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Abstract—In this paper we present a modification of alternat-
ing least squares (ALS) for tensor canonical polyadic approx-
imation that takes into account mutual coherence constraints.
The proposed algorithm can be used to ensure well-posedness of
the tensor approximation problem during ALS iterates and so is
an alternative to existing approaches. We conduct tests with the
proposed approach by using it as initialization of unconstrained
alternating least squares in difficult cases, when the underlying
tensor model factors have nearly collinear columns and the
unconstrained approach is prone to a degenerate behavior, failing
to converge or converging slowly to an acceptable solution.
The results of the tested cases indicate that by using such an
initialization the unconstrained approach seems to avoid such a
behavior.

I. INTRODUCTION

The Canonical polyadic (CP) [1] tensor decomposition
became a wide-spread data mining tool [2] recently, with
applications in a variety of research areas, for example in
neurosciences [3], chemometrics [4] and sensor arrays [5], to
cite a few. One of the main reasons for its use is that it allows
solving blind source separation problems with guarantees of
uniqueness of the solution under mild conditions, and more
importantly without statistical assumptions [6].

Although many uniqueness results are available in the exact
decomposition case, in the approximation case, i.e. when
data are noisy or when they do not exactly follow the CP
model, the problem is in general ill-posed, since a solution
may not exist [7]. One way to ensure existence is to impose
an upper bound on the mutual coherence of the underlying
CP factors [8]. This excludes solutions having nearly lin-
early dependent components which diverge whilst the overall
model converges. In particular, nearly collinear components,
which is the most usual manifestation of ill-posedness, are
avoided. Furthermore, from a practical point of view, highly
coherent tensor models are challenging to compute due to
numerical conditioning issues. The standard algorithm for
CP approximation, alternating least squares (ALS), has its
convergence slowed down when the estimated factors are
highly coherent, following a trajectory along solutions with
quasi-linearly-dependent (typically collinear) components and
seems to never converge to an adequate approximation. These
trajectories, which we refer to as “degenerate,” are known in
tensor community as “bottlenecks” and “swamps” [6].

To tackle the issue of ill-posedness, a penalized gradient
descent approach has been proposed in [9] and applied to a
problem of direction of arrival estimation with sensor arrays.
In this paper, we propose to modify ALS so that it takes into
account coherence constraints through its iterates. At each step
of ALS we apply a suboptimal procedure relying on alternating
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projections to modify the unconstrained solution such that it
respects the coherence constraints. This alternating projection
step is similar to the coherence constrained dictionary learning
technique proposed in [10].

We present the CP approximation problem under coherence
constraints and the unconstrained ALS approach in Section
II. In Section III, our alternating approach with projections
is proposed. Section IV presents a numerical example where
the condition from [8] is used to ensure well-posedness. We
also test the algorithm as an initialization for standard ALS in
random tensor and sensor array examples. In both cases, we
consider difficult instances with nearly collinear components
where a randomly initialized ALS is prone to degenerate
trajectories. In Section V we present our conclusions.

a) Notation: Tensors are denoted in upper-case bold
calligraphic letters X , matrices in upper-case bold letters X ,
vectors in lower-case bold letters x and scalars in lower-case
letters x. Notations ‖·‖F and ‖·‖2 stand for the Frobenius norm
and `2 vector norm, respectively. The symbols ⊗, � and �
are used for tensor, Khatri-Rao (column-wise Kronecker) and
Hadamard products, respectively. Diag{x} denotes a diagonal
tensor or matrix with entries given by x. The superscript XT

denotes matrix transpose and X† denotes the pseudo-inverse.

II. TENSOR CP DECOMPOSITION WITH COHERENCE
CONSTRAINTS AND ALTERNATING LEAST SQUARES

A tensor CP [11], [12] approximation of rank R and order
3 with constraints on the mutual coherences can be expressed
as the following optimization problem:

min
A,B,C,D

‖Y − (A⊗B ⊗C) ·D‖2F
subject to f [µ(A), µ(B), µ(C)] ≤ µmax,

(1)

where Y is the tensor to be approximated, (A⊗B ⊗C) ·D
is the tensor CP model in the notation of [13], A ∈ RI×R,
B ∈ RJ×R and C ∈ RJ×R are the CP matrix factors with
normalized components ‖ar‖22 = ‖br‖22 = ‖cr‖22 = 1, ∀r ∈
{1, · · · , R}, D is a diagonal tensor containing the weights of
the rank-one components D = Diag{λ1, · · · , λR} and µ(·) is
the mutual coherence function:

µ(X) = max
i 6=j
|GXij |, (2)

where GX is the Gram matrix GX = XTX of X , which is
assumed to have normalized columns. The (generally vector-
valued) function f defines the constraint function to be used
on the coherences and µmax is a constant vector. This function
can take one of the two following forms:

f [µ(A), µ(B), µ(C)] = µ(A)µ(B)µ(C) ≤ µmax (3)



or

f [µ(A), µ(B), µ(C)] = [µ(A)µ(B)µ(C)]
T

≤ [µmax
A µmax

B µmax
C ]

T
. (4)

The first form of the constraint (3) can be used with µmax =
ν

R−1 if we want to respect the sufficient conditions in [8]
so that a solution for the CP approximation problem (for
R ≥ 2) always exists. If we simply want to bound the
coherences, either because this is a prior information on the
model or because we hope that by doing so we will prevent
the underlying decomposition algorithm from falling into a
degenerate trajectory, then we use the second form (4).

The minimization problem (1) has been solved in [9] using
gradient descent. In what follows we propose to solve it in a
suboptimal manner using an alternating approach, in a similar
way to ALS but integrating coherence constraints. We will
consider either one of the two constraints above since they
lead to a similar problem in the alternating approach.

A. Alternating optimization
The standard ALS algorithm [14, pp. 61-62] for tensor CP

approximation corresponds to solving the unconstrained opti-
mization problem (1) using block coordinate descent where the
blocks are the matrix factors. If we add one of the two types
of coherence constraints above, the optimization problem to
be solved to generate the kth update Âk is

min
A

‖Y − (A⊗ B̂k−1 ⊗ Ĉk−1) · D̂k−1‖2F
subj. to µ(A) ≤ µk−1A and ‖ar‖22 = 1, ∀r.

(5)

where

µk−1A =

ν
[
µ(B̂k−1)µ(Ĉk−1)(R− 1)

]−1
, if (3) is used

µmax
A , if (4) is used.

Similar optimization problems are obtained for updates B̂k

and Ĉk, while the diagonal elements λ̂k of update D̂k can
be easily obtained with vectorization of the data in the least
squares problem

λ̂k =
[
MT

CBAMCBA

]−1 (
MT

CBA vec (Y)
)
, (6)

where1 MCBA = Ĉk � B̂k � Âk.
Using the matrix unfoldings Y (1), Y (2) and Y (3) of Y as

defined in [12]2, the updates of standard ALS are given by

Âk = Y (1)[(Ĉk−1 Diag{λ̂k−1})� B̂k−1]†,

B̂k = Y (2)(Ĉk−1 � Âk)†, (7)

Ĉk = Y (3)(B̂k � Âk)†,

just requiring normalization of the components after each
update. Note, however, that the coherence-constrained version
(5) of the problem is much harder: it does not have known
analytical solution and the constraints define a non-convex set
of allowable solutions, thus making the overall problem a non-
convex one. This leads us to develop a specific update method
which will give a suboptimal solution to the underlying least
squares problem under coherence constraints.

1This implies MT
CBAMCBA = (Ĉ

T
k Ĉk) � (B̂

T
k B̂k) � (Â

T
k Âk).

Note that the right-hand side of this identity is cheaper to compute.
2The correspondence among elements of the tensor and of each unfolding

is [X ]i,j,k = [X(1)]i,m1 = [X(2)]j,m2 = [X(3)]k,m3
, where m1 =

(k − 1)J + j, m2 = (k − 1)I + i and m3 = (j − 1)I + i.

III. ALTERNATING LEAST SQUARES WITH COHERENCE
CONSTRAINTS

Since the problem is similar for factors A, B and C, we
present here only its version for A. Using the first matrix
unfolding Y (1) of Y and making explicit the constraint with
the Gram matrix GA of A, the update Âk is given as the
solution of the following linear least squares problem under
constraints:

min
A
‖Y (1) −AMDCB‖2F subj. to

{
|GA

ij | ≤ µ
k−1
A , i 6= j,

GA
ij = 1, i = j,

(8)
where MDCB = (Ĉk−1 Diag{λ̂k−1}) � B̂k−1. Since the
matrix A can be written as a product A = TAc of an
orthogonal basis T ∈ RI×R and coefficients on this basis
Ac ∈ RR×R and the Gram matrix depends only on the
coefficients GA = (Ac)TAc, we can rewrite problem (8) as
a function of T and Ac as follows:

min
T ,Ac

‖Y (1) − TAcMDCB‖2F (9)

subj. to T TT = IR and

{
|[(Ac)TAc]ij | ≤ µk−1A , i 6= j,

[(Ac)TAc]ij = 1, i = j.

To address this problem, we compute a suboptimal solution
in a two-step fashion, as described below.

A. Suboptimal solution for Ac through alternating projections
Even if we are given an initial estimate T̂ of T , obtaining

an estimate Âc ofAc is difficult. Hence, we propose following
a projection approach, similarly to [10]:

1) Unconstrained solution: we first retrieve the uncon-
strained least squares solution for A using (7).

2) Projection of the Gram matrix: then, we construct the
Gram matrixGA = (A)TA and project it onto the intersection
of two sets:

a) C = {G |Gii = 1, |Gij | ≤ µk−1A , i 6= j};
b) S = {G |G < 0},

where X < 0 means that X is a positive semi-definite matrix.
Note that these constraints ensure that the resulting matrix is
a correlation matrix respecting the coherence constraints.

We can use alternating projections as proposed in [10], but
since both sets are convex we can use Dykstra’s projection
algorithm [15] as presented in [16], which guarantees an
asymptotic convergence to the optimal projection. The steps of
the Dykstra’s projection are described in Algorithm 1 where
the first inner projection PµC (G) acts element-wise on G as
follows:

[
PµC (G)

]
ij

=


0, |Gij | = 0 and i 6= j,
Gij

|Gij | min{µ, |Gij |}, |Gij | 6= 0 and i 6= j,

1, i = j,
(10)

and the second is a spectral projection

PS (G) = EP+ (Λ)ET, (11)

where E is the matrix of eigenvectors of G, Λ is the diagonal
matrix with its eigenvalues and P+ (X) is the entry-wise
projection onto the nonnegative orthant

[P+ (X)]ij =

{
Xij , Xij ≥ 0,

0, otherwise.
(12)



Algorithm 1 Dykstra’s projection on the set of correlation ma-
trices with upper-bound constraint - G = Pcoh(G, µmax, nproj)

Require: G, µmax
Initialize: R← 0R, S ← 0R, GS ← G, n← 1,
while n < nproj do

1: G← GS −R
2: GC ← Pµmax

C

(
Ḡ
)

with Pµmax
C (·) given by (10)

3: R← GC − Ḡ
4: G← GC − S
5: GS ← PS

(
G
)

with PS (·) given by (11)

6: S ← GS −G
7: n← n+ 1

end while

3) Retrieval of the square root matrix from Gram matrix:
after obtaining the projection of GA onto C ∩S , denoted by
G

A
, an estimate of Ac respecting the constraints is obtained

by taking the matrix square root of G
A

Âc = EGΛ1/2ET
G, (13)

where EG is a matrix with the eigenvectors of G
A

and Λ1/2

is a diagonal matrix with the square roots of its eigenvalues.
For the case where R > I , one can use instead a Cholesky

factorization of G
A

with total pivoting to obtain an upper-
triangular matrix Âc whose last R − I rows are discarded.
(In this case, T is I × I and Âc is I × R.) For I ≤ R,
this alternative is more costly than taking the matrix square
root, since matrices EG and Λ are already evaluated at the
alternating-projections step.

B. Solution for T

Given Âc, the optimization problem to be solved for T
is known as the orthogonal Procrustes problem and has the
following closed-form solution [17]:

T̂ = UV T, (14)

where U and V are the matrices of left and right singular
vectors obtained from the SVD of Y (1)M

T
DCBÂc.

C. Approximate least squares with coherence constraints

This approximate two-step solution could be iterated in
an alternating manner in order to refine Âc and T̂ . This
is done by solving for Ac the unconstrained version of (9)
with the last estimate of T and resuming the procedure from
step 2) of Subsection III-A, now computing the Gramian as
GA = (Âc)TÂc. However, in practice we have observed
that the described procedure without refinement seems to
give reasonable estimates. The resulting procedure, called
coherence-constrained least squares (CC-LS), is described in
Algorithm 2.

We apply Algorithm 2 in an alternating way (with respect
to A,B,C) to obtain a coherence-constrained alternating
least squares (CC-ALS) scheme, as described in Algorithm
3. Note that this algorithm can be easily modified to work
with complex valued CP decompositions: it is only required to
replace all matrix transposes with Hermitian matrix transposes.

Algorithm 2 Coherence constrained least squares approximate
solution: X̂ = CC-LS(Y ,M , µmax, nproj)

Require: Y ,M ,µmax, nproj

1: Obtain the unconstrained solution: X̂←M †Y .
2: Evaluate the Gram matrix: G← X̂TX̂
3: Apply approximate projection:G← Pcoh(G, µmax, nproj).
5: Evaluate square root matrix (13): Âc ← EGΛ1/2ET

G

6: Compute SVD: Y (1)M
T
DCBÂc = UΣV T

7: Obtain T̂ with (14): T̂ ← UV T

8: Evaluate X̂ ← T̂ Âc

Algorithm 3 Coherence constrained suboptimal ALS -
[Â, B̂, Ĉ, D̂] = CC-ALS(Y , µmax, niter, nproj)

Require: Y ,µmax, niter, nproj

Initialize: Â0, B̂0 and Ĉ0 with normalized columns and
D̂0 a diagonal tensor, k ← 1.
Unfold: create unfoldings Y (1), Y (2) and Y (3) of Y .
while k < niter or criteria on cost function is fulfilled: do

1: Write MDCB and update µkA if required.
2: Update Âk = CC-LS(Y (1),MDCB, µ

k
A, nproj)

3-6: Update B̂k and Ĉk similarly.
7: Update D̂k with (6).
8: k ← k + 1

end while

IV. SIMULATIONS

In this section we apply CC-ALS (Algorithm 3) to a
few examples. To compare CPD estimates, we evaluate the
congruence [9]

φ = Tr
[
(ÂAT)(B̂BT)(ĈCT)

]
/R (15)

between each estimated CP model and the ground truth. When
A, B and C have normalized columns, this measure of
approximation quality ranges from 0 (worst) to 1 (best). Also,
the numerical sensitivity of a CPD with respect to its rank-one
components is measured with the condition number κ of [18].

A. Resulting factors with random correlated components
1) Estimation of ill-conditioned CPD: we first test CC-ALS

in a simple case with random factors to illustrate the effect
of the constraint on the resulting factors. We consider here
the coherence constraint (3) which ensures the existence of a
tensor approximation solution, i.e., µmax = 1/(R− 1).

a) CP model generation: we construct a 6×6×6 rank-4 CP
model X , and then add a noise tensor N with independent and
identically distributed (i.i.d.) zero-mean Gaussian elements of
small standard deviation σ = 10−4. Elements of matrix factor
C are i.i.d. standard Gaussian. Factors A and B have three
columns drawn likewise, while the fourth one is a copy of the
third plus a centered Gaussian i.i.d. perturbation with σw =
0.1. D receives the product of the norms of the components for
different factors and the factors are then normalized. Hence,
both A and B have two nearly collinear columns.

b) Initialization and CC-ALS parameters: CC-ALS is
initialized with random factorsA,B andC with i.i.d. standard
Gaussian elements and they are further normalized as the
CP model. We execute 2000 iterations and the number of
Dykstra’s projection iterations nproj is set to 5.

In Fig. 1, we show the resulting estimates of the nearly
collinear columns of A and B, and also the estimates of the
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Fig. 1. An illustration of CC-ALS for the CP approximation of a rank-4
6 × 6 × 6 tensor. The original CP factors are random, with two nearly
collinear columns in A and B. Initial CC ALS factors are also generated
randomly. The coherence is constrained by condition (3).

corresponding columns of C. The other columns are nearly
perfectly estimated, and are thus omitted. The coherence of the
original CP model is 0.610, while the bound imposes a much
lower coherence of 1/3. The congruence and coherence of the
CC-ALS estimate are φ ≈ 0.86 and µ = 1/3, respectively, and
thus the constraint is met. So, as expected, CC-ALS yields
perturbed versions of the nearly collinear components in A
and B. These perturbations “spread” the components so that
the constraint is satisfied. We also see that they induce errors
on the corresponding components of C, even though they are
not nearly collinear.

2) Ensuring existence via coherence constraint: In the
second example, we generate a random 4 × 4 × 2 rank-4
tensor X by independently drawing the entries of its factors
from a standard Gaussian distribution. We add a noise tensor
N generated as in the previous example, but this time with
σ = 10−1. We pick a joint realization of X and N such
that Y 1 is nonsingular and Y 2Y

−1
1 has complex eigenvalues,

where Y i is the ith frontal slab of Y = X+σN . This implies
Y has no best rank-4 approximation [19]. The condition
number of the “true” CPD of X is κ ≈ 37, while its
coherence is µ ≈ 0.49. Running ALS for 4000 iterations with
a random initialization yields a solution with condition number
κALS ≈ 617 and coherence µALS ≈ 0.78, while the measured
congruence was φALS ≈ 0.61. If we perform more iterations,
then κALS → ∞ and µALS → 1, because no solution exists.
By contrast, CC-ALS behaves stably, reaching after 4000 iter-
ations a CPD with condition number κCC-ALS ≈ 28, (imposed)
coherence µCC-ALS ≈ 1/3 and congruence φCC-ALS ≈ 0.88,
thus significantly outperforming ALS.

B. Randomly generated factors with correlated columns
In this example, we use CC-ALS as an initialization of ALS

to avoid convergence issues (“bottlenecks” and “swamps”).
Here, a solution exists by construction since no noise is added,
but the CPD is ill-conditioned due to nearly collinear columns
on its factors. Thus, we impose a fixed coherence bound.

a) Rank 4: factors of a 6×6×6 rank-4 CPD are generated
as in Sec. IV-A1, but now forcing A and B to have three
nearly collinear columns. 100 realizations are generated and,
for each one of them, ALS is run for 2000 iterations, with
50 random initializations. For the same generated models and
initializations, we run also 100 iterations of CC-ALS (with
µmax = [.93 .93 .93]T) followed by 1900 iterations of ALS.
Finally, one run of ALS (2000 iterations) initialized with an

algebraic solution via a generalized eigenvalue decomposition
(GEVD) [20] is also performed. This algebraic solution is
computed using Tensorlab [21]. Fig. 2(a) shows an histogram
of the resulting congruences. Visibly, ALS is much more likely
to yield good estimates being initialized by CC-ALS or GEVD
than using a random initial point. Thus, CC-ALS can often
“steer” the algorithm into the vicinity of a global minimum,
almost as effectively as the algebraic initialization, whose
good performance is due to the absence of noise. Fig. 2(b)
shows the empirical cumulative distribution function (ECDF)
of 1/κ measured for the ground truth and for the algorithms’
estimates. Clearly, the outcomes of randomly initialized ALS
are much less reliable numerically than the others, whose
distributions of 1/κ are close to the true one.

b) Rank 7: the same procedure is followed for random
rank-7 tensors, still with A and B having three nearly
collinear columns. Here, CC-ALS imposes the bound µmax =
[.98 .98 .90]T), and 10 iterations of the procedure described in
Subsections III-A–III-B are performed. An histogram of the
resulting congruences is shown in Fig. 2(c). As expected, per-
formance now degrades, since this is a much more challenging
scenario. Nevertheless, initializing with CC-ALS still brings a
significant improvement, whereas algebraic solutions typically
do not apply because the rank exceeds all tensor dimensions.

C. Sensor array

A more practical example of application is to sensor arrays.
By forming a sensor array with subarrays which are simply
translated versions of each other, the measurements can be
stored as a third-order tensor where the element Yijk corre-
sponds to the kth time sample of the signal measured at the ith
sensor of the jth subarray. Under the assumption of far-field
propagation and narrowband signals, Y follows a CP model
where R is the number of signal sources. The columns of A
and B carry information on the array structure and on the
directions of arrival of the source signals, while the columns
of C are time samples of the sources, see [5], [9] for details.

c) CP model: here we use a sensor array simulation
setting similar to [9, Section VII]. Data generated in this
setting follows a rank-3 CP model of dimensions 4× 3× 6. It
has a very high coherence (around 0.99), while its condition
number is κ ≈ 5.46×1015. In [9], a regularized formulation is
used to impose the bound µmax = 1/(R−1), which guarantees
well-posedness of the problem. A gradient descent (GD)
algorithm is proposed to address the resulting optimization
problem. Differently from [9], we consider that all three
sources come from close directions θ = [83◦ 80◦ 75◦]T

(not only two) so that we have a matrix factor A with 3 nearly
collinear columns. In practice, such a quasi-collinearity causes
ALS to fall very often on degenerate trajectories.

d) Algorithms parameters: because no noise is added,
existence is guaranteed, and hence we do not impose µmax =
1/(R−1). Rather, we use the more relaxed constraint µmax =
[0.85 0.99 0.99]

T, whose interpretation is as follows. We
impose a certain degree of separation of source directions
(constraint on A), while we allow the translation vectors to be
nearly collinear (constraint on B) and the sources to be highly
correlated (constraint on C). We now compare a randomly
initialized ALS solution with the version initialized using CC-
ALS, but also with another version initialized with the GD
algorithm of [9]. Both ALS and CC-ALS are modified to work
with complex values, and perform a total number of 15000



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Congruences

R
el

.f
re

qu
en

cy ALS only

ALS init. with CC-ALS

ALS init. with GEVD

(a) Normalized histogram of congruences (R = 4)

10−14 10−10 10−6 10−2
0

0.2

0.4

0.6

0.8

1

1/κ

E
m

pi
ri

ca
l

C
D

F ALS only

ALS init. with CC-ALS

ALS init. with GEVD

Ground truth

(b) ECDF of reciprocal of cond. number (R = 4)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Congruences

R
el

.f
re

qu
en

cy ALS only

ALS init. with CC-ALS

(c) Normalized histogram of congruences (R = 7)

Fig. 2. Results for 100 different realizations of an ill-conditioned 6 × 6× 6 rank-R CP model in which A and B have three nearly collinear columns.
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Fig. 3. Histogram of congruences for 100 runs of ALS initialized randomly
(circles), by CC-ALS (squares) and GD (diamond). CC-ALS and GD use the
same initial solution as the randomly initialized ALS. These results concern a
rank-3 approximation of a 4 × 3× 6 tensor arising from a simulated antenna
array which receives signals from far-field sources at 83◦, 80◦ and 75◦ from
the reference axis.

iterations, of which 6000 are performed by CC-ALS when it
is used. The maximum number of iterations set for GD was
2000. Initializations are defined as in the previous example
but with complex Gaussian samples, and are the same for
(randomly initialized) ALS, CC-ALS and GD.

The histogram of resulting congruences is given in Fig. 3.
Once again, CC-ALS initialization markedly improves ALS
performance. So does GD initialization, but to a smaller extent
and at a larger cost: the mean times of the CC-ALS-initialized
and GD-initialized versions are, respectively, 17.9 and 26.9
seconds.

V. CONCLUSIONS

In this paper, we have proposed a modified version of ALS
for CP decomposition under coherence constraints, termed
CC-ALS. As shown in the literature, the use of coherence
constraints guarantees that the tensor approximation is a well-
posed problem. The algorithm proposed here is an alternative
to existing gradient descent algorithms which typically require
careful tuning of step-size parameters and converge slowly.
We have found that in difficult CP approximation examples,
where standard ALS is prone to degenerate trajectories, its
initialization with the result of CC-ALS allows avoiding them
most of the time. In practice for such examples, we have
observed that fixing the coherence constraints to high enough
values seem to work better in general than using the sufficient
conditions on well-posedness such as those in [8]. However
if we increase the coherence constraint to a value too close
to one, then the CC-ALS inherits the degenerate behavior
of ALS and an interaction between this behavior and the
inner alternating projections of CC-ALS makes its trajectory
completely erratic. As a consequence, one track for possible

further investigation is to study how high this coherence
constraint should be set. As another issue, the convergence
of the algorithm should be studied, however, the nesting of an
alternating outer loop and a suboptimal alternating projections
inner loop probably makes this a quite difficult task.
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