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ON THE UNIQUENESS OF TRAVELING FORCED CURVATURE

FRONTS IN A FIBERED MEDIUM

GAWTUM NAMAH

Abstract. We investigate traveling fronts, including pulsating ones, of a
forced curvature flow in a plane fibered medium. The main topic of this note is

an uniqueness issue of such traveling fronts. In addition to line-shaped profiles,

we also consider traveling fronts in the form of V-shaped parabolas.

1. Introduction

In this note, we will be interested in traveling fronts of a forced curvature flow
equation

(1) Vn = R + K

in the plane containing periodic striations. Vn is the normal velocity of a propagat-
ing interface Γ(t), K is its mean curvature and R is the driving force. For example
if Γ is a flame front, then R corresponds to the combustion rate of the burning
material. In all cases, we will suppose that the function R is smooth and verifies

(2) 0 < Rm ≤ R ≤ RM .
Before going further, let us give a definition of a traveling front of equation (1).

Definition 1. Γ(t), solution of (1) will be called a traveling front if there exists a
constant vector v ∈ R2 such that

Γ(t) = Γ0 + v t

for all t ∈ R. Then Γ0 is the (constant) profile of the traveling front and |v|, its
speed, see Figure 1.

Note that if Γ(t) can be represented by the graph of a function u in the x-y
plane, for example

Γ(t) = {(x, y)/y = u(x, t)},
then Vn is given by

Vn =
ut√

1 + u2x
,

so that equation (1) becomes

(3) ut −R
√

1 + u2x =
uxx

1 + u2x
, t ∈ R, x ∈ R.

Now if Γ(t) is a traveling front in the plane, we can suppose without loss of generality
that v is parallel to the y-axis i.e. v =t(0, c). Then u(x, t) will be given by

u(x, t) = c t+ ϕ(x)

so that equation (3) becomes

(4) c−R
√

1 + ϕ2
x =

ϕxx
1 + ϕ2

x

, x ∈ R.
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2 GAWTUM NAMAH

In the above, c is the speed and ϕ the constant profile of the wave. The pair
(c, ϕ) will be called a traveling wave solution (TWS) of equation (3). Note that
every solution ϕ of (4) is defined up to an additive constant.

y

x

→
V

Γ(t)

Γ0

|
→
V |t

Figure 1. A TWS: a constant profile moving with a constant
speed in some given direction.

In [9], the authors gave a complete classification of smooth traveling fronts in
the plane in the case of a constant R i.e. for propagations in homogeneous media.
They notably showed that a non stationary traveling front in the plane can only
be a graph in the form of a line or of a V-shaped parabola. Different results have
also been proved in the case of an interface propagating in a fibered medium with
periodic striations (i.e. R is periodic in one direction). In this case, one of course
expects the lines and V-shaped fronts to become undulated, the results depending
also on the angle of inclination of the striations. Let us precise what we mean by
an undulated line-shaped front.

Definition 2. An undulated front will be termed line-shaped if there exists an
angle α ∈ (−π/2, , π/2) such that the front is at a finite distance from the line
y = tanα x for all x ∈ R.

The line-shaped fronts can therefore be inclined (when α 6= 0) or horizontal
(α = 0).

Essentially two types of solutions have been put forward in the case of a periodic
fibered medium : traveling wave solutions (TWS) and pulsating traveling wave
solutions (PTWS). Besides having some periodicity in space, these pulsating fronts
also display a time periodicity namely there exists a period T and some constant
Y such that

u(x, t+ T ) = u(x, t) + Y, for all t ∈ R and x ∈ R.
Let us point out that equations of type (1) may exhibit PTWS in other contexts
where the periodicity is not necessarily carried by the function R. See for example
[7] and the references therein where it is the boundary of the corresponding domain
which has periodic or quasi-periodic undulations while R remains constant.

In [2], which deals with vertical striations (R(x, y) = R(x), 1-periodic), it is
shown that there exists a unique ’horizontal’ line-shaped traveling front (c, ϕ), ϕ
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1-periodic and c being the speed of the wave in the y direction. The latter traveling
front corresponds therefore to the undulated version of the horizontal line in the
case of a constant R.

In the more recent work [6], the above result has been generalized to inclined
fronts. The existence of inclined traveling fronts in the case of vertical striations
is studied in an almost periodic context i.e. with R almost periodic in x. Among
other results, it is shown that for any α ∈ (−π/2, π/2), α being the angle between
the front line and the x-axis, there exists a unique (cα, ϕα), ϕαx almost periodic
in x, solution of (4). The previous result easily leads to the existence of a unique
traveling front Γα given by the pair (cα, ϕα), with ϕαx periodic in the case of a
periodic function R. Therefore we have a traveling front with Γ0 = {y = ϕα(x)}
and v =t (0, cα).

In the case of oblique striations treated in [8] and [3], the authors put in evidence
the fact that periodicity in space generates a time periodic regime. More precisely,
let us consider periodically disposed oblique striations of period 1 and inclined by
an angle β ∈ (0, π/2) from the y-axis. Set

Xβ = 1/ cosβ and Y β = 1/ sinβ,

so that R is Xβ-periodic in x and Y β-periodic in y. Then there exists a unique T β

and a unique function ϕβ(x, t), T β-periodic in time and Xβ-periodic in x such that

uβ(x, t) = cβt+ ϕβ(x, t),

is a solution of (3),with cβ = Y β/T β . We thus have (see Figure 2)

uβ(x, t+ T β) = uβ(x, t) + Y β .

Note that the uniqueness holds up to addition of constants in space and trans-
lations in time. The pair (cβ , ϕβ) or the moving front uβ will be called a pulsating
traveling wave solution (PTWS) of (3). Here cβ represents the mean speed (over
one time period) of the wave propagation in the y direction.

y′

β

x′

Γ(t)

Y β

Γ(t + T β)

Figure 2. A horizontal line-shaped pulsating front :

∃T β s.t. Γ(t+ T β) = Γ(t) + Y β ∀t.

Note that, as uβ does not have a constant profile, it is not clear here whether
this pulsating front is a traveling wave solution. That this is the case will be the
object of the following result :
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Claim 1. Let Γ(t) = {y = u(x, t)} be a space-periodic solution of (1) in a periodic
fibered medium such that

u(x, t+ T ) = u(x, t) + Y, x ∈ R, t ∈ R,
for some given T > 0 and Y ∈ R. Then Γ(t) slides with a constant speed along the
direction of the striations.

The above result implies that any periodic pulsating front is a traveling wave
solution i.e. propagating with a constant speed in a given direction, here that of
the striations.

Now we want to enquire about the ’uniqueness’ of these TWS. More precisely,
consider a vertically striated medium in the x-y plane. Recall that for any given
α ∈ (−π/2, π/2), there exists a line-shaped traveling front Γα in the form of a
graph {y = ϕα(x)} traveling with speed cα in the y-direction. Can there exist a
line-shaped traveling wave Γ′(t) = (Γ′0,v

′) other than the (Γα)α? For example Γ′

may be a graph in some frame x′-y′ other than x-y and/or v′ may not be parallel
to the y axis.

Our aim in this paper is to clarify this uniqueness issue. We will notably show

Theorem 1. Let R = R(x), 1-periodic in the x-y frame. Let Γ′(t) be a traveling
wave solution of (1) in the form of a line-shaped graph in some x′-y′ frame. Then
there exists α ∈ (−π/2, π/2), such that Γ′ = Γα.

Therefore the (Γα)α are the only line-shaped traveling fronts which can exist.
But as pointed out before, there exist also traveling fronts in the form of V-shaped
graphs. Let us recall that in the homogeneous case (R = constant), (cf. [9]),
for any α ∈ (0, π/2) there exists a unique function ψα in the form of a V-shaped
parabola which has as asymptotes ψ+(x) = tanα x and ψ−(x) = − tanα x when
x −→ ±∞, such that

Γ0 = {y = ψα(x)} and cα = R/ cosα.

Note that such a Γ0 is symmetrical wrt the y axis and ψαx (0) = 0. The result
corresponding to a striated medium goes as follows:

Theorem 2. Let R = R(x) be 1-periodic. Let α ∈ (0, π/2) satisfy RM cosα < Rm.
Then for any s ∈ R, (4) admits a unique V-shaped traveling wave solution ψα such
that ψα(0) = s and ψαx (0) = 0.

In section 2, we will deal with line-shaped traveling fronts. We will notably
show that periodic pulsating fronts (other than straight lines) in a periodic fibered
medium are just traveling fronts which slide down along the direction of the stria-
tions (Claim 1) and then prove Theorem 1. In section 3, we will prove Theorem 2
concerning V-shaped traveling fronts.

2. Line-shaped traveling fronts

2.1. The case of a homogeneous medium. Let us start by noting that when R
is a constant, there is an infinite number of lines which are traveling fronts. Indeed
for any α ∈ (−π/2, , π/2), the moving line Γ(t) = Γ0 + v t with

Γ0 = {y = tanα x)} and v = t(−R sinα,R cosα),

is a solution. Moreover the velocity v is not unique. In the above, we see that
the line propagates perpendicular to itself but we could also have considered prop-
agations in other directions. For example if we consider the line to be propagating
in the y-direction, then v = t(0, R/ cosα). Likewise v = t(−R/ sinα, 0) for a
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propagation in the x-direction. Also, in this simple case, Γ0 can also be written as
a function of y i.e. Γ0 = {x = cotα y)} for any α 6= 0.

2.2. The case of a periodic striated medium. Let us now suppose that R is
1-periodic in some direction in the plane, which can be taken to be the x direction
without any loss of generality, and is constant along the y direction. We look for
line-shaped traveling wave solutions of (4). We state the following

Proposition 1. Let R = R(x), 1-periodic. For any α ∈ (−π/2, , π/2), there exists
a unique line-shaped TWS Γα in the form of a graph y = u(x, t), with u satisfying
equation (3) and the shifted periodic condition

(5) u(x+ 1, t) = u(x, t) + tanα for all real t.

In other words, there exists a unique pair (c, ϕ) solution of

c−R
√

1 + ϕ2
x =

ϕxx
1 + ϕ2

x

, x ∈ R,

such that

ϕ(x+ 1) = ϕ(x) + tanα.

Moreover we have the following estimates on c and ϕ :

Rm
cosα

≤ c ≤ RM
cosα

,

|ϕx(x)| <

√
R2
M

R2
m cos2 α

− 1.

Of course, c and ϕ depend on α. We have omitted the superscript α as there is
no ambiguity. As usual, the uniqueness of ϕ is to be understood up to an additive
constant. The traveling front is therefore either periodic (when α = 0) or shifted-
periodic in which case ϕ is not periodic but it is ϕx which is a 1-periodic function

with
∫ 1

0
ϕx dx = tanα.

Proof. Consider the ode satisfied by h = ϕx and set

f(x, h, c) = c(1 + h2)−R (1 + h2)3/2.

Then showing the above proposition comes to proving that

(6)


h′ = f(x, h, c), x ∈ (0, 1)
h(0) = h(1)∫ 1

0
h dx = tanα

admits a unique solution (c, h). The proof will be omitted as it goes almost along
the same lines as in [2] which was run for α = 0.

We can further estimate h and give a monotonicity result on c under some
restrictions on α. We state

Proposition 2. Let (c, h) be the solution of (6). Then if RM cosα < Rm, we have

h(x) ≥

√
R2
m

R2
M cos2 α

− 1, for all x ∈ [0, 1],

and

c′(α) > 0.

Proof. Here too, we will omit the proof as it is similar to the one given in [6] in the
case of almost periodic striations.
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Remark 1. Let us remark that the result of Proposition 1 excludes the case of
α = ±π/2. In fact, we know that for α = π/2 (see for example [1]), there exists
no TWS but a unique pulsating front which is a straight line propagating with an

effective speed given by the harmonic mean R of R. We thus have a front of the

form x = U(t) with U(t+ T ) = U(t) + 1 with T given by T = 1/R.

2.3. Proof of Claim 1. Consider a propagation through a 1-periodic fibered
medium with the striations inclined by some angle β ∈ (−π/2, π/2) from the y
axis, see Figure 2. Here equation (3) reads

(7) ut −R(x, y = u(x, t))
√

1 + u2x =
uxx

1 + u2x
, t ∈ R, x ∈ R

with

(8) R(x, y) = R(y sinβ − x cosβ).

Then we know (see for example [3], [8]) that there exists a unique cβ > 0 and a
unique space-time periodic function ϕβ such that

(9) u(x, t) = cβt+ ϕβ(x, t)

is a solution of (7). The front u is therefore a periodic pulsating one i.e. there exists
T β = Y β/cβ such that

u(x, t+ T β) = u(x, t) + Y β .

We proceed by the following

Lemma 1. Let u be a periodic pulsating front solution of (7)-(8). Then there exists
a Xβ-periodic function W and a positive constant c such that

u(x, t) = W (x− c t sinβ) + c t cosβ.

Note that Lemma 1 implies that the front slides along the direction of the stria-
tions with the constant speed c without changing its profile as in Figure 2. We are
therefore in the presence of a traveling front with

Γ0 = {y = W (x)} and v =t(c sinβ, c cosβ),

in the x-y plane.

Proof. So let u = u(x, t) be a PTWS of (7)-(8). Note that in the present case, R is
also given by

(10) R(x, y) = R(x+ s sinβ, y + s cosβ), for all s ∈ R.
Consider now, for s ∈ R, the function

(11) W s(x, t) = u(x− s sinβ, t) + s cosβ.

It is then not difficult to verify that W s satisfies equation (7). Indeed, by taking
the equation (7) at the point (x = x− s sinβ, t = t), we get

W s
t (x, t)−R(x− s sinβ, y = u(x− s sinβ, t))

√
1 +W s2

x =
W s
xx

1 +W s2
x

,

t ∈ R, x ∈ R.
But as R is constant in the direction of the striations, we have

R(x− s sinβ, y = u(x− s sinβ, t))

= R(x, u(x− s sinβ, t) + s cosβ) = R(x,W s(x, t)),

so that finally W s satisfies

W s
t (x, t)−R(x,W s(x, t))

√
1 +W s2

x =
W s
xx

1 +W s2
x

, t ∈ R, x ∈ R.
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Moreover we have

W s(x, t+ T β) = W s(x, t) + Y β .

Therefore W s is PTWS of (7). By the uniqueness result of [8], we deduce that for
any real s, W s is just a shift in time of u, i.e. there exists (a constant) τ(s) such
that

W s(x, t) = u(x, t+ τ(s)).

We conclude from (11) that for all s ∈ R, we have the following oblique shift for u :

u(x, t+ τ(s)) = u(x− s sinβ, t) + s cosβ.

Now due to the continuity of τ with respect to s and the fact that τ(s) −→ ±∞
when s goes to ±∞, we can deduce that for any real τ, there exists a real s such
that the above equation holds. Then for all real τ, the front at time t + τ is just
an oblique shift of the front at time t along the direction of the striations.

Let W = W (z) be the profile of the pulsating front at some reference time set
to zero for simplicity. Then the front at any time t > 0 is obtained by a shift of W
along the direction of the striations by a quantity s = s(t), i.e.

u(x, t) = W (x− s(t) sinβ) + s(t) cosβ.

As u satisfies (7), W is therefore a solution of

s′(t){cosβ − sinβWz} −R(z + s(t) sinβ,W (z) + s(t) cosβ)
√

1 +W 2
z =

Wzz

1 +W 2
z

,

which from (10) gives

s′(t){cosβ − sinβWz} −R(z,W (z))
√

1 +W 2
z =

Wzz

1 +W 2
z

, t > 0, z ∈ R.

But as W is independent of time, we deduce that s′(t) is a constant so that there
exists some real c with s(t) = c t. We finally end up with

u(x, t) = W (x− c t sinβ) + c t cosβ,

and the proof of the Lemma is done and so is that of Claim 1. Note that in terms
of cβ (which we recall was the mean speed in the y direction), we have cβ = c cosβ
so that v =t(cβ tanβ, cβ).

2.4. Proof of Theorem 1. Let Γ′(t) be a TWS of (3) in the form of a line-shaped
graph in some tilted x′-y′ frame and let β ∈ (−π/2, π/2), β 6= 0, be the angle
between the x′ and the x axes, i.e. between the two frames. We will deal with the
case β = ±π/2 afterwards. Recall that the striations are vertical in the original x-y
frame so that they will be oblique inclined by an angle β from the y′-axis.

Set Γ′(t) = {y′ = u(x′, t)}. The front u is therefore a solution of (7)-(8). Now
we can have a ’horizontal’ front in the x′-y′ frame in which case u will be periodic
in x′, or an ’inclined front’. We will first show that the traveling wave front Γ′(t)
is in fact a PTWS which propagates along the direction of the striations and then
prove that it coincides with one of the fronts Γα of Proposition 1. Let us start by
considering the case of a horizontal front.

2.4.1. Case 1 : Γ′ horizontal in the tilted frame. Note that as Γ′ is a TWS, it
propagates with a constant speed |v| but we do not know at this stage whether the
direction of v is the same as that of the striations. But since u is periodic in x′,
we can say that there exists some T > 0 (in fact here T will be given by Xβ/vx′

where vx′ is the component of the velocity v in the x′ direction) such that

u(x′, t+ T ) = u(x′, t) + Y
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with Y = vy′T. There is therefore a vertical shift (in the direction of y′) of the front
after time T. But as u satisfies equation (7), we conclude that Γ′(t) is a PTWS of
(7). Then we deduce by Claim 1 that v is parallel to the direction of the striations.
Moreover by the uniqueness of the PTWS, we know that v =t(cβ tanβ, cβ) with cβ

as previously defined.

Now in the context of the original x-y frame, Γ′ is a traveling line-shaped front
inclined by an angle β from the x axis and propagating with a constant speed in
the y direction. Now it suffices to prove that Γ′ is a graph in the x-y frame and
conclude by the uniqueness result of Proposition 1 that Γ′ coincides with Γβ .

Take t = 0 as a reference time and set Γ′0 = Γ′(0). Define u0(x′) = u(x′, 0) so
that Γ′0 = {y′ = u0(x′)}. We will prove that Γ′0 is a graph in the x-y coordinate
frame. Indeed any point (x′, y′) in the x′-y′ frame has as coordinates

x = cosβ x′ − sinβ y′

y = sinβ x′ + cosβ y′

in the x-y coordinate frame so that any point (x′, u0(x′)) on Γ′0 reads

x = cosβ x′ − sinβ u0(x′) = f(x′)(12)

y = sinβ x′ + cosβ u0(x′) = g(x′)

in the x-y frame. A sufficient condition to be able to write y as a function of
x is that fx(x′) 6= 0 for all x′. This ensures that we cannot have two values of
x′ corresponding to the same x. Otherwise, one can easily verify that this latter
situation would lead to the case of having one value of x corresponding to two
different values of y.

We see from (12) that showing that fx(x′) does not vanish comes to proving that
u0x′(x′) 6= cotβ for all x′. We therefore look for estimates on u0x′ . As we know that
Γ′(t) slides in the direction of the striations with the speed c = cβ secβ, we have
for all t > 0 (t = 0 being the reference time)

u(x′, t) = u0(x′ − c t sinβ) + c t cosβ,

that is
u(x′, t) = u0(x′ − cβt tanβ) + cβt.

We remark that the space-time periodic function ϕβ(x′, t) given in (9) is constant
along the line y′ = x′ − cβt tanβ and is given by

ϕβ(x′, t) = u0(x′ − cβt tanβ).

By setting z = x′ − cβt tanβ, we see from (7) that u0 satisfies

cβ − cβ tanβu0z −R (z, u0(z))
√

1 + u2u0z
= ν

u0zz
1 + u20z

subject to the periodic conditions

u0(0) = u0(Xβ) and u0z(0) = u0z(X
β).

Setting h = u0z, we obtain
h′ = (1 + h2)(cβ − cβ tanβ h−R

√
1 + h2), z ∈ (0, Xβ)

h(0) = h(Xβ)∫Xβ
0

h dz = 0.

Set hM = maxz h(z) = h(zM ), the existence of zM being ensured by the periodicity
of h. By writing the equation at z = zM , we have

0 = (1 + h2M )(cβ(1− tanβ hM )−R
√

1 + h2M ).
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Suppose now that hM ≥ cotβ. As cβ and R are positive, the RHS will be negative
which is not possible. Therefore we end up with h(z) < cotβ for all z ∈ R.

We have thus proved that Γ′(t) can be written as a line-shaped graph in the x-y
coordinate frame sliding in the direction of the striations with a constant speed.
From the uniqueness result of Proposition 1, we conclude that Γ′(t) is a traveling
front which coincides with one of the Γα(t) and here precisely with Γβ .

2.4.2. Case 2: Γ′ inclined in the tilted frame. Now let us consider the case where
Γ′(t) = {y′ = u(x′, t)} is an ’inclined’ TWS in some x′-y′ coordinate frame traveling
with velocity v′ = (v′x′ ,v′y′). Let β be, as before, the angle between the tilted and
the original frame and denote by γ, the angle of inclination of the front with respect
to the x′-axis, see Figure 3.

x

y

original frame

γ

Γ(t)

Γ(t + T )

Y

x′

y′

Figure 3. An inclined pulsating front in the tilted frame x′–y′:

∃T s.t. Γ(t+ T ) = Γ(t) + Y.

Recall that u satisfies the same equation

(13) ut −R(x′, y′ = u(x′, t))
√

1 + u2x′ =
ux′x′

1 + u2x′
, t ∈ R, x′ ∈ R,

as for the previous case but this time with shifted periodic conditions, namely

(14) u(x′ +Xγ , t) = u(x′, t) + tan γ Xγ

for some Xγ . Here too, the periodicity in space (even if it is a shifted periodicity)
will lead to a vertical shift of the front’s profile after some time T ′, i.e. Γ′(t + T ′)
is a vertical shift of Γ′(t) for all t, so that

(15) u(x′, t+ T ′) = u(x′, t) + Y ′,

for some Y ′ which depends a priori on γ and on the velocity v′. Here T ′ will be
given by T ′ = Xγ/v′x′ . Let us start by remarking that, due to the periodicity of R,
if T ′ exists then Y ′ is necessarily a multiple of Y β . Indeed, consider the equation
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(13) at the point (x′, t+ T ′). We have

ut(x
′, t+ T ′)−R(u(x′, t+ T ′) sinβ − x cosβ)

√
1 + u2x′(x

′, t+ T ′)

=
ux′x′

1 + u2x′
(x′, t+ T ′).

But as ut(x
′, t+ T ′) = ut(x

′, t) and likewise for the derivatives in x′, we have

ut(x
′, t)−R(u(x′, t) sinβ − x cosβ + Y ′ sinβ)

√
1 + u2x′(x

′, t) =
ux′x′

1 + u2x′
(x′, t),

so that necessarily Y ′ sinβ ∈ Z. Thus Y ′ = m sinβ = mY β for some m ∈ Z.

The next step will be to verify that the inclined pulsating front slides along
the direction of the striations with a constant speed (given by Claim 1 for the
’horizontal’ case). Suppose this is true. Then we can run the proof almost along
the same lines as that for the horizontal case to show that Γ′(t) is a graph in the
original x-y frame. Then from the uniqueness result of Proposition 1, we can again
conclude that Γ′(t) coincides with one of the Γα(t), namely Γβ+γ(t) here. It now
remains to verify that Claim1 is also valid for an inclined front. What is important
is the uniqueness result for pulsating fronts. In Claim 1, the uniqueness result called
for had been proved for periodic fronts (cf. [8], [4]). Also in [8], the analysis was
carried out for viscous Hamilton-Jacobi equations. In fact, the result holds in the
present case too. For completeness sake, let us give a proof of the uniqueness of
the pulsating front in the inclined case.

Suppose there exist two inclined pulsating fronts u1 and u2 solutions of (13)-(14).
We know that we can write

u1(x′, t) = c1t+ ϕ1(x′, t)

u2(x′, t) = c2t+ ϕ2(x′, t)

with ϕ1, T ′1-periodic (resp. ϕ2, T ′2-periodic) in time and both satisfying the shifted
periodic condition (14). Let

t1 = sup{t ∈ R / u1(., t) < u2(., 0)} and

t2 = inf{t ∈ R / u1(., t) > u2(., 0)}

The quantity t1 appears therefore as the first time that u1(., t) touches u2(., 0) from
below and t2 is the last time that u1(., t) touches u2(., 0) from above. We therefore
have

u1(x′, t1) ≤ u2(x′, 0) and u1(x′, t2) ≥ u2(x′, 0)

The weak maximum principles then lead to

u1(x′, t1 + t) ≤ u2(x′, t) ≤ u1(x′, t2 + t) for all t ∈ R,

that is

c1(t1 + t) + ϕ1(x′, t1 + t) ≤ c2t+ ϕ2(x′, t) ≤ c1(t2 + t) + ϕ1(x′, t2 + t).

Note that in the inclined case, the profiles ϕ1 and ϕ2 remain bounded in time from
the line y′ = tan γ x′. Substract then tan γ x′ from each term, divide by t and then
let t go to infinity. We obtain

c1 ≤ c2 ≤ c1,
so that c1 = c2. The two fronts have therefore the same effective speeds. This in
turn implies that the two time periods T ′1 and T ′2 are equal up to a multiplicative
integer. More precisely, as we know that Y ′2 = mY ′1 for some m ∈ N (here we have
supposed without loss of generality that Y ′2 ≥ Y ′1), then we will have T ′2 = mT ′1.
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Now let x′1 be such that u1(x′1, t1) = u2(x′1, 0). We have at the point x′ = x′1 and
t = t1,,

u1(x′1, t1 + T ′2) = c1t+ c1T
′
2 + ϕ1(x′1, t1 + T ′2) = c1T

′
2 + u1(x′1, t1).

Likewise at the point x′ = x′1 and t = 0, we have

u2(x′1, T
′
2) = c2T

′
2 + u2(x′1, 0),

so that u1(x′1, t1+T ′2) = u2(x′1, T
′
2). This situation is not allowed by the strong max-

imum principles applied to the linear parabolic equation satisfied by the function
w(x′, t) given by

w(x′, t) = u1(x′, t+ t1)− u2(x′, t),

unless w is a constant.

2.4.3. The case β = π/2. Note that Proposition 1 does not concern TWS in the
form of line-shaped graphs x = W (y, t). In fact, this comes to considering a tilted
frame (x′-y′) with y′ = x and x′ = −y, that is the angle β between the two frames
equals to −π/2. So suppose there exists a TWS Γ′(t) in the form of a line-shaped
graph x = W (y, t) inclined by some angle α from the x-axis. We propose to show
that Γ′ coincides with the Γα given by the Proposition 1.

We know by Claim 1 that if it exists, Γ′(t) slides along the direction of the
striations (here in the y-direction) with a speed c, which without loss ogf generality
can be taken to be positive. Let us continue our analysis for α ∈ (0, π/2), the case
for negative values of α can be carried out in a similar way. We proceed by writing
down the equation satisfied by W :

Wt +R(W )
√

1 + V 2
y =

Vyy
1 + V 2

y

, t ∈ R, y ∈ R.

Note the positive sign before R in the above equation. Indeed as α > 0, a motion
of the line y = tanα x in the upward direction corresponds to a propagation in the
negative x-direction. This gives a negative speed of the line in the x-direction. The
sign would change for α < 0. Now as Γ′(t) has a constant profile moving with the
speed c there exists a function ψ such that

W (y, t) = ψ(y − c t),

and where ψ satisfies the following system :

(16)

 −cψ′ +R (ψ)
√

1 + ψ′2 = ψ′′

1+ψ′2 , z ∈ R,

ψ(z + tanα) = ψ(z) + 1, z ∈ R,
ψ′(z + tanα) = ψ′(z), z ∈ R.

Without loss of generality, as usual, we can normalize ψ such that ψ(0) = 0. We
then state

Lemma 2. Let α ∈ (0, π/2). If ψ is a solution of (16) then ψ′(z) > 0 for all z ∈ R.

Proof. As ψ′ is tanα-periodic, there exists z∗ ∈ (0, tanα] such that

ψ′(z∗) = max
R

ψ′(z)

with ψ′′(z∗) = 0. As the first condition on ψ implies that
∫ tanα

0
ψ′(z)dz = 1 (> 0),

necessarily we must have ψ′(z∗) > 0. By the equation of ψ, we recover the fact that
c > 0. Now let z∗ correspond to the minimum i.e. ψ′(z∗) = minR ψ

′(z). Again by
using the equation of ψ, we deduce that ψ′(z∗) > 0.
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From the above lemma, we see that if a traveling front exists in the form of a
graph x = V (y, t), we will have V (y, t) = ψ(y − c t) with ψ invertible. Thus Γ′(t)
may be written as Γ′(t) = {y = c t+ψ−1(x)}. We then conclude by the uniqueness
result of Proposition 1 that Γ′ = Γα and we are done with the proof of Theorem 1.

3. V-shaped TWS

As mentioned before, there exist also traveling wave solutions in the form of
V-shaped parabola. Let us first review the homogenous case before going to the
uniqueness result in the fibered medium.

3.1. The homogeneous case. Let α ∈ (0, π/2) and consider the two lines ψ+(x) =
tanα x and ψ−(x) = − tanα x. Then there exists a unique V-shaped TWS

Γ(t) = Γ0 + c t,

with c = R/ cosα and Γ0 = {y = ψ(x)} a V-shaped parabola which has ψ+(x) and
ψ−(x) as asymptotes when x −→ ±∞ (cf [9]). Note that Γ0 is symmetrical wrt the
y axis with ψ′(0) = 0.

3.2. The periodic case. Let us now consider the case where the forcing term
R(x, y) = R(x) and is 1-periodic..We know from Proposition 1 that for every α ∈
(−π/2, π/2), there exists a unique line-shaped TWS (c, ϕ) solving the problem

Pα :


c−R

√
1 + ϕ2

x =
ϕxx

1 + ϕ2
x

, x ∈ R

ϕ(0) = 0, ϕ(1) = tanα
ϕ′(0) = ϕ′(1)

Remark 2. Note that the above boundary conditions are equivalent to the shifted
periodic condition (5) of Proposition 1. Indeed if (c, ϕ) solves Pα, then we have

ϕ(x+ 1) = ϕ(x) + tanα.

To see this, consider w(x) = ϕ(x + 1) − tanα. We then have w(0) = 0 and
w′(0) = ϕ′(0). As R is 1-periodic, w also satisfies the first equation of Pα. Then by
uniqueness results for initial value problems for second order ode’s, we know that
w ≡ ϕ.

We now define for any function ϕ, the symmetrical function with respect to the
y-axis ϕsym i.e. ϕsym(x) = ϕ(−x) and prove the following lemma:

Lemma 3. Let (c1, ϕ1) and (c2, ϕ2) be the respective line-shaped TWS of Pα1
and

Pα2
with α1 > 0 and α2 < 0 and both staifying the condition

(17) RM cosα < Rm.

Then α1 = −α2 iff c1 = c2.

Proof. (i) α1 = −α2 =⇒ c1 = c2.
In the homogeneous case, it’s trivial because c = R/ cosα. When R is periodic,

without loss of generality, we can consider R(x) = R(−x) for all x. Consider then
ψ = ϕsym1 . It is not difficult to verify that ψ satisfies

c1 −R
√

1 + ψ2
x =

ψxx
1 + ψ2

x

, x ∈ R,

ψ(0) = 0, ψ(1) = − tanα1,
ψ′(0) = ψ′(1),

so (c1, ψ) is a solution of Pα for α = −α1 i.e. for α = α2. By uniqueness of
line-shaped TWS, we deduce that c1 = c2 and ψ = ϕ2 = ϕsym1 .

(ii) c1 = c2 =⇒ α1 = −α2.
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Set β = −α2. We know that there exists a unique pair (cβ , ϕβ) solution of Pβ .
By (i), we then have cβ = c2 and ϕβ = ϕsym2 . As c1 = c2 by assumption,, then
cβ = c1. Now as α1 and β satisfy assumption (17) and under the latter condition
c(α) is strictly increasing in α (by Proposition 2), we have necessarily β = α1.

So for α ∈ (0, π/2), the above lemma shows that the profile of the line-shaped
TWS Γ−α is symmetrical to that of Γα, both having the same sped of propagation.
It says a bit more notably that the only line-shaped TWS having the same speed
as Γα is Γ−α. Now we are ready to give the result for V-shaped TWS.

Theorem 3. Let α ∈ (0, π/2) satisfy assumption (17) and let (c, ϕ) be the solution
of Pα and ϕsym be defined as above. Then for any s ∈ R, (4) admits a unique
V-shaped TWS ψ such that ψ(0) = s and ψ′(0) = 0. Moreover the solution satisfies
the following estimates

(i) ϕ′ sym(x) < ψ′ (x) < ϕ′ (x),

(ii) there exist a unique s0 > 0 and positive constants L and δ such that ψ(0) =
s0 and

ϕ(|x|) < ψ(x) < ϕ(|x|) + L exp(−δ |x|).

Note that ψ has ϕ and ϕsym as asymptotes when x goes to ±∞. Note also that
under assumptions (17) we can show that ϕ′ sym(x) < 0 and ϕ′ (x) > 0.We will
omit the proof of the theorem as it goes along the same lines as Theorem B of [6]
by remarking that in the periodic case, α2 is necessarily equal to −α1 by Lemma
3. It suffices then to do the neccessary modifications.
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