
HAL Id: hal-01694001
https://hal.science/hal-01694001v1

Submitted on 9 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spin-orbit coupling fluctuations as a mechanism of spin
decoherence

M. Martens, G. Franco, N. S. S Dalal, Sylvain Bertaina, I. Chiorescu

To cite this version:
M. Martens, G. Franco, N. S. S Dalal, Sylvain Bertaina, I. Chiorescu. Spin-orbit coupling fluctuations
as a mechanism of spin decoherence. Physical Review B: Condensed Matter and Materials Physics
(1998-2015), 2017, 96 (18), �10.1103/PhysRevB.96.180408�. �hal-01694001�

https://hal.science/hal-01694001v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

50
5.

03
17

7v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
8 

O
ct

 2
01

7

Spin-Orbit Coupling Fluctuations as a Mechanism of Spin Decoherence

M. Martens,1, 2, ∗ G. Franco,1, 2 N.S. Dalal,2, 3 S. Bertaina,4 and I. Chiorescu1, 2, †

1Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
2The National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA

3Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
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We discuss a general framework to address spin decoherence resulting from fluctuations in
a spin Hamiltonian. We performed a systematic study on spin decoherence in the compound
K6[V15As6O42(D2O)] · 8D2O, using high-field Electron Spin Resonance (ESR). By analyzing the
anisotropy of resonance linewidths as a function of orientation, temperature and field, we find that
the spin-orbit term is a major decoherence source. The demonstrated mechanism can alter the
lifetime of any spin qubit and we discuss how to mitigate it by sample design and field orientation.

INTRODUCTION

In solid-state systems, interactions between electronic
spins and their environment are the limiting factor of spin
phase lifetime, or decoherence time. Important advances
have been recently realized in demonstrating long-lived
spin coherence via spin dilution [1–6] and isolating a spin
in non-magnetic cages [7], for instance. The presence of
a lattice can be felt by spins through orbital symme-
tries and spin-orbit coupling. An isolated free electron
has a spin angular momentum associated with a g-factor
ge = 2.00232 but in general, spin-orbit coupling changes
the g-factor by the admixture of excited orbital states
[8] into the ground state. In this Letter, we demonstrate
that fluctuations in the spin-orbit interaction can be a
significant source of spin decoherence. We present a gen-
eral theoretical framework to obtain noise spectrum. The
method is applied to fluctuations of the long-range dipo-
lar interactions and we observe how the spin-orbit term
is modulating the induced decoherence. The model de-
scribes spin dilution and thermal excitations effects as
well. Experimentally, we analyze shape and orientation
anisotropy of ESR linewidths of the molecular compound
K6[V

IV
15As

III
6 O42(D2O)] · 8D2O or V15. This system has

shown spin coherence at low temperatures [5, 9] and in-
teresting out of equilibrium spin dynamics due to phonon
bottlenecking [10, 11]. However, the details of the spin
decoherence are still not fully understood. In the case
of diluted or molecular spins, little evidence has been
brought up to now on the role of spin-orbit coupling on
spin coherence time. This study elucidates this decoher-
ence mechanism and how to mitigate its effect.

FLUCTUATIONS IN SPIN HAMILTONIAN

The V15 cluster anions form a lattice with trigonal
symmetry containing two clusters per unit cell [12]. Indi-
vidual molecules have fifteen VIV s = 1/2 ions arranged
into three layers, two non-planar hexagons sandwiching
a triangle (see Fig. 1a). Exchange couplings between the

spins in the triangle and hexagons exceed 100 K [13, 14]
and at low temperatures this spin system can be modeled
as a triangle of spins 1/2. The spin Hamiltonian is, as
discussed in Supplemental Material[15] (SM) Section I:

Hst = H0 +HJ +HDM (1)

where H0 describes the Zeeman splitting in an external
field ~B0, HJ is the symmetric exchange term, and HDM

is the anti-symmetric Dzyaloshinsky-Moriya (DM) term
(see [16] for a detailed formulation). Hst eigenvalues are
shown in Fig. 1(b) and are used to calculate resonant field
positions Bres of the ESR spectra through the method
of first moments [16]. As shown in Fig. 1(b), the ground

state of the total molecular spin ~S is S = 3/2 for large

enough ~B0. In this case, dipolar interactions between
total molecular spins in the crystal are described by:

Hd =
3µ0

8π
S2µ2

B

∑

p;q 6=p

gp(θ)gq(θ)

(

1− 3 cos2 φpq

)

d3pq
(2)

where µ0 is the vacuum permeability, µB is the Bohr
magneton, θ is the angle between ~B0 and the z axis (z is
⊥ to triangle plane and is also the symmetry c axis of the
molecule), dpq is the distance between two molecules lo-

cated at sites p and q, gp,q(θ) =
(

g2a sin
2 θ + g2c cos

2 θ
)1/2

,
gc,a are the g-tensor components parallel and perpendic-

ular to the z axis, φpq is the angle between ~S at site

p and ~dpq. Due to local fluctuations of the g-factor, as
discussed below, gp and gq are distinct quantities.
The linewidth of ESR signals can be significantly

affected by exchange interactions. In V15 the intra-
molecular couplings are large and the exchange narrow-
ing effect [17] collapses the (2I + 1)15 resonances (I =
7/2 for 51V) into one and it also acts to average out fluc-
tuations related to Hst. This leaves fluctuations in Hd

as being the major contributor to spin decoherence.
There are three possible sources of fluctuation

in Eq.(14), the first being the geometrical factor
(

1− 3 cos2 φpq

)

d−3
pq = Rpq(t) since both dpq and φpq can

fluctuate (here, t represents time). This case is described
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by Bloembergen et al. [18] (Nuclear Magnetic Resonance
case) and Kubo and Tomita [17] (ESR case). If Rpq(t)
fluctuates randomly, its correlation function decays ex-
ponentially 〈R(t)R(0)〉 = R2 + r2 exp(−t/τdip) with a
Fourier spectrum:

JR(ν) =

√

2

π
r2

τdip
1 + 4π2ν2τ2dip

(3)

where R is an average value of the geometric term
∑

p6=q Rpq, r is an average size of R(t)’s fluctuations and
the correlation time τdip is a characteristic of the ran-
dom motion. This result is described generally by Ather-
ton [19] and can be applied to any stationary random
function that is independent of the time origin. The in-
verse square of the decoherence time T2 is proportional
to

∫

JR(ν)dν [17, 18]. Therefore, the decoherence rate
depends directly on r: 1/T2 ∝ r.
Another fluctuation source comes from thermal exci-

tations to different SZ states of ~S, where Z axis is ‖ ~B0,
which defines the second moment of a resonance line [20–
22] (potential fluctuations between different spin states in
low fields has been studied as well [9]): 〈SZ(t)

2SZ(0)
2〉 =

S4
Z +KU(T ) exp(−t/τs), where τs is the thermal correla-

tion time and KU(T ) a term studied by Kambe and Usui
[21]. It is shown that the fluctuations Fourier spectrum
is proportional to a temperature dependent factor:

KU(T ) =< S2
Z >T − < SZ >2

T= S2 d

dy
Bs(y) (4)

where Bs(y) is the Brillouin function, y = TZS/T , TZ =
hf0/kB (f0 is the microwave excitation frequency), and
S = 3/2 is the total spin state. KU(T ) has thus a similar
role to r2 in Eq. (3). This formulation is valid above the
ordering temperature which is ∼0.01 K [23] for V15.
The dipolar term Hd serves as an excellent platform to

study fluctuations of g(θ). Its value away from ge is due
to the spin-orbit interaction and it is given by [8]:

g = geI − 2λΛ (5)

where g is the g-tensor (diagonal [ga, ga, gc] for V15), I
is the unit matrix, λ is the spin-orbit coupling constant
and Λ is a tensor defined in terms of the matrix elements
of the orbital angular momentum L. In general terms, Λ
is the coupling between the ground and excited orbitals
divided by their energy separation. Relative fluctuations
with an average size ξ = δ(λΛ)/(λΛ) (assumed isotropic)
can be induced by crystal and molecular vibrations. In
particular, Raman measurements on V15 [24] discussed
below, show a broad distribution of the vibration modes.
Fluctuations of excited orbitals and thus of Λ can gen-
erate broad virtual transitions since those orbitals are
mixed with the ground orbital state. The resultant fluc-
tuation in the g-factor can be written as:

δg(θ) = ξ (g(θ)− ge) . (6)
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FIG. 1. (Color online) (a) Ball-and-stick representation of
V15 (V ions in blue). The x axis is along one side of the tri-
angle while the z axis is perpendicular to the triangle plane
and represents the c axis of the crystal unit cell. (b) Level dia-
gram of the three spin model in field ||z, with positions of the
three experimental frequencies shown. Dashed lines show the
S = 1/2 doublets with the red dashed arrows indicating those
transitions. Lines show the S = 3/2 quartet with blue arrows
indicating the transitions; the resonance fields are averaged
in the first moment calculation of Bres at a given frequency.

Assuming g(θ) is a stationary function with small tem-
poral random fluctuations and that magnetic and orbital
fluctuations are uncorrelated in first approximation, the
correlation function of a fluctuating Hd(t) is:

Gd(t) = 〈Hd(t)Hd(0)〉

= α2〈g(t)g(0)〉2〈S2
Z(t)S

2
Z(0)〉〈R(t)R(0)〉 (7)

where 〈g(t)g(0)〉 = g(θ)2 + (δg(θ))2 exp(−t/τg), τg is the

correlation time of g-factor fluctuations, and α =
3µ0µ

2

B

8π .
A corresponding Jd(ν) gives the Fourier spectrum of the
fluctuations, as in Eq. 3. Gd(t) can be written as the sum
of four terms (see SM Section II for details): G0 which is
a constant , Gg(t) ∝ g(θ)4, Gδ(t) which is temperature
indepedent and GT (t) which is temperature dependent.
In absence of g-factor fluctuations, the resulting

Fourier spectrum is defined only by Gg(t) and for neglible
r (less important in solids at low temperatures) the term

Gg(t) ≈ α2g(θ)4R2KU(T )e−
t
τs is as in [21]. A temper-

ature dependence of the linewidth ∝ KU(T ) is similar
to observations done with Fe8 [25–27], nitrogen-vacancy
color centers in diamond [28] while other studies seem
to confirm the proportionality to the g-factor [29, 30].
If the g-value does fluctuate then all three terms Gg,δ,T

represent sources of decoherence, with Gδ+GT given by:

Gδ(t) +GT (t) ≈ α2R2
[

S4 +KU(T )
]

×

×
[

2g(θ)2δg2(θ)e
− t

τg + δg4(θ)e
− 2t

τg

]

. (8)

Because 1/T 2
2 is ∝

∫

Jd(ν)dν, an important conse-
quence is that one can combine different decoherence
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sources by summing their effect (each term i) as follows:
1
T 2

2

≈
∑

i
1

T 2

2i

, similar to the well-known fact that the sum

of uncorrelated variances is equal to the total variance.
Additionally, the weight of each term in the sum depends
on, or can be tuned with, the field angle θ through g and
δg. Here we show that for V15, the anisotropy of the de-
coherence time is explained by fluctuations δg, as shown
in Eq. 8, amplified by spin thermal fluctuations KU(T ).

EXPERIMENTAL DATA

Continuous-wave ESR measurements at 120, 241, and
336 GHz are performed using the quasioptical super-
heterodyne spectrometer at the National High Magnetic
Field Laboratory [31, 32], with a sweepable 12.5 T super-
conducting magnet (homogeneity of 10−5 over 1 cm3).
Sample temperature can be varied from room tempera-
ture down to 2.5 K. A single crystal of regular shape (as
in [16]) of volume <

∼ 0.1 mm3 was positioned on a ro-
tating stage allowing for continuous change of the angle
θ between ~B0 and the c axis of the molecule following
the procedure described in [16]. The homogeneity of the
magnet compared to the size of the crystal allows us to
ignore ~B0 as a source of broadening. The applied fields
are above 4 T, past the crossing of the S = 1/2 doublet
and S = 3/2 quartet, such that the ground state of the
system is in the S = 3/2 quartet (see Fig. 1(b)).

ESR spectra at temperatures T = 4−60 K for ~B0 ‖ and
⊥ to c-axis (θ = 0◦, 90◦ respectively) show a Lorentzian
(homogenous) lineshape. Representative spectra with
Lorentzian and Gaussian fits are shown in Fig. 2(a)
for comparison. The temperature dependence of the
linewidth is shown in Fig. 2(c) for three microwave fre-
quencies f0. Compared to measurements made at lower
fields [33], where the ground state is in the S = 1/2
doublet, the linewidths are ∼ 10 times narrower. Plot-
ted is the full width at half maximum (FWHM) of the
Lorentzian fits vs T/f0 to underline that the tempera-
ture dependent mechanism of decoherence in the system
qualitatively follows the temperature behavior predicted
by KU(T ) plus a temperature independent contribution,
essential in the low T limit [Eq. (8)]. Note the absence
of linewidth increase with frequency (or field) which ex-
cludes a static distribution of the g-factor. Additionally,
there is no hyperfine structure visible in the spectra (ex-
change narrowing) since the 3d electrons of V interact
with the nuclei of several other V ions due to the large
exchange couplings (∼ 102 K) within the molecule. Due
to these properties of the measured line width and shape,
we can estimate T2 to be the inverse of the FWHM.

There are two distinct curves in Fig. 2(c), dependent

on the orientation of ~B0. To probe this orientation depen-
dence, the linewidth is measured as a function of θ, see
Fig. 2(b). The narrowest linewidth occurs when θ = 0◦
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FIG. 2. (Color online) (a) Typical measurements of the
derivative of the absorption χ′′ at 120 GHz, 241 GHz and
336 GHz with derivative of Gaussian (blue dotted line) and
Lorentzian fits (red dashed line). (b) FWHM of Lorentzian
fits as a function of field angle θ measured at three frequen-
cies: 336 GHz (blue triangles), 241 GHz (red circles) and 120
GHz (black squares) The dashed lines are calculated widths
as a function of θ; the agreement shows the predicted correla-
tion between decoherence rate and ge − g(θ). In contrast, the
green line (right axis) shows the opposite angular behavior
of calculated g(θ), leading to Gg ≪ Gδ + GT (see text). (c)
FWHM of Lorentzian fits vs temperature/frequency for the 3
studied frequencies. Dashed lines are calculated FWHM(T)
for θ = 0◦ and 90◦.

( ~B0 ‖ c axis) while the largest occurs at θ = 90◦ ( ~B0 in
the triangle plane). This implies more decoherence the
further g(θ) gets from ge since g(0◦) = gc ≈ 1.98 and
g(90◦) = ga ≈ 1.95. The fact that the width is largest
(smallest) when g(θ) is minimum (maximum) rules out
exchange narrowing being the cause of this anisotropy
since it would require a linewidth ∝ (1 + cos2 θ) [17],
as in the case of CsCuCl3 [34]. To rule out an angular
effect of the dipolar field distribution, we measured the
FWHM(θ) on a sample of irregular shape at 240 GHz
and 60 K. Although the shape-dependent coefficients R
and r must be different, the same behavior is observed
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as in Fig. 2b (see SM Section III B for details). We can
thus focus on the terms Gg,δ,T as source of fluctuations.
However, the term Gg(t) is ∝ g(θ)4, in clear contrast

with the observation that the FWHM and g(θ) have op-
posite angular dependences (see Fig. 2b and also SM Sec-
tion IIIA). This is the essential property of the V15 com-
pound, which makes it particularly suitable to study the
effect of spin-orbit fluctuations. Therefore, this opposite
angular behavior provides evidence that δg(θ) 6= 0 and
the terms Gδ,T (t) must be considered while Gg(t) can be
discarded. One can argue that geometrical fluctuations
in solids at low temperatures are very small (r ≪ R) and
lattice fluctuations are mostly influencing the relaxation
time T1 (τs ≫ τg) making Gg ≈ constant at the time
scale of the decoherence time.
Since Gd(t) ≈ Gδ(t) +GT (t) and 1/T 2

2 ∝
∫

Jd(ν) [17,
18] the linewidth square can be modeled by the following
fit function (see SM Section II for details):

∆2 =
[

S4 +KU(T )
]

×

×
[

2a2g(θ)2(g(θ)− ge)
2 +A2(g(θ)− ge)

4
]

(9)

where A and a are fit parameters. The procedure is de-
tailed in SM Section IV; it allows to calculate the angu-
lar dependence FWHM(θ) by using only two data points,
∆(0◦) and ∆(90◦), as shown in Fig. 2(b) (dashed lines).
To analyze the temperature dependence of the

linewidth shown in Fig. 2(c), we solve for A and a at
all available temperatures and frequencies (see SM Sec-
tion IV B for details). Above 10-20 K, the values stabilize
at A ∼100 GHz and a ∼3.2 GHz. At lower temperatures,
the values decrease by almost half, indicating a small de-
crease in ξ and/or a slowing down in the fluctuations
time τg. These temperature trends A(T ) and a(T ) are
estimated by an exponential saturation (see SM Fig. 4 for
details), with decay constants of 3.6 K and 11 K for A(T )
and a(T ) respectively. With no other adjustments, the
calculated linewidth is in very good agreement with the
experimental data, as shown with dashed line in Fig.2(c).
On the low end of T/f0 one observe a residual value of the
linewidth, which includes the effects of other decoherence
sources (such as the nuclear spin bath [35]), although it
can be well described by Eq. 9.
The outcome of the fit procedure can be used to esti-

mate the size of spin-orbit fluctuations (see SM Section
IV C) leading to an order of magnitude for ξ ∼ 10−2.
This corresponds to a fluctuation δg/g ∼ 10−4, too small
to result in directly measurable fluctuations of the Zee-
man splitting. Note that for V15, a large spin-orbit
fluctuation is supported by previous Raman measure-
ments [24] showing a very broad signal in the region
of ∼ 500 cm−1 corresponding to vibrations of oxygen
bridges between V ions. The observed broad distribu-
tion of the modes can induce very fast virtual transitions
to excited coupled states and, as a consequence, spin de-
coherence.

CONCLUSION

Our study provides insight on how to mitigate the ef-
fects of spin-orbit fluctuations. It is evident from Eqs. (6)
and (7) that the g-tensor should be as close as possi-
ble to ge. In molecular compounds this can be achieved
by engineering the ligands type since local symmetry af-
fects the diagonal values of the g-tensor of a magnetic
ion. Aside from material design by chemical methods,
Jd(ν) can be minimized by applying the magnetic field
at a specific angle θ. For V15, this would be θ = 0 for
which the decoherence time reaches several nanoseconds.
This time can reach ∼ 400 ns by reducing R in Jd(ν)
via dilution in liquid state, thus allowing the observation
of Rabi oscillations and spin-echoes [5]. The method-
ology presented here can be important for the diluted
spin systems as well, since long range interactions are
still present and can carry modulations due to g-factor
fluctuations. Potential examples are transition metals
such as Cr5+:K3NbO8[2]) or some lanthanide monomers
doped into insulating lattice such as Hf3+:LuPO4[36] or
La2+:CaF2[37]. The results extend to any solid-state sys-
tem where spin-orbit coupling leads to quantum effects,
independent of system dimensionality.
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SUPPLEMENTAL MATERIAL:
SPIN-ORBIT COUPLING FLUCTUATIONS AS A

MECHANISM OF SPIN DECOHERENCE

SINGLE MOLECULE SPIN HAMILTONIAN

The molecular compound K6[V
IV
15As

III
6 O42(D2O)] ·

8D2O or V15 contains fifteen V+4 spins, each with a spins
1/2, shown in blue in Figure 1(a) of the article. The
spins are coupled by large antiferromagnetic (AF) cou-
plings in exces of 100 K [13, 14]. At low temperatures, the
molecule can be modeled as an effective frustrated trian-
gle of spins 1/2. The effective antiferromagnetic coupling
is ≈ 2.51 K as estimated by magnetic measurements at
low temperature [23]. The generalized three spin Hamil-
tonian Hst is given in the article as:

Hst = H0 +HJ +HDM . (10)

where H0 describes the Zeeman splitting in an external
field ~B0, HJ is the symmetric exchange term, and HDM

is the anti-symmetric Dzyaloshinsky-Moriya (DM) term.
In the study presented here, the focus lies on the fluctu-
ations of the dipolar term. However, for completness of
the study, a summary of the properties of the static term
Hst is presented in this section following our previous
study, Ref. [16].
The Zeeman term is given by:

H0 = gaµB
~B△

~S△ + gcµB
~Bz

~Sz (11)

where ga,c are the values of the g-factor in the trian-
gle’s plane and along the molecule’s c axis (z axis in

Fig. 1a) respectively; ~B△,z are the planar and vertical

vector components of the external magnetic field ~B0,
with B△ = B0 sin θ and Bz = B0 cos θ, respectively; θ

is the angle between ~B0 and the z-axis; ~S△ = ~Sx + ~Sy =
∑

i=1,2,3(
~S
(i)
x + ~S

(i)
y ), and ~Sz =

∑

i=1,2,3
~S
(i)
z .

The exchange term is given by:

HJ =
∑

<i,j>

[J (ij)
z S(i)

z S(j)
z +J

(ij)
t (S(i)

x S(j)
x +S(i)

y S(j)
y )] (12)

and the DM term by:

HDM =
∑

<i,j>

~D(ij)(~S(i) × ~S(j)) (13)

where one sums over the (i, j) pairs (1, 2), (2, 3), (3, 1)

of the triangle spins ~S(1),(2),(3). The HJ term describes
the effective antiferromagnetic coupling between the tri-
angle’s corners which, in principle, can be anisotropic
(Jz 6= Jt) and differ between spin-pairs in the triangle

(J
(12)
z 6= J

(23)
z for example). In the HDM term, the in-

dividual vectors ~D(ij) = ~D
(ij)
x + ~D

(ij)
y + ~D

(ij)
z correspond

to the interaction between S(i) and S(j), and are related
to the local frames (a, b, and c) shown in Figure 3(a). It
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zb
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FIG. 3. (color online) (a) Diagram showing the local a, b, c
axes defining the DM vectors in the three spin model. The
spins are located in the triangle corners. The applied field ~B0

makes an angle θ with the z-axis ⊥ to the triangle plane. (b)
Energy eigenstates of the three spin model with positions of
allowed transitions at 120 GHz shown. Red dashed lines be-
tween red open circles indicate transitions inside the S = 3/2
quartet while the blue dashed line between the blue crosses
indicate the four allowed transitions within the degenerate
S = 1/2 doublets. The zero-field splitting between the quar-
tet and doublets is 3J0/2.

is assumed that D
(12)
xa = D

(23)
xb = D

(13)
xc = Dl, D

(12)
ya =

D
(23)
yb = D

(13)
yc = Dt, and D

(12)
za = D

(23)
zb = D

(13)
zc = Dz.

Diagonalizing Hst yields an energy structure that is
made up of an excited quartet S = 3/2 and two ground
doublets S = 1/2 where the zero-field splitting between
the quartet and doublets is determined by the value of
the antiferromagnetic coupling. This is shown in Fig-
ure 3(b) for the case where there is no DM interaction,

J
(ij)
z = J

(ij)
t = J0 = −2.45 K for all (ij), ga = 1.95 and

gc = 1.98. In this simple case, the ground doublets are
degenerate and are separated from the quartet at zero
field by 3J0/2. The crossover of the ground state from
the doublet to the quartet is known to happen at 2.8 T
from measurements of the magnetization of a single V15
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crystal,[23] placing a constraint on the values of J
(ij)
z and

J
(ij)
t .

The parameters of Hst can be identified by means of
high-field spin resonance spectroscopy as described in a
previous study[16]. The excitation frequency of 120 GHz
corresponds to fields upwards of 4 T, where the quartet
represents the ground state. The allowed transitions are
shown in Figure 3(b) with dashed vertical lines, where the
blue line between the crosses represents the four allowed
transitions within the degenerate doublets. The field po-
sitions of these transitions depend on the values of all
Hst terms and each transition has a certain effect on the
overall field location of the resonance signal. By using nu-
merical diagonalization and the first moment method to
average the transitions, information on the spin Hamil-
tonian parameters can be extracted. Such approach is
very general and can be applied to solve a non-linear
relationship between magnetic field and resonance fre-
quency. The conclusion of the study can be summarized
as follows. Any isotropy in the AF exchange coupling J
or generated by the DM term is not sufficiently large to
create a spectroscopic signature. The data together with
the numerical calculations of the transition probabilities
indicate that the doublet transitions, shown in blue ar-
rows in Figure 3(b), don’t have any noticeable influence
on high-field spin resonance experiments.

SPECTRAL DENSITY OF DIPOLAR
FLUCTUATIONS

The interaction between V15 neighboring molecules is
of dipolar nature and described by Eq. (2) of the main
article:

Hd =
3µ0

8π
S2µ2

B

∑

p;q 6=p

gp(θ)gq(θ)

(

1− 3 cos2 φpq

)

d3pq
(14)

with µ0 the vacuum permeability, µB the Bohr magne-
ton, dpq the distance between two molecules located at

sites p and q, gp,q(θ) =
(

g2a sin
2 θ + g2c cos

2 θ
)1/2

, φpq the

angle between ~S at site p and ~dpq. Random fluctuations
in Hd generate the observed linewidth and thus limit the
spin coherence lifetime.

To find the spectral density of dipolar fluctuations
one has to analyse the time dependence of the corre-
lation function, defined in the main article as Gd(t) =
〈Hd(t)Hd(0)〉 = α2〈g(t)g(0)〉2〈S2(t)S2(0)〉〈R(t)R(0)〉:

Gd(t) = α2
[

g(θ)2 + δg2(θ)e
− t

τg

]2

×
[

S4 +KU(T )e−
t
τs

] [

R2 + r2e
− t

τdip

]

= α2
[

g(θ)4 + 2g(θ)2δg2(θ)e
− t

τg + δg4(θ)e
− 2t

τg

]

×
[

S4 +KU(T )e−
t
τs

] [

R2 + r2e
− t

τdip

]

(15)

where all notations are defined in the main article. Thus,
Gd(t) is a twelve term sum which can be split as follows:

G0 = α2g(θ)4S4R2,

Gg(t) = α2g(θ)4R2KU(T )e−
t
τs +

+ α2g(θ)4r2e
− t

τdip

(

S4 +KU(T )e−
t
τs

)

,

Gδ(t) = α2S4
[

2g(θ)2δg2(θ)e
− t

τg + δg4(θ)e
− 2t

τg

]

×
[

R2 + r2e
− t

τdip

]

,

GT (t) = α2KU(T )e−
t
τs

[

2g(θ)2δg2(θ)e
− t

τg + δg4(θ)e
− 2t

τg

]

×
[

R2 + r2e
− t

τdip

]

. (16)

As discussed in the main article, one can follow
Atherton[19] to obtain the Fourier spectrum correspond-
ing to each term above. The first term, G0, is time in-
depedent and thus will not count. Also, given the ex-
perimental data for the particular case of V15, the term
Gg must not be significant. This is a result of the op-
posite angular dependence between measured g(θ) and
signal linewidth, an analysis given in Section . This con-
dition imposes that r2 is very small, meaning that crystal
lattice fluctuations at low temperatures are not of signif-
icance for the decoherence rate. Such process is signifi-
cant for the relaxation time T1, related to τs and usually
much larger than the decoherence time. Consequently,
τs ≫ τg, τdip and therefore the first term in Gg(t) is al-
most constant, at the scale of the decoherence time. Such
condition is valid in a large range of temperatures and
fields, leaving only two dominant terms, Gδ and GT .
The essential difference between Gδ and GT is that

the former is temperature independent while the later
describes the measured temperature dependence (see
Fig. 2b). At the low end of the temperature range, one
achieve a minimization of the continuous wave linewidth.
This can be attributed to the temperature independent
term Gδ plus any other decoherence sources, such as the
nuclear spin bath [35].
Consequently, the correlation function can be written

as:

Gd(t) ≈ Gδ(t) +GT (t) ≈ α2
[

S4 +KU(T )
]

R2

×
[

2g(θ)2δg2(θ)e
− t

τg + δg4(θ)e
− 2t

τg

]

, (17)
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and the resulting Fourier spectrum is:

Jd(ν) =

√

2

π
α2

[

S4 +KU(T )
]

R2

×

[

2g(θ)2δg2(θ)
τg

1 + 4π2τ2g ν
2
+ δg4(θ)

τg/2

1 + π2τ2g ν
2

]

.

(18)

Since the integral of Jd(ν) represents the square of the
decoherence rate, 1/T 2

2 =
∫

Jd(ν)dν, one can conclude
that the appropiate fit function for the spectroscopy
linewidth is given by:

∆2 =

√

2

π
α2

[

S4 +KU(T )
]

R2

×

[

2g(θ)2ξ2(g(θ)− ge)
2

∫

τg
1 + 4π2τ2g ν

2
dν

]

+

+

√

2

π
α2

[

S4 +KU(T )
]

R2

×

[

ξ4(g(θ) − ge)
4

∫

τg/2

1 + π2τ2g ν
2
dν

]

, (19)

where ξ = δg(θ)/(g(θ)−ge) and ge = 2.00232. This leads
to a fit function of the experimental linewidth ∆:

∆2 =
[

S4 +KU(T )
]

×
[

2a2g(θ)2(g(θ)− ge)
2 +A2(g(θ)− ge)

4
]

, (20)

where a and A are fit parameters.

ANGULAR DEPENDENCE OF THE
LINEWIDTH/SPECTRAL DENSITY

The g4 term is negligible

When discussing the correlation function Gd(t) above,
an approximation was made, namely that the Gg(t) term
must not be dominating because it contains the factor
g(θ)4. The V15 molecular compound has a very particu-
lar propriety, namely the behavior of the linewidth when
the angle θ is changed continously. Our measurements
(see Fig. 2b of the main article) show an opposite an-
gular dependence between linewidth and g(θ). At the
extreme points θ = 0◦ and 90◦ a small/large linewidth is
obtained when the g-factor is the largest/smallest, with
g(0◦) = gc ≈ 1.98 and g(90◦) = ga ≈ 1.95. This is
somewhat counter-intuitive since a large g-factor means
a larger magnetic moment and thus potentially larger
dipolar fluctuations.
This unusual behavior can not be described by the

term g4(θ) which corresponds to a traditional interpre-
tation of dipolar fluctuations: the larger the value of the
dipoles (∝ g, S) the larger the value of Hd fluctuations.
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FIG. 4. (color online) Dipolar field (continous line) and σdip

(dashed line) as a function of θ calculated in the middle of an
ensemble of 10648 molecular spins, shown in the insert. The
Bdip has a typical ∝ 1− 3 cos2 θ behavior.

Instead, the linewidth is in sync with the angular depen-
dence of δ(θ), that is the size of the shift of the g-factor
away from the free electron value ge. This shift of g is
caused solely by spin-orbit coupling [8]: g = geI − 2λΛ
where g is the g-tensor (diagonal [ga, ga, gc] for V15), I
is the unit matrix, λ is the spin-orbit coupling constant
and Λ is a tensor defined in terms of the matrix elements
of the orbital angular momentum L:

Λij =
∑

n6=0

〈0|Li|n〉〈n|Lj |0〉

(En − E0)
(21)

with i, j = x, y, z. The spin-orbit coupling to excited
orbitals is defining the value of the g-factor and vibra-
tional modes will induce fluctuations in the term λΛ. As
a consequence to the opposite angular behavior of the
linewidth and the g-factor, we conclude that δg fluctua-
tions with a characteristic time τg modulate the dipolar
fluctuations. This makes the terms in δg2 and δg4, rather
than g4, to dominate the spectral density Jd(ν) shown
above.

Dipolar Hamiltonian: the geometric factor

As a consequence of the long range dipolar interac-
tions, each molecule will see a local field summing the in-
dividual dipolar fields generated by the other molecules.
Therefore, the local field has a certain total value and
also a standard deviation due to the spread in values of
the individual fields. By means of numerical simulation,
one can analyse the dependence on θ of the spread in
dipolar fields and compare it to the observed angular de-
pendence of the experimental resonance linewidths. As a
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FIG. 5. (color online) Experimental linewidth (red dots) mea-
sured at 60 K and 240 GHz for a crystal of irregular shape
(see insert) as a function of θ. Despite the irregular shape,
the linewidth shows the same overal behavior with a mini-
mum/maximum at θ = 0◦/90◦, respectively.

reminder, the main observation in the case of V15 is that
the linewidth is small/large when the g-factor is large
(θ = 0◦) / small (θ = 90◦).
The angular dependence of the distribution of fields

is calculated in the middle of an ensemble having 22
molecules on each crystallographic axis, that is a total
number of 22× 22× 22 = 10648 sites. The size is chosen
such that dipolar couplings due to molecules outside of
this interaction volume can be neglected. The ensemble
is shown in the insert of Figure 4. The applied field B0 is
large enough to polarize the spins. The total field along
B0 is given by Bdip =

∑

q b
dip
q where bdipq is the individual

field generated by a molecule at site q in the middle of the
crystal. The result is plotted with a continous red line,
while the spread σ2

dip =
∑

q (b
dip
q )2 − (

∑

q b
dip
q )2 is shown

with a dashed blue line as a function of θ. One note
that σdip is significantly smaller than the large linewidths
observed experimentally (about an order of magnitude
smaller) and also that the simulated angular dependence
is not correlated with the measured one. The simulated
Bdip shows the typical behavior ∝ 1 − 3 cos2 θ and both
Bdip and σdip do not show the experimentally observed
behavior of the linewidth (minimum/maximum values at
θ = 0◦/90◦ respectively).
This shows that fluctuations in the geometrical part of

Hd can not explain the observed angular dependence of
the linewidth.
Another way to verify the above statement is to mea-

sure a sample of an irregular shape as shown in the insert
of Figure 5. Given that dipolar interactions are of long
range nature, the shape-dependent coefficients R and r
could completely change the angular dependence of the

linewidth. The data in such case can be analyzed and
compared with the case of a well defined crystal, with
a shape similar to the insert of Figure 4 and as the one
studied in the main article. The linewidth measured at
T = 60 K and excitation frequency 240 GHz is shown
with red dots in Figure 5. Despite of an irregular shape
of the crystal, the main property of the linewidth is con-
served, namely that its angular dependence is opposite
to that of the g-factor. We are thus compelled to relate
the linewidth to fluctuations of terms in Hd containing
the g-factor .

FITTING PROCEDURE

Field-frequency conversion

The measured field linewidths can be converted into
frequency units through exact diagonalization of the
three-spin Hamiltonian Hst, since the linewidth corre-
sponds to a broadening of its eigenvalues. This is needed
since the resonance frequency and field are not in a
linear relantionship due to zero field splittings. The
method presented below is general and can be applied
to any other molecular system. We calculate the mini-
mum and maximum excitation frequencies fmin,max lead-
ing to resonance fields Bmax,min using the first moment
method [16]. Their difference is:

∆ = fmax − fmin. (22)

By measuring ∆(0◦) and ∆(90◦), one can construct a
system of two equations with two unknowns (see Eq. 20)
to solve for A and a. This allows to calculate the curve
∆(θ) which is converted back to field units by solving the
static Hamiltonian: for two frequencies f ′

min,max(θ) =
f0 ± ∆(θ)/2, we calculate the corresponding resonance
fields B′

max,min(θ). The difference B′
max − B′

min is the
fitted Full Width at Half Max (FWHM) as a function of
θ. Thus, by using only two data points (linewidths at θ =
0◦ and 90◦) one can simulate the full angular dependence
of the linewidth, for any non-linear relantionship between
applied field and resonance frequency.

Frequency and temperature studies

The protocol described in the previous section can be
applied to find the fit parameters A and a in the tem-
perature interval 4-60 K for the three frequencies used in
our study: 120 GHz, 241 GHz and 336 GHz. The ob-
tained values for the fit parameters A and a are shown
with scattered dots in Figure 6, in panels (a) and (b)
respectively: red squares for 120 GHz, black triangles for
241 GHz and blue circles for 336 GHz. The temperature
dependence of their averages Av(T ) and av(T ) is shown
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FIG. 6. (color online) Fit parameters A and a as a function
of temperature, shown in panels (a) and (b) respectively,
for three excitation frequencies. Their average is shown with
a smoothed dashed green line; two purple dotted, smoothed
lines are bounding the uncertainty area defined as the average
± the standard deviation of the mean. The black continous
line shows an exponential approximation of the temperature
trend, used to calculate the temperature / frequency fit (see
Fig. 2(c) of the main article).

with a smoothed dashed green line lying inside an un-
certainty area bounded by two purple dotted, smoothed
lines Av ± σA and av ± σa where σA,a are the standard
deviation of the means.

For both fit parameters one can note an increase with
the temperature up ∼ 10 − 20 K when they reach more
stable values. Since A and a reflect the magnitude of the
characteristic time τg and ξ, one can conclude that the
spin-orbit fluctuations are slightly less effective at low
temperatures. It is important to take this aspect into ac-
count when using our model to fit the T/F master curve
shown in Fig. 2(c) of the main article. In Figure 6, the
black continous lines A(T ) and a(T ) show exponential
approximations of the temperature trends, with charac-
teristic decay constants of 3.6 K and 11 K for A and a,
respectively. Different decay constants can be linked to
different power dependence on ξ for A and a, as shown by
Eq. 23. These exponential decays are roughly within the
limits of A and a uncertainty bands and are optimized

to properly fit the master curves in Fig. 2(c) of the main
article (shown with dashed lines).

Discussion of model variables

The values of parameters A and a can be used to fur-
ther analyze the variables used by the model given in
Eq. 19. The integrals over the Lorentzian spectra are
from 0 to ∆ (see Ref. [18]) which leads to:

a2 =

√

2/π

2π
α2ξ2R2 arctan(2πτg∆)

A2 =

√

2/π

π
α2ξ4R2 arctan(πτg∆). (23)

The g2δg2 term, which defines the value of a, is the
leading term of the fit procedure and fully describes the
angular behavior of the linewidth; the δg4 term provides
only a marginal improvement of the fit. Consequently,
the parameter A is particularly susceptible to a large un-
certainty due to the small value of the δg4 term: in order
to have a meaningful contribution to the fitting proce-
dure, A has to be quite large. Therefore, taking the ratio
A/a as an estimation of ξ can lead to unrealistic values
for the size of the g-factor fluctuations.
Instead, one can use a to asses the value of ξ, after eval-

uatingR. As a reminder, the coefficientR is an average of
∑

p6=q Rpq (as defined in the main article) and it depends
on the spin density and sample shape. An estimation
of R can be made by fixing one site, as in the simula-
tions presented in Section III B, that is R = N

∑

q Rpq

with p fixed in the center of the crystal and N = 10, 648
is the total number of sites in the interaction volume.
The dipolar field Bdip, shown in Fig. 4 with a red con-
tinous line, can be estimated as Bdip ∼ µ0

4π gµBSR/N ,
which for g = 2, S = 3/2 and Bdip ≈ 0.5 mT, leads to
R ∼ 2000 nm−3 .
Since the linewidth of the homogenous ESR signal

in V15 is quite large, compared to other spin systems
proposed as qubits, one can assume that τg∆ > 1,
which is sufficiently large to approximate the arctan
function with π/2 and thus a ∼ αξR. Assuming a value
of a of ∼ 2 GHz, one get an estimation of the order of
magnitude to be ξR ∼ 100 nm−3 and ξ ∼ 0.01 − 0.1 as
an order of magnitude.


