

Figure 2: Top: Differential Scanning Calorimetry data obtained by heating Na₃V₂(PO₄)₂F₃ and Na₃V₂(PO₄)₂F_{2.5} under argon, from RT to 200 °C

Figure 3: In situ SXPD patterns obtained heating Na₃V₂(PO₄)₂F_{2.5}O_{0.5} from RT to 177 °C, SXPD patterns collected every 4 °C

Figure 4: Cell parameters evolution observed upon heating Na₃V₂(PO₄)₂F_{2.5}O_{0.5} (blue) and Na₃V₂(PO₄)₂F₃ from RT to 177 °C (black, data from Bianchini *et al.*¹⁵)

Figure 5: Room and high temperature structures of $Na_3V_2(PO_4)_2F_{2.5}O_{0.5}$ highlighting changes in the sodium ions distribution

Figure 6: Changes in the sodium ions distribution within the structure of $Na_3V_2(PO_4)_2F_{2.5}O_{0.5}$ from RT to 140°C

Figure 7: a) Nyquist diagrams of $Na_3V_2(PO_4)_2F_3$ (Au/Na₃V₂(PO₄)₂F₃/Au) upon heating and cooling as a function of the temperature – b) Identification of grain and grain boundaries in Nyquist diagram at 185 °C with equivalent circuit

Figure 8: Evolution of the total conductivity with the contribution of grain and grain boundaries signal in function of temperature. Comparable results in heating and cooling.

Figure 9 a) DC measurement of $Na_3V_2(PO_4)_2F_3$ (Au/Na₃V₂(PO₄)₂F₃/Au): evolution of current in function of polarization. Arrows: measurement of current after stabilization b) Changes in the relaxation current as a function of the polarization and temperature for $Na_3V_2(PO_4)_2F_3$

Figure 10: Evolution of the electronic (DC) and total (AC) conductivities of grains obtained from the Arrhenius plots: for Na₃V₂(PO₄)₂F₃ (a) and for Na₃V₂(PO₄)₂F_{2.5}O_{0.5} (b). Similar results obtained upon heating and cooling

Figure 11: a) Scheme of the rectangular Na₃V₂(PO₄)₂F₃ single crystal giving its dimensions and the orientation considered for impedance analyses. Gold surfaces are those used to make the specific contacts required for the experiment – b) Evolution of the electronic and grains conductivities obtained from the Arrhenius plots for Na₃V₂(PO₄)₂F₃ powders and total conductivity of Na₃V₂(PO₄)₂F₃ single crystal along the [001] axis. Similar results obtained upon heating and cooling.

	Below order-disorder transition 95 °C				Above order-disorder transition 200 °C			
	electronic		ionic		electronic		ionic	
	σ (S.cm ⁻¹)	Ea (eV) (R ²)	σ (S.cm ⁻¹)	Ea (eV) (R ²)	σ (S.cm ⁻¹)	Ea (eV) (R ²)	σ (S.cm ⁻¹)	Ea (eV) (R ²)
$Na_3V_2(PO_4)_2F_3$	1.22 E-10	0.79 (0.998)	4.98 E-10	1.10 (0.999)	1.42 E-8	0.68 (0.997)	2.16 E-7	0.79 (0.998)
Na ₃ V ₂ (PO ₄) ₂ F _{2.5} O _{0.5}	3.76 E-10	0.58 (0.9997)	6.38 E-10	0.97 (0.9993)	1.63 E-8	0.58 (0.9997)	1.61 E-7	0.72 (0.9993)

Table 1: Evolution of electronic and ionic conductivities and activation
energy before and after structural transition for Na3V2(PO4)2F3 and
Na3V2(PO4)2F2.5O0.5. Due to error on fit and on measurements of surface
and thickness, an error around 5% can be estimated for the different
conductivities values. The R2 on linear fit is indicated in table

TOC

