
HAL Id: hal-01693939
https://hal.science/hal-01693939v1

Submitted on 26 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Transformation from Ecore Metamodels
towards Gallina Inductive Types

Jeremy Buisson, Seidali Rehab

To cite this version:
Jeremy Buisson, Seidali Rehab. Automatic Transformation from Ecore Metamodels to-
wards Gallina Inductive Types. MODELSWARD 2018, Jan 2018, Santa Cruz, Portugal.
�10.5220/0006608604880495�. �hal-01693939�

https://hal.science/hal-01693939v1
https://hal.archives-ouvertes.fr

Automatic Transformation from Ecore Metamodels towards Gallina
Inductive Types

Jérémy Buisson1 and Seidali Rehab2

1IRISA, Écoles de Saint-Cyr Coëtquidan, Guer, France
2MISC, University of Constantine 2 - Abdelhamid Mehri, Nouvelle ville Ali Mendjeli, Constantine, Algeria

jeremy.buisson@irisa.fr, seidali.rehab@misc-umc.org

Keywords: Model-Driven Engineering, Model Transformation, QVT, Ecore, Xtext, Coq

Abstract: When engineering a language (and its compiler), it is convenient to use widespread and easy-to-use MDE
frameworks like Xtext that automatically generate a compiler infrastructure, and even a full-featured IDE. At
the same time, a formal workbench such as a proof assistant is helpful to ensure the language specification is
sound. Unfortunately, the two technical spaces hardly integrate. In this paper, we propose a transformation
from Ecore’s metametamodel to Coq’s language named Gallina/Vernacular. The structural fragment of Ecore
is fully handled. At the cost of not being bijective, our transformation has relaxed constraints over the input
metamodel, in comparison to previous state of the art. To validate, we have used the proposed transformation
with a complete and representative test suite, as well as a proof-carrying code type checker.

1 INTRODUCTION

In the context of designing a formal architecture
description language for system of systems engineer-
ing, named SosADL (Oquendo et al., 2016), the work
presented in this paper is specifically related to the
implementation of supporting tools for this language.

On the one side, model-driven engineering pro-
vides effective tools like ASF+SDF (Klint, 1993),
Xtext (Bettini, 2013) or MPS (Voelter, 2013) that
ease the creation of a language and its supporting
infrastructure. From a combined description of a
concrete and/or abstract syntax, a complete editing
environment is generated, which includes syntax-
highlighting, auto-completion, error reporting. These
tools often come with a compilation or interpretation
framework, which is designed to smoothly interact
with the generated editing environment.

On the other side, language theory promotes prin-
cipled language design by means of well-established
techniques to specify a language in terms of, e.g., se-
mantics and type system, then to study this specifica-
tion, e.g., proving a type soundness theorem. Exist-
ing literature hints at relevant properties, proof tech-
niques, and mechanization approaches by means of
proof assistants like Coq (Bertot and Castran, 2010)
or Isabelle/HOL (Nipkow et al., 2002).

In our project, we expect to benefit from the two
fields. But model-driven engineering tools like Xtext

or MPS hardly integrate with proof assistants. For
instance, often, the former use a graph-based for-
malism while the latter rely on inductive data types,
despite some exceptions such as Rascal (Klint and
van der Storm, 2016). Furthermore, the question
arises whether the (informal) implementation, e.g.,
in the Java technical space conforms to the (formal)
specification, e.g., in the Coq technical space. To ad-
dress this issue, we consider the proof-carrying code
approach (Necula, 1997). Figure 1 summarizes this
context. From a concrete grammar, Xtext generates
a metamodel, and an editor, a parser and a compila-
tion infrastructure. The parser transforms the textual
source into an object-oriented model, which is an in-
stance of the metamodel. Thanks to the compilation
infrastructure, we develop a compiler that transforms
the model into output artifacts. Proof-carrying code
appears in the lowest part of the figure: the compiler
also uses a proof generation infrastructure to produce
a proof, which is an instance of the language’s specifi-
cation, i.e., of the type system or semantics. The proof
contains terms, which are instances of abstract syntax
type. Furthermore, terms and models map one each
other, and therefore the metamodel and the abstract
syntax type must be consistent.

Our long-term goal is to automatically derive (part
of) the proof generation infrastructure. In this per-
spective, in this paper, we focus on how we can gen-
erate the abstract syntax type from the metamodel. In

grammar

editor metamodel

modelsource parser

compilation
infrastructure

output
artifacts

proof

compiler

term

abstract
syntax type

proof
generation

infrastructure

type system,
semantics, ...

is transformed into
depends on
is an instance of
is composed of

as usual with Xtext

Figure 1: The big picture of our general approach.

comparison to the previous state of the art, our contri-
bution is an improved transformation that has relaxed
constraints over the input metamodel, especially with
regard to inheritance, at the cost of not being bijective.

Section 2 presents related works. Section 3 de-
scribes a running example. Section 4 shows in details
how the Ecore metamodel is translated into Gallina
types. Section 5 discusses specific points, noticeably
why we consider having a bijective transformation is
not that important in our case. Section 6 gives indi-
cations about implementation issues. Section 7 sum-
marizes how we validate the transformation. Finally,
section 8 concludes the paper with perspectives.

2 RELATED WORKS

On the one side, language theory provides back-
ground to specify languages (their semantics and their
type systems) as well as what properties of such spec-
ification should be investigated for in order to con-
vince a language specification is sound. In addition
to bare extraction mechanisms, several approaches in
the field of language theory aims at generating ar-
tifacts from the description of a language. In the
K-framework (Roşu and Şerbănuţă, 2014), concrete
syntax, operational semantics, type system, and other
static analyses are specified by means of an exe-
cutable semantic framework such that an interpreter
and a set of tools are generated from their specifica-

tion. Lem (Mulligan et al., 2014) is a domain spe-
cific functional programming language, which com-
piles inductive relations, e.g., an encoding of an oper-
ational semantics or of a type system, into executable
functions. From the same specification, Lem is able
to generate Coq and Isabelle/HOL artifacts along with
LATEX documentation. Ott (Sewell et al., 2010) aims
at intuitive notations for inference rules and targets
mainly proof assistant artifacts and documentation. It
supports the generation of Lem code as well as boiler-
plate OCaml code. But none of these works addresses
the user programming environment.

On the other side, model-driven engineering fos-
ters the automatic generation of compiler infras-
tructure and user interface from a description of
the language. Centaur (Borras et al., 1988) and
ASF+SDF (Klint, 1993) aim at generating a com-
plete programming environment, including user inter-
faces, given a combined abstract and concrete syn-
tax description, along with an executable semantics.
More recently, Xtext (Bettini, 2013) generates a full-
featured text editor and a compilation framework
from the combined definition of concrete and abstract
syntax. MPS (Voelter, 2013) introduces a projectional
editor, i.e., edition is made directly at the level of the
abstract syntax. MPS also provides a declarative lan-
guage for executable type systems. But none of them
allow formal specification and study of languages.

There is therefore a need for bridging the gap be-
tween model-driven engineering and formal methods.

Most of the works in this topic, e.g., (Meyer and
Souquières, 1999; Lano et al., 2004; Barbier and Car-
iou, 2012; Cabot et al., 2014) focus on a different is-
sue: verification of properties of metamodels. Inhabi-
tation (or consistency) is for instance a widely-studied
problem, which aims at verifying that a metamodel is
contradiction-free, i.e., that some instance exist. Be-
cause of this focus, the object manipulated in these
works is the metamodel itself. Like depicted in Fig-
ure 1, we aim at being able to mechanize semantics
and type systems of the language, hence properties of
instances of the metamodel. So the metamodel has
to be transformed into a type, such that terms (or in-
stances) of that type can be manipulated.

Some previous works have studied such transfor-
mations: (Djeddai et al., 2012) have defined a bidi-
rectional transformation between Ecore and Isabelle’s
inductive type. To obtain a bijection, they restrict to
single-level single inheritance: each abstract class A
is mapped to an inductive type t; and each concrete
class C is transformed to a constructor c of the in-
ductive type a mapped from the super class A of C.
Rascal (Klint and van der Storm, 2016) proposes
to preprocess the metamodel before this scheme is
used: step 1 structural features are pushed to concrete
classes (same as our step 6 in Figure 3); step 2 ref-
erences are generalized, i.e., references to any class C
are replaced with a reference to C’s most general su-
per class. Rascal’s step 2 assumes existence of a most
general super class for any class, but this assumption
does not hold when multiple inheritance is used1.

The transformation of Section 4 follows the same
principles as those of (Djeddai et al., 2012; Klint and
van der Storm, 2016), but it does not require any re-
striction on the input Ecore metamodel. When multi-
ple inheritance is not used, it generates narrower types
than Rascal’s transformation by duplicating construc-
tors, so generating a term from a model is going to
be harder, because the right constructor has to be se-
lected with respect to the expected type for the term.
Like Rascal’s one, our transformation is not bijective.

3 A RUNNING EXAMPLE

To illustrate the discussion in subsequent sections,
we use the metamodel for λ terms of Figure 2. A File
is composed of Definitions, each containing a Term.
A term is either an Abstraction, an Application or
a Variable. In order to avoid issues related to nam-
ing and scopes, the abstract syntax assumes variables

1Unless a predefined super class implicitly generalizes
any class, for instance, like Ecore’s EObject class. In this
case, all the reference types are generalized to EObject.

File
«abstract»
Binder

boundName: EString

Definition

Term

Abstraction

Variable

Application

U

D

A

T

V

B

«bind U» D

«bind U» A

«bind T»
A

«bind T» V

«bind T»
B

0..1 boundType

0..∗
definitions

1..1 term0..1 type

1..1
body

1..1 binder

1..1 parameter

1..1 function

Figure 2: Ecore metamodel of the example.

have already been resolved, hence Variable has a
non-containment reference to Binder, which is either
an abstraction or a definition. Classes are generic such
that terms can be annotated, e.g., with types.

We expect that our transformation generates the
following Coq script (or equivalent), i.e., inductive
types such that any model that is an instance of the
source metamodel can be written as a term whose type
is one resulting from the transformation.
Inductive Term: Type→ Type :=
| Term Abstraction: ∀ (A: Type) (type: option A)

(boundName: string) (boundType: option A)
(body: Term A), Term A

| Term Application: ∀ (A: Type) (function: Term A)
(parameter: Term A), Term A

| Term Variable:
∀ (A: Type) (binder: URI (Binder A)), Term A

with Binder: Type→ Type :=
| Binder Definition: ∀ (D: Type) (boundName: string)

(boundType: option D) (term: Term D),
Binder D

| Binder Abstraction: ∀ (A: Type) (type: option A)
(boundName: string) (boundType: option A)
(body: Term A), Binder A.

Inductive Definition: Type→ Type :=
| Definition Definition: ∀ (D: Type)

(boundName: string) (boundType: option D)
(term: Term D), Definition D.

Inductive File: Type :=
| File File:
∀ (definitions: list (Definition Type)), File.

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
option.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes

Ecore
metamodel link

normalize
types

eliminate
behavioral

aspect

eliminate
cross-

references

introduce
constructors

percolate
features

remove
inheritance

translate to
inductive

types

schedule
types

translate to
Gallina /

Vernacular

text
generation Coq file

1 2 3 4

5678

9 10 11

Ecore-specific front end

Coq-specific back end

Figure 3: Decomposition of the Ecore-to-Coq transformation.

4 THE TRANSFORMATION

Ecore is an object-oriented language for meta-
models. A metamodel consists in some classes, orga-
nized into hierarchically-nested packages, and spread
over one or several Ecore files. A specialization/gene-
ralization relationship provides inheritance and sub-
typing. Any class can specialize one or several gen-
eral classes. Some classes can be abstract, mean-
ing that they cannot be instantiated. Each class con-
tains structural features (or fields) which are further
refined as either attributes (store plain-Java objects
only) or references (store Ecore objects only). Refer-
ences can be containment or non-containment refer-
ences. A model, or instance of a metamodel, is there-
fore a tree of objects (following the containment ref-
erences) with additional non-containment references.
Derived features have their value computed on-the-
fly; transient features are omitted from XMI serializa-
tion; volatile features are not stored in the in-memory
instance. In this work, we do not consider operations.

Inductive types are mutually-recursive types.
Each type is defined by a set of constructors, each
of which has formal parameters. Each construc-
tor defines a variant for the type, with its own data
structure. A value of a given type is built by call-
ing one of its constructors with effective parameters.
A value is therefore a tree. Types are organized in
hierarchically-nested modules, and each file is a mod-
ule as well. Without lack of generality, in the fol-
lowing, we target Gallina and the Vernacular, Coq’s
languages for terms and for module-level commands.

Following the same principle as (Djeddai et al.,
2012; Klint and van der Storm, 2016), our transfor-
mation maps classes to types, concrete classes to con-
structors, and structural features to constructor param-
eters. It ignores behavioral elements, i.e., operations,

<LEPackage>
<eClassifiers

name="ecore_EString" ... />
<eClassifiers

name="lambda_Binder"
eSupertypes="//ecore_EObject" ...>

<eTypeParameters name="U" />
<eStructuralFeatures

name="boundName" ... />
<eStructuralFeatures

name="boundType" ...>
<eGenericType eTypeParameter=

"//lambda_Binder/U" />
</eStructuralFeatures>

</eClassifiers>
...

</LEPackage>

Figure 4: XMI excerpt after the link step.

and derived, transient or volatile features. The novelty
of our transformation lies in pre-and-postprocessing,
noticeably to address multiple inheritance. Like de-
picted in Figure 3, our transformation is decomposed
into 11 steps. Each step targets a specific issue.

Steps 1 and 2 aim at first simplifying the rep-
resentation of the metamodel. It would be tempting
to map packages to modules. However, consider for
instance an abstract class A in package p1, specialized
by concrete class C of package p2. Class C maps to
constructor C that belongs to type A, which in turn
is mapped from class A. If packages were mapped
to modules, type A should be in module P1 and con-
structor C should be in module P2. This is impossible
since constructors belong to types, not to modules. To
avoid this issue, step 1 removes packages and gath-
ers all the dependencies within a single package.

Figure 4 shows an excerpt of the metamodel of

«abstract»
Term

type: _Option<T>

«abstract»
Binder

boundName: EString
boundType: _Option<U>

DefinitionAbstraction

«constructor» «constructor»

term

body

U
T

DA

Figure 5: Metamodel excerpt after the introduce steps.

Figure 2 after step 1 . The metamodel is almost un-
changed. Still, classes from the Ecore metamodel are
pulled into the package, starting with EObject because
it is used as the raw type of type in Term. Because of
boundName in Binder, EString is pulled too. The pro-
cess is repeated until all the dependencies are gath-
ered. To avoid clashes, we use a renaming scheme.

Due to backward compatibility, Ecore has two
representations of types: non-generic types are di-
rect references to classifiers; other types are instances
of EGenericType. Figure 4 contains examples of
both. To state that lambda_Binder specializes the
(non-generic) ecore_EObject class, eSuperTypes con-
tains the reference string "//ecore_EObject" (legacy
representation); while the type of boundType is given
by an instance of EGenericType, here the type param-
eter U of lambda_Binder. Step 2 translates types to a
simpler uniform representation.

Since inductive types do not model behaviors,
step 3 erases operations as well as derived, transient
and volatile features from the metamodel. Step 4
replaces cross references with attributes of a _URI
type, which is intended to store an identifier of the
referred object. Feature multiplicities are expanded
to appropriate collection types at the same time. For
instance, features with 0..1 multiplicity are mapped
to an _Option type. _URI, _Option and other collec-
tion types are suitably interpreted in subsequent steps,
such that they are ultimately mapped to Coq types.

Steps 5 to 7 introduce constructors within
classes, before the classes can be turned into inductive
types. At step 5 , a constructor is added to map each
concrete class of the metamodel, like illustrated in
Figure 5. At step 6 , features are percolated through
inheritance down to the constructors, like shown in
Figure 6. When the concrete class is generic, so is the
constructor, like the two constructors in Figure 6. For
correct handling of generic classes, type variables are
substituted in the type of the structural features, like in

«abstract»
Term

«abstract»
Binder

DefinitionAbstraction

«constructor»
type: _Option<A>
boundName: EString
boundType:
_Option<A>
body: Term<A>

«constructor»
boundName: EString
boundType:
_Option<D>
term: Term<D>

UT

DA

DA

Figure 6: Metamodel excerpt after the percolate steps.

the type of type and boundType. At step 7 , construc-
tors are duplicated at each level of the generalization
relation, like shown in Figure 7. At the end of step 7 ,
each class, either concrete or abstract, has a set of con-
structors that corresponds to the set of all its special-
izing concrete subclasses. The generalization/special-
ization relation can therefore be discarded. Duplicat-
ing constructors addresses the fact that a constructor
belongs to exactly one type, while a class belongs to
all its super classes. An assignment records in addi-
tion, for each constructor, the precise type of the built
value, to correctly handle generic classes.

Step 8 straightforwardly turns each class into an
inductive types, without any further transformation.

Coq disallows referencing an inductive type that is
not previously defined or that does not belong to the
same group. To satisfy this constraint, step 9 groups
the inductive types by strongly connected compo-
nents, then sorts them according to a topological or-
der. For instance, types Binder and Term shall be in
the same group, since they refer each other. This
group is put before Definition, which refers to Term.

Step 10 introduces Vernacular commands (like
Inductive) and builds Gallina terms for each type
to build a correct script. Step 11 generates the text
file. For our running example, the result is equivalent
to the desired ones given at Section 3:
Definition ecore EString: Type := string.
Definition ecore EInt: Type := Z.
Definition ecore EEList: (Type→ Type) := list.
Inductive lambda Term: (Type→ Type) :=
| lambda Term lambda Abstraction: (∀ (A: Type),

(∀ (body: (lambda Term A)),
(∀ (boundName: ecore EString),
(∀ (boundType: (Option A)),
(∀ (type: (Option A)), (lambda Term A))))))

| lambda Term lambda Application: (∀ (B: Type),
(∀ (function: (lambda Term B)),

string.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Strings.String
Z.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Numbers.BinNums
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic

«constructor»
Abstraction (A=A)

type: _Option<A>
boundName: EString
boundType:
_Option<A>
body: Term<A>

«constructor»
Definition (D=D)

boundName: EString
boundType:
_Option<D>
term: Term<D>

«constructor»
Abstraction (T=A)

type: _Option<A>
boundName: EString
boundType:
_Option<A>
body: Term<A>

«constructor»
Abstraction (B=A)

type: _Option<A>
boundName: EString
boundType:
_Option<A>
body: Term<A>

«constructor»
Definition (B=D)

boundName: EString
boundType:
_Option<D>
term: Term<D>

«constructor»
Application (T=A)

...

«constructor»
Variable (T=V)

...

Abstraction

Term
Binder

Definition
D

A

D

D

A

A
A

A

V

T
B

Figure 7: Metamodel excerpt after the flatten steps.

«abstract»
A

x: EInt

«abstract»
A

B B

x: EInt

Figure 8: Different metamodels but identical Coq scripts.

(∀ (parameter: (lambda Term B)),
(∀ (type: (Option B)), (lambda Term B)))))

| lambda Term lambda Variable: (∀ (V: Type),
(∀ (binder: (URI (lambda Binder V))),
(∀ (type: (Option V)), (lambda Term V))))

with lambda Binder: (Type→ Type) :=
(* and so on *)

5 DISCUSSION

Except for the limitations listed in Section 6,
Ecore is fully supported. For this reason, the trans-
formation cannot be bijective. Figure 8 shows a triv-
ial example of two different metamodels that result in

identical Coq scripts. Indeed, at step 6 , all the struc-
tural features are pulled from classes to constructors,
without tracking the class they originate from. We
motivate this choice by two arguments. First, any
instance of one of these metamodels is also an in-
stance of the other one. Indeed, in both cases, mod-
els contain only instances of B, which contain one
member x that is an integer. Second, our transfor-
mation is intended at allowing the language designer
providing formal specifications, proving properties of
these specifications, and setting up an infrastructure
for proof-carrying code. As long as code and proofs
written in the formal world need not be extracted back
to Java and EMF, having a bijective transformation
superfluously restricts the set of eligible metamodels.

Steps 1 , 5 , 8 , 10 and 11 are bijective. No fun-
damental issue prevents step 4 from making this step
bijective: more accurate types can easily be gener-
ated for collections, such that exact multiplicity and
flags can be fully recovered. All the other steps are
intrisically surjective: step 2 because there is no
uniqueness of Ecore’s representation of types, espe-
cially for non-generic types; step 9 because Ecore
does not take into account declaration order; step 3
because it erases behavioral elements of the meta-
model; steps 6 and 7 because they discard infor-
mation about inheritance.

Only the first steps 1 to 4 of the transforma-
tion are specific to Ecore. We conjecture that sub-
sequent steps can be reused to build a pipeline for
another metametamodel. For instance, to switch to
MOF, step 1 has to deal with nested classes simi-
larly to the way packages are merged; step 4 has to
deal with MOF’s richer reified associations; and data
type mapping has to be updated, since MOF is not
based on Java types. The back end intuitively starts
at step 9 . Switching to, say, Isabelle/HOL would re-
quire changing steps 10 and 11 in order to take into
account the different abstract and concrete syntax.

6 IMPLEMENTATION

The transformation supports all the syntactical
constructs of Ecore (Steinberg et al., 2009), but it as-
sumes that the source metamodel validates correctly
against all the Ecore constraints implemented in EMF,
including the constraints at the warning level. Some
of the patterns that are interpreted by Ecore’s sup-
porting tool such as the Java code generator are not
recognized: hash maps are treated like lists of pairs;
sets and bags are mapped to lists. Step 4 can easily
be extended to specialize the generated type in these
specific cases. Feature maps, that is, groups made of

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.6/stdlib/Coq.Init.Logic

a n..∗ attribute f and of derived volatile transient fea-
tures s that subset f by key s, are ignored. Any feature
map f is transformed into a list of items; and subset
features s are eliminated at step 3 . Our implemen-
tation decodes the Java type that may appear in the
instanceTypeName field of data type definitions, but
EMF-generated classes are not converted to classifier-
based types. It also handles generic types described
by the extended metadata annotations. Restriction
types are mapped to their base type. These extensions
are handled in step 1 .

Because of the decomposition of the transfor-
mation, we used 11 different (meta)metamodels.
Even if Ecore and Gallina share almost nothing, the
differences between consecutive (meta)metamodels
in the pipeline are small. During development,
the management of such 11 different but related
(meta)metamodels shows to be challenging, despite
they are rather small2. Following our implementation
work, we observe that: interactive Ecore editors lack
macro-like systems; transformation tools provide au-
tomation but lack interactivity; and XMI-level text ed-
itors (e.g., Vim or Emacs) provides useful tools like
macros and regexp-search-and-replace, but they are
unaware of Ecore. We think that there is a need at the
cross-line of these tools.

We favor industrial-strength freely-available tech-
nologies: Eclipse’s mature EMF-and-Java ecosystem.
Step 10 involves many changes in the structure of
the transformed model, while its algorithm is triv-
ial. QVT-Operational seems a good choice for this
step: it avoids most of the notation burden; disjunct
mappings provide an experience similar to pattern-
matching; and collection operations like iterate re-
minds usual higher-order functions. Steps 1 to 9
perform localized modifications in the transformed
metamodel. At each step, most of the metamodel is
unchanged except few subtrees. To implement these
steps, we design an ad-hoc Java-based transformation
framework that duplicates an EMF (meta)model up to
class names, similarly to ATL’s refining mode (with-
out requiring the source and target (meta)metamodels
be identical) and to Rascal’s visit operation (with-
out making data forcibly immutable). The deep copy-
ing mechanism can be customized in two ways: every
time an object is copied, a hook allows customizing
the class of the resulting object depending on the class
of the source object; and for every feature in the tar-
get class, a hook allows customizing how the value is
obtained. By default, the value of a feature having the
same name in the source object is copied.

2Ecore contains 20 classes, 48 references, 33 attributes,
and 33 data types. The other (meta)metamodels in the
pipeline have similar size.

T U
A

«bind A» U

Inductive T: Type→ Type := (* ... *).
Inductive T’ (A: Type): Type := (* ... *).
Inductive U: Type := | U U: ∀ (x: T U), U.

Figure 9: Anti-pattern leading to Coq error.

The Java code for steps 1 to 9 contains
1300 SLOC. The QVT-Operational script for step 10
is made of 185 SLOC. The Acceleo template for
step 11 contains 40 SLOC. The code is available at
https://bitbucket.org/jbuisson/ecore2coq.

7 VALIDATION

First we ensure the transformation produces cor-
rect types, i.e., that the produced scripts compile.
We fetch (meta)metamodels from four third-party
open-source projects: EMF, Eclipse’s OCL, Xtext ex-
tras, and Dresden OCL. Then we consider all the
151 (meta)metamodels that pass Ecore’s validator.
This test suite contains synthetic cases, as well as real-
world (meta)metamodels such as Ecore, UML and
OCL, containing up to 247 classes, each having up to
8 super types and up to 11 levels of inheritance. The
suite covers all the synctactical constructs of Ecore.
Of the resulting Coq scripts, 147 scripts compile cor-
rectly; Coq runs out of memory for 2 of them; it issues
a “non strictly positive occurrence” error for 2 scripts.
Examination of the erroneous scripts highlights the
anti-pattern of Figure 9. Coq’s error can be avoided
by using the definition T’ instead of T, but Coq has
restrictions on this form for mutually-recursive defi-
nitions. This anti-pattern needs further investigation.

Second we ensure that the generated types are
actually usable in the context of proof-carrying
code (Necula, 1997), following the approach depicted
in Figure 1 in the context of SosADL (Oquendo et al.,
2016). Given a concrete grammar, Xtext (Bettini,
2013) generates an Ecore metamodel that contains
85 classes, and which is in turn transformed to Coq
types. We use these Coq types to mechanize the
type system. Then we design an ad-hoc transfor-
mation that transforms instances of the metamodel
(SosADL architecture descriptions) to Gallina terms,
whose types are the generated Coq types. We in-
strument SosADL’s type checker to produce a Gal-
lina term that witnesses the architecture description is
well typed. The fact that Coq successfully compiles
the generated proof term shows that the transforma-
tion produces correct and usable types.

https://bitbucket.org/jbuisson/ecore2coq

8 CONCLUSION

In this paper, we propose a transformation from
Ecore metamodels to inductive types. This transfor-
mation allows to set up a model-driven language en-
gineering chain, e.g., involving Xtext and, at the same
time, to specify the language using a proof assistant,
such as Coq, and then prove properties of this spec-
ification. In comparison to previous work (Djeddai
et al., 2012; Klint and van der Storm, 2016), our trans-
formation has fewer constraints on the source Ecore
metamodel and ensures stronger typing in the gener-
ated inductive types, but it is not bijective.

To validate our proposal, we implement the
transformation using QVT-Operational, Acceleo, and
EMF-and-Java. Then we fetch 151 (meta)meta-
models, which contains both synthetic and real-world
(meta)metamodels coming from public repositories.
147 of the generated Coq scripts compile success-
fully; 2 make Coq run out of memory; the last 2 ones
need further study in order to handle the correspond-
ing specific pattern. To our knowledge, no previous
work discusses nor deals with this pattern.

In future work, we will study how additional parts
of such infrastructure can be automatically derived
from the Ecore metamodel, such that model-driven
engineering better integrates with proof assistants.

REFERENCES

Barbier, F. and Cariou, E. (2012). Inductive UML. In
Proceedings of the 2nd International Conference on
Model and Data Engineering, MEDI’12, pages 153–
161, Poitiers, France.

Bertot, Y. and Castran, P. (2010). Interactive Theorem Prov-
ing and Program Development: Coq’Art The Calcu-
lus of Inductive Constructions. Springer Publishing
Company, Incorporated, 1st edition.

Bettini, L. (2013). Implementing Domain-Specific Lan-
guages with Xtext and Xtend. Packt Publishing.

Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn,
G., Lang, B., and Pascual, V. (1988). Centaur: The
system. In Proceedings of the Third ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, SDE
3, pages 14–24, Boston, Massachusetts, USA. ACM.

Cabot, J., Clarisó, R., and Riera, D. (2014). On the verifi-
cation of uml/ocl class diagrams using constraint pro-
gramming. Journal of Systems and Software, 93:1–23.

Djeddai, S., Strecker, M., and Mezghiche, M. (2012). In-
tegrating a formal development for DSLs into meta-
modeling. In Proceedings of the 2nd Interna-
tional Conference on Model and Data Engineering,
MEDI’12, pages 55–66, Poitiers, France. Springer.

Klint, P. (1993). A meta-environment for generating pro-
gramming environments. ACM Trans. Softw. Eng.
Methodol., 2(2):176–201.

Klint, P. and van der Storm, T. (2016). Model Transfor-
mation with Immutable Data, pages 19–35. Springer
International Publishing, Cham.

Lano, K., Clark, D., and Androutsopoulos, K. (2004). UML
to B: Formal Verification of Object-Oriented Models,
pages 187–206. Springer, Berlin, Heidelberg.

Meyer, E. and Souquières, J. (1999). A systematic approach
to transform omt diagrams to a b specification. In
Proceedings of the Wold Congress on Formal Meth-
ods in the Development of Computing Systems-Volume
I - Volume I, FM ’99, pages 875–895, London, UK.
Springer-Verlag.

Mulligan, D. P., Owens, S., Gray, K. E., Ridge, T., and
Sewell, P. (2014). Lem: Reusable engineering of real-
world semantics. In Proceedings of the 19th ACM
SIGPLAN International Conference on Functional
Programming, ICFP ’14, pages 175–188, Gothenburg,
Sweden. ACM.

Necula, G. C. (1997). Proof-carrying code. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’97,
pages 106–119, Paris, France. ACM.

Nipkow, T., Wenzel, M., and Paulson, L. C. (2002).
Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag, Berlin, Heidelberg.

Oquendo, F., Buisson, J., Leroux, E., Moguérou, G.,
and Quilbeuf, J. (2016). The SoS Architect Studio:
Toolchain for the Formal Architecture Description and
Analysis of Software-intensive Systems-of-Systems
with SosADL. In Proceedings of the ECSA Interna-
tional Colloquium on Software-intensive Systems-of-
Systems (SiSoS), Copenhagen, Denmark.

Roşu, G. and Şerbănuţă, T. F. (2014). K overview and sim-
ple case study. Electronic Notes in Theoretical Com-
puter Science, 304:3–56. Proceedings of the Second
International Workshop on the K Framework and its
Applications (K 2011).

Sewell, P., Nardelli, F. z., Owens, S., Peskine, G., Ridge,
T., Sarkar, S., and StrniŠa, R. (2010). Ott: Effective
tool support for the working semanticist. J. Funct.
Program., 20(1):71–122.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Voelter, M. (2013). Language and IDE Modularization
and Composition with MPS, pages 383–430. Springer,
Berlin, Heidelberg.

	Introduction
	Related Works
	A Running Example
	The Transformation
	Discussion
	Implementation
	Validation
	Conclusion

