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F. Hache · N. Challamel · I. Elishakoff · C. M. Wang

Comparison of nonlocal continualization schemes for lattice
beams and plates

Abstract This paper investigates both stability and vibration of nonlocal beams or plates in the presence
of compressive forces. Various nonlocal structural models have been proposed to capture the inherent scale
effects of lattice-based beams or plates. These nonlocal models are either based on continualization of the
difference equations of the original lattice problem (labeled as continualized nonlocal models), or developed
from phenomenological nonlocal approaches such as Eringen’s type nonlocality. Considered herein are several
continualization schemes that lead to either fourth or sixth order spatial governing differential or partial differ-
ential equation. Even if the new continualized nonlocal plate models differ in their mathematical description,
they appear to furnish very close macroscopic results as shown from asymptotic expansion arguments. The
continualized nonlocal beam and plate models and the phenomenological approaches are also introduced from
variational arguments. The key role of boundary conditions is shown especially for Eringen’s nonlocal model
that is not necessarily variationally based. For each of them, the buckling load and the natural frequencies
are determined for simply supported beams and plates and compared to their counterparts obtained from the
lattice model. The small length scale coefficient of the nonlocal beam or plate models is intrinsically constant
and problem independent for the continualized approaches, whereas it is calibrated for the phenomenological
models based on the equivalence with the reference microstructured model and consequently, depends on the
load, the buckling or vibration mode or the aspect ratio. It is found that the nonlocal continualized approaches
are more efficient than the nonlocal phenomenological ones. For beam problems, continualized nonlocal and
phenomenological approaches such as Eringen’s nonlocal theory can become the same. However, for plate
problems, phenomenological approaches may differ significantly from continualized nonlocal ones; thereby
offering one the opportunity to have a new class of two-dimensional nonlocal models.
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1 Introduction

The advent of nanomaterials in the last decade has spurred tremendous interest in the scientific community to
study small scale structures. At a finer scale, the dimensions of the structure are close to those of its material
microstructure such as grain size or lattice spacing between two successive atoms at the atomic scale. The
continuum aspect of the material at this scale is questionable due to the occurrence of some microstructural
effects. Nonlocal continuum theories, however, can be used to capture the discreteness of the material at the
subscale. A basic difference between local and nonlocal theories is the definition of the stress at a certain point.
The stress is only a function of strain at that point in local mechanics but it is potentially a function of strains
at all points in nonlocal mechanics [1]. The first nonlocal mechanics investigations have been carried out in
the 1960s by Krumhansl [2,3], Rogula [4], Eringen [5,6], Kröner and Datta [7], Kunin [8], mostly for crystal
applications, leading to integro-differential equations to be solved.

A basic approach to justify the use of nonlocal models is to consider whether the structure is represented
by discrete systems that are composed of finite number of cells. For instance, Hencky [9] investigated the
mechanical behavior of Bernoulli–Euler beams by considering a chain of rigid segmented beams connected
by elastic rotational springs. The theoretical link between discrete and continuous systems is not new and has
already been established a few centuries ago by Lagrange [10] who showed that a one-dimensional structure
(mainly a string or a rod) is asymptotically equivalent to a lattice systemwith an infinite number of links (see also
the recent discussion of this problem in [11]. A few decades later, Piola constructed nonlocal continuousmodels
such as peridynamics models from discrete interactions [12,13]. Lattice models are basic physical systems
that can accurately represent fundamental interactions at the microscale. Nowadays, numerical solutions of
lattice-based equations may be readily solved with the aid of modern computers.

In 1983, Eringen [14] proposed a nonlocal stress gradient elasticitymodel to describe themechanical behav-
ior of lattice-based macrostructure. This nonlocal model may be classified as a phenomenological approach
and is based on a postulated nonlocal relationship between the stress and the strain, while the equilibrium
equations are be kept in a local form. This nonlocal law is dependent on a dimensionless material constant e0
associated with the discreteness of the matter at the subscale. The length scale parameter of the nonlocal model
may be calibrated from the Born–Kármán [15] lattice model for axial wave propagation [14]. Even though
Eringen’s theory is an efficient phenomenological nonlocal model and it has been applied to many structural
configurations, this theory has been shown to have some limitations in some particular cases. For instance,
the nonlocal effect does not affect a nonlocal beam in the presence of a concentrated load [16,17], where the
solution is identical to the local counterpart. This issue has been investigated specifically in [16,17] where it
has been shown that one can capture some scale effects, for general loading by adopting a combination of
the local and nonlocal strain measures. Moreover, in the nonlocal Eringen’s model [14], the nonlocal effect
affects the mechanical behavior of the structure through the constant e0, which is supposed to be independent
of the load. The value of this constant was found to be equal to 0.39 by fitting the wave dispersive curves
with those of the Born–Karman theory for axial lattices [14]. Lattice beams or plates can also be investigated
for calibrating the length scale coefficient e0 of nonlocal beams or plates, as recently performed by different
researchers [18–20]. They showed that the small length scale coefficient e0 lies between 1/

√
12 for beam

buckling problem and 1/
√
6 for beam vibration problem, leading to a paradoxical result because it meant that

the constant coefficient apparently varies with respect to applied load and physics of the problem. Thus, to
solve the apparent length scale-dependent paradox, alternative nonlocal models have been proposed in order
to keep a constant small length scale coefficient based on micromechanics arguments. The objective is to
develop continuous equations from discrete ones. To this end, among the available methodologies, two basic
methods can be distinguished, namely the homogenization of the discrete media and the continualization of
lattice models ([21,22] for instance).

The continualization process is based on the possible equivalence between continuous nonlocal model and
discrete lattice model [23]. Mathematically, the problem is equivalent to the approximation of lattice difference
operator by continuous differential ones. The pseudodifferential operator associated with the lattice problem
is expanded by using the Taylor series [24] or rational expansion. Padé approximants have been introduced by
Rosenau [25,26] following the works of Benjamin et al. [27] and Collins [28] for axial lattices. Since then,
they have been widely used in the literature [20,29]. In these approaches, the accuracy of the model depends
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on the order of the asymptotic expansion. The objective is to develop continuous equations that contain the
characteristic properties of a discrete structure [23]. Continuous equations based on lattice mechanics lead to
governing differential equations in which the small length scale coefficient is associated with a length having
a physical meaning, namely the internal characteristic length of the lattice spacing for such one-dimensional
bending systems (or beam-like models). Andrianov et al [30] used this technique to approximate the dynamics
behavior of a monoatomic and a biatomic axial chain with continuum models. This continualization process
has been already applied to lattice beams (also called Hencky chain model) [19] and lattice plates [18,20].
Giorgio et al [31] recently developed continuous approximation of Hencky chain model with nonlinear elastic
interaction, thus asymptotically leading to a nonlinear-type Euler–Bernoulli beam model.

In a recent paper, Challamel et al. [20] developed a continualized plate model based on the Padé approx-
imant of the uncountered pseudodifferential operators and a phenomenological model called hybrid continu-
alized model. In contrast to the usual Eringen’s based phenomenological nonlocal plate models leading to a
governing differential equation with fourth-order derivative, the continualized models introduced in [20] con-
tains a new sixth-order spatial derivative terms in the governing differential equation. Consequently, in these
continualized models, the solution requires additional boundary conditions, and this new constraint raises
the issue of the meaning of these higher-order boundary conditions. Nonlinear nonlocal vibrations of beams
(based on Eringen’s differential model) are studied by Ansari and Hemmatnezhad [32] by finite elements,
whereas the nonlocal nonlinear vibrations of buckled double-layered nanoplates (also based on Eringen’s
differential model) are studied by Wang et al. [33] using a Galerkin’s procedure based on a double-mode
truncation.

The aims of this study are: (a) to propose lattice beam and plate models for the microstructured elastic
system that covers bending, buckling and vibration phenomena, (b) to develop new continualized and phe-
nomenological models and to investigate the possible equivalence between the two approaches and possible
links between two continualizedmodels, (c) to establish the exact solutions associated with the newly proposed
lattice-based nonlocal models and compare them against the exact lattice solutions, and (d) to establish the
superiority of one of the models over the others. In comparing the different models, the small length scale
coefficient, which is calibrated for the phenomenological models, will be compared and the influence of dif-
ferent parameters such as the buckling and vibration mode shapes or the aspects ratios on the small length
scale coefficient will be discussed for the different models.

2 Presentation of models for nonlocal beam

We start from the lattice beammodel in elasticity. First, we present the model for a beam that takes into account
an axial load and also include a dynamic framework. The four associated nonlocal continua will be investigated
next. They will be referred to as the fourth-order continualized model, its sixth-order derivative counterpart,
the phenomenological fourth-order derivative and the phenomenological sixth-order derivative.

2.1 Lattice beams

The microstructured beam-grid model, also called the lattice beam model, is taken as the reference model or
lattice-based solution for calibration at a later stage. The essential idea underlying the microstructured beam
models is to replace the curved lines of deformation by straight lines [9]. In this discrete representation, the
bending moments are lumped at places that rotations are localized [34]. Following this idea, a microstructured
beam-grid for modeling can be reproduced by an assembly of chain net systems of rigid straight elements
connected at frictionless joints where rotations are localized as shown in Fig. 1.

So, consider a lattice beam of length L , modeled by n rigid segmented beams of length a(L = na) and
concentrated inertia mass m connected by elastic rotational springs of stiffness C = EI/a with E is the Young
modulus and I the second moment of area of the beams, as shown in Fig. 1. The entire microstructured column
is axially loaded by a compressive concentrated load P . We definem0 such as m0 = m/a and ω the frequency
of the beam. At the i th node, the deflection is wi and the bending moment is Mi .

In the lattice model, the beam is governed by the following moment curvature relationship and the equation
of motion
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Fig. 1 Microstructured beam model

Mi = EI

(
wi+1 − 2wi + wi−1

a2

)
(1)

Mi+1 − 2Mi + Mi−1

a2
= −P

wi+1 − 2wi + wi−1

a2
+ m0ω

2wi (2)

Equations (1) and (2) are the finite difference formulation of the continuous Bernoulli–Euler beam equations
as given by

M = EI
d2w

dx2
(3)

P
d2w

dx2
+ d2M

dx2
− m0ω

2w = 0 (4)

Equations (1) and (2) lead to a linear fourth-order difference equation for themicrostructured beam-grid model

P

(
wi+1 − 2wi + wi−1

a2

)
+ EI

(
wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

a4

)
− m0ω

2wi = 0 (5)

This difference equation is the finite difference formulation of the continuous governing differential equation
of the Bernoulli–Euler model:

EI
d2w

dx4
− m0ω

2w + P
d2w

dx2
= 0 (6)

For simply supported ends, the exact solution of the lattice problem is assumed to be

wi = w0 sin

(
mπ i

n

)
(7)

We set the critical buckling load and the fundamental natural frequency of the continuous Bernoulli–Euler
column [35]:

PE = EI
(π

L

)2 ;ω2
E = EI

m0

(π

L

)4
(8)

The substitution of Eq. (7) into Eq. (5) furnishes the following exact buckling load [19,35–38]:

λ(micro) = min
m

[
2n

π
sin
(mπ

2n

)]2
(9)

where λ = P/PE is the nondimensional buckling load parameter. In the case of free vibration, the natural
frequency is also given by substituting Eq. (7) into Eq. (5), and it is [39,40]:

Ω2
(micro) =

[
2n

π
sin
(mπ

2n

)]4
(10)

where Ω = ω/ωE is the nondimensional natural frequency parameter.
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2.2 Fourth-order continualized model

Next, we consider the discrete representation of the continuum displacement fields. It involves wi = w(xi ) =
w(x), wherewi andw are the displacements of the discrete and the equivalent continuous systems, respectively,
whereas the displacements of the neighboring particles wi±1 are replaced by w(xi ± a). By applying Taylor
series to the difference operators that describe discrete particle interactions, the following continualization
process is applied for sufficiently smooth variations of the displacement function:

wi = w(xi ) = w(x) (11)

wi±1 = w(xi ± a) =
∞∑
k=0

(±1)k
ak

k!
dk

dxk
w(x) =

[
e
±a ddx

]
[w] (12)

Thus, the second derivative under the finite difference form is reduced to a pseudodifferential operator:

wi+1 − 2wi + wi−1

a2
= 1

a2

∞∑
k=0

2
a2k

(2k)!
d2k

dx2k
w(x) = 4

a2
sinh2

(
a

2

d

dx

)
w(x) (13)

The Taylor expansion of the pseudodifferential operator at the second order provides:

4

a2
sinh2

(
a

2

d

dx

)
= d2

dx2

[
1 + a2

12

d2

dx2

]
w(x) + o(a2) (14)

The second term represents the effect due to discreteness, with a being the trace of the microscopic system.
The pseudodifferential operator may be developed by means of the Padé approximation and:

wi+1 − 2wi + wi−1

a2
= 4

a2
sinh2

(
a

2

d

dx

)
w(x) =

d2
dx2

1 − a2
12

d2
dx2

w + o(a2) (15)

In a similar manner,

wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

a2
= 16

a4
sinh4

(
a

2

d

dx

)
w(x) =

d4
dx4(

1 − a2
12

d2

dx2
)2w + o(a2) (16)

The substitution of Eqs. (11), (15) and (16) into Eq. (5) leads to the continualized model based on pseudodif-
ferential operators:

16

a4
EI sinh4

(
a

2

d

dx

)
w + P

4

a2
sinh2

(
a

2

d

dx

)
w − m0ω

2w = 0 (17)

which may be approximated by using rational expansion of these operators:

EI
d4

dx4(
1 − a2

12
d2
dx2
)2w + P

d2
dx2

1 − a2
12

d2
dx2

w − m0ω
2w + o(a2) = 0 (18)

Multiplying Eq. (18) by [1 − (a2/12)(d2/dx2)]2, we obtain

EI
d4w

dx4
+ P

[
1 − a2

12

d2

dx2

]
d2w

dx2
− m0ω

2
[
1 − a2

6

d2

dx2
+ a4

144

d4

dx4

]
w + o(a4) = 0 (19)

At the second order, it is consistent to neglect the fourth-order term in a that is underlined in Eq. (19). Thus,
it yields:

EI
d4w

dx4
+ P

[
1 − a2

12

d2

dx2

]
d2w

dx2
− m0ω

2
[
1 − a2

6

d2

dx2

]
w = 0 (20)
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This equation coincides with the one obtained by Challamel et al. [35]. Furthermore, this equation can be
equivalently obtained by continualization of the discrete constitutive law and the discrete equilibrium equa-
tion. Indeed, the discrete moment–curvature relation in Eq. (1) may be expressed using the second-order
pseudodifferential operator, i.e.

M = 4EI

a2
sinh2

(
a

2

d

dx

)
w = EI

d2

dx2

1 − a2
12

d2

dx2

w + o(a2) (21)

whereas the equilibrium equation Eq. (2) is given by:

4

a2
sinh2

(
a

2

d

dx

)
M + P

4

a2
sinh2

(
a

2

d

dx

)
w − m0ω

2w

=
d2
dx2

1 − a2
12

d2
dx2

M + P
d2

dx2

1 − a2
12

d2

dx2

w − m0ω
2w + o(a2) = 0 (22)

Multiplying Eqs. (21) and (22) by [1 − (a2/12)(d2/dx2)], we obtain the differential approximations:

M − a2

12

d2M

dx2
= EI

d2w

dx2
+ o(a2) (23)

d2M

dx2
= −P

d2w

dx2
+ m0ω

2w − a2

12
m0ω

2 d
2w

dx2
+ o(a2) (24)

Note that the equilibrium equation is no longer local with this formulation. The substitution of Eq. (24) into
Eq. (23) furnishes

M = EI
d2w

dx2
− Pa2

12

d2w

dx2
+ m0ω

2 a
2

12
w − a4

144
m0ω

2 d
2w

dx2
+ o(a4) (25)

We define a small length scale coefficient e0 such as e0 = 1/
√
12. This coefficient is constant and structurally

independent. The substitution of Eq. (25) into Eq. (24) leads to:

EI
d4w

dx4
+ P

[
1 − (e0a)2

d2

dx2

]
d2w

dx2
− m0ω

2
[
1 − 2(e0a)2

d2

dx2
+ (e0a)4

d4

dx4

]
w + o(a4) = 0 (26)

This equation coincides with Eq. (19) and so by neglecting the higher-order term in a, it yields Eq. (20). Thus,
the two continualizations lead to the same governing differential equation. There is an equivalence between
continualization of the final governing equations and continualization of both the constitutive law and the
equilibrium equations.

Furthermore, Eq. (20) may be derived from variational approach by considering the following bending
strain energy U , the kinetic energy T and the work W done by the axial force P

U (w) =
∫ L

0

1

2
EI

(
d2w

dx2

)2

dx (27)

T (w) =
∫ L

0

1

2
m0ω

2

[
w2 + a2

6

(
dw

dx

)2
]
dx (28)

W (w) =
∫ L

0

1

2
P

[(
dw

dx

)2

+ a2

12

(
d2w

dx2

)2
]
dx (29)

Thus, by applying the variational principle δ(U − T − W ) based on Hamilton’s principle, one gets Eq. (20)
with the boundary conditions

[{[
EI − P

a2

12

]
d3w

dx3
+
[
P + m0ω

2 a
2

6

]
dw

dx

}
δw

]L
0

= 0 (30)

[{[
EI − P

a2

12

]
d2w

dx2

}
δ

(
dw

dx

)]L
0

= 0 (31)
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Fig. 2 Nondimensional critical buckling load for a beam considering the microstructured models the fourth- and sixth-order
continualized model, the fourth- and sixth-order phenomenological models

These nonlocal boundary conditions clearly differ from the local ones, with additional terms related to the
lattice spacing.

The solution is provided for a simply supported beam. For such boundary conditions, the solution may be
expressed as:

w = w0 sin
(mπx

L

)
(32)

where m is an integer. By substituting Eq. (32) into Eq. (20), we obtain

m4 − λ

[
1 +

(e0amπ

L

)2]
m2 − Ω̄2

[
1 + 2

(e0amπ

L

)2] = 0 (33)

In statics (ω = 0), the nondimensional buckling load parameter is (see Fig. 2):

λ = min
m

m2 1

1 + ( e0amπ
L

)2 = 1

1 + ( e0aπ
L

)2 (34)

In free vibration (P = 0), the nondimensional frequency parameter is:

Ω2 = m2 1

1 + 2
( e0amπ

L

)2 (35)

The variation of the nondimensional natural frequency parameter with respect to the number of elementary
beam element is given in Fig. 3 for m = 1.

2.3 Sixth-order continualized model

We suggest to use another continualization of the local constitutive law and the equilibrium equation. Indeed,
we now use the following Taylor expansion:

4

a2
sinh2

(
a

2

d

dx

)
= d2

dx2

(
1 + a2

12

d2

dx2

)
+ o(a2) (36)

The substitution of Eq. (36) into Eq. (21) leads to

M = EI

[
d2w

dx2
+ a2

12

d4w

dx4
+ o(a2)

]
(37)

while we keep the nonlocal equilibrium equation based on the Padé approximants

d2
dx2

1 − a2
12

d2
dx2

M = −P
d2

dx2

1 − a2
12

d2
dx2

w + m0ω
2w + o(a2) (38)
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Fig. 3 Nondimensional vibration frequency for a beam considering the microstructured models the fourth- and sixth-order
continualized model, the fourth- and sixth-order phenomenological models

The substitution of Eq. (37) into Eq. (38) and multiplying by [1 − (a2/12)(d2/dx2)] yields

EI

[
1 + a2

12

d2

dx2
+ o(a2)

]
d4w

dx4
+ P

d2w

dx2
− m0ω

2
[
1 − a2

12

d2

dx2

]
w + o(a2) = 0 (39)

Choosing for the fourth-order continualized model e0 = 1/
√
12 and by neglecting the underlined term of

higher-order in a leads to

EI

[
1 + (e0a)2

d2

dx2

]
d4w

dx4
+ P

d2w

dx2
− m0ω

2
[
1 − (e0a)2

d2

dx2

]
w = 0 (40)

The new continualized governing equation is a sixth-order differential equation, instead of a fourth-order for
the local Euler–Bernoulli one. Thus, the order of the governing differential equation can be increased by using
a different continualization process. The two continualization methods presented herein are both valid but one
requires the satisfaction of two additional boundary conditions for this sixth-order continualized model. It is
worth noting that Eq. (40) may be asymptotically obtained from Eq. (20). Indeed, by multiplying Eq. (20) with
[1 + (a2/12)(d2/dx2)] , we obtain

EI

[
1 + (e0a)2

d2

dx2

]
d4w

dx4
+ P

[
1 − (e0a)4

d2

dx2

]
d2w

dx2

−m0ω
2
[
1 − (e0a)2

d2

dx2
− 2(e0a)4

d4

dx4

]
w + o(a4) = 0 (41)

Neglecting the underlined higher-order term in Eq. (41) leads to Eq. (40). In an equivalent manner, by applying
the Padé approximant for the constitutive law and the Taylor approximant for the equation of motion:

(
1 − a2

12

d2

dx2

)
M = EI

d2w

dx2
+ o(a2) (42)

d2

dx2

[
1 + a2

12

d2

dx2

]
M = −P

d2

dx2

[
1 + a2

12

d2

dx2

]
w + m0ω

2w + o(a2) (43)

Multiplying Eq. (43) by [1 − (a2/12)(d2/dx2)] and substituting Eq. (42) and assuming e0 = 1/
√
12, we

obtain

EI

[
1 + a2

12

d2

dx2

]
d4

dx4
+ P

d2

dx2

[
1 − a4

144

d4

dx4

]
w − m0ω

2
[
1 − a2

12

d2

dx2

]
w + o(a4) = 0 (44)

Neglecting the underlined term of higher-order in a leads to Eq. (40). Reciprocally, Eq. (20) is obtained from
Eq. (40) by multiplying by [1− (e0a)2(d2/dx2)] and neglecting the higher-order term in a. Although there is
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a link between Eqs. (20) and (40) through the differential operator [1 ± (e0a)2(d2/dx2)], the two equations
are not equivalent. Indeed, Eq. (40) being a sixth-order space derivative differential equation requires six
boundary conditions (three at each end of the beam), whereas Eq. (20) only needs four boundary conditions.
Thus, Eq. (40) involves the introduction of two additional boundary conditions.
Equation (41) may be also derived variationally by considering the energies U , T and W as follows

U (w) =
∫ L

0

1

2
EI

[(
d2w

dx2

)2

− a2

12

(
d3w

dx3

)2
]
dx (45)

T (w) =
∫ L

0

1

2
m0ω

2

[
w2 + a2

12

(
dw

dx

)2
]
dx (46)

W (w) =
∫ L

0

1

2
P

(
dw

dx

)2

dx (47)

In the sixth-order continualized model, the work done by the force P is not affected by the nonlocal effect. By
applying the Hamilton principle, we obtain Eq. (40) with the natural boundary conditions

[{
EI

a2

12

d5w

dx5
+ EI

d3w

dx3
+
[
P + m0ω

2 a
2

12

]
dw

dx

}
δw

]L

0

= 0 (48)

[{
EI

a2

12

d4w

dx4
+ EI

d2w

dx2

}
δ

(
dw

dx

)]L
0

= 0 (49)

[{
EI

a2

12

d3w

dx3

}
δ

(
d2w

dx2

)]L
0

= 0 (50)

The sixth-order space derivative model introduces two additional boundary conditions, one at each end (see
Eq. (50) for the higher-order boundary conditions). A consequent difficulty would be to choose the appropriate
boundary conditions. For a simply supported beam, at the boundaries, and assuming that the curvature vanishes
at the boundary for the higher-order boundary condition, leads to:

w = 0; d
4w

dx4
= 0; d

2w

dx2
= 0 (51)

The solution is provided for a simply supported beam. By substituting Eq. (32) into Eq. (40), we obtain[
1 −

(e0amπ

L

)2]
m4 − λm2 − Ω2

[
1 +

(e0amπ

L

)2] = 0 (52)

In statics (ω = 0), the nondimensional buckling load parameter is (see Fig. 2):

λ = min
m

[
m2 −

(
e0am2π

L

)2
]

= 1 −
(e0aπ

L

)2
(53)

In free vibration (P = 0), the nondimensional frequency parameter is:

�2 = m2 1 − ( e0amπ
L

)2
1 + ( e0amπ

L

)2 (54)

The variation of the nondimensional natural frequency parameter with respect to the number of elementary
beam element is given in Fig. 3 for m = 1.

The natural frequency and buckling load are not the same between the two continualizedmodels. Indeed, the
fourth-order continualized model is based on the Padé approximants applied to the pseudodifferential operator
involved in the constitutive law and in the equilibrium equation, whereas the sixth-order continualized model is
based on the use of Taylor approximant inn the constitutive law or in the equilibrium equation. This introduces
a slight difference between both continualized nonlocal models, as shown in Fig. 3. Even if mathematically
not strictly equivalent, both models give close results, for the order of magnitude considered.
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2.4 Fourth-order phenomenological model: the Eringen’s approach

The phenomenological Eringen’s nonlocal model is considered for capturing the scale effects associated with
the Hencky lattice chain model or its continualized nonlocal counterpart. This nonlocal model is coupled to
local-type equilibrium equations. First of all, we propose the following moment–curvature relation for the
Eringen’s model [14] applied at the beam scale [41,42]:

[
1 − (e0a)2

d2

dx2

]
M = EI

d2

dx2
w (55)

In contrast to the continualizedmodels, the small length scale coefficient e0 is unknown and has to be calibrated
in order to match the results of the discrete model. Multiplying the continuous local equilibrium Eq. (4) by
[1 − (e0a)2(d2/dx2)] and substitutingEq. (55),weobtain the followinggoverningdifferential equation [43,44]

EI
d4w

dx4
+ P

[
1 − (e0a)2

d2

dx2

]
d2w

dx2
− m0ω

2
[
1 − (e0a)2

d2

dx2

]
w = 0 (56)

Equation (56) coincides with the governing differential equation obtained by Reddy [43] and Reddy and Pang
[44].

This differential equation is close to Eq. (20) but the nonlocal term associated with the dynamic effect
is different. In the fourth-order phenomenological model, the term associated with the dynamic effect is the
same one associated with the static effect. Thus, it is not possible to make a perfect coincidence between the
continualized nonlocal model and Eringen’s nonlocal beam model, except in the pure buckling case ω = 0,
or in the pure vibration case P = 0. Consequently, the calibrated small length scale coefficient of Eringen’s
nonlocal model would be different in dynamics and statics and so, is structural problem dependent.

Furthermore, Eq. (56) may be obtained variationally by considering the energies U , T and W given by

U (w) =
∫ L

0

1

2
EI

(
d2w

dx2

)2

dx (57)

T (w) =
∫ L

0

1

2
m0ω

2

[
w2 + (e0a)2

(
dw

dx

)2
]
dx (58)

W (w) = 1

2

∫ L

0
P

[(
dw

dx

)2

+ (e0a)2
(
d2w

dx2

)2
]
dx (59)

These variational terms and the natural boundary conditions are given by Adali for the buckling problem [45]
and the vibration problem [46].

By applying the variational principle δ(U − T − W ), we obtain Eq. (56) with the natural boundary con-
ditions

[{[
EI − P(e0a)2

] d3w
dx3

+ [
P + m0ω

2(e0a)2
] dw
dx

}
δw

]L
0

= 0 (60)

[{[
EI − P(e0a)2

] d2w
dx2

}
δ

(
dw

dx

)]L
0

= 0 (61)

We notice that the fourth-order phenomenological Eringen’s model and the continualized nonlocal models are
different for both the governing equations and the boundary conditions. Indeed, the dynamic term in Eq. (60) is
twice less important than in Eq. (30). Furthermore, the governing differential equation of the Eringen’s model
is derivable from the principle of virtual work:

∫ L

0

{
Mδ

(
d2w

dx2

)
− P

dw

dx
δ

(
dw

dx

)
− m0ω

2wδ(w)

}
dx (62)

The boundary conditions of the Eringen’s model of this problem are
[
−
{
dM

dx
+ P

dw

dx

}
δw

]L
0

= 0;
[
Mδ

(
dw

dx

)]L
0

= 0 (63)
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The natural boundary conditions of the nonlocal Eringen’s model Eq. (63) differ from the conditions obtained
via the variationally based nonlocal approach Eqs. (60) and (61). The natural boundary conditions of the
nonlocal Eringen’s model can be expressed equivalently by:

[{[
EI − (e0a)2P

] d3w
dx3

+ [
P + m0ω

2(e0a)2
] dw
dx

}
δw

]L
0

= 0 (64)

[{[
EI − (e0a)2P

] d2w
dx2

+ m0ω
2(e0a)2w

}
δ

(
dw

dx

)]L
0

= 0 (65)

In statics, Eqs. (64) and (65) coincide with Eqs. (60) and (61). In dynamics, the dynamic contribution in
the boundary conditions differs between the phenomenological nonlocal Eringen’s model and the conditions
obtained through the variational approach Eqs. (60) and (61) (see also the analysis of Challamel et al. [47]).

The solution is provided for a simply supported beam. By substituting Eq. (32) into Eq. (56), we obtain

m4 − λ

[
1 +

(e0amπ

L

)2]
m2 − Ω2

[
1 +

(e0amπ

L

)2] = 0 (66)

In statics (ω = 0), the nondimensional buckling load parameter is (see Fig. 2):

λ = min
m

m2 1

1 + ( e0amπ
L

)2 = 1

1 + ( e0aπ
L

)2 (67)

The small length scale coefficient is obtained by equating Eq. (9) and Eq. (67):

1

1 + ( e0aπ
L

)2 =
[
2n

π
sin
( π

2n

)]2
(68)

In the sequel, the subscript b denotes the buckling case (in statics). The exact buckling formula is expanded
asymptotically as:

1 −
(e0π

n

)2 + o

(
1

n4

)
= 1 − 1

12

(π

n

)2 + o

(
1

n4

)
(69)

Thus, the best calibration of the length scale coefficient is

e0,b = 1

2
√
3

≈ 0.288 (70)

In free vibration (P = 0), the nondimensional frequency parameter is

Ω2 = m2 1

1 + ( e0amπ
L

)2 (71)

The variation of the nondimensional natural frequency parameter with respect to the number of elementary
beam element is given in Fig. 3 for m = 1. Again, the small length scale coefficient is obtained by comparing
the solution of a microstructured beam and a nonlocal beam model. By doing so, we get

m2 1

1 + ( e0amπ
L

)2 =
[
2n

π
sin
( π

2n

)]4
(72)

By expanding asymptotically for both sides of Eq. (72) for m = 1, we obtain

1 −
(e0π

n

)2 + o

(
1

n4

)
= 1 − 1

6

(π

n

)2 + o

(
1

n4

)
(73)

In the sequel, we shall use the subscript v to denote the free vibration case. The best calibration of the length
scale coefficient is, for m = 1,

e0,v = 1√
6

≈ 0.408 (74)

This approach does not provide the same small length scale coefficient in buckling and in vibration: the small
length scale coefficient is structural problem dependent.
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2.5 Sixth-order phenomenological model

A new attempt is made to obtain the sixth-order continualized equation through a phenomenological approach.
Retaining the local equilibrium equation Eq. (4), a nonlocal constitutive law is postulated as follows:[

1 − (e0a)2
d2

dx2

]
M = EI

[
1 + (e0a)2

d2

dx2

]
d2

dx2
w (75)

Multiplying Eq. (4) by [1 − (e0a)2(d2/dx2)] and substituting Eq. (75) into Eq. (4), we obtain the governing
differential equation

EI

[
1 + (e0a)2

d2

dx2

]
d4w

dx4
+ P

[
1 − (e0a)2

d2

dx2

]
d2w

dx2
− m0ω

2
[
1 − (e0a)2

d2

dx2

]
w = 0 (76)

When compared to Eq. (40), it can be seen that Eq. (76) has an additional term that is underlined in the equation.
This model is slightly different from a continualized nonlocal model. Furthermore, Eq. (76) may be obtained
variationally by considering the energies U , T and W given by Eqs. (45), (29) and (46), respectively.

U (w) =
∫ L

0

1

2
EI

[(
d2w

dx2

)2

− (e0a)2
(
d3w

dx3

)2
]
dx (77)

T (w) =
∫ L

0

1

2
m0ω

2

[
w2 + (e0a)2

(
dw

dx

)2
]
dx (78)

W (w) = 1

2

∫ L

0
P

[(
dw

dx

)2

+ (e0a)2
(
d2w

dx2

)2
]
dx (79)

The only difference between the two phenomenologicalmodels is the nonlocal term in the bending strain energy
U . Thus, the application of the Hamilton principle leads to Eq. (76) with the natural boundary conditions

[
−
{
EI(e0a)2

d5w

dx5
+ [

EI − P(e0a)2
] d3w
dx3

+ [
P + m0ω

2(e0a)2
] dw
dx

}
δw

]L

0

= 0 (80)

[{
EI(e0a)2

d4w

dx4
+ [

EI − P(e0a)2
] d2w
dx2

}
δ

(
dw

dx

)]L
0

= 0 (81)

[{
EI(e0a)2

d3w

dx3

}
δ

(
d2w

dx2

)]L
0

= 0 (82)

As explained in Sect. 2.3., the sixth-order space derivative (continualized and phenomenological) models
introduce two additional boundary conditions, one at each end.

The solution is given by substituting Eq. (33) into Eq. (76):[
1 −

(e0amπ

L

)2]
m4 − λ

[
1 +

(e0amπ

L

)2]
m2 − Ω̄2

[
1 +

(e0amπ

L

)2] = 0 (83)

Consider the static case (ω = 0). Using Eqs. (83) and (90), the nondimensional buckling load parameter is
given by (see Fig. 2):

λ = min
m

m2 1 − ( e0amπ
L

)2
1 + ( e0amπ

L

)2 (84)

As for the continualized models, it is observed from Fig. 2 that the fourth-order model provides more accurate
results when compared to the sixth-order model. Moreover, the small length scale coefficient is obtained by
equating Eqs. (9) and (84):

m2 1 − ( e0mπ
n

)2
1 + ( e0mπ

n

)2 =
[
2n

π
sin
(mπ

2n

)]2
(85)
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It yields the calibrated small length scale coefficient of

e0,b = 1

2
√
6

≈ 0.204 (86)

In the free vibration case (P = 0), the nondimensional frequency parameter is given by:

Ω2 = m2 1 − ( e0,vmπ

n

)2
1 + ( e0,vmπ

n

)2 (87)

The variation of the nondimensional natural frequency parameter with respect to the number of elementary
beam element is given in Fig. 3 for m = 1. As for the fourth-order phenomenological model, equating the
nondimensional frequency furnished by the discrete model with Eq. (10) and the frequency given in Eq. (87),
we obtain the following calibrated small length scale coefficient:

e0,v = 1

2
√
3

≈ 0.288 (88)

The small length scale coefficient differs in statics and in buckling. This numerical result confirms that the
nonlocal phenomenological model is structural problem dependent.

2.6 General formulation of solutions

It is worth noting that all the models may be presented in a unified way:

EI

[
1 + γ1(e0a)2

d2

dx2

]
d4w

dx4
+ P

[
1 − γ2(e0a)2

d2

dx2

]
d2w

dx2
− m0ω

2
[
1 − γ3(e0a)2

d2

dx2

]
w = 0 (89)

where three control scalar parameters, namely γ1, γ2, γ3 are introduced with (γ1, γ2, γ3) is equal to
(0, 1, 2), (1, 0, 1), (0, 1, 1) and (1, 1, 1) for the fourth-order continualized model, its equivalent sixth-order
derivative counterpart, the phenomenological fourth-order derivative and the phenomenological sixth-order
derivative, respectively. In the continualized models, the small length scale coefficient is structural problem
independent and is equal to 1/

√
12. In the phenomenological models, the value of this coefficient is unknown,

and it has to be calibrated based on the asymptotic equivalence between the continuous and the discrete models.
Thus, all previous results are obtained in a general form by using those parameters γ1, γ2, γ3 and e0 equal to
1/

√
12 for the continualized models.
The substitution of Eq. (32) into Eq. (89) furnishes[

1 − γ1

(e0amπ

L

)2]
m4 − λ

[
1 + γ2

(e0amπ

L

)2]
m2 − Ω̄2

[
1 + γ3

(e0amπ

L

)2] = 0 (90)

By using Eq. (90), the nondimensional buckling load parameter (ω = 0), is (see Fig. 2):

λ = min
m

m2 1 − γ1
( e0amπ

L

)2
1 + γ2

( e0amπ
L

)2 (91)

It is observed from Fig. 2 and explained above that the fourth-order models provide more accurate results when
compared to the sixth-order models (continualized and phenomenological). The small length scale coefficient
is calibrated by comparing Eq. (9) and Eq. (91):

m2 1 − γ1
( e0mπ

n

)2
1 + γ2

( e0mπ
n

)2 =
[
2n

π
sin
(mπ

2n

)]2
(92)

Thus, the general expression of the best calibration of the length scale coefficient is

e0,b = 1√
γ1 + γ2

1

2
√
3

(93)
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It is observed that the small length scale coefficient depends on the model. Thus, it is equal to 0.144 with the
phenomenological sixth-order space derivative model and 0.288 for the other three models.

In a similar manner, in the free vibration case (P = 0), the natural nondimensional frequency parameter
is:

Ω2 = m2 1 − γ1
( e0amπ

L

)2
1 + γ3

( e0amπ
L

)2 (94)

As for the buckling load, the small length scale coefficient is obtained by comparing the solution of amicrostruc-
tured beam (see Sect. 2.1.) and a nonlocal beam model. In view of Eqs. (10) and (94), we can write:

m2 1 − γ1(e0,vnmπ)2

1 + γ3(e0,vnmπ)2
=
[
2n

π
sin
(mπ

2n

)]4
(95)

Thus, the best calibration of the length scale coefficient is, for m = 1,

e0,v = 1√
γ1 + γ3

1√
6

(96)

The small length scale coefficient depends on the model but not in the same manner than in statics. Indeed,
the parameter γ2 has been replaced by γ3. By definition, for the continualized models, the small length scale
coefficient is structural problem independent and it is equal to 1/

√
12. In the phenomenological approaches,

the calibration of the coefficient shows that it is structural problem dependent. Thus, these approaches are less
robust than the continualized models.

3 Extension to plate

The previous derivation will now be extended to plates. In a recent article, Challamel et al. [20] developed
a continualized plate model based on Padé approximant and a model called hybrid continualized model. In
contrast to the existing nonlocal plate models governed by a fourth-order differential equation, the hybrid
continualized model introduced a new sixth-order derivative in the equation. The solution requires to two
additional boundary conditions and this new constrain raises the validity issue of such a model. We have
shown that for a beam, it is possible to build continualized models leading to sixth-order derivative terms in
the governing differential equation. In this part, we briefly derive the governing differential equations obtained
with the nonlocal Eringen plate theory (widely investigated in the literature) and continualized models [20].

3.1 Microstructured beam-grid model

As for a beam, the lattice model is considered as the reference model for calibration of the small length scale
coefficient at a later stage. Following the idea presented in Sect. 2.1., a microstructured beam-grid for modeling
can be reproduced by an assembly of chain net systems of rigid straight elements connected at frictionless
joints where rotations are localized as shown in Fig. 3. Bending deformation of the beam-grid is made possible
by rotational springs at individual nodes. The torsion deformation is modeled by a rectangular repetitive unit
cell composed of four rigid beam elements with springs in the central domain [34]. The masses are lumped at
the nodes of the beam-grid.

So, consider a vibrating microstructured beam-grid model under an initial biaxial loads P and sP as shown
in Figs. 3 and 4. Although it is the same notation than in the beam case, hereinafter, P denotes a load per
unit length. The particular cases of s = 0 (uniaxial load) and s = 1 (load is the same along both directions)
have been studied by Zhang et al. [48] and Zhang et al. [18], respectively. In the lattice plate model, the
moment–curvature relations are given by:

Mi, j
x = D

(
wi+1, j − 2wi, j + wi−1, j

	x2
+ ν

wi, j+1 − 2wi, j + wi, j−1

	y2

)
(97)

Mi, j
y = D

(
wi, j+1 − 2wi, j + wi, j−1

	y2
+ ν

wi+1, j − 2wi, j + wi−1, j

	x2

)
(98)

Mi, j
xy = Mi, j

yx = D(1 − ν)
−wi, j+1 + wi+1, j+1 + wi, j − wi+1, j

	x	y
(99)
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Fig. 4 aMicrostructured beam-grid model. b Torsional deformation of a unit cell in a microstructured beam-grid model

and the discrete equation of motion by

Mi+1, j
xx − 2Mi, j

xx + Mi−1, j
xx

Δx2
+ 2

Mi, j
xy − Mi−1, j

xy − Mi, j−1
xy + Mi−1, j−1

xy

ΔxΔy
+ Mi, j+1

yy − 2Mi, j
yy + Mi, j−1

yy

Δy2

+P

(
wi+1, j − 2wi, j + wi−1, j

Δx2
+ s

wi, j+1 − 2wi, j + wi, j−1

Δy2

)
− m0ω

2wi, j = 0 (100)

where wi, j , Mxx , Myy, Mxy are the displacement, the bending moments and the twisting moment at node
(i, j), respectively. 	x and 	y are the lengths of discrete rigid elements in the x- and y-directions, given,
employing a square lattice for an isotropic material, by 	x = Δy = a = αL/ny = L/nx , with nx and ny are
the numbers of discrete rigid elements in the x- and y-directions, also seen, as for a beam, as the ratio between
the length of the plate and the interatomic length.

Equations (97)–(100) are the centered finite schemes of the local moment–curvature relations and the local
equation of motion for a plate, following the Kirchhoff plate model [49]
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Mxx = D

(
∂2

∂x2
w + ν

∂2

∂y2
w

)
(101)

Myy = D

(
∂2w

∂y2
+ ν

∂2

∂x2
w

)
(102)

Mxy = D(1 − ν)
∂2

∂x∂y
w (103)

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ P

(
∂2w

∂x2
+ s

∂2w

∂y2

)
− m0ω

2w = 0 (104)

where Mxx , Myy are the bending moments, Mxy the twisting moment, D the flexural rigidity of the continuous
plate, and ν the Poisson ratio.

In view of Eqs. (97)–(99), and Eq. (100) gives the linear difference equation of the plate lattice problem

α2n4y L
i, j + n2yα

2λ(micro)

(
Hi, j
x + sHi, j

y

)
− α2Ω2

(micro)wi, j = 0 (105)

where

Li, j = 20wi, j + (wi, j−2 + wi, j+2 + wi−2, j + wi+2, j ) − 8(wi, j−1 + wi, j+1 + wi−1, j + wi+1, j )

+ 2(wi+1, j−1 + wi+1, j+1 + wi−1, j−1 + wi−1, j+1) (106)

Hi, j
y = wi, j−1 − 2wi, j + wi, j+1 (107)

Hi, j
x = wi−1, j − 2wi, j + wi+1, j (108)

Ω2
(micro) = m0ω

2(αL)4

D
; λ(micro) = P(αL)2

D
(109)

whereΩ(micro) is the dimensionless vibration frequency parameter of themicrostructured beam-gridmodel and
λ the nondimensional buckling stress parameter. Equation (105) may also be derived by using the Hamilton
principle [20].

Equation (105) is the finite difference scheme of the local continuous governing differential equation [20]:

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

]
− m0ω

2w + P

(
∂2w

∂x2
+ s

∂2w

∂y2

)
= 0 (110)

Consider now a microstructured beam-grid model with simply supported boundary conditions. The discrete
displacement can be expressed as a double Fourier sine series as:

wi, j = w0 sin
mπ i

nx
sin

nπ j

ny
= w0 sin

αmπ i

ny
sin

nπ j

ny
(111)

By substituting Eq. (111) into Eq. (105), one obtains the vibration frequency parameter in the general case:

Ω2
(micro) = 4n4y

(
2 − cos

mπ

nx
+ cos

nπ

ny

)2

− 2λ(micro)n
2
y

(
1 + s − cos

mπ

nx
− s cos

nπ

ny

)
(112)

This equation coincides with the one developed by Challamel et al. [20]. The vibration frequency remains
positive as long as the load is lower than the buckling load. Likewise, the critical buckling load parameter is
given by

λ(micro) = min
(m,n)

⎛
⎜⎝−

2n2y
(
cos mπ

nx
+ cos nπ

ny
− 2

)2
(
cos mπ

nx
+ s cos nπ

ny
− 1 − s

)
⎞
⎟⎠ (113)

Assuming that the loads are the same along the two directions x and y, i.e. s = 1, Eq. (112) becomes:

Ω2
(micro) = 2n2y

(
2 − cos

mπ

nx
− cos

nπ

ny

)[
2n2y

(
2 − cos

mπ

nx
− cos

nπ

ny

)
− λ(micro)

]
(114)
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Remarkably, Zhang et al. [18] derived the same result. Moreover, assuming a uniaxial load, s = 0, the squared
vibration frequency parameter becomes:

Ω2
(micro) = 4n4y

(
2 − cos

αmπ

ny
− cos

nπ

ny

)2

− 2λ(micro)n
2
y

(
1 − cos

αmπ

ny

)
(115)

In this case, the minimum of λ(micro), depends on α and ny , occurs when n = m = 1 and the critical buckling
load results in

λ(micro) =
2n2y

(
cos απ

ny
+ cos π

ny
− 2

)2
1 − cos απ

ny

(116)

Now we present the nonlocal Eringen’s model and different continualized models. This lattice model is the
reference model for the calibration of the small length scale coefficient. Thus, the aim is to build a nonlocal
continuous model such that the results match with those of the microstructured beam-grid model. As in the
beam problem, we consider two kinds of models. The first kind is based on the equivalence between the
continuous and discrete models through the continualization of finite equations (presented above). The second
kind of models is based on the use of postulated nonlocal constitutive laws and equilibrium equations; the
most famous of them being the nonlocal Eringen’s model.

3.2 Fourth-order continualized model

Recently, Challamel et al. [20] proposed a continualized model based on Padé approximant. As in the beam
problem, we assume a dense lattice. By using the Padé approximants as presented in Sect. 2.3. and extending
to two dimensions, we define the following two-dimensional operators at node (i, j)

La,x = ∂2w

∂x2

∣∣∣∣
i, j

=
(

∂

∂x

)2

i, j

La,y = ∂2w

∂y2

∣∣∣∣
i, j

=
(

∂

∂y

)2

i, j
(117)

According to Eq. (15), the continualized approximation of this operator is provided by the following expression

La,x = 4

a2
sinh2

(
a

2

∂

∂x

)
=

∂2

∂x2

1 − a2
12

∂2

∂x2

+ o(a2)

La,y = 4

a2
sinh2

(
a

2

∂

∂y

)
=

∂2

∂y2

1 − a2
12

∂2

∂y2

+ o(a2) (118)

Following the study of Rosenau [25]

L
1
2
a,x =

∂
∂x

1 − a2
24

∂2

∂x2

+ o(a2)

L
1
2
a,y =

∂
∂y

1 − a2
24

∂2

∂y2

+ o(a2) (119)

By applying Eqs. (118) and (119) on Eqs. (97)–(99), we obtain [20]
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Mx = D(La,x + νLa,y)w = D

⎛
⎝ ∂2

∂x2

1 − a2
12

∂2

∂x2

w + ν

∂2

∂y2

1 − a2
12

∂2

∂y2

w

⎞
⎠+ o(a2) (120)

My = D(La,y + νLa,x )w = D

⎛
⎝

∂2

∂y2

1 − a2
12

∂2

∂y2

w + ν

∂2

∂x2

1 − a2
12

∂2

∂x2

w

⎞
⎠+ o(a2) (121)

Mxy = D(La,x La,y)
1/2w = D(1 − ν)

∂2

∂x∂y(
1 − a2

24
∂2

∂x2

) (
1 − a2

24
∂2

∂y2

)w + o(a2) (122)

La,x Mxx + 2(La,x La,y)
1/2Mxy + La,yMyy + PLa,xw + sPLa,yw − m0ω

2w

=
∂2

∂x2

1 − a2
12

∂2

∂x2

Mxx + 2
∂2

∂x∂y[
1 − a2

24
∂2

∂x2

] [
1 − a2

24
∂2

∂y2

]Mxy +
∂2

∂y2

1 − a2
12

∂2

∂y2

Myy

+P
∂2

∂x2

1 − a2
12

∂2

∂x2

w + sP

∂2

∂y2

1 − a2
12

∂2

∂y2

w − m0ω
2w + o(a2) = 0 (123)

By using the Taylor expansion, Eqs. (120)–(122) lead to a mixed gradient-nonlocal law, given by:

Mx = D

(
∂2

∂x2

(
1 + a2

12

∂2

∂x2

)
w + ν

∂2

∂y2

(
1 + a2

12

∂2

∂y2

)
w

)
+ o(a2) (124)

My = D

(
∂2

∂y2

(
1 + a2

12

∂2

∂y2

)
w + ν

∂2

∂x2

(
1 + a2

12

∂2

∂x2

)
w

)
+ o(a2) (125)

Mxy = D(1 − ν)

(
1 + a2

24

∂2

∂x2

)(
1 + a2

24

∂2

∂y2

)
∂2

∂x∂y
w + o(a2) (126)

Multiplying Eq. (123) by [1 − (a2/12)∂2/∂x2]2[1 + (e0a)2∂2/∂y2]2 and using the Taylor expansion at the
second order in a, we obtain

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
− a2

3

(
∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

)

+a4

96

(
ν − 3

3

∂8w

∂x6∂y2
+ ν − 3

3

∂8w

∂x2∂y6
+ 15ν − 7

3

∂8w

∂x4∂y4
− 2

3

∂8w

∂x8
− 2

3

∂8w

∂y8

)

+ a6

576

(
∂10w

∂x2∂y8
+ ∂10w

∂x8∂y2
+ 48 − 13ν

12

∂10w

∂x4∂y6
+ 48 − 13ν

12

∂10w

∂x6∂y4

)

+ a8

4608

(
5 − 9ν

9

∂10w

∂x4∂y8
+ 5 − 9ν

9

∂10w

∂x8∂y4
+ 13 − 13ν

9

∂10w

∂x6∂y6

+1 − ν

9

∂10w

∂x10∂y2
+ 1 − ν

9

∂10w

∂x2∂y10
+ 48 − 13ν

12

∂10w

∂x6∂y4

)

+a10(1 − ν)

995328

(
2

∂10w

∂x6∂y8
+ 2

∂10w

∂x8∂y6
+ ∂10w

∂x10∂y4
+ ∂10w

∂x4∂y10

)

+a12(ν − 1)

11943936

(
∂10w

∂x10∂y6
+ ∂10w

∂x6∂y10
+ 2

∂10w

∂x8∂y8

)]

+p

[
∂2w

∂x2
+ s

∂2w

∂y2
− a2

12

(
2(s + 1)

∂4w

∂x2∂y2
+ ∂4w

∂x4
+ s

∂4w

∂y4

)

+ a4

144

(
∂6w

∂x6
+ (s + 1)

∂6w

∂x4∂y2
+ (s + 1)

∂6w

∂x2∂y4
+ s

∂6w

∂y6

)
− a6

1728

(
∂8w

∂x8
+ s

∂8w

∂y8

)
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−a8(s + 1)

20736

(
∂10w

∂x8∂y2
+ ∂10w

∂x2∂y8

)]

−m0ω
2
[
1 − a2

6

(
∂2w

∂x2
+ ∂2w

∂y2

)
+ a4

48

(
∂4w

∂x4
+ 5

3

∂4w

∂x2∂y2
+ ∂4w

∂y4

)

− a6

1728

(
∂6w

∂x6
+ ∂6w

∂y6
+ ∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

)
− a8

20736

(
∂8w

∂x6∂y2
+ ∂8w

∂x4∂y4
+ ∂8w

∂x2∂y6

)]

+o(a12) = 0 (127)

As in the continualized beam models, we define a small length scale coefficient, structural independent, e0
equal to 1/

√
12. This coefficient is constant and structural problem independent. Neglecting the higher-order

terms in a, one obtains the approximation:

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
− a2

3

(
∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

)]

+ P

[
∂2w

∂x2
+ s

∂2w

∂y2
− a2

12

(
2(s + 1)

∂4w

∂x2∂y2
+ ∂4w

∂x4
+ s

∂4w

∂y4

)]

−m0ω
2
[
1 − a2

6

(
∂2

∂x2
+ ∂2

∂y2

)]
w + o(a2) = 0 (128)

Equation (128) can be directly derived from the continualization of the discrete governing differential equation
Eq. (105). Using the pseudodifferential operator defined in Eqs. (118) and (119):

16

a4
D

[
sinh4

(
a

2

∂

∂x

)
+ 2sinh2

(
a

2

∂

∂x

)
sinh2

(
a

2

∂

∂y

)
+ sinh4

(
a

2

∂

∂y

)]
w − m0ω

2w

+P
4

a2

[
sinh2

(
a

2

∂

∂x

)
+ s sinh2

(
a

2

∂

∂y

)]
w = 0 (129)

which can be approximated by:

D

⎡
⎢⎣

∂4w
∂x4(

1 − a2
12

∂2

∂x2

)2 + 2

∂4w
∂x2∂y2(

1 − a2
12

∂2

∂x2

) (
1 − a2

12
∂2

∂y2

) +
∂4w
∂y4(

1 − a2
12

∂2

∂y2

)2
⎤
⎥⎦− m0ω

2w

+P

⎛
⎝ ∂2w

∂x2

1 − a2
12

∂2

∂x2

+ s

∂2w
∂y2

1 − a2
12

∂2

∂y2

⎞
⎠+ o(a2) = 0 (130)

and we multiply by [1 − (a/12)2(∂2/∂x2)]2[1 − (a/12)2(∂2/∂y2)]2

D

[(
1 − a2

12

∂2

∂y2

)2
∂4w

∂x4
+ 2

(
1 − a2

12

∂2

∂x2

)(
1 − a2

12

∂2

∂y2

)
∂4w

∂x2∂y2
+
(
1 − a2

12

∂2

∂x2

)2
∂4w

∂y4

]

−m0ω
2w + P

(
∂2w

∂x2
+ s

∂2w

∂y2

)
− a2

6
P(s + 1)

∂4w

∂x2∂y2
− a2

12
P

(
∂4w

∂x4
+ s

∂4w

∂y4

)

+ a4

144
P

(
∂6w

∂x6
+ 2

∂6w

∂x4∂y2
+ s

∂6w

∂y6
+ 2s

∂6w

∂x2∂y4

)
− a6

1728
P(s + 1)

∂8w

∂x4∂y4
+ o(a6) = 0

(131)

Or

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
− a2

3

(
∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

)
+ a4

36

∂8w

∂x4∂y4

]

−m0ω
2w + a2

6
m0ω

2
(

∂2w

∂x2
+ ∂2w

∂y2

)
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+P

(
∂2w

∂x2
+ s

∂2w

∂y2

)
− a2

6
P(s + 1)

∂4w

∂x2∂y2
− a2

12
P

(
∂4w

∂x4
+ s

∂4w

∂y4

)

+ a4

144
P

(
∂6w

∂x6
+ 2

∂6w

∂x4∂y2
+ s

∂6w

∂y6
+ 2s

∂6w

∂x2∂y4

)
− a6

1728
P(s + 1)

∂8w

∂x4∂y4
+ o(a6) = 0

(132)

Neglecting the higher-order term in a in Eq. (132) yields Eq. (128):

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
− a2

3

(
∂6w

∂x4∂y2
+ ∂6w

∂x2∂y4

)]
− m0ω

2w

+a2

6
m0ω

2
(

∂2w

∂x2
+ ∂2w

∂y2

)
+ P

(
∂2w

∂x2
+ s

∂2w

∂y2

)

−a2

6
P(s + 1)

∂4w

∂x2∂y2
− a2

12
P

(
∂4w

∂x4
+ s

∂4w

∂y4

)
= 0 (133)

This equation containing fourth or less derivative terms following a same contribution, namely x and y, it
is called fourth-order continualized model. Its beam counterpart is the fourth-order continualized model, as
developed in Sect. 2.2.

Thus, considering two different continualization approaches, it leads to two different but similar sixth-order
governing differential equation. Again, Eq. (133) requires six boundary conditions which may be obtained
from the variational principle, through the following postulated energies U, T and W :

U (w) = 1

2

∫∫
D

D

[(
∂2w

∂x2

)2

+ 2ν
∂2w

∂x2
∂2w

∂y2
+
(

∂2w

∂y2

)2

+ 2(1 − ν)

(
∂2w

∂x∂y

)2

+a2

3

((
∂3w

∂x2∂y

)2

+
(

∂3w

∂x∂y2

)2
)]

dxdy (134)

T (w) = 1

2

∫∫
D
m0ω

2

[
w2 + a2

6

((
∂w

∂x

)2

+
(

∂w

∂y

)2
)]

dxdy (135)

W (w) = 1

2

∫∫
D

P

[(
∂w

∂x

)2

+ s

(
∂w

∂y

)2

+ a2

12

((
∂2w

∂x2

)2

+ s

(
∂2w

∂y2

)2
)

+a2

6
(s + 1)

∂2w

∂x2
∂2w

∂y2

]
dxdy (136)

Thus, applying the Hamilton principle δ(U − T − W ), we obtain Eq. (133) with the natural boundary condi-
tions written under the line integral form: ∮

Γ

I (x, y) = 0 (137)

where Γ is the boundary of the plate and I is defined as follows

I (x, y) = a2

3
D

∂3w

∂x2∂y
δ

(
∂2w

∂x2

)
dx + a2

3
D

∂3w

∂y2∂x
δ

(
∂2w

∂y2

)
dy

+
{
D

(
ν
∂2w

∂x2
+ ∂2w

∂y2

)
− D

a2

3

∂4w

∂x2∂y2
− a2

12
P

[
s
∂2w

∂y2
+ (1 + s)

∂2w

∂x2

]}
δ

(
∂w

∂y

)
dx

+
{
D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
− D

a2

3

∂4w

∂x2∂y2
− a2

12
P

[
∂2w

∂x2
+ (1 + s)

∂2w

∂y2

]}
δ

(
∂w

∂x

)
dy

−
{
D

[
∂3w

∂x3
+ ∂3w

∂x∂y2
− a2

3

∂5w

∂x3∂y2

]
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+ P
∂w

∂x
− a2

12
P

[
∂3w

∂x3
+ (1 + s)

∂3w

∂x∂y2

]
+ a2

6
m0ω

2 ∂w

∂y

}
δwdy

−
{
D

[
∂3w

∂y3
+ ∂3w

∂x2∂y
− a2

3

∂5w

∂x2∂y3

]

+ sP
∂w

∂y
− a2

12
P

[
s
∂3w

∂y3
+ (1 + s)

∂3w

∂x2∂y

]
+ a2

6
m0ω

2 ∂w

∂x

}
δwdx (138)

The solution is provided for simply supported plate. In view of boundary conditions, similarly to Eq. (111)
the solution may be expressed as

w = w0 sin
mπx

L
sin

nπy

αL
(139)

Setting Ω2 = ω2m(αL)4/D and λ = ω2m(αL)2/D and substituting Eq. (139) into Eq. (191), the solution is
given by:

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4 − e20π

6[(αm)6 − (αm)4n2 − (αm)2n4 + n6][(
αL
a

)2 + e20π
2[(αm)2 + n2]

]

− λ
π2
[
e20π

2(αmn)2(1 + s) + (
αL
a

)2 [(αm)2 + sn2]
]

[(
αL
a

)2 + (1 + γ3)e20π
2[(αm)2 + n2]

] (140)

with e20 = 1/12 for the continualization processes. In the static case, Ω2 = 0, assuming a half sine wave in
the y direction (n = 1) , the buckling load is

λ = min
(m,n)

π2

⎧⎨
⎩
(

αL
a

)2
(1 + m2α2)2 − e20π

2[(αm)6 − (αm)4 − (αm)2 + 1][
e20π

2(αm)2(1 + s) + (
αL
a

)2 [(αm)2 + s]
]

⎫⎬
⎭ (141)

Next, we shall consider the particular case of a uniaxial load, i.e. s = 0. The squared natural frequency
becomes:

Ω2 =
(

αL
a

)2
(n2+m2α2)2π4 − e20π

6[(αm)6 − (αm)4n2 − (αm)2n4+n6] − λπ2(αm)2
[
e20π

2n2 + (
αL
a

)2]
[(

αL
a

)2 + e20π
2[(αm)2 + n2]

]
(142)

Furthermore, in free vibration, the frequency is calculated from λ = 0 in Eq. (142)

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4[(

αL
a

)2 + e20π
2[(αm)2 + n2]

] − e20π
6 [(αm)6 − (αm)4n2 − (αm)2n4 + n6][(

αL
a

)2 + e20π
2[(αm)2 + n2]

] (143)

As explained above; the small length scale coefficient is, by definition, constant (e0 = 1/
√
12) and structural

independent.

3.3 Sixth-order continualized model

An alternative continualized model can be derived, by using another continualization scheme. Multiplying
Eqs. (120) and (121) by [1 − (a2/12)∂2/∂x2][1 − (a2/12)∂2/∂y2] and Eq. (122) by [1 − (a2/24)∂2/∂x2][1−
(a2/24)∂2/∂y2], one obtains

Mx − a2

12

(
∂2

∂x2
+ ∂2

∂y2

)
Mx = D

[
∂2w

∂x2
+ ν

∂2w

∂y2
−a2

12
(1 + ν)

∂4w

∂x2∂y2

]
+ o(a2) (144)
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My − a2

12

(
∂2

∂x2
+ ∂2

∂y2

)
My = D

[
∂2w

∂y2
+ ν

∂2w

∂x2
−a2

12
(1 + ν)

∂4w

∂x2∂y2

]
+ o(a2) (145)

Mxy − a2

24

(
∂2

∂x2
+ ∂2

∂y2

)
Mxy = D(1 − ν)

∂2

∂x∂y
w + o(a2) (146)

Eqs. (144)–(146) are close to Eringen’s nonlocal elasticity Eqs. (74)–(76), except the last nonlocal under-
lined term. Using Eqs. (144)–(146) into Eq. (123), multiplying by [1 − (e0a)2∂2/∂x2][1 − (e0a)2∂2/∂y2]
one obtains the approximation

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
+ a2

12

(
∂6w

∂x6
− ∂6w

∂x4∂y2
− ∂6w

∂x2∂y4
+ ∂6w

∂y6

)]

−
[
1 − a2

12

(
∂2

∂x2
+ ∂2

∂y2

)]
m0ω

2w + P

(
∂2w

∂x2
+ s

∂2w

∂y2

)
− a2

12
(1 + s)P

∂4w

∂x2∂y2
= 0 (147)

Equation (147) can also be derived from the continualization of the discrete governing difference equation
Eq. (105). We start from Eq. (123), equation based on Padé approximants and we use the Taylor expansion, at
the second order in a:

D

[(
1 + a2

6

∂2

∂x2

)
∂4w

∂x4
+ 2

(
1 + a2

12

∂2

∂x2

)(
1 + a2

12

∂2

∂y2

)
∂4w

∂x2∂y2
+
(
1 + a2

6

∂2

∂y2
− a4

144

∂4

∂y4

)
∂4w

∂y4

]

−m0ω
2w + P

[(
1 + a2

12

∂2

∂x2

)
∂2w

∂x2
+ s

(
1 + a2

12

∂2

∂y2

)
∂2w

∂y2

]
+ o(a4) = 0 (148)

Multiplying by [1 − (e0a)2(∂2/∂x2 + ∂2/∂y2)]

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
+ a2

12

(
∂6w

∂x6
− ∂6w

∂x4∂y2
− ∂6w

∂x2∂y4
+ ∂6w

∂y6

)

−2(e0a)4
(
2

∂8w

∂x6∂y2
+ 3

∂8w

∂x4∂y4
+ 2

∂8w

∂x2∂y6

)]

−
[
1 − a2

12

(
∂2

∂x2
+ ∂2

∂y2

)]
m0ω

2w + P

(
∂2w

∂x2
+ s

∂2w

∂y2

)
− a2

12
(1 + s)P

∂4w

∂x2∂y2

+ a4

144
P

(
∂2

∂x2
+ ∂2

∂y2

)(
∂4w

∂x4
+ s

∂4w

∂y4

)
+ o(a4) = 0 (149)

Neglecting the higher-order terms in a, we obtain Eq. (147). It is also obtainable via variational formulation,
using the following bending strain energy, kinetic energy and work done by axial forces:

U (w) = 1

2

∫∫
D

D

[(
∂2w

∂x2

)2

+ 2ν
∂2w

∂x2
∂2w

∂y2
+
(

∂2w

∂y2

)2

+2(1 − ν)

(
∂2w

∂x∂y

)2

− a2

12

((
∂3w

∂x3

)2

+
(

∂3w

∂y3

)2
)

+a2

12

((
∂3w

∂x2∂y

)2

+
(

∂3w

∂x∂y2

)2
)]

dxdy (150)

T (w) = 1

2

∫∫
D
m0ω

2

[
w2 + a2

12

((
∂w

∂x

)2

+
(

∂w

∂y

)2
)]

dxdy (151)

W (w) = 1

2

∫∫
D

P

[(
∂w

∂x

)2

+ s

(
∂w

∂y

)2

+ a2

12
(1 + s)

∂2w

∂x2
∂2w

∂y2

]
dxdy (152)
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where D is the area of the mid-surface of the plate. In this model, the nonlocality does not affect the work.
Thus, applying the Hamilton principle, it yields Eq. (133) with the natural boundary conditions given by (137)
and I defined as follows

I (x, y, t) = a2

12
D

[
∂3w

∂x2∂y

∂2δw

∂x2
− ∂3w

∂y3
∂2δw

∂y2

]
dx + a2

12
D

[
∂3w

∂x∂y2
∂2δw

∂y2
− ∂3w

∂x3
∂2δw

∂x2

]
dy

+
{
D

(
ν
∂2w

∂x2
+ ∂2w

∂y2

)
− D

a2

12

(
∂4w

∂x2∂y2
− ∂4w

∂y4

)
− a2

24
P(1 + s)

∂2w

∂x2

}
δ

(
∂w

∂y

)
dx

+ D(1 − ν)
∂2w

∂x∂y
δ

(
∂w

∂x

)
dx + D(1 − ν)

∂2w

∂x∂y
δ

(
∂w

∂y

)
dy

+
{
D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
− D

a2

12

(
∂4w

∂x2∂y2
− ∂4w

∂x4

)
− a2

24
P(1 + s)

∂2w

∂y2

}
δ

(
∂w

∂x

)
dy

−
{
D

[
∂3w

∂x3
+ ∂3w

∂x∂y2
+ a2

12

(
∂5w

∂x5
− ∂5w

∂x3∂y2

)]

+ P

(
∂w

∂x
− a2

24
(1 + s)

∂3w

∂x∂y2

)
+ a2

12
m0ω

2 ∂w

∂x

}
δwdy

−
{
D

[
∂3w

∂y3
+ ∂3w

∂x2∂y
+ a2

12

(
∂5w

∂y5
− ∂5w

∂x2∂y3

)]

+ P

(
s
∂w

∂y
− a2

24
(1 + s)

∂3w

∂x2∂y

)
+ a2

12
m0ω

2 ∂w

∂y

}
δwdx (153)

In contrast to local models, two additional boundary conditions appear.
In view of the simply supported boundary conditions, the substitution of Eq. (139) into Eq. (147) yields

the following solution

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4 + 4e20π

6(αm)2n2[(αm)2 + n2][(
αL
a

)2 + 2e20π
2[(αm)2 + n2]

]

−
λπ2

[
2e20π

2(αmn)2(1 + s) + e20π
2[(αm)4 + sn4] + (

αL
a

)2 [(αm)2 + sn2]
]

[(
αL
a

)2 + 2e20π
2[(αm)2 + n2]

] (154)

with e20 = 1/12 for the continualization processes. In the static case, Ω2 = 0, assuming a half sine wave in
the y direction (n = 1) , the buckling load parameter is

λ = min
(m,n)

π4

⎧⎨
⎩

(
αL
a

)2
(1 + m2α2)2 + 4e20(αm)2(1 + m2α2)[

2e20π
2(αm)2(1 + s) + e20π

2[(αm)4 + s] + (
αL
a

)2 [(αm)2 + s]
]
⎫⎬
⎭ (155)

For the particular case of a uniaxial load, i.e. s = 0, the squared natural frequency parameter becomes:

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4[(

αL
a

)2 + 2e20π
2[(αm)2 + n2]

] − λπ2(αm)2
2e20π

2n2 + e20π
2[(αm)2] + (

αL
a

)2
[(

αL
a

)2 + 2e20π
2[(αm)2 + n2]

]

+ 4e20π
6(αm)2n2[(αm)2 + n2][(

αL
a

)2 + 2e20π
2[(αm)2 + n2]

] (156)

Furthermore, in free vibration, the frequency is calculated from λ = 0

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4[(

αL
a

)2 + 2e20π
2[(αm)2 + n2]

] + 4e20π
6(αm)2n2

[(αm)2 + n2][(
αL
a

)2 + 2e20π
2[(αm)2 + n2]

] (157)
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As for the fourth-order continualized model, the small length scale coefficient is constant and structural
problem independent.

3.4 Fourth-order phenomenological model: nonlocal Eringen’s theory

According to Eringen’s nonlocal theory [14] applied for plates, the nonlocal versions of moment–curvature
relations Eqs. (101)–(103) are postulated as follows [20,49]:

Mxx − (e0a)2
(

∂2Mxx

∂x2
+ ∂2Mxx

∂y2

)
= D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(158)

Myy − (e0a)2
(

∂2Myy

∂x2
+ ∂2Myy

∂y2

)
= D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(159)

Mxy − (e0a)2
(

∂2Mxy

∂x2
+ ∂2Mxy

∂y2

)
= D(1 − ν)

∂2w

∂x∂y
(160)

By substituting Eqs. (158)–(160) into the local Eq. (104), the governing differential equation is obtained

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
− m0ω

2
[
w − (e0a)2

(
∂2w

∂x2
+ ∂2w

∂y2

)]

−(e0a)2
∂4w

∂x2∂y2
P(1 + s) − (e0a)2P

(
∂4w

∂x4
+ s

∂4w

∂y4

)
+ P

(
∂2w

∂x2
+ s

∂2w

∂y2

)
= 0 (161)

Eq. (161) may be obtained variationally using the following bending strain energy, kinetic energy and work
done by axial forces:

U (w) = 1

2

∫∫
D

D

[(
∂2w

∂x2

)2

+ 2ν
∂2w

∂x2
∂2w

∂y2
+
(

∂2w

∂y2

)2

+ 2(1 − ν)

(
∂2w

∂x∂y

)2
]
dxdy (162)

T (w) = 1

2

∫∫
D
m0ω

2

[
w2 + (e0a)2

((
∂w

∂x

)2

+
(

∂w

∂y

)2
)]

dxdy (163)

W (w) = 1

2

∫∫
D

P

[(
∂w

∂x

)2

+ s

(
∂w

∂y

)2

+ (e0a)2
(

∂2w

∂x2

)2

+ (e0a)2s

(
∂2w

∂y2

)2

+(e0a)2(s + 1)
∂2w

∂x2
∂2w

∂y2

]
dxdy (164)

Equations (162)–(164) match with the results of Chakraverty and Behera [50] and the functional given by
Phadikar and Pradhan [51]. It is worth noting that the nonlocal effect does not affect the bending strain energy.

The kinetic energy is different from the one given by Adali [52,53]:

T (w) = 1

2

∫∫
D
m0ω

2
[
w2 − (e0a)2w

(
∂2w

∂x2
+ ∂2w

∂x2

)]
dxdy (165)

Although they lead to the same governing differential equation, they do not provide the same boundary
conditions. We retain the kinetic energy given by Chakraverty and Behera [50], definite positive.

Thus, by applying the Hamilton principle, we get Eq. (161) with the natural boundary conditions given by
(137) and I defined as follows:

I (x, y) =
{
D

(
ν
∂2w

∂x2
+ ∂2w

∂y2

)
− (e0a)2P

2

[
2s

∂2w

∂y2
+ (1 + s)

∂2w

∂x2

]}
δ

(
∂w

∂y

)
dx

+
{
D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
− (e0a)2P

2

[
2
∂2w

∂x2
+ (1 + s)

∂2w

∂y2

]}
δ

(
∂w

∂x

)
dy
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−
{
D

[
∂3w

∂x3
+ ∂3w

∂x∂y2

]
+ P

∂w

∂x
− (e0a)2P

2

[
2
∂3w

∂x3
+ (1 + s)

∂3w

∂x∂y2

]

+ (e0a)2m0ω
2 ∂w

∂x

}
δwdy

−
{
D

[
∂3w

∂y3
+ ∂3w

∂x2∂y

]
+ sP

∂w

∂y
− (e0a)2P

2

[
2s

∂3w

∂y3
+ (1 + s)

∂3w

∂x2∂y

]

+ (e0a)2m0ω
2 ∂w

∂y

}
δwdx (166)

As for the beam case, the boundary conditions obtained through the variational principle and the one issued
of the principle of virtual work may differ.

In dynamics, the dynamic contribution in the boundary conditions differ between the traditional nonlocal
Eringen’s model and the conditions obtained through the phenomenological approach Eqs. (60) and (61). In
view of the simply supported boundary conditions, the substitution of Eq. (139) into Eq. (166) furnishes the
following solution

Ω2 =
(

αL
a

)2
(n2+m2α2)2π4 − λπ2

[
e20π

2(αmn)2(1 + s) + e20π
2[(αm)4 + sn4] + (

αL
a

)2 [(αm)2 + sn2]
]

[(
αL
a

)2 + e20π
2[(αm)2 + n2]

]
(167)

For s = 1, the solution coincide with the one derived by Zhang et al. [48].
In statics, the buckling load parameter is

λ = min
(m,n)

π4

⎧⎨
⎩

(
αL
a

)2
(1 + m2α2)2[

e20π
2(αm)2(1 + s) + e20π

2[(αm)4 + s] + (
αL
a

)2 [(αm)2 + s]
]
⎫⎬
⎭ (168)

This result coincides with the one obtained by Zhang et al. [48]. For a uniaxial load, i.e. s = 0, the squared
natural frequency parameter is:

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4

(
αL
a

)2 + e20π
2(n2 + m2α2)

− λπ2(αm)2
e20π

2n2 + e20π
2(αm)2 + (

αL
a

)2
(

αL
a

)2 + e20π
2(n2 + m2α2)

(169)

Furthermore, in free vibration, for λ = 0, the frequency is:

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4

(
αL
a

)2 + e20π
2(n2 + m2α2)

(170)

Considering a phenomenological approach, the small length scale coefficient turns out to be not a constant.
It depends on the initial load (P or λ), the vibration frequency Ω , the vibration/buckling mode (m, n), the
material (the internal characteristic a) and the geometry (aspect ratio α and one of the length of the beam L)
[20]. Thus, it has to be calibrated. In a similar manner to the investigation of nonlocal beammodels, by relating
the microstructured beam-grid model to the nonlocal rectangular plate, the length of rigid element can be
interpreted as the internal characteristic length scale. As in beam problems, the small length scale coefficient
is obtained by comparing the solutions of a microstructured beam-grid model and a nonlocal rectangular plate
model. More especially, by equating the buckling stress from Eqs. (116) and (168), with the assumption of
having one-half wave in the y-direction (n = 1), the small length scale coefficient may be expressed as

1

e20
=

2n2y
(
cos αmπ

ny
+cos π

ny
−2
)2

1+s−cos αmπ
ny

−s cos π
ny

π2[(αm)2(1 + s) + [(αm)4 + s]]

n2yπ
2(1 + m2α2)2 − 2n4y

(
cos αmπ

ny
+cos π

ny
−2
)2

1+s−cos αmπ
ny

−s cos π
ny

[(αm)2 + s]
(171)
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Fig. 5 Variation of calibrated small length scale coefficient calculated in static case (dashed line) and free vibration case (con-
tinuous line) with respect to aspect ratio, considering a the fourth-order phenomenological model (Eringen’s model) and the
continualized model (dotted line) and b the sixth-order phenomenological model
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Fig. 6 Gap between the small length scale coefficient calibrated in the fourth-order phenomenological model (Eringen’s model)
and the exact one obtained in the continualized model in the static case (dashed line) and the free vibration case (continuous line)

This expression coincides with the one obtained by Zhang et al. [48]. When the number of elements goes to
infinity, we get following result

lim
ny→∞

1

e20
= 12

{
α2m2(α2m2 + 1)(s + 1) + α6m6 + α4m4 + α2m2s + s

α6m6 + 2α4m4s − α4m4 − α2m2s + 2α2m2 + s

}
(172)

It can be seen that Eq. (172) coincideswith the results of Challamel et al. [20]. The small length scale coefficient
depends on m, the buckling mode and α, the aspect ratio. Considering a uniaxial load (s = 0), the expression
of the small length scale coefficient is compared between the different models (see Figs. 5 and 6).

The small length scale coefficient is now performed in the case of free transverse vibration (s = 0, N = 0).
In a similar manner to the beammodels, the small length scale coefficient is obtained by equating the vibration
frequency in Eqs. (115) and (170), with the assumption of one-half wave in the y-direction,

1

e20
=

4π2[(αm)2 + 1]n4y
(
cos αmπ

ny
+ cos π

ny
− 2

)2

n2yπ
4(1 + m2α2)2 − 4n6y

(
cos αmπ

ny
+ cos π

ny
− 2

)2 (173)

When the number of elements goes to infinity, we obtain:

lim
ny→∞

1

e0
= √

6

√
(m2α2 + 1)2

1 + m4α4 (174)
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Table 1 Mean calibrated small length scale coefficient considering two continualized models and two phenomenological models
for beams and plates

Order Beams Plates

Continualized Phenomenological Continualized Phenomenological

4 6 4 6 4 6 4 6

Statics 0.288 0.288 0.288 0.204 0.288 0.288 0.191–0.408 0.182–0.288
Free vibrations 0.288 0.288 0.408 0.288 0.288 0.288 0.288–0.408 0.288
Gap (%) 0 0 50 29.2 0 0 9.6 10.4

These results coincide with those of Zhang et al. [18,48]. The small length scale coefficient is not constant: it
is structural problem dependent. The expression of the small length scale coefficient is plotted for each model.
Considering the Eringen’s model, the small length scale coefficient lies between 1/

√
12 and 1/

√
6, and it

varies with respect to different mode numbers and aspect ratios. As illustrated in Fig. 8b, it depends on the
load, which contradicts the commonly made assumption of a constant length scale.

For m = 1 and n = 1, the small length scale coefficient is obtained for various values of the aspect ratio
α in the case of free vibration and statics (see Fig. 5; Table 1). Whereas for the continualized models, it is
constant in both situations, the traditional fourth-order phenomenological model provides two small length
scales coefficients in statics and in dynamics and in both situations, it depends on the aspect ratio α. The gap
between the static and dynamic case increases with the vibration mode and the aspect ratio α and reaches
29.2% for a square plate (α = 1).

Furthermore, in order to compare the models, the calibrated small length scale coefficients are reported in
Table 1, considering plates and beams.A significant difference is noticed for the fourth-order phenomenological
model in statics and in free vibration problems.

3.5 A sixth-order phenomenological approach

As for a beam, an attempt is made to develop a model comprising the gradient elasticity and nonlocal elasticity
models. Recently, Challamel et al. [20] suggested the following moment–curvature relations:

[1 − (e0a)2∇2]Mxx = D

[
∂2w

∂x2
+ ν

∂2w

∂y2
− (e0a)2

(
∂4w

∂x2∂y2
− ∂4w

∂x4

)]
(175)

[1 − (e0a)2∇2]Myy = D

[
∂2w

∂y2
+ ν

∂2w

∂x2
− (e0a)2

(
∂4w

∂x2∂y2
− ∂4w

∂y4

)]
(176)

[1 − (e0a)2∇2]Mxy = D(1 − ν)
∂2w

∂x∂y
(177)

Thismodel is close to the classical nonlocal elasticity Eringenmodel. Indeed, the left-hand sides of Eqs. (175)–
(177) are the same as those in the Eringen’s model but the right hand side includes an additional term.

By substituting Eqs. (175)–(177) into Eq. (104), multiplying by [1 − (e0a)2(∂2/∂x2 + ∂2/∂y2)], we get

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
+ (e0a)2

(
∂6w

∂x6
− ∂6w

∂x4∂y2
− ∂6w

∂x2∂y4
+ ∂6w

∂y6

)]

−m0ω
2
[
w + (e0a)2

(
∂2w

∂x2
+ ∂2w

∂y2

)]
+ P

(
∂2w

∂x2
+ s

∂2w

∂y2

)

− (e0a)2P(1 + s)

(
∂4w

∂x2∂y2

)
− (e0a)2P

(
∂4w

∂x4
+ s

∂4w

∂y4

)
= 0 (178)

In contrast to the fourth-order phenomenological and nonlocal Eringen’s model, we obtain a sixth-order space
derivative equation. This equation is different from the equation obtained in the sixth-order continualized
model. Thus, as for the sixth-order continualized model, it requires two additional boundary conditions.
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Equation (178) may be also obtained fromU, T andW given by Eqs. (150), (151) and (164), respectively:

U (w) = 1

2

∫∫
D

D

[(
∂2w

∂x2

)2

+ 2ν
∂2w

∂x2
∂2w

∂y2
+
(

∂2w

∂y2

)2
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(
∂2w

∂x∂y

)2

− (e0a)2

((
∂3w

∂x3

)2

+
(

∂3w

∂y3

)2
)

+ (e0a)2

((
∂3w

∂x2∂y

)2

+
(

∂3w

∂x∂y2

)2
)]

dxdy (179)

T (w) = 1

2

∫∫
D
m0ω

2

[
w2 + (e0a)2

((
∂w

∂x

)2

+
(

∂w

∂y

)2
)]

dxdy (180)

W (w) = 1

2

∫∫
D

P
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∂w

∂x

)2

+ s

(
∂w

∂y

)2

+ (e0a)2
(

∂2w

∂x2

)2
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(
∂2w

∂y2

)2

+ (e0a)2(s + 1)
∂2w

∂x2
∂2w

∂y2

]
dxdy (181)

Thus, by applying the Hamilton principle, we get Eq. (178) with I given in (137) defined as follows:

I (x, y, t) = (e0a)2D

[
∂3w

∂x∂y2
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∂y2
− ∂3w
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2 ∂w
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δwdx (182)

In view of boundary conditions, substituting Eq. (139) in Eq. (178), the solution is provided:

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4 − e20π

6[(αm)6 − (αm)4n2 − (αm)2n4 + n6][(
αL
a

)2 + e20π
2[(αm)2 + n2]

]

− λπ2

[
e20π

2(αmn)2(1 + s) + e20π
2[(αm)4 + sn4] + (

αL
a

)2 [(αm)2 + sn2]
]

[(
αL
a

)2 + e20π
2[(αm)2 + n2]

] (183)
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In the static case, Ω2 = 0, assuming = 1, the buckling load parameter is

λ = min
(m,n)

π4

⎧⎨
⎩

(
αL
a

)2
(1 + m2α2)2 − e20π

2[(αm)6 − (αm)4 − (αm)2 + 1][
e20π

2(αm)2(1 + s) + e20π
2[(αm)4 + s] + (

αL
a

)2 [(αm)2 + s]
]
⎫⎬
⎭ (184)

For the particular case of a uniaxial load, i.e. s = 0, the squared natural frequency parameter becomes:

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4 − e20π

6[(αm)6 − (αm)4n2 − (αm)2n4 + n6][(
αL
a
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]
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2n2 + e20π
2[(αm)2] + (

αL
a

)2
[(

αL
a

)2 + e20π
2[(αm)2 + n2]

] (185)

Furthermore, in free vibration, the frequency is calculated from λ = 0 in Eq. (185)

Ω2 =
(

αL
a

)2
(n2 + m2α2)2π4[(

αL
a

)2 + e20π
2[(αm)2 + n2]

] − e20π
6 [(αm)6 − (αm)4n2 − (αm)2n4 + n6][(

αL
a

)2 + e20π
2[(αm)2 + n2]

] (186)

As for the fourth-order continualized model, the small length scale coefficient has to be calibrated. Thus,
by equating the buckling load from Eqs. (116) and (184), the small length scale coefficient is

1

e20
=

2n2y
(
cos αmπ

ny
+cos π

ny
−2
)2

1+s−cos αmπ
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−s cos π
ny

π2[(αm)2(1 + s) + [(αm)4 + s]] + π4[(αm)6 − (αm)4 − (αm)2 + 1]

n2yπ
2(1 + m2α2)2 − 2n4y

(
cos αmπ
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+cos π
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−2
)2

1+s−cos αmπ
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−s cos π
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[(αm)2 + s]
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When the number of elements goes to infinity, it yields

lim
ny→∞

1

e20
= 24

{
α6m6 + α4m4s + α2m2 + s

α6m6 + 2α4m4s − α4m4 − α2m2s + 2α2m2 + s

}
(188)

Again, the small length scale coefficient is structural dependent: it varies with the bucklingmode and the aspect
ratio. Considering a uniaxial load (s = 0), the expression of the small length scale coefficient is compared
between the different models (see Figs. 5, 6). The gap between the value in statics in dynamics and statics
increases with respect to the aspect ratio α.

Furthermore, the calibrated small length scale coefficient is obtained by equating the vibration frequency
in Eqs. (115) and (186), in the case of free transverse vibration (s = 0, N = 0).,

1

e20
=

4π2[(αm)2 + 1]n4y
(
cos αmπ

ny
+ cos π

ny
− 2

)2 + π6[(αm)6 − (αm)4 − (αm)2 + 1]

n2yπ
4(1 + m2α2)2 − 4n6y

(
cos αmπ

ny
+ cos π

ny
− 2

)2 (189)

When the number of elements goes to infinity, it yields:

lim
ny→∞ e0 = 1√

12
(190)

In this particular case, the small length scale coefficient is constant equal to e20 = 1/12, same value than for
the continualized models, and so, is structural independent. This result is much better than for the fourth-order
continualized model. The expression of the small length scale coefficient is plotted for each model (see Fig. 6).
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3.6 General solutions

3.6.1 Buckling load and natural frequency

The four versions of governing differential equation can be written in a canonical form as

D

[
∂4w
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∂4w
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)
= 0 (191)

where three control scalar parameters, namely γ1, γ2 and γ3 are introduced with (γ1, γ2, γ3) is equal to (0,0,1),
(1,0,0), (0,1,0) and (1,1,0) for the fourth-order continualized model, the sixth-order order continualized model,
the fourth-order phenomenological model and the sixth-order phenomenological model, respectively. The
results coincide with the ones of Challamel et al. [20] for γ3 = 0, i.e. for the nonlocal plate models considered
except for the fourth-order continualized nonlocal plate model which is introduced herein.

The substitution of Eq. (139) into Eq. (191) furnishes the following solution
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(192)

Remarkably, when there is no load (N = 0), the vibration frequency following the continualized model based
on the Padé approximant and the hybrid continualized model turns out to be equal.

When s = 0, the squared natural frequency parameter is:
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] (193)

Furthermore, in free vibration, the frequency is calculated from λ = 0 in Eq. (192)
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] (194)

From the previous expressions of the small length scale coefficients, several observations can be made. The
small length scale coefficient turns out to be not a constant. It depends on the initial load (N or λ), the vibration
frequency Ω , the vibration/buckling mode (m, n), the material (the internal characteristic a) and the geometry
(aspect ratio α and one of the length of the beam L) [20]. Thus, it is calibrated by equating the buckling stress
from the discrete model and the continuous one:
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When the number of elements goes to infinity, we get following result

lim
ny→∞

1

e20
= 12

{
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}
(196)

For the nonlocal Eringen’smodel and the sixth-order continualizedmodels, Eq. (196) coincides with the results
of Challamel et al. [20]. It can be checked from Eq. (196) that the small length scale coefficient is constant
for the fourth-order and sixth-order continualized models, i.e. for γ1 + γ3 = 1 and γ2 = 0, and is equal to
e20 = 1/12. In contrast to the nonlocal Eringen’s model and the phenomenological models, it is independent
of m, the buckling mode and α, the aspect ratio. Considering a uniaxial load (s = 0), the expression of the
small length scale coefficient is compared between the different models (see Figs. 5, 6).

The small length scale coefficient is now performed in the case of free transverse vibration (s = 0, N = 0).
In a similar manner to the beammodels, the small length scale coefficient is obtained by equating the vibration
frequency in Eqs. (115) and (194), with the assumption of one-half wave in the y-direction,
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When the number of elements goes to infinity, we obtain:

lim
ny→∞

1

e0
= √

6

√
(m2α2 + 1)2

1 + m4α4 + (γ1 + γ3)
(m2α2 − 1)2

1 + m4α4 (198)
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It can be checked fromEq. (198) that the small length scale coefficient is constant for the continualized nonlocal
models, i.e. for γ1 + γ3 = 1 and γ2 = 0, and is equal to e20 = 1/12, both for buckling and vibration analyses.

The expression of the small length scale coefficient is plotted for each model. As explained above, con-
sidering the Eringen’s model, the small length scale coefficient depends on the load, which contradicts the
commonly made assumption of a constant length-scale.

Let us compare the small length scale coefficient with m = 1 and n = 1 in the case of free vibration and
statics for different values of the aspect ratio α (see Fig. 5). For the continualized models, it is constant for both
cases. For the phenomenological models, a gap occurs between the two between the two situations. This gap
increases in both cases with the aspect ratio α. When the vibration mode increases, a gap between the Eringen
and the microstructured beam-grid model occurs. This gap increases with the vibration mode, whereas for the
model based on the Padé’s approximant, the curve matches exactly the exact solution.

The traditional nonlocal Eringen’s model provides two small length scales coefficients in statics and in
dynamics and in both situations, it depends on the aspect ratio α. The sixth-order phenomenological model
gives a constant small length scale coefficient in free vibration but when an initial load is taken into account,
the calibrated coefficient depends on the aspect ratio. Considering the continualized models, by definition,
the small length scale coefficient has the same value in statics and in free vibrations. Thus, the continualized
models are much better than the phenomenological models based on postulated nonlocal constitutive laws.

As it can be seen in Table 1, based on the microstructured model, the continualized models provide better
results than the phenomenoplogical models, based on postulated nonlocal constitutive laws. Thus, assuming
that the best calibration of the small length scale coefficient is obtained through the first continualized model
and so, is equal to 0.288, the traditional fourth-order phenomenological model (nonlocal Eringen’s theory)
overestimates its value (gap of 7.7%), whereas the sixth-order phenomenological model underestimates the
value (gap of 9.6%). Such differences cannot be ignored, and it appears that the traditional model is not
convenient for the study of vibrations of plates.

Furthermore, in order to compare the models, the calibrated small length scale coefficients are reported in
Table 1 consideringplates andbeams.The results aremoredisparate for plates than for beams.The continualized
models are based on the lattice model. Thus, the calibrated small length scale coefficients are the same in statics
(calibration from the nondimensional buckling load) and in dynamics (calibration from the nondimensional
natural frequency). They are naturally structural problem independent. The sixth-order space derivativemodels
require the introduction of sixth boundary conditions and consequently, could be considered unnecessary
compared to the fourth-order space derivative models. However, these models lead to a nearly constant small
length scale coefficient, independent of the load. Thus, this establishes the superiority of such models.

Furthermore, we define 	e0 the gap between the small length scale coefficient, calibrated in the fourth-
order and sixth-order phenomenological model and the value of the coefficient following the continualized
models (e0 = 1/

√
12):

	e0 = e0 − 1/
√
12

1/
√
12

The value of 	e0 is plotted in Figs. 6 and 7. It can be seen that the sixth-order phenomenological model, in
the case of free vibration, is constant and coincides with the exact value obtained through the continualized
models. Considering the fourth-order phenomenological model, in free vibration, the gap decreases with α. In
statics, it decreases initially and then it increases.
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Fig. 7 Gap between the small length scale coefficient calibrated in the sixth-order phenomenological model and the exact one
obtained in the continualized model in the static case (dashed line) and the free vibration case (continuous line)
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Conclusion

In this study, four nonlocal beam and plate models have been discussed: two are continualized lattice-based
models and two other phenomenological models are based on postulated nonlocal constitutive laws. As already
investigated in different papers, the calibrated small length scale coefficient can takedifferent values considering
the phenomenological models for static or dynamics analyses. Thus, it turns out to be dependent on the load and
the structural problem. Although they do not preserve the locality of the balance equations, the continualized
models have the advantage that the small length scale coefficient has the same value in buckling and in vibration.

While the Eringen’s derivation for beams and plates lead to a fourth-order space derivative differential
equation, some of the equations developed herein possess sixth-order space derivatives. The additional higher-
order boundary conditions may be obtained through variational principles as detailed in the paper. The fourth-
order phenomenological model does not require additional boundary conditions and, consequently, is simpler
than the sixth-order continualized models and the sixth-order phenomenological model.

Furthermore, by using phenomenological nonlocal models such as Eringen’s nonlocal differential model,
it is shown that the nonlocal scale parameters related to the size of the repetitive cell depends on the type of
analysis, either buckling or vibration, when compared to the lattice results. As opposed to phenomenological
nonlocal models, lattice-based continualized nonlocal models have constant length scale calibration. However,
these continualized nonlocal models are constructed from nonlocal balance equations, whereas Eringen’s
nonlocal model keeps the locality of balance equations. This paper tries to open some new directions in
generalizing nonlocal beam or plate models, from lattice mechanics. It is shown that some fundamental lattice
plate interactions may be modeled at a larger scale by several nonlocal plate models, based on physical
micromechanics arguments or introduced within mathematical properties.
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