)

�r0ij;j þ �f i ¼ 0 in X�

�r0ijnj ¼ �gi on �Sg

�u0i ¼ 0 on �Su

�r0ij ¼ �a�ijhk�ehkð�u0Þ in X�

8>>>><
>>>>:

ð15Þ

3.2 Expansions of the equilibrium equations

in the adhesive

Substituting (14) into the third equation of (13) it is

deduced that the following conditions hold in B

(power �1):

r̂0i3;3 ¼ 0; ð16Þ

i.e. r̂0i3 does not depend on z3, and it can be expressed

as

r̂0i3
	 


¼ 0; ð17Þ

where f½ 	 ¼ f x1; x2;
1

2

� �
� f x1; x2;�

1

2

� �
. In the

adhesive the strain field becomes:

êðûeÞ ¼ e�1ê�1 þ ê0 þ eê1 þ oðeÞ ð18Þ

where

ê�1
33 ¼ û03;3

ê�1
a3 ¼ 1

2
û0a;3; a ¼ 1; 2

ð19Þ

It is obvious to remark that

êsðûeÞ ¼ 1

3
ðe�1û03;3 þ û01;1 þ û02;2 þ û13;3 þ oð1ÞÞ ð20Þ

and that at the lowest order of expansion the sign of the

spherical part of the strain tensor is the sign of û03;3. The

�reij;j þ �f i ¼ 0 in X�

�reijnj ¼ �gi on �Sg

r̂eij;j ¼ 0 in B

�rei3 ¼ r̂ei3 on S�

�uei ¼ ûei on S�

�uei ¼ 0 on �Su

�reij ¼ �a�ijhk�ehkð�ueÞ in X�

r̂eij ¼ eb̂ijhkðlÞêhkðûeÞ if êsðûeÞ� 0 in B

r̂eij ¼ êsðûeÞB̂e
ijhkðlÞdhk þ B̂

e
ijhkðlÞêdhkðûeÞ if êsðûeÞ� 0 in B

ĝe _̂l ¼ x̂e � 1

2
eb̂;lðlÞêðûeÞ : êðûeÞ

� �

þ
if êsðûeÞ� 0 in B

ĝe _̂l ¼ x̂e � 1

2
B̂
e
;lðlÞêðûeÞ : êðûeÞ

� �

þ
if êsðûeÞ� 0 in B

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ
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eighth equation in (13) is next considered i.e. û03;3�0. At

the first order in the expansions (power 0), it is obtained

r̂0i3 ¼ b̂i3j3ðlÞû0j;3 ð21Þ

It is observed that r̂0i3 (and thus û0i;3) does not depend

on z3, thus

r̂0i3 ¼ b̂i3j3ðlÞ û0j

h i
ð22Þ

which is the classical equation of soft interface.

Denoting b̂i3j3ðlÞ ¼ K33
ij ðlÞ, it is obtained

r̂0e3 ¼ K33ðlÞ û0
	 


if û03
	 


� 0 on S� ð23Þ

Now the ninth equation in (13) is considered. At the

lowest order (power �1), the expansion gives

0 ¼ B̂
0

ii33û
0
3;3 if û03;3 � 0 ð24Þ

or due to the positivity of B̂
0

û03;3 ¼ 0 if û03;3 � 0 ð25Þ

Being û03;3 independent of z3, it can be deduced that

û03
	 


¼ 0 if û03
	 


� 0 ð26Þ

Note that at the second order in the expansions (power

0), it is obtained

r̂0i3 ¼ b̂i3j3ðlÞû0j;3; i ¼ 1; 2

r̂033 ¼ B̂
0

33aaû
0
a;a þ B̂

1

3333û
0
3;3 þ B̂

0

3333û
1
3;3

þ b̂33j3ðlÞû0j;3; a 2 1; 2f g

ð27Þ

or

r̂0i3 ¼ K33
ij ðlÞ û0j

h i

r̂033 ¼ K33
3j ðlÞ û0j

h i
þ ŝ0

ð28Þ

with ŝ0 ¼ B̂
0

33aaû
0
a;a þ B̂

0

3333û
1
3;3

h i
. It is observed that at

the second order of expansion the sign of the spherical

part of the strain tensor is the sign of û0a;a þ û13;3 and if

the material is isotropic, ŝ0 � 0.

In conclusion, it is obtained on S�

r̂0e3 ¼ K33ðlÞ û0
	 


if û03
	 


� 0

r̂0e3 ¼ K33ðlÞ û0
	 


þ ŝ0e3; û03
	 


¼ 0 if û03
	 


� 0

ð29Þ

Now the two last equations in (13) are considered. If

we consider that the length l cannot decrease , the first

term in the expansion gives (power -1)

ĝ _̂l ¼ x̂� 1

2
b̂;lðlÞ
� �

i3j3
û0j;3 : û

0
i;3

¼ x̂� 1

2
K33
;l ðlÞ

� �
ij
û0j;3:û

0
i;3

This equation can be integrated along the third

direction in two steps, considering that r̂0i3 ¼
K33
ij ðlÞû0j;3 or û0;3 ¼ ðK33ðlÞÞ�1r̂0e3. Thus, it is obtained

ĝ _̂l ¼ x̂� 1

2
K33
;l ðlÞ û0

	 

: û0
	 


which can be decomposed, as classical, into normal

and tangential parts

ĝ _̂l ¼ x̂� 1

2
K33
N;lðlÞ û0N

	 
2� 1

2
K33
T ;lðlÞ û0T

	 

: û0T
	 


3.3 Matching between the adhesive

and the adherents

Substituting (16) into the fourth andfifth equations of (13),

it is deduced that the following conditions hold on S� :

r̂0i3 z1; z2;�
1

2

� �
¼ �r0i3 z1; z2;�

1

2

� �
¼ r0i3 x1;x2;�

e
2

� �

� r0i3ðx1; x2;0Þ

û0i z1; z2;�
1

2

� �
¼ �u0i z1; z2;�

1

2

� �
¼ u0i x1;x2;�

e
2

� �

� u0i x1;x2;0
�� �

ð30Þ

In conclusion, it is obtained

r0ij;j þ fi ¼ 0 in X�

r0ijnj ¼ gi on Sg

u0i ¼ 0 on Su

r0ij ¼ a�ijhkehkðu0Þ in X�

r0i3 ¼ K33
ij ðlÞ u0j

h i
þ
þs0di3 on S

u03
	 


s0 ¼ 0 on S

g _l ¼ x� 1

2
K33
;l ðlÞ u0

	 

þ: u

0
	 


þ

� �

þ
on S

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð31Þ
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where u0½ 	þ¼ u0½ 	 if u03
	 


� 0, u0½ 	þ¼ u01
	 


; u02
	 


; 0
� �T

if u03
	 


� 0.

These equations give a model of imperfect soft

interface with unilateral contact and damage evolu-

tion. Note that the variable l (length variable) can be

compared with the density of adhesion (a dimention-

less variable) introduced by M. Frémond in [14]. This

intensity of adhesion can be interpreted mechanically

as the ratio l=l0.

4 An example in 2D: Kachanov material

4.1 Constitutive equations

In two dimensions ( the plane ðO; e1; e2Þ), the system
can be rewritten as

r0ij;j þ fi ¼ 0 in X�

r0ijnj ¼ gi on Sg

u0i ¼ 0 on Su

r0ij ¼ a�ijhkehkðu0Þ in X�

r0i2 ¼ K22
ij ðlÞ u0j

h i
þ
þs0di2 on S

u02
	 


s0 ¼ 0 on S

g _l ¼ x� 1

2
K22
;l ðlÞ u0

	 

þ: u

0
	 


þ

� �

þ
on S

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð32Þ

For the Kachanov model of homogenized cracked

material [34, 49], the stiffness matrix is written, in

engineering notation, as

Ke ¼

E0

m0Le
2l2C

0

m0Le
2l2C

Le
2l2C

0

0 0
Le
l2C

2
666664

3
777775

ð33Þ

where L is the length of the interphase, C is given in

(4). It is supposed that the crack is along x1 axis.

Matrix K33 (in fact K22 in this configuration), which is

diagonal, reads

K22 ¼

L

2l2C
0

0
L

l2C

2
64

3
75 ð34Þ

and its derivative reads

K22
;l ¼

�L

l3C
0

0
�2L

l3C

2
64

3
75 ð35Þ

The last equation in (32), providing the evolution of

l is written as

g _l ¼ xþ L

2l3C
u01
	 
2þ L

l3C
u02
	 
2

þ

� �

þ

4.2 A focus on the crack length evolution

As a first approach to the evolution of l, we can

consider the simplified case of vanishing viscosity g ¼
0 and u01

	 

¼ 0. Note that in compression one has

u02
	 


¼ 0 (unilateral contact). In traction, until

L

l3C
u02
	 
2

þ � � x i.e. u02
	 


�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xl3C

L

r
¼ d2 the stiff-

ness is constant and the relation between r22 and u02
	 


is linear, with the slope equal to
L

2l2C
. We take rmax22 to

denote
1

2

ffiffiffiffiffiffiffiffiffiffiffi
�xL

Cl

r
, the maximum value of r22. When

the threshold is reached, we have

l ¼ �
L u02
	 
2
xC

!1=3

and then

r22 ¼
1

2

Lx2

C u02
	 


!1=3

This relation is represented on fig. 2. On fig. 2, the

relation between r22 and u0½ 	 is represented approx-

imatively (using implicit Euler integration schema) for

various values of the viscosity.

4.3 A simple academic example

In this section, the example of a simple bar of length L0
is considered (see fig. 3). The bar is bonded on its left

part and loaded on its right part. The volumic force is

neglected. The force on the right part is given by

8



FðtÞ ¼

F0t t� t1

F0t1 t1 � t� t2
F0t2

t2 � t3
t � F0t2

t3ðt2 � t3Þ
t2 � t� t3

8>><
>>:

ð36Þ

where F0 and ti; i ¼ 1; 2; 3 are given. It is obvious to

show that the displacement field u takes the form

uðxÞ ¼ FðtÞ
E

xþ u0;

where E is the Young’s modulus of the bar and u0 is

given by the interface law r ¼ FðtÞ ¼ C

l2
u0. The

length l is given by the equation

b _l ¼ wþ C

l3
u20

� �

þ
:

We take l0 to denote the initial length of the crack. If

t�
ffiffiffiffiffiffiffiffiffiffiffiffi
�xC

l0

r
, then l ¼ l0: If t�

ffiffiffiffiffiffiffiffiffiffiffiffi
�xC

l0

r
, then the crack

length can be computed by a simple implicit Euler

schema, i.e.

lkþ1 ¼
lk � x

Dt
b

1� DtðFðtÞÞ2

bC

whereDt is taken to denote the time step, lk ¼ lðtkÞ and
tk ¼ kDt.

We can observe in Fig. 4 the increase of the crack

length along time and in Fig. 5 the decrease of the

stiffness of the glue in relation with the increase of the

crack length for academic values of the coefficients.

The model proposed here seems qualitatively coher-

ent. During the first part of the loading (linear

increase) and if t\0:21, the crack length remains

constant (l ¼ l0). When t[ 0:21 the crack length

increases. We can observe the change of curvature

corresponding to the variation of the loading. On

fig. 5, we can see that the stiffness reduces to 1 / 25 of

its initial value during the process.

Fig. 2 Evolution of normal stress vs jump of displacement for various valors of viscosity (normalized values,

L ¼ 1; C ¼ 100; x ¼ �50)

Fig. 3 A simple example

9



5 Conclusion

In the first part of this paper, a model of damaged

material has been proposed. This model is based on

homogenization techniques and thermodynamics prin-

ciples. The damage was governed by the evolution of

the crack length at the micro-scale. In a second part of

the paper, a model of imperfect interface has been

derived from the asymptotic study of a three phases

composite with perfectly bonding conditions between

two adherents and an adhesive having the damaging

behavior studied in the first part of the paper. The

asymptotic expansion at the first order yields a model

of imperfect interface taking into account damage.

This argument can be also considered as a formal

justification of well-known models for contact with

adhesion (and unilateral conditions) which are deeply

studied in the literature. The resulting model is studied

in a simple example in in the one dimentional setting

to show that the proposed model is qualitatively

efficient.

In the future, the model of imperfect interface

proposed in the present paper will be mathematically

analyzed and numerically implemented to test its

reliability and efficiency in more complex settings.

Other kind of cracked materials [38] and damage

evolutions models will also be studied. Stochastic

processes could be also introduced in order to take into

account the observed experimental variability of crack

lengths .
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14. Frémond M (1987) Adhérence des solides. Journal de
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