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Systematic motion of magnetic domain walls in notched nanowires under ultra-short

current pulses
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1Aix-Marseille Université, CNRS, IM2NP UMR7334, F-13397 Marseille Cedex 20, France

(Dated: January 9, 2018)

The precise manipulation of transverse magnetic domain walls in finite/infinite nanowires with
artificial defects under the influence of very short spin-polarized current pulses is investigated. We
show that for a classical 3d ferromagnet material like Nickel, the exact positioning of the domain
walls at room temperature is possible only for pulses with very short rise and fall time that move
the domain wall reliably to nearest neighboring pinning position. The influence of the shape of the
current pulse and of the transient effects on the phase diagram current-pulse length are discussed.
We show that large transient effects appear even when α=β, below a critical value, due to the
domain wall distortion caused by the current pulse shape and the presence of the notches. The
transient effects can oppose or amplify the spin-transfer torque (STT), depending on the ratio β/α.
This enlarges the physical comprehension of the DW motion under STT and opens the route to the
DW displacement in both directions with unipolar currents.

PACS numbers: 75.60.Ch, 75.10.Hk, 75.40.Mg

I. INTRODUCTION

Current induced magnetic domain wall motion
(CIDWM) in nanowires or nanostrips is a highly active
research field1,2 with applications in high-density and ul-
trafast nonvolatile data-storage devices like the racetrack
memory3 or for logic devices4. In the racetrack memory,
the data processing is based on the controlled displace-
ment between precise distinct positions of the domain
walls (DWs) due to the transfer of angular momentum
(spin-transfer torque) from a spin-polarized electric cur-
rent. To achieve precise positioning of DW, artificial con-
strictions or others patterned geometrical traps are usu-
ally used, which create an attractive pinning potential for
the DW. Different types of traps were studied in cylin-
drical or flat/strip nanowires5–8, along with the possible
interaction between the DWs9,10. In some cases, depend-
ing on the pinning potential, the DW displacement be-
tween pinning sites can display a chaotic behavior11 or a
stochastic resonance12 under harmonic excitation.

The required currents for STT based DW movement
are usually high (∼ 1A/µm2) which limits the applicabil-
ity due to Joule heating. To displace accurately the DWs
between the pinning sites, the current density should be
kept at relatively low values and/or very short current
pulses should be applied. Experimentally, it was ob-
served that an efficient DW motion is reached for pulses
in the nanosecond regime13 and that the resonant ex-
citation of the DW by a short train of current pulses
decreases the depinning current14. More recently, the ef-
fect of the temporal and spatial shape of the current pulse
was highlighted15–17. It was shown that a fast changing
current with an ultra-short pulse rise time decreases the
critical current density due to the dependence of the DW
motion on the time derivative of the current18 and leads
to high DW velocity19. Another aspect of the CIDWM
under short pulses is the existence of important transient

effects related with the DW inertia-like behavior13,20–23

due to deformation of the wall. The consequences are
a delayed response at the current onset and at the end
of the current pulse. The theoretical and experimental
results show that the distance traveled by a DW is al-
most proportional to the current pulse length and that
the transient motion depends on the variation of the gen-
eralized angle of the wall, the wall width and the ratio of
the damping (α) and nonadiabatic (β) parameters20,21.
For very short pulses (one nanosecond), the transient dis-
placement is comparable with the steady-state motion24.
A DW that propagates without deformation should dis-
play no inertia25 like in cylindrical nanowires26 or in cer-
tain perpendicular magnetic anisotropy systems27. The
absence of inertia will allow a fast response to external
forces while the transient DW displacement after the ap-
plication of the pulse limits the application in fast de-
vices. In the main time, it was recently demonstrated
that inertia-like behavior of a DW can be also an ad-
vantage when ultra-short optical pulses are used28 with
applications in the optical recording. Moreover, in sys-
tems with strong spin-orbit coupling where additional
contributions from spin-Hall effect complicate the DW
dynamics, a DW tunable inertia was proposed29. Be-
fore studying more complex systems, the influence of the
transient effects on the systematic DW movement un-
der ultra-short spin-polarized current pulses should be
completely understood in a classical 3d ferromagnet like
Nickel, which is the aim of this paper.

In this paper, we address the systematic motion of a
magnetic transverse DW between fixed artificial constric-
tions (notches), when submitted to a series of ultra-short
spin-polarized current pulses (transient regime) at low
and room temperature. The artificial constrictions are
situated at regular positions in a flat finite or infinite
nanowire with only in-plane (shape) anisotropy like in a
classical 3d ferromagnet. We determine the influence of
the current pulse shape (rise and fall time) on the mo-
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tion of the DW. We show that even at zero temperature,
there is a transition region between the different bands in
the current-pulse time phase diagram, each band corre-
sponding to the positioning of the DW at a well-defined
notch. Our results show that at room temperature, the
precise positioning can be achieved only by very short
pulses with very short rise and fall times that displace
the DW by only one notch at a time. Therefore, to move
a DW several notches reliably, a sequence of very short
pulses should be used. By examining the influence of
the damping and nonadiabatic parameters, we show that
when β=0 the transient effects (automotion) of the DW
are very large and oppose the STT, being observed in
the phase diagrams as predicted20. The transient effects
are related with the change in the DW structure that
is due to a combination of factors: pinning potential of
the notches which induces a sufficient variation of the
DW angle30, position of the DW inside the potential well
(different restoring force), low damping parameter and
shape of the current pulse. Contrary to expectations, the
transient effects also appear when α = β, below a crit-
ical value. For β > α, the transient effects can oppose
or amplify the STT, thus explaining the oscillatory DW
depinning at higher currents observed experimentally13.
This brings new physical insight into CIDWM under STT
and paves the way for systematically displacing DW in
nanowires in both directions using only unipolar current
pulses.
This article is organized as follows. In Sec. II, we

present the micromagnetic and the stochastic 1D model
used to calculate the pulsed DW dynamics. In Sec. III,
we compute and investigate the phase diagram of the DW
dynamics for a finite and infinite nanostrip at T=0K and
room temperature. Discussion and concluding remarks
are presented in Sec. IV.

II. MODEL

We study numerically the systematic motion of a
pinned transverse domain wall in a finite or infinite Ni
nanostrip with symmetric rectangular notches. The fi-
nite strip has a length Lx=1µm, a cross section of Ly×Lz
= 60×5nm2 and has ten rectangular symmetric double
notches separated by 80nm. The results presented below
are for notch dimensions of 20 × 9 × 5 nm3. The varia-
tion of length and depth of the notches does not influence
much the physics of phase diagrams presented in Sec-
tion III. The notch depth influences the depinning current
as the potential barrier increases, while the notch length
influences lightly the depinning current and mostly the
slope of the potential wells.
Fig. 1(a) shows the equilibrium position of a head-

to-head transverse DW in the notched nanostrip us-
ing the parameters of Nickel: saturation magnetization
Ms=477kA/m, exchange stiffness parameter A = 1.05
× 10−11J/m, spin polarization P=0.7 and damping pa-
rameter α=0.05. The DW is moved by a series of spin

polarized current pulses applied along the x-axis. The
geometry of the current pulse is described in Fig. 1(b),
with tr, ts, tf and tz the rise, stable, fall time and zero-
current time respectively. The nonadiabatic parameter
is set to β=2α, if not specified otherwise.
The DW dynamics was computed using 3D micromag-

netic simulations with the MUMAX3 package31 and with
the one-dimensional DW model32,33. In both cases, the
magnetization dynamics is determined from the Landau-
Lifschitz-Gilbert (LLG) equation with adiabatic and non-
adiabatic spin-transfer torques34:

Ṁ = −γ0M×Heff+α(M×Ṁ)−(u·∇)M+βM×(u·∇)M
(1)

where γ0 is the gyromagnetic ratio, u = jePµB/eMs is
the spin drift velocity, P the spin polarization of conduc-
tions electrons, µB the Bohr magneton and je the applied
current density. No additional exotic torques (like the
ones due to the spin-Hall or Rashba effect) were consid-
ered.
For the micromagnetic computations, the strip was dis-

cretized into a mesh with a cell size of 2×3×2.5nm3, infe-
rior to the exchange length (∼5nm). The DW dynamics
in a finite wire is compared with the one of an infinity
long wire where the magnetic charges at the ends of the
nanostrip are compensated. The average position of the
DW center (X) is extracted for each simulation (in the
axial x direction) along with the azimuthal angle (ψ) of
magnetization in the yz plane. No magnetocrystalline
anisotropy is considered, the shape anisotropy insures
that the easy axis is in-plane. The effect of the tem-
perature is studied both micromagnetically and with the
1D model. The 1D model of the DW (collective coordi-
nates X and ψ) supposes that the DW is rigid and gives
a quasi-quantitative understanding of the motion of the
DW. The Langevin equations of motion of the DW2,35

are detailed in Ref. 36.
The pinning potential energy is determined from

quasistatic micromagnetic simulations and is shown in
Fig. 1(c) and (d) for the finite case and the infinite case
respectively. The pinning potential determined by fitting
the micromagnetic results is harmonic inside the notches
and sinusoidal between them:

Vp(x) =

{

1
2
ki(x+ xi)

2, for xi − L ≤ x ≤ xi + L

V0 cos(2πfx+ φi,i+1), for xi + L < x ≤ xi+1 − L

(2)
with ki the stiffness constant and xi the DW stable equi-
librium position of the site i, φi,i+1 the phase between
the i site and its nearest neighbor. V0 and f correspond
respectively to the effective height of the potential and its
spatial frequency. For the finite case, the stiffness con-
stant varies from 7.07×10−5 N/m to 6.77×10−5 N/m,
when moving from the center of the nanowire to its ends.
In the infinite case, the stiffness constant is equal to 7.16
×10−5 N/m for all the pinning sites and L = 16.5nm.
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FIG. 1. (Color online) (a) Simulated structure: planar nanowire with ten symmetric double notches. The equilibrium position of
a pinned DW is shown in the finite case. (b) Definition of current pulse with its temporal characteristics. Two successive current
pulses with opposite polarity are shown. The normalized potential pinning energy for finite and infinite case as determined by
micromagnetic simulations (symbols) are shown in (c) and (d) respectively. The line is a fit as described in the text.

The expression (Eq. 2) was used in the equations of the
1D model through the pinning field Hp included in Heff .
The pinning energy is controlled by the dimensions and

distance between the notches. A clear difference is ob-
served between the two potentials due to edge dipolar
energy. In the finite strip, the depinning field decreases
from 39 Oe, in the central wells, to 26 Oe when the DW
is closed to the two ends of the strip. This is due to
the attractive interaction between the DW and magnetic
surface charges located at the sides37. As a result, the
potential wells are asymmetric in energy along the strip
and their energy minima decrease when the distance be-
tween the notches and the ends of the strip is reduced.
In contrast, for the infinite case, each well has the same
depinning field and energy barriers.

III. RESULTS

Our analysis of the DW dynamics begins with the
study of the differences between a finite and an infi-
nite nanostrip at T=0K. Afterwards, the influence of the
pulse shape is discussed and the particularities of the
DW motion at room temperature. The last subsection
details the results when the damping and nonadiabatic
parameters are varied and their influence on the transient
displacement.

A. Phase diagrams at T = 0K

To characterize the systematic motion of the DW be-
tween the notches, we computed point-by-point phase
diagrams for all systems with the 1D DW model for a
large range of pulse duration and current amplitude. We

compare our 1D results with phase diagrams computed
micromagnetically on less points than the 1D calculus. A
similar micromagnetic computation will require an enor-
mous execution time. The control parameters are the
amplitude, the duration and the shape of the current
pulses. The range of the current amplitude (≤10 A/µm2)
is chosen to have only viscous motion (no precession) for
the pulse duration used (. 1.5ns). The pulse duration
range is selected to be on the same order of magnitude
with access or reading/writing time in possible magnetic
memories based on DW.

The phase diagram, in the parameter space stable time
– current amplitude, which characterizes the DW dynam-
ics in the finite nanostrip at T=0K, is shown in Fig. 2(a).
The diagram represents 200×400 point-by-point integra-
tion with a fourth order Runge-Kutta scheme. The mi-
cromagnetic results (scattered symbols) are compared
with the 1D results (colored regions). The DW is ini-
tialized in the left central well and a series of periodic
bipolar current pulses are applied during 350ns to move
periodically forth and back the DW between two desired
notches. The pulse characteristics are tr=tf=5ps and
tz=10ns. The influence of tr and tf is discussed below.
The value of tz (10ns) was chosen to correspond to the
return to equilibrium time of the DW at room tempera-
ture. The tz can be reduced to 3ns for T=0K, without
a change of the phase diagrams. In Fig. 2(a), several re-
gions are visible, each region corresponding to one state
of the DW oscillation. The first state which appears is
the pinned state, noted state 0 in the micromagnetic sim-
ulation, and corresponds to the DW being pinned in the
initial notch. After the pulse ends, the DW behaves like
a damped harmonic oscillator. The state 0 is observed
for all ts, when the external current je is inferior to the
depinning current 2.31 A/µm2. This state is also ob-
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FIG. 2. (Color online) Phase diagram for a DW at T=0K
in a finite (a) and infinite (b) nanostrip in the parameter
space stable-time – current amplitude with tr=tf=5ps and
tz=10ns. The total time of the periodic pulses is 350ns. The
micromagnetic results (scattered symbols) are compared to
the 1D model (colored regions). The diagrams show only a
few bands due to the finite size of the wire or due the number
of notches used. The upper right region is due to the finite
size of the nanowire or of the simulated window (infinite case).

served at higher currents (until 10 A/µm2), when the
stable time ts is low (between 0ps and 55ps). The di-
agram displays others bands, where the DW oscillates
periodically between the same two potential wells, which
can be next-neighbors (noted as band 1) or not, until
the fifth state that corresponds to the periodic oscilla-
tion between the initial notch and the fourth notch to the
right (band 4) hoping the three notches in between. The
number of bands is given by the considered finite size of
the nanostrip. The second state (next-neighbors notches
noted band 1) is observed up to ts=0.96ns at je=2.3308
A/µm2, while the others bands continue above ts=1ns.
Thus, the DW can cross severals notches back and forth
for a given current pulse characteristic. We observe that
the interband transitions are characterized by an unin-
tended state (state u), where the DW oscillation does
not take place between the desired positions. This tran-
sition is more pronounced between the last two bands.
The micromagnetic results, which are superimposed on

the 1D results, give quantitatively the same results un-
til the fourth state, after which a small shift appears in
the ts and je values, but the bands are qualitatively the
same. The upper right region, which correspond to an
unwanted state, is due to the finite size of the nanowire,
here the DW is pinned at the nanowire end.

In the infinite case, the DW is initialized in the first
well from the left. A phase diagram similar to the fi-
nite case is shown in Fig. 2(b). This diagram contains
three more bands than the finite case, which correspond
to additional states where the DW oscillates between
two notches, starting from the initial one, separated by
four intermediate notches (band 5) until six intermedi-
ate notches (band 7). To have a better visibility over
these new bands we computed the DW dynamics for ts
up to 1.5ns on 300×400 points. We observe that the
band 1 and 2 exist until ts=1.045ns and ts=1.27ns re-
spectively at je=2.3308 A/µm2, while the other bands
continue above 1.5ns. The interband transition (band u)
is observed between the bands zero and one around je=3
A/µm2 and ts=250ps. For the superior bands, the inter-
band transition at boundaries is quasi-nonexistent, which
shows that the infinite case is more stable than the finite
case. In both cases, the 1D model gives quantitatively
the same results as the micromagnetic simulations in the
three first bands and quasi-quantitatively in the others
(a shift in values is visible). As for the finite case, the
upper right region appears due to the finiteness of the
simulated length of the nanowire, even if the end charges
are suppressed. If a longer simulated window is consid-
ered, other superior bands will follow as seen for example
in Fig. 5 or Fig. 6.

The influence of the pulse shape is detailed in Fig. 3
for the infinite wire as calculated with the 1D model. In
panel (a), the pulse shape is symmetric as tr = tf = 5ps
and tz = 10ns, while in panel (b) and (c) the pulse shape
is asymmetric, tr 6= tf with tz kept constant at 10ns. The
values of tr and tf were varied between 5ps and 300ps.
In panel (b), the case with tr = 5ps and tf = 300ps is
shown, while in panel (c), the one with tr = 300ps and tf
= 5ps. In the three panels, the total time (ttot = tr + ts+
tf ) is shown starting from 300ps, to be able to compare
the diagrams evolution with the pulse shape. We observe
that the first depinning current depends mainly on the
rise time as depicted in panels (a) and (b), where only
the fall time is varied. In these cases, the first depinning
current is the same and equal to 2.31 A/µm2. The in-
fluence of the tf is an offset of the bands along the total
time axis, therefore if tf is decreased the second band
is shifted to shorter times and almost disappears from
the shown phase diagram. The influence of the rise time
manifests itself also as an offset of the bands to larger
times, but also to larger currents, therefore a higher first
depinning current equal to 2.69 A/µm2. The first depin-
ning current for a total time of 0.3ns is 2.78 A/µm2 for
the symmetric pulse, raising to 4.54 A/µm2 (panel (b))
and 5.03 A/µm2 (panel (c)) in the asymmetric case. The
micromagnetic calculation (not shown) gives similar re-
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FIG. 3. (Color online) Influence of the pulse shape on the
phase diagram for a DW at T=0K in an infinite nanostrip.
The parameter space is the total time (tr + ts+ tf ) vs. cur-
rent amplitude. (a) Symmetric pulse with tr = tf = 5 ps and
tz = 10 ns, Asymmetric pulse with (b) tr = 5 ps, tf = 300
ps and tz = 10 ns, and (c) tr = 300 ps, tf = 5 ps and tz =
10 ns. The upper right region is due to the finite size of the
simulated window.

sults as the ones shown in Fig. 2, meaning a small offset
of the bands compared with the ones calculated with the
1D model starting from the fourth band.

The dependence of the depinning current on the rise
time was deduced from the linearized equation of motion
in the 1D approximation, as the force on the DW can be
written as15,18 :

Ẍ = −
Ẋ

τd
−

1

m

dE

dX
+

β

ατd
u+

1 + αβ

1 + α2
u̇ (3)

where m = 2αSµ0Msτd
∆γ0

the DW mass, τd = 1+α2

αγ0Hk
is

the damping time, with Hk the anisotropy field, ∆ the
DW width and E the pinning energy. The force on the
wall depends on the current and its derivative, therefore
a shorter rise time increases the derivative term which
leads to a decreasing of the depinning current and vice
versa. For the present results, the damping time is 0.27ns
(0.68ns for α = 0.02) therefore the DW is in the transient
regime for the pulse duration used.

B. Temperature dependence

The temperature influences the systematic motion of
the DW by modifying the DW relaxation in a potential
well after an applied current pulse. The oscillations dur-
ing the DW relaxation could be sustained by the thermal
noise, which could lead to a jump to the wrong well while
the following pulse occurs, or on the contrary, the ther-
mal noise could counter the effect of the current pulse and
the DW could stay pinned in the non-desired potential
well.
To carry out this study, we computed the DW dynam-

ics at T=293K for finite/infinite nanostrip and different
pulse shapes. The results are shown in Fig. 4. In all
cases, panels (a) to (d), the DW first oscillates freely (re-
laxation) in the presence of the thermal noise in its initial
well during 10ns and afterwards a current pulse is applied
to push the DW to another well (corresponding to one
of the bands in Figs. 2 and 3), followed by a DW relax-
ation during another 10ns. The damping parameter α is
taken as 0.02, lower than the one at T=0K38, and the
non-adiabatic parameter is taken as β = 2α = 0.04. The
same phase diagrams, as presented in Figs. 2 and 3, were
recalculated with α = 0.02 and β = 0.04 at T=0K and
these bands, from one to four, are indicated by dotted
lines in Fig. 4(a) for the finite nanostrip, while the bands
from one to seven are indicated in panels (b) to (d) for
the infinite nanostrip. Starting from the fourth band, the
shape of the bands changes showing a reentrant transition
(except panel (c)), and the phase diagrams from panels
(b) to (d) show band pockets to the left corresponding to
negative DW displacement of one notch (noted as band
-1) even though the STT pushes the DW in the positive
direction. These features are discussed in Sec. III C.
The stochastic motion of the DW was computed for

a number of bands with the stochastic 1D model, and
only on a certain number of points micromagnetically.
The Fig. 4(a) shows the probability of the DW motion
in the first four bands for a finite nanowire, when a sym-
metric current pulse (tr = tf = 5ps) is applied after a
relaxation time of 10ns. At the end of the pulse, the
DW is relaxed another 10ns before its position is con-
sidered acquired. A certain number of realizations was
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FIG. 4. (Color online) Probability of DW motion in different bands for the finite strip (a) and the infinite strip (b)-(d) at
T=293K. (a) and (b) A symmetric pulse is applied with the characteristics tr = tf = 5 ps, after an initial and final tz of 10
ns. (c) An asymmetric pulse is applied with pulse shape tr = 5 ps, tf = 300 ps, after an initial and final tz of 10 ns. (d)
An asymmetric pulse is applied with pulse shape tr = 300 ps, tf = 5 ps, after an initial and final tz of 10 ns. The damping
parameter is taken as α = 0.02 and β = 2α. The band pockets, which appear in the panels (b) to (d) on the left, correspond
to the band -1. The dotted lines are guide to the eyes and represent the bands edges.

computed for a quarter of the phase diagram points of
each band: 2700 realizations for each point shown from
the first band and 500 realizations for each point of the
superior bands. The maximum of probability (100%) for
the precise positioning of the DW to the nearest notch is
found only for 0.76% of the first band’s calculated points
(17 points), while on 32.18% of the points the proba-
bility is superior to 95%. The maximum of probability
decreases rapidly with increasing the band number, being
98.6% (for 3 points) for the second band, 67.4% for the
third band and 71% for the fourth band. These results
are to be compared with panel (b), where the same pulse
is applied in an infinite nanowire and the same number of
realizations were computed for each band. The maximum
probabilities are similar for the first two bands, for similar
band point number density, indicating that at room tem-
perature only few current pulse characteristics give 100%
probability of precise positioning. The points in the first
band, that correspond to 100% probability of desired mo-

tion, appear for an applied current superior to 7.7 A/µm2

and a pulse length between 100ps and 130 ps for the fi-
nite strip and superior to 8.1 A/µm2 and a pulse length
between 90ps and 120 ps for the infinite case respectively.
For superior bands, starting with the fourth, the maxi-
mum of probability and band point number density are
increased in the infinite nanostrip compared to the finite
case, as in the latter the potential barrier is weaker for
the more distant notches (see Fig. 1(c)). Micromagneti-
cally, we computed the probability for the phase diagram
points corresponding to the 100% values found with the
1D model (which appear only in the first band) on 200
realizations/point. These probabilities vary between 92%
and 97%. The small difference between the probability
calculations of the micromagnetic and 1D model is at-
tributed to the small shift in the phase diagrams that
was shown to exist between the two.

Fig. 4(c) and (d) show the probability of DW motion
when an asymmetric current pulse is applied after 10ns
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initial and final relaxation. The pulse shape is tr = 5ps,
tf = 300ps in panel (c) and tr = 300ps, tf = 5ps in
panel (d). The maximum of probability in the first band
of panel (c) is 96.77%, with only 2.31% of calculated band
points having a probability superior to 95% (from 2700
realizations). For the superiors bands, the maximum of
probability diminishes with only 2.93% of points having
a probability superior to 90% in the second band and
2.32% of points having a probability superior to 80% in
the third band. For panel (d), the maximum of prob-
ability in the first band is found to be 98.07%, with
7.69% of points having a probability superior to 95%.
The maximum of probability diminishes faster in the su-
perior bands as compared with the panel(c) results, with
less points having maximum bands probability. For ex-
ample, only 0.79% of points have a probability superior
to 90% in the second band and 0.54% of points have a
probability superior to 80% in the third band. The differ-
ence in probability between the two asymmetric pulses is
due to the fact that the long rise time of the pulse (panel
(d)) produces the shift up and right of the bands com-
pared with panel (c), therefore more points with max-
imum probability are found in the first band (as these
points are usually close to the band center) and lower
points with maximum probability in the superior bands
as there are less points on these bands.
These results suggest that to achieve a well defined DW

positioning at room temperature by STT alone, individ-
ual pulses should be applied with very short rise and fall
time.

C. Influence of α and β on the DW dynamics

The influence of the damping parameter α and of the
non-adiabatic parameter β on the phase diagram for an
infinite strip at T=0K is detailed in Fig. 5. The damping
parameter α was varied between the 0.02 and 0.05, which
correspond to the zero and room temperature values38.
The non-adiabatic parameter was varied between zero
and 2α. The case with β = 2α is shown in Fig. 2(b) and
Fig. 4(b) for α = 0.05 and 0.02 respectively. The compu-
tations with β = 0 are presented in panels (a) and (b) of
Fig. 5, while the ones with β = α are displayed in panels
(c) and (d). We observe that for α = 0.05, when β is
diminished from 2α to zero, important changes appear
in the phase diagram only when β is less than α. In this
case (panel (a)), the results obtained with the 1D model
(colored regions) exhibit only the first band (band +1)
with large pockets of negative numbered bands. In all
cases, the DW is pushed initially by the current pulse in
the positive direction (to the right), so a negative band
express a DW position at the end of the pulse to the left
of the initial notch, in the opposite direction of the STT.
The micromagnetic computations confirm this behavior,
which was predicted and observed before13,20,21,27. Due
to the pinning potential, the DW deforms and can change
its internal structure giving rise to a transient motion as-

sociated with DW inertia. The transient DW movement
is proportional to the variation of the generalized angle
of the wall:

δX = −
∆

α

(

1−
β

α

)

δψ (4)

with ψ the azimuthal angle of the wall. For β = 0, the
transient motion is increased for large DW width or small
damping parameter. This effect is displayed in Fig. 5(b)
for α = 0.02, as compared with panel (a), where an in-
creased number of negative bands are visible. For the
ultra-short current pulses used, which are comparable
with the DW damping time τd, the transient effects dom-
inate at low damping parameter.
A discrepancy is found between the micromagnetic re-

sults (symbols) and the 1D results in the upper right
quadrant (high current, longer pulse) for the phase dia-
grams with β = 0. This discrepancy is due to the large
angle variation at large current and longer pulse, that
leads to the transformation of the transverse DW and
the creation of an antivortex close to the initial notches
before depinning39 (see figure and movie in Ref.36). DW
velocity boosting was predicted through antivortex gen-
eration at a singular notch in a nanostrip40. The antivor-
tex disappear quickly after the end of the current pulse,
and in certain cases can reverse the orientation of the
magnetization at the center of the transverse DW lead-
ing to DW motion in opposite direction. The antivortex
does not appear in all the computed micromagnetic re-
sults in the upper right quadrant of these phase diagrams.
In the 1D model, the antivortex nucleation is not taken
into account.
As is obvious from Eq.(4), for β = α the transient

motion is somehow blocked and the DW travels rigidly.
This seems to be the case for β = α = 0.05, as computed
in the phase diagram shown in Fig. 5(c). However, when
β = α = 0.02, the negative bands are still present at
low currents (panel (d)) without the apparition of an
antivortex. This effect was verified micromagnetically
on a number of points (empty symbols), which compare
very well with the 1D results. The pocket form of the -1
band is respected with a small shift, even a -2 band was
observed micromagnetically corresponding to the small -
2 pocket inside the -1 band. The DW motion in the case
β = α can be well explained analyzing the 1D equations
of motion of the DW:

(1 + α2)Ẋ =−
αγ∆

2µ0MsS

∂E

∂X
+
γ∆

2
Hk sin 2ψ + (1 + αβ)u

(1 + α2)ψ̇ =−
γ

2µ0MsS

∂E

∂X
−
γα

2
Hk sin 2ψ +

β − α

∆
u

(5)

where S is the section of the wire, γ the gyromag-
netic ratio, and Hk the DW demagnetizing field. E is
the pinning potential energy which is assumed parabolic
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FIG. 5. (Color online) Influence of the damping parameter α and non-adiabatic parameter β on the phase diagram for an
infinite strip at T=0K: (a) α = 0.05 and β = 0, (b) α = 0.02 and β = 0, (c) α = β = 0.05, (d) α = β = 0.02. A sequence
of symmetric pulses with same characteristics as in Fig. 2 are applied. The scattered symbols represent the micromagnetic
results, while the colored regions are calculations with the 1D model. Trajectories in the phase space (X,ψ) corresponding to
the -1 band in panels (b) respectively (d): (e) ts = 250 ps, je = 3.4 A/µm2, α = 0.02, β = 0 and (f) ts = 300 ps, je = 3.6
A/µm2, α = β = 0.02. The scattered symbols and the full line represent the micromagnetic and the 1D results respectively.
The dotted part of the full line indicates the applied pulse duration. (g) DW angle variation for α = 0.02, β = 0 for several
points in the panel (b). (h) Comparison of the DW angular variation for α = β = 0.02 and ts = 300 ps, je = 3.6 A/µm2 for
the infinite strip with notches (band -1 in panel (d)) and strip without notches.

inside the notch. The DW width variation is given

by ∆(t) = ∆[Ψ(t)] = π
√

2A
µ0MS

2 sin2 ψ+µ0MSHk

. From

the above equations, one can notice that the azimuthal
DW angle ψ and DW position X depend on the pin-
ning potential (restoring force) created by the symmetric
notches. When a current pulse is applied, the DW is first
compressed and distorts on the potential barrier moving
in the direction of the STT, while the azimuthal angle
decreases in some cases below -10◦ (dotted line), as is
displayed in Fig.5(h) (videos and additional figures in
Ref.36). Initially, the STT pushes the DW in the posi-
tive direction, resulting in a positive DW velocity and a
negative restoring force (negative DW angle). If the DW
does not have enough velocity to surpass the potential
barrier in this direction, it goes down the potential well
towards the center of the notch and the restoring force
still stays negative, while the velocity and angle continue
to decrease with the velocity becoming negative. When

the DW starts to mount the potential well in the other
direction, the restoring force becomes positive so the ve-
locity and DW angle start to increase (Fig. 5(f)). When
the current pulse ends, the velocity decreases abruptly
(increases in absolute value) and ψ increases lightly do
to the short fall time. At this moment, the DW posi-
tion inside the potential well is important as it imposes
a restoring force in the direction of movement or in the
opposite direction. However, the velocity and the DW
angle are equally important for the jump to the previ-
ous notches to happen36. The jump occurs therefore due
to a combination of factors, even if the restoring force
is positive or negative. The presence of the notch pin-
ning potential induces the DW distortion and therefore
the transient motion, as for the same pulse parameters
no observable angle variation is determined for a perfect
strip. As the variation of the DW angle is directly re-
lated to the variation in position, the automotion is pos-
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sible in this case triggered by the pinning induced DW
distortion, restoring potential force and smallness of the
damping parameter.

In Fig. 5(g), several angular variations are presented
corresponding to the -1 and -2 bands from panel (b). We
observe that the amplitude of angular variation is directly
proportional with the spatial displacement. When an an-
tivortex appears, the DW angle rotates out of plane and
the DW position does not correspond anymore to the 1D
results and the motion opposite to the STT can be com-
pletely blocked. In general, we observe the automotion
in all the cases when the DW angle increases above 10◦

(in absolute values) during or after the current pulse and
the maximum DW velocity is close or superior to 400m/s
(details in Ref.36). Exactly at the boundary between the
-1 band and the zero band (pinned state), a small increase
in the azimuthal angle of 0.2◦ and of the DW velocity by
5m/s at the end of the current pulse, between two points
in different bands, is enough to promote a DW jump to
a previous notch.

The transient effects also appear when β > α, as de-
picted in Fig. 4 for β = 2α = 0.04. A low value of the
damping parameter α is required to obtain observable
consequences. A particularity of the case β > α is that
the transient effects oppose or amplify the STT, as neg-
ative bands are determined and a re-entrant transition is
seen at higher currents and pulse length in panels (b) and
(d). The transient effects depend on the pulse shape36,
as for the asymmetric pulse with tr = 5 ps, tf = 300 ps,
the band -1 is barely visible and no re-entrant transition
of the bands is seen, while the -1 band increases when the
pulse is symmetric and continues to increase, with even a
second -1 band appearing at larger ts for the asymmetric
pulse with tr = 300 ps, tf = 5 ps. The fall time tf plays
an important role in the value of the DW velocity and
DW angle at the end of the current pulse, as a short tf
leads to a very high DW velocity and a higher DW angle
at the end of the pulse increasing the impact of transient
effects and inducing a DW depinning. Contrary to earlier
beliefs13, the DW depinning does not necessarily result
from a large DW angle or the DW position at the end of
the pulse. A maximum DW angle and DW velocity large
enough during the current pulse suffice to ensure for ex-
ample the jump to the previous notch, even if the angle
is not that large (and at its maximum) at the pulse end,
as observed in the case of the asymmetric pulse with tr
= 5 ps, tf = 300 ps (Ref.36). This is purely an transient
effect due to a combined action of the pinning potential,
low α and pulse shape.

The influence of the rise time tr on the phase diagrams
is presented in Fig. 6 for ts = tf = 5 ps and several
parameters α and β. The rise time is varied between
0 and 1.5 ns (case of a very asymmetric pulse). A first
observation is that the first depinning current is increased
as the force term that depends on the current derivative
in Eq.(3) diminishes. The first depinning current actually
oscillates with tr due to resonants effects, as the resonant
frequency of the potential well is around 1.75 GHz. This

resonant effect are more important for the bands with
negative numbers for low α, as is depicted in panels (a)
and (b) for α = 0.02 and β = 0.4 or 0.2 respectively. The
1D model gives good quantitative results as compared
with the micromagnetic calculations, as shown in panel
(a), although a small shift is again found at high currents
and more unwanted states. When β ≤ α, the positive
bands are shifted to very high current, with only negative
bands remaining for β = 0 (image not shown). The phase
diagram for α = 0.05 and β = 0.1 is also shown in panel
(c), that still does not presents negative bands but an the
same oscillation of the first depinning current and of the
interband transitions.
The influence on the phase diagram is less dramatic

when varying the fall time tf (images shown in Ref.36).
For α = 0.02 and β > α no negative bands appear and the
positive bands are shifted to larger currents. When β ≤
α = 0.02, only a small pocket of the -1 band appears and
the positive bands are shifted as compared with Fig. 5(d).

IV. DISCUSSION AND CONCLUSION

The presence of artificial constrictions in a nanostrip
influences drastically the movement of a magnetic DW.
When ultra-short current pulses are applied, the DW
can exhibit an important distortion at the notch depend-
ing on the pulse characteristics. Thereby, the DW dis-
plays inertia-like effects, which can have dramatic con-
sequences on its transient displacement. These effects
depend largely on the damping parameter α and on the
non-adiabatic parameter β. For β < α, these effects gen-
erally oppose the STT effect after the pulse end and DW
motion in the direction of the electric current is possible.
If β > α, these effects oppose or amplify the STT effect
and jumps to the left or the right notches are possible
after the end of the pulse. The transient effects in this
case depend on the pulse characteristics. This could con-
stitute another way of experimentally compare the two
parameters α and β for a ferromagnetic material.
At room temperature, the jump probability to the de-

sired notches decreases with increasing band number,
each band number corresponding to a positioning to de-
sired notches in the direction of the STT. Maximum posi-
tioning probability is reached only for very short rise and
fall time to the nearest neighbors notches only. There-
fore, to shift reliably the DWs between notches, current
pulses corresponding to displacement from one symmet-
ric notch to the closest neighbors should be used. The
shape of the current pulse influences the depinning cur-
rent and shifts the bands. The phase diagram for the
case of two domain walls situated at different symmetric
notches (images not shown), that are displaced by the
same current pulse in the same direction, is very simi-
lar with the ones presented in Sec.III, but the bands are
narrower and the interband depinning is larger between
the first bands.
The main drawback of the classical DW displacement
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FIG. 6. (Color online) Influence of the pulse raise time tr on
the phase diagram for a DW at T=0K in an infinite nanostrip
for different parameters α and β. The parameter space is the
raise time vs. current amplitude. In all cases, ts = tf = 5
ps and tz = 10 ns. (a) α = 0.02 and β = 0.04, (b) α = β =
0.02, and (c) α = 0.05 and β = 0.1. In (a) the micromagnetic
results (scattered symbols) are compared to the 1D model
(colored regions), while in (b) and (c) only 1D model results
are shown. At high currents, the micromagnetic results give
several unintended states (the empty scattered symbol region
to the right of (a)).

under STT alone compared with more exotic torques
(of spin-orbit origin) is the high current values neces-
sary. The current induces Joule heating in the nanostrip,
that can largely increase the temperature and could even
destroy the ferromagnetic state. The increase in tem-
perature is even more important at the constrictions in
the nanostrip. Several theoretical studies were dedicated
to Joule heating in nanowires41–44, usually considering
a standard Py nanostrip on a Si/SiO2 substrate. We
evaluated the temperature increase for our Ni strips on
different substrates like pure Si, SiO2 or Ni3Si4 mem-
branes for a current pulse length of 1ns. On pure Si,
considering an infinite 3D substrate41, the temperature
increase is negligible being of 4K for j = 5 A/µm2 (17K
for j = 10 A/µm2). However, on SiO2 substrate of
300nm thickness42, the temperature increase is larger be-
ing 26K for j = 5 A/µm2 (103K for j = 10 A/µm2). If
100nm thick Ni3Si4 membranes are used15,42, the tem-
perature increase is of 41K for j = 5 A/µm2 (163K for
j = 10 A/µm2). The variation in temperature depends
on the material parameters of the substrate (like ther-
mal conductivity) and on the conductivity of the nanos-
trip. In the above estimations, the bulk Ni room tem-
perature conductivity was used (σ−1 = 7.3 µΩ·cm)45. If
the dimensions are reduced to nanometers46, the con-
ductivity of Ni can vary drastically (a factor four) and
the temperature increase can be more important, but
in the main time the length of the current pulse that
amounts to the maximum probability at room tempera-
ture is around 0.1ns which reduces significantly the tem-
perature increase.

In conclusion, systematic DW motion between precise
artificial pinning constriction by very short current pulses
is possible at room temperature in a classical ferromag-
net. The constrictions induce DW distortions and impor-
tant transient effects can be observed. Depending on the
ratio β/α, the inertia-like effect can oppose or amplify
the STT effect on the DW motion after the pulse end.
As the value of β is still under debate, this could consti-
tute another way of determining its relative value. Our
results open the path to DW motion in both directions
by unipolar current pulses.
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